Properties

Label 845.2.a.i.1.2
Level $845$
Weight $2$
Character 845.1
Self dual yes
Analytic conductor $6.747$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.74735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.571993\) of defining polynomial
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.571993 q^{2} -0.428007 q^{3} -1.67282 q^{4} +1.00000 q^{5} +0.244817 q^{6} +2.67282 q^{7} +2.10083 q^{8} -2.81681 q^{9} -0.571993 q^{10} -5.10083 q^{11} +0.715980 q^{12} -1.52884 q^{14} -0.428007 q^{15} +2.14399 q^{16} +5.34565 q^{17} +1.61120 q^{18} -6.24482 q^{19} -1.67282 q^{20} -1.14399 q^{21} +2.91764 q^{22} -2.42801 q^{23} -0.899170 q^{24} +1.00000 q^{25} +2.48963 q^{27} -4.47116 q^{28} +2.67282 q^{29} +0.244817 q^{30} +0.244817 q^{31} -5.42801 q^{32} +2.18319 q^{33} -3.05767 q^{34} +2.67282 q^{35} +4.71203 q^{36} -3.32718 q^{37} +3.57199 q^{38} +2.10083 q^{40} -6.48963 q^{41} +0.654353 q^{42} -10.9176 q^{43} +8.53279 q^{44} -2.81681 q^{45} +1.38880 q^{46} -2.67282 q^{47} -0.917641 q^{48} +0.143987 q^{49} -0.571993 q^{50} -2.28797 q^{51} -4.20166 q^{53} -1.42405 q^{54} -5.10083 q^{55} +5.61515 q^{56} +2.67282 q^{57} -1.52884 q^{58} +0.899170 q^{59} +0.715980 q^{60} -5.81681 q^{61} -0.140034 q^{62} -7.52884 q^{63} -1.18319 q^{64} -1.24877 q^{66} -2.18319 q^{67} -8.94233 q^{68} +1.03920 q^{69} -1.52884 q^{70} -6.24482 q^{71} -5.91764 q^{72} -10.9608 q^{73} +1.90312 q^{74} -0.428007 q^{75} +10.4465 q^{76} -13.6336 q^{77} -3.63362 q^{79} +2.14399 q^{80} +7.38485 q^{81} +3.71203 q^{82} -9.81681 q^{83} +1.91369 q^{84} +5.34565 q^{85} +6.24482 q^{86} -1.14399 q^{87} -10.7160 q^{88} -7.63362 q^{89} +1.61120 q^{90} +4.06163 q^{92} -0.104783 q^{93} +1.52884 q^{94} -6.24482 q^{95} +2.32322 q^{96} +11.3456 q^{97} -0.0823593 q^{98} +14.3681 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 2 q^{3} + 5 q^{4} + 3 q^{5} - 10 q^{6} - 2 q^{7} - 3 q^{8} + 3 q^{9} - q^{10} - 6 q^{11} + 4 q^{14} - 2 q^{15} + 5 q^{16} - 4 q^{17} + 17 q^{18} - 8 q^{19} + 5 q^{20} - 2 q^{21} - 12 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.571993 −0.404460 −0.202230 0.979338i \(-0.564819\pi\)
−0.202230 + 0.979338i \(0.564819\pi\)
\(3\) −0.428007 −0.247110 −0.123555 0.992338i \(-0.539430\pi\)
−0.123555 + 0.992338i \(0.539430\pi\)
\(4\) −1.67282 −0.836412
\(5\) 1.00000 0.447214
\(6\) 0.244817 0.0999461
\(7\) 2.67282 1.01023 0.505116 0.863051i \(-0.331450\pi\)
0.505116 + 0.863051i \(0.331450\pi\)
\(8\) 2.10083 0.742756
\(9\) −2.81681 −0.938937
\(10\) −0.571993 −0.180880
\(11\) −5.10083 −1.53796 −0.768979 0.639274i \(-0.779235\pi\)
−0.768979 + 0.639274i \(0.779235\pi\)
\(12\) 0.715980 0.206686
\(13\) 0 0
\(14\) −1.52884 −0.408599
\(15\) −0.428007 −0.110511
\(16\) 2.14399 0.535997
\(17\) 5.34565 1.29651 0.648255 0.761423i \(-0.275499\pi\)
0.648255 + 0.761423i \(0.275499\pi\)
\(18\) 1.61120 0.379763
\(19\) −6.24482 −1.43266 −0.716330 0.697762i \(-0.754179\pi\)
−0.716330 + 0.697762i \(0.754179\pi\)
\(20\) −1.67282 −0.374055
\(21\) −1.14399 −0.249638
\(22\) 2.91764 0.622043
\(23\) −2.42801 −0.506274 −0.253137 0.967430i \(-0.581462\pi\)
−0.253137 + 0.967430i \(0.581462\pi\)
\(24\) −0.899170 −0.183542
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.48963 0.479130
\(28\) −4.47116 −0.844970
\(29\) 2.67282 0.496331 0.248165 0.968718i \(-0.420172\pi\)
0.248165 + 0.968718i \(0.420172\pi\)
\(30\) 0.244817 0.0446973
\(31\) 0.244817 0.0439704 0.0219852 0.999758i \(-0.493001\pi\)
0.0219852 + 0.999758i \(0.493001\pi\)
\(32\) −5.42801 −0.959545
\(33\) 2.18319 0.380045
\(34\) −3.05767 −0.524387
\(35\) 2.67282 0.451790
\(36\) 4.71203 0.785338
\(37\) −3.32718 −0.546984 −0.273492 0.961874i \(-0.588179\pi\)
−0.273492 + 0.961874i \(0.588179\pi\)
\(38\) 3.57199 0.579454
\(39\) 0 0
\(40\) 2.10083 0.332170
\(41\) −6.48963 −1.01351 −0.506755 0.862090i \(-0.669155\pi\)
−0.506755 + 0.862090i \(0.669155\pi\)
\(42\) 0.654353 0.100969
\(43\) −10.9176 −1.66492 −0.832462 0.554082i \(-0.813070\pi\)
−0.832462 + 0.554082i \(0.813070\pi\)
\(44\) 8.53279 1.28637
\(45\) −2.81681 −0.419905
\(46\) 1.38880 0.204768
\(47\) −2.67282 −0.389871 −0.194936 0.980816i \(-0.562450\pi\)
−0.194936 + 0.980816i \(0.562450\pi\)
\(48\) −0.917641 −0.132450
\(49\) 0.143987 0.0205695
\(50\) −0.571993 −0.0808921
\(51\) −2.28797 −0.320380
\(52\) 0 0
\(53\) −4.20166 −0.577143 −0.288571 0.957458i \(-0.593180\pi\)
−0.288571 + 0.957458i \(0.593180\pi\)
\(54\) −1.42405 −0.193789
\(55\) −5.10083 −0.687796
\(56\) 5.61515 0.750356
\(57\) 2.67282 0.354024
\(58\) −1.52884 −0.200746
\(59\) 0.899170 0.117062 0.0585310 0.998286i \(-0.481358\pi\)
0.0585310 + 0.998286i \(0.481358\pi\)
\(60\) 0.715980 0.0924326
\(61\) −5.81681 −0.744766 −0.372383 0.928079i \(-0.621459\pi\)
−0.372383 + 0.928079i \(0.621459\pi\)
\(62\) −0.140034 −0.0177843
\(63\) −7.52884 −0.948544
\(64\) −1.18319 −0.147899
\(65\) 0 0
\(66\) −1.24877 −0.153713
\(67\) −2.18319 −0.266719 −0.133360 0.991068i \(-0.542577\pi\)
−0.133360 + 0.991068i \(0.542577\pi\)
\(68\) −8.94233 −1.08442
\(69\) 1.03920 0.125105
\(70\) −1.52884 −0.182731
\(71\) −6.24482 −0.741123 −0.370562 0.928808i \(-0.620835\pi\)
−0.370562 + 0.928808i \(0.620835\pi\)
\(72\) −5.91764 −0.697401
\(73\) −10.9608 −1.28286 −0.641432 0.767180i \(-0.721659\pi\)
−0.641432 + 0.767180i \(0.721659\pi\)
\(74\) 1.90312 0.221233
\(75\) −0.428007 −0.0494220
\(76\) 10.4465 1.19829
\(77\) −13.6336 −1.55370
\(78\) 0 0
\(79\) −3.63362 −0.408814 −0.204407 0.978886i \(-0.565527\pi\)
−0.204407 + 0.978886i \(0.565527\pi\)
\(80\) 2.14399 0.239705
\(81\) 7.38485 0.820539
\(82\) 3.71203 0.409925
\(83\) −9.81681 −1.07753 −0.538767 0.842455i \(-0.681110\pi\)
−0.538767 + 0.842455i \(0.681110\pi\)
\(84\) 1.91369 0.208800
\(85\) 5.34565 0.579817
\(86\) 6.24482 0.673396
\(87\) −1.14399 −0.122648
\(88\) −10.7160 −1.14233
\(89\) −7.63362 −0.809162 −0.404581 0.914502i \(-0.632583\pi\)
−0.404581 + 0.914502i \(0.632583\pi\)
\(90\) 1.61120 0.169835
\(91\) 0 0
\(92\) 4.06163 0.423454
\(93\) −0.104783 −0.0108655
\(94\) 1.52884 0.157688
\(95\) −6.24482 −0.640705
\(96\) 2.32322 0.237113
\(97\) 11.3456 1.15198 0.575988 0.817458i \(-0.304617\pi\)
0.575988 + 0.817458i \(0.304617\pi\)
\(98\) −0.0823593 −0.00831955
\(99\) 14.3681 1.44405
\(100\) −1.67282 −0.167282
\(101\) 10.8560 1.08021 0.540107 0.841596i \(-0.318384\pi\)
0.540107 + 0.841596i \(0.318384\pi\)
\(102\) 1.30871 0.129581
\(103\) 10.6297 1.04737 0.523686 0.851911i \(-0.324556\pi\)
0.523686 + 0.851911i \(0.324556\pi\)
\(104\) 0 0
\(105\) −1.14399 −0.111642
\(106\) 2.40332 0.233431
\(107\) 0.140034 0.0135376 0.00676878 0.999977i \(-0.497845\pi\)
0.00676878 + 0.999977i \(0.497845\pi\)
\(108\) −4.16472 −0.400750
\(109\) −9.05767 −0.867568 −0.433784 0.901017i \(-0.642822\pi\)
−0.433784 + 0.901017i \(0.642822\pi\)
\(110\) 2.91764 0.278186
\(111\) 1.42405 0.135165
\(112\) 5.73050 0.541481
\(113\) 12.9793 1.22099 0.610493 0.792021i \(-0.290971\pi\)
0.610493 + 0.792021i \(0.290971\pi\)
\(114\) −1.52884 −0.143189
\(115\) −2.42801 −0.226413
\(116\) −4.47116 −0.415137
\(117\) 0 0
\(118\) −0.514319 −0.0473469
\(119\) 14.2880 1.30978
\(120\) −0.899170 −0.0820826
\(121\) 15.0185 1.36532
\(122\) 3.32718 0.301228
\(123\) 2.77761 0.250448
\(124\) −0.409536 −0.0367774
\(125\) 1.00000 0.0894427
\(126\) 4.30644 0.383649
\(127\) 12.0616 1.07030 0.535148 0.844758i \(-0.320256\pi\)
0.535148 + 0.844758i \(0.320256\pi\)
\(128\) 11.5328 1.01936
\(129\) 4.67282 0.411419
\(130\) 0 0
\(131\) 7.63362 0.666953 0.333476 0.942758i \(-0.391778\pi\)
0.333476 + 0.942758i \(0.391778\pi\)
\(132\) −3.65209 −0.317874
\(133\) −16.6913 −1.44732
\(134\) 1.24877 0.107877
\(135\) 2.48963 0.214274
\(136\) 11.2303 0.962990
\(137\) 3.43196 0.293212 0.146606 0.989195i \(-0.453165\pi\)
0.146606 + 0.989195i \(0.453165\pi\)
\(138\) −0.594417 −0.0506002
\(139\) −0.942326 −0.0799270 −0.0399635 0.999201i \(-0.512724\pi\)
−0.0399635 + 0.999201i \(0.512724\pi\)
\(140\) −4.47116 −0.377882
\(141\) 1.14399 0.0963410
\(142\) 3.57199 0.299755
\(143\) 0 0
\(144\) −6.03920 −0.503267
\(145\) 2.67282 0.221966
\(146\) 6.26950 0.518868
\(147\) −0.0616272 −0.00508293
\(148\) 5.56578 0.457504
\(149\) 11.3456 0.929472 0.464736 0.885449i \(-0.346149\pi\)
0.464736 + 0.885449i \(0.346149\pi\)
\(150\) 0.244817 0.0199892
\(151\) −21.0224 −1.71078 −0.855390 0.517984i \(-0.826683\pi\)
−0.855390 + 0.517984i \(0.826683\pi\)
\(152\) −13.1193 −1.06412
\(153\) −15.0577 −1.21734
\(154\) 7.79834 0.628408
\(155\) 0.244817 0.0196642
\(156\) 0 0
\(157\) −9.83528 −0.784941 −0.392470 0.919765i \(-0.628379\pi\)
−0.392470 + 0.919765i \(0.628379\pi\)
\(158\) 2.07841 0.165349
\(159\) 1.79834 0.142618
\(160\) −5.42801 −0.429122
\(161\) −6.48963 −0.511455
\(162\) −4.22408 −0.331875
\(163\) −12.3849 −0.970056 −0.485028 0.874499i \(-0.661191\pi\)
−0.485028 + 0.874499i \(0.661191\pi\)
\(164\) 10.8560 0.847712
\(165\) 2.18319 0.169961
\(166\) 5.61515 0.435820
\(167\) 8.50811 0.658377 0.329188 0.944264i \(-0.393225\pi\)
0.329188 + 0.944264i \(0.393225\pi\)
\(168\) −2.40332 −0.185420
\(169\) 0 0
\(170\) −3.05767 −0.234513
\(171\) 17.5905 1.34518
\(172\) 18.2633 1.39256
\(173\) −21.5473 −1.63821 −0.819106 0.573643i \(-0.805530\pi\)
−0.819106 + 0.573643i \(0.805530\pi\)
\(174\) 0.654353 0.0496063
\(175\) 2.67282 0.202046
\(176\) −10.9361 −0.824340
\(177\) −0.384851 −0.0289271
\(178\) 4.36638 0.327274
\(179\) 2.56804 0.191944 0.0959722 0.995384i \(-0.469404\pi\)
0.0959722 + 0.995384i \(0.469404\pi\)
\(180\) 4.71203 0.351214
\(181\) −13.7305 −1.02058 −0.510290 0.860002i \(-0.670462\pi\)
−0.510290 + 0.860002i \(0.670462\pi\)
\(182\) 0 0
\(183\) 2.48963 0.184039
\(184\) −5.10083 −0.376038
\(185\) −3.32718 −0.244619
\(186\) 0.0599353 0.00439467
\(187\) −27.2672 −1.99398
\(188\) 4.47116 0.326093
\(189\) 6.65435 0.484033
\(190\) 3.57199 0.259140
\(191\) −10.6913 −0.773595 −0.386797 0.922165i \(-0.626419\pi\)
−0.386797 + 0.922165i \(0.626419\pi\)
\(192\) 0.506413 0.0365472
\(193\) 19.2593 1.38632 0.693159 0.720785i \(-0.256219\pi\)
0.693159 + 0.720785i \(0.256219\pi\)
\(194\) −6.48963 −0.465929
\(195\) 0 0
\(196\) −0.240864 −0.0172046
\(197\) 17.1809 1.22409 0.612045 0.790823i \(-0.290347\pi\)
0.612045 + 0.790823i \(0.290347\pi\)
\(198\) −8.21844 −0.584059
\(199\) 11.5473 0.818567 0.409283 0.912407i \(-0.365779\pi\)
0.409283 + 0.912407i \(0.365779\pi\)
\(200\) 2.10083 0.148551
\(201\) 0.934420 0.0659089
\(202\) −6.20957 −0.436904
\(203\) 7.14399 0.501410
\(204\) 3.82738 0.267970
\(205\) −6.48963 −0.453256
\(206\) −6.08010 −0.423621
\(207\) 6.83923 0.475360
\(208\) 0 0
\(209\) 31.8538 2.20337
\(210\) 0.654353 0.0451546
\(211\) 24.1233 1.66071 0.830357 0.557232i \(-0.188137\pi\)
0.830357 + 0.557232i \(0.188137\pi\)
\(212\) 7.02864 0.482729
\(213\) 2.67282 0.183139
\(214\) −0.0800983 −0.00547541
\(215\) −10.9176 −0.744577
\(216\) 5.23030 0.355877
\(217\) 0.654353 0.0444203
\(218\) 5.18093 0.350897
\(219\) 4.69129 0.317008
\(220\) 8.53279 0.575281
\(221\) 0 0
\(222\) −0.814549 −0.0546690
\(223\) −5.73050 −0.383743 −0.191871 0.981420i \(-0.561456\pi\)
−0.191871 + 0.981420i \(0.561456\pi\)
\(224\) −14.5081 −0.969364
\(225\) −2.81681 −0.187787
\(226\) −7.42405 −0.493841
\(227\) −2.95289 −0.195990 −0.0979951 0.995187i \(-0.531243\pi\)
−0.0979951 + 0.995187i \(0.531243\pi\)
\(228\) −4.47116 −0.296110
\(229\) −25.2593 −1.66918 −0.834592 0.550869i \(-0.814297\pi\)
−0.834592 + 0.550869i \(0.814297\pi\)
\(230\) 1.38880 0.0915750
\(231\) 5.83528 0.383933
\(232\) 5.61515 0.368653
\(233\) 23.3456 1.52942 0.764712 0.644372i \(-0.222881\pi\)
0.764712 + 0.644372i \(0.222881\pi\)
\(234\) 0 0
\(235\) −2.67282 −0.174356
\(236\) −1.50415 −0.0979120
\(237\) 1.55521 0.101022
\(238\) −8.17262 −0.529753
\(239\) 3.79213 0.245292 0.122646 0.992450i \(-0.460862\pi\)
0.122646 + 0.992450i \(0.460862\pi\)
\(240\) −0.917641 −0.0592335
\(241\) 3.43196 0.221072 0.110536 0.993872i \(-0.464743\pi\)
0.110536 + 0.993872i \(0.464743\pi\)
\(242\) −8.59046 −0.552216
\(243\) −10.6297 −0.681893
\(244\) 9.73050 0.622931
\(245\) 0.143987 0.00919896
\(246\) −1.58877 −0.101296
\(247\) 0 0
\(248\) 0.514319 0.0326593
\(249\) 4.20166 0.266269
\(250\) −0.571993 −0.0361760
\(251\) 25.4689 1.60758 0.803791 0.594911i \(-0.202813\pi\)
0.803791 + 0.594911i \(0.202813\pi\)
\(252\) 12.5944 0.793374
\(253\) 12.3849 0.778629
\(254\) −6.89917 −0.432892
\(255\) −2.28797 −0.143278
\(256\) −4.23030 −0.264394
\(257\) −9.26724 −0.578075 −0.289037 0.957318i \(-0.593335\pi\)
−0.289037 + 0.957318i \(0.593335\pi\)
\(258\) −2.67282 −0.166403
\(259\) −8.89296 −0.552581
\(260\) 0 0
\(261\) −7.52884 −0.466023
\(262\) −4.36638 −0.269756
\(263\) −8.14794 −0.502423 −0.251212 0.967932i \(-0.580829\pi\)
−0.251212 + 0.967932i \(0.580829\pi\)
\(264\) 4.58651 0.282280
\(265\) −4.20166 −0.258106
\(266\) 9.54731 0.585383
\(267\) 3.26724 0.199952
\(268\) 3.65209 0.223087
\(269\) 1.14399 0.0697501 0.0348750 0.999392i \(-0.488897\pi\)
0.0348750 + 0.999392i \(0.488897\pi\)
\(270\) −1.42405 −0.0866652
\(271\) 3.18714 0.193605 0.0968026 0.995304i \(-0.469138\pi\)
0.0968026 + 0.995304i \(0.469138\pi\)
\(272\) 11.4610 0.694925
\(273\) 0 0
\(274\) −1.96306 −0.118593
\(275\) −5.10083 −0.307592
\(276\) −1.73840 −0.104640
\(277\) −7.62571 −0.458185 −0.229092 0.973405i \(-0.573576\pi\)
−0.229092 + 0.973405i \(0.573576\pi\)
\(278\) 0.539004 0.0323273
\(279\) −0.689603 −0.0412854
\(280\) 5.61515 0.335569
\(281\) 20.2386 1.20733 0.603667 0.797237i \(-0.293706\pi\)
0.603667 + 0.797237i \(0.293706\pi\)
\(282\) −0.654353 −0.0389661
\(283\) −19.8969 −1.18275 −0.591374 0.806397i \(-0.701414\pi\)
−0.591374 + 0.806397i \(0.701414\pi\)
\(284\) 10.4465 0.619884
\(285\) 2.67282 0.158324
\(286\) 0 0
\(287\) −17.3456 −1.02388
\(288\) 15.2897 0.900952
\(289\) 11.5759 0.680938
\(290\) −1.52884 −0.0897764
\(291\) −4.85601 −0.284665
\(292\) 18.3355 1.07300
\(293\) 26.0185 1.52002 0.760008 0.649914i \(-0.225195\pi\)
0.760008 + 0.649914i \(0.225195\pi\)
\(294\) 0.0352503 0.00205584
\(295\) 0.899170 0.0523517
\(296\) −6.98983 −0.406276
\(297\) −12.6992 −0.736882
\(298\) −6.48963 −0.375934
\(299\) 0 0
\(300\) 0.715980 0.0413371
\(301\) −29.1809 −1.68196
\(302\) 12.0247 0.691943
\(303\) −4.64645 −0.266931
\(304\) −13.3888 −0.767901
\(305\) −5.81681 −0.333070
\(306\) 8.61289 0.492366
\(307\) 2.39276 0.136562 0.0682809 0.997666i \(-0.478249\pi\)
0.0682809 + 0.997666i \(0.478249\pi\)
\(308\) 22.8066 1.29953
\(309\) −4.54957 −0.258816
\(310\) −0.140034 −0.00795338
\(311\) −3.54731 −0.201149 −0.100575 0.994930i \(-0.532068\pi\)
−0.100575 + 0.994930i \(0.532068\pi\)
\(312\) 0 0
\(313\) 4.97927 0.281445 0.140722 0.990049i \(-0.455057\pi\)
0.140722 + 0.990049i \(0.455057\pi\)
\(314\) 5.62571 0.317477
\(315\) −7.52884 −0.424202
\(316\) 6.07841 0.341937
\(317\) 18.5944 1.04437 0.522183 0.852833i \(-0.325118\pi\)
0.522183 + 0.852833i \(0.325118\pi\)
\(318\) −1.02864 −0.0576831
\(319\) −13.6336 −0.763336
\(320\) −1.18319 −0.0661423
\(321\) −0.0599353 −0.00334526
\(322\) 3.71203 0.206863
\(323\) −33.3826 −1.85746
\(324\) −12.3536 −0.686309
\(325\) 0 0
\(326\) 7.08405 0.392349
\(327\) 3.87675 0.214385
\(328\) −13.6336 −0.752791
\(329\) −7.14399 −0.393861
\(330\) −1.24877 −0.0687425
\(331\) −5.91990 −0.325387 −0.162694 0.986677i \(-0.552018\pi\)
−0.162694 + 0.986677i \(0.552018\pi\)
\(332\) 16.4218 0.901263
\(333\) 9.37202 0.513584
\(334\) −4.86658 −0.266287
\(335\) −2.18319 −0.119280
\(336\) −2.45269 −0.133805
\(337\) −13.9216 −0.758358 −0.379179 0.925323i \(-0.623793\pi\)
−0.379179 + 0.925323i \(0.623793\pi\)
\(338\) 0 0
\(339\) −5.55521 −0.301718
\(340\) −8.94233 −0.484966
\(341\) −1.24877 −0.0676247
\(342\) −10.0616 −0.544070
\(343\) −18.3249 −0.989452
\(344\) −22.9361 −1.23663
\(345\) 1.03920 0.0559488
\(346\) 12.3249 0.662592
\(347\) 7.65831 0.411119 0.205560 0.978645i \(-0.434099\pi\)
0.205560 + 0.978645i \(0.434099\pi\)
\(348\) 1.91369 0.102584
\(349\) −11.1809 −0.598501 −0.299251 0.954175i \(-0.596737\pi\)
−0.299251 + 0.954175i \(0.596737\pi\)
\(350\) −1.52884 −0.0817198
\(351\) 0 0
\(352\) 27.6873 1.47574
\(353\) 9.65209 0.513729 0.256864 0.966447i \(-0.417311\pi\)
0.256864 + 0.966447i \(0.417311\pi\)
\(354\) 0.220132 0.0116999
\(355\) −6.24482 −0.331440
\(356\) 12.7697 0.676793
\(357\) −6.11535 −0.323659
\(358\) −1.46890 −0.0776339
\(359\) −9.51206 −0.502027 −0.251014 0.967984i \(-0.580764\pi\)
−0.251014 + 0.967984i \(0.580764\pi\)
\(360\) −5.91764 −0.311887
\(361\) 19.9977 1.05251
\(362\) 7.85375 0.412784
\(363\) −6.42801 −0.337383
\(364\) 0 0
\(365\) −10.9608 −0.573714
\(366\) −1.42405 −0.0744365
\(367\) −17.0040 −0.887599 −0.443800 0.896126i \(-0.646370\pi\)
−0.443800 + 0.896126i \(0.646370\pi\)
\(368\) −5.20561 −0.271361
\(369\) 18.2801 0.951622
\(370\) 1.90312 0.0989386
\(371\) −11.2303 −0.583048
\(372\) 0.175284 0.00908805
\(373\) −1.83528 −0.0950273 −0.0475136 0.998871i \(-0.515130\pi\)
−0.0475136 + 0.998871i \(0.515130\pi\)
\(374\) 15.5967 0.806485
\(375\) −0.428007 −0.0221022
\(376\) −5.61515 −0.289579
\(377\) 0 0
\(378\) −3.80624 −0.195772
\(379\) −32.3681 −1.66264 −0.831318 0.555797i \(-0.812413\pi\)
−0.831318 + 0.555797i \(0.812413\pi\)
\(380\) 10.4465 0.535893
\(381\) −5.16246 −0.264481
\(382\) 6.11535 0.312888
\(383\) −28.1417 −1.43798 −0.718988 0.695023i \(-0.755394\pi\)
−0.718988 + 0.695023i \(0.755394\pi\)
\(384\) −4.93611 −0.251895
\(385\) −13.6336 −0.694834
\(386\) −11.0162 −0.560710
\(387\) 30.7529 1.56326
\(388\) −18.9793 −0.963526
\(389\) 31.9585 1.62036 0.810181 0.586180i \(-0.199369\pi\)
0.810181 + 0.586180i \(0.199369\pi\)
\(390\) 0 0
\(391\) −12.9793 −0.656390
\(392\) 0.302491 0.0152781
\(393\) −3.26724 −0.164811
\(394\) −9.82738 −0.495096
\(395\) −3.63362 −0.182827
\(396\) −24.0353 −1.20782
\(397\) −12.7098 −0.637885 −0.318942 0.947774i \(-0.603328\pi\)
−0.318942 + 0.947774i \(0.603328\pi\)
\(398\) −6.60498 −0.331078
\(399\) 7.14399 0.357647
\(400\) 2.14399 0.107199
\(401\) 0.979268 0.0489023 0.0244512 0.999701i \(-0.492216\pi\)
0.0244512 + 0.999701i \(0.492216\pi\)
\(402\) −0.534482 −0.0266575
\(403\) 0 0
\(404\) −18.1602 −0.903504
\(405\) 7.38485 0.366956
\(406\) −4.08631 −0.202800
\(407\) 16.9714 0.841239
\(408\) −4.80664 −0.237964
\(409\) 7.79834 0.385603 0.192802 0.981238i \(-0.438243\pi\)
0.192802 + 0.981238i \(0.438243\pi\)
\(410\) 3.71203 0.183324
\(411\) −1.46890 −0.0724556
\(412\) −17.7816 −0.876035
\(413\) 2.40332 0.118260
\(414\) −3.91200 −0.192264
\(415\) −9.81681 −0.481888
\(416\) 0 0
\(417\) 0.403322 0.0197508
\(418\) −18.2201 −0.891176
\(419\) 10.2017 0.498384 0.249192 0.968454i \(-0.419835\pi\)
0.249192 + 0.968454i \(0.419835\pi\)
\(420\) 1.91369 0.0933784
\(421\) 31.1888 1.52005 0.760025 0.649893i \(-0.225186\pi\)
0.760025 + 0.649893i \(0.225186\pi\)
\(422\) −13.7983 −0.671693
\(423\) 7.52884 0.366065
\(424\) −8.82698 −0.428676
\(425\) 5.34565 0.259302
\(426\) −1.52884 −0.0740724
\(427\) −15.5473 −0.752387
\(428\) −0.234252 −0.0113230
\(429\) 0 0
\(430\) 6.24482 0.301152
\(431\) 22.9361 1.10479 0.552397 0.833581i \(-0.313713\pi\)
0.552397 + 0.833581i \(0.313713\pi\)
\(432\) 5.33774 0.256812
\(433\) 16.2880 0.782750 0.391375 0.920231i \(-0.372000\pi\)
0.391375 + 0.920231i \(0.372000\pi\)
\(434\) −0.374285 −0.0179663
\(435\) −1.14399 −0.0548500
\(436\) 15.1519 0.725644
\(437\) 15.1625 0.725319
\(438\) −2.68339 −0.128217
\(439\) −23.7569 −1.13385 −0.566927 0.823768i \(-0.691868\pi\)
−0.566927 + 0.823768i \(0.691868\pi\)
\(440\) −10.7160 −0.510864
\(441\) −0.405583 −0.0193135
\(442\) 0 0
\(443\) −2.75292 −0.130795 −0.0653976 0.997859i \(-0.520832\pi\)
−0.0653976 + 0.997859i \(0.520832\pi\)
\(444\) −2.38219 −0.113054
\(445\) −7.63362 −0.361868
\(446\) 3.27781 0.155209
\(447\) −4.85601 −0.229682
\(448\) −3.16246 −0.149412
\(449\) 27.1025 1.27905 0.639524 0.768772i \(-0.279132\pi\)
0.639524 + 0.768772i \(0.279132\pi\)
\(450\) 1.61120 0.0759525
\(451\) 33.1025 1.55874
\(452\) −21.7120 −1.02125
\(453\) 8.99774 0.422751
\(454\) 1.68903 0.0792703
\(455\) 0 0
\(456\) 5.61515 0.262953
\(457\) −40.1523 −1.87824 −0.939122 0.343583i \(-0.888359\pi\)
−0.939122 + 0.343583i \(0.888359\pi\)
\(458\) 14.4482 0.675119
\(459\) 13.3087 0.621197
\(460\) 4.06163 0.189374
\(461\) −2.00791 −0.0935175 −0.0467587 0.998906i \(-0.514889\pi\)
−0.0467587 + 0.998906i \(0.514889\pi\)
\(462\) −3.33774 −0.155286
\(463\) −2.67282 −0.124217 −0.0621083 0.998069i \(-0.519782\pi\)
−0.0621083 + 0.998069i \(0.519782\pi\)
\(464\) 5.73050 0.266032
\(465\) −0.104783 −0.00485921
\(466\) −13.3536 −0.618591
\(467\) −31.8890 −1.47565 −0.737824 0.674994i \(-0.764146\pi\)
−0.737824 + 0.674994i \(0.764146\pi\)
\(468\) 0 0
\(469\) −5.83528 −0.269448
\(470\) 1.52884 0.0705200
\(471\) 4.20957 0.193967
\(472\) 1.88900 0.0869484
\(473\) 55.6890 2.56058
\(474\) −0.889572 −0.0408594
\(475\) −6.24482 −0.286532
\(476\) −23.9013 −1.09551
\(477\) 11.8353 0.541900
\(478\) −2.16907 −0.0992110
\(479\) 6.73445 0.307705 0.153852 0.988094i \(-0.450832\pi\)
0.153852 + 0.988094i \(0.450832\pi\)
\(480\) 2.32322 0.106040
\(481\) 0 0
\(482\) −1.96306 −0.0894148
\(483\) 2.77761 0.126385
\(484\) −25.1233 −1.14197
\(485\) 11.3456 0.515179
\(486\) 6.08010 0.275799
\(487\) −39.6521 −1.79681 −0.898404 0.439170i \(-0.855273\pi\)
−0.898404 + 0.439170i \(0.855273\pi\)
\(488\) −12.2201 −0.553179
\(489\) 5.30080 0.239710
\(490\) −0.0823593 −0.00372062
\(491\) −31.0946 −1.40328 −0.701640 0.712531i \(-0.747549\pi\)
−0.701640 + 0.712531i \(0.747549\pi\)
\(492\) −4.64645 −0.209478
\(493\) 14.2880 0.643498
\(494\) 0 0
\(495\) 14.3681 0.645797
\(496\) 0.524884 0.0235680
\(497\) −16.6913 −0.748707
\(498\) −2.40332 −0.107695
\(499\) −13.1087 −0.586828 −0.293414 0.955986i \(-0.594791\pi\)
−0.293414 + 0.955986i \(0.594791\pi\)
\(500\) −1.67282 −0.0748110
\(501\) −3.64153 −0.162691
\(502\) −14.5680 −0.650203
\(503\) −8.59273 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(504\) −15.8168 −0.704537
\(505\) 10.8560 0.483086
\(506\) −7.08405 −0.314924
\(507\) 0 0
\(508\) −20.1770 −0.895209
\(509\) −29.8353 −1.32243 −0.661213 0.750198i \(-0.729958\pi\)
−0.661213 + 0.750198i \(0.729958\pi\)
\(510\) 1.30871 0.0579504
\(511\) −29.2963 −1.29599
\(512\) −20.6459 −0.912428
\(513\) −15.5473 −0.686430
\(514\) 5.30080 0.233808
\(515\) 10.6297 0.468399
\(516\) −7.81681 −0.344116
\(517\) 13.6336 0.599606
\(518\) 5.08671 0.223497
\(519\) 9.22239 0.404818
\(520\) 0 0
\(521\) 10.0969 0.442352 0.221176 0.975234i \(-0.429010\pi\)
0.221176 + 0.975234i \(0.429010\pi\)
\(522\) 4.30644 0.188488
\(523\) 16.1479 0.706100 0.353050 0.935604i \(-0.385145\pi\)
0.353050 + 0.935604i \(0.385145\pi\)
\(524\) −12.7697 −0.557847
\(525\) −1.14399 −0.0499277
\(526\) 4.66057 0.203210
\(527\) 1.30871 0.0570081
\(528\) 4.68073 0.203703
\(529\) −17.1048 −0.743686
\(530\) 2.40332 0.104394
\(531\) −2.53279 −0.109914
\(532\) 27.9216 1.21055
\(533\) 0 0
\(534\) −1.86884 −0.0808726
\(535\) 0.140034 0.00605418
\(536\) −4.58651 −0.198107
\(537\) −1.09914 −0.0474313
\(538\) −0.654353 −0.0282111
\(539\) −0.734451 −0.0316350
\(540\) −4.16472 −0.179221
\(541\) −26.7776 −1.15126 −0.575630 0.817711i \(-0.695243\pi\)
−0.575630 + 0.817711i \(0.695243\pi\)
\(542\) −1.82302 −0.0783056
\(543\) 5.87675 0.252195
\(544\) −29.0162 −1.24406
\(545\) −9.05767 −0.387988
\(546\) 0 0
\(547\) 12.3865 0.529610 0.264805 0.964302i \(-0.414692\pi\)
0.264805 + 0.964302i \(0.414692\pi\)
\(548\) −5.74106 −0.245246
\(549\) 16.3849 0.699288
\(550\) 2.91764 0.124409
\(551\) −16.6913 −0.711073
\(552\) 2.18319 0.0929227
\(553\) −9.71203 −0.412997
\(554\) 4.36186 0.185318
\(555\) 1.42405 0.0604477
\(556\) 1.57634 0.0668519
\(557\) −10.4218 −0.441586 −0.220793 0.975321i \(-0.570864\pi\)
−0.220793 + 0.975321i \(0.570864\pi\)
\(558\) 0.394448 0.0166983
\(559\) 0 0
\(560\) 5.73050 0.242158
\(561\) 11.6706 0.492732
\(562\) −11.5763 −0.488319
\(563\) −9.78156 −0.412244 −0.206122 0.978526i \(-0.566084\pi\)
−0.206122 + 0.978526i \(0.566084\pi\)
\(564\) −1.91369 −0.0805808
\(565\) 12.9793 0.546042
\(566\) 11.3809 0.478375
\(567\) 19.7384 0.828935
\(568\) −13.1193 −0.550474
\(569\) 30.2201 1.26689 0.633447 0.773786i \(-0.281639\pi\)
0.633447 + 0.773786i \(0.281639\pi\)
\(570\) −1.52884 −0.0640359
\(571\) 39.8643 1.66827 0.834135 0.551561i \(-0.185967\pi\)
0.834135 + 0.551561i \(0.185967\pi\)
\(572\) 0 0
\(573\) 4.57595 0.191163
\(574\) 9.92159 0.414119
\(575\) −2.42801 −0.101255
\(576\) 3.33282 0.138868
\(577\) 8.46326 0.352330 0.176165 0.984361i \(-0.443631\pi\)
0.176165 + 0.984361i \(0.443631\pi\)
\(578\) −6.62136 −0.275412
\(579\) −8.24313 −0.342573
\(580\) −4.47116 −0.185655
\(581\) −26.2386 −1.08856
\(582\) 2.77761 0.115136
\(583\) 21.4320 0.887621
\(584\) −23.0268 −0.952855
\(585\) 0 0
\(586\) −14.8824 −0.614786
\(587\) 9.32718 0.384974 0.192487 0.981300i \(-0.438345\pi\)
0.192487 + 0.981300i \(0.438345\pi\)
\(588\) 0.103091 0.00425142
\(589\) −1.52884 −0.0629946
\(590\) −0.514319 −0.0211742
\(591\) −7.35355 −0.302485
\(592\) −7.13342 −0.293182
\(593\) 8.07841 0.331740 0.165870 0.986148i \(-0.446957\pi\)
0.165870 + 0.986148i \(0.446957\pi\)
\(594\) 7.26386 0.298040
\(595\) 14.2880 0.585750
\(596\) −18.9793 −0.777421
\(597\) −4.94233 −0.202276
\(598\) 0 0
\(599\) 19.1440 0.782202 0.391101 0.920348i \(-0.372094\pi\)
0.391101 + 0.920348i \(0.372094\pi\)
\(600\) −0.899170 −0.0367084
\(601\) −4.28797 −0.174910 −0.0874550 0.996168i \(-0.527873\pi\)
−0.0874550 + 0.996168i \(0.527873\pi\)
\(602\) 16.6913 0.680286
\(603\) 6.14963 0.250432
\(604\) 35.1668 1.43092
\(605\) 15.0185 0.610588
\(606\) 2.65774 0.107963
\(607\) 29.2426 1.18692 0.593459 0.804864i \(-0.297762\pi\)
0.593459 + 0.804864i \(0.297762\pi\)
\(608\) 33.8969 1.37470
\(609\) −3.05767 −0.123903
\(610\) 3.32718 0.134713
\(611\) 0 0
\(612\) 25.1888 1.01820
\(613\) −1.42405 −0.0575170 −0.0287585 0.999586i \(-0.509155\pi\)
−0.0287585 + 0.999586i \(0.509155\pi\)
\(614\) −1.36864 −0.0552338
\(615\) 2.77761 0.112004
\(616\) −28.6419 −1.15402
\(617\) 46.5266 1.87309 0.936545 0.350548i \(-0.114005\pi\)
0.936545 + 0.350548i \(0.114005\pi\)
\(618\) 2.60232 0.104681
\(619\) 34.2818 1.37790 0.688950 0.724809i \(-0.258072\pi\)
0.688950 + 0.724809i \(0.258072\pi\)
\(620\) −0.409536 −0.0164473
\(621\) −6.04485 −0.242571
\(622\) 2.02904 0.0813569
\(623\) −20.4033 −0.817442
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −2.84811 −0.113833
\(627\) −13.6336 −0.544474
\(628\) 16.4527 0.656534
\(629\) −17.7859 −0.709171
\(630\) 4.30644 0.171573
\(631\) −2.32322 −0.0924861 −0.0462430 0.998930i \(-0.514725\pi\)
−0.0462430 + 0.998930i \(0.514725\pi\)
\(632\) −7.63362 −0.303649
\(633\) −10.3249 −0.410379
\(634\) −10.6359 −0.422405
\(635\) 12.0616 0.478651
\(636\) −3.00830 −0.119287
\(637\) 0 0
\(638\) 7.79834 0.308739
\(639\) 17.5905 0.695868
\(640\) 11.5328 0.455874
\(641\) −28.1312 −1.11111 −0.555557 0.831478i \(-0.687495\pi\)
−0.555557 + 0.831478i \(0.687495\pi\)
\(642\) 0.0342826 0.00135303
\(643\) 14.1338 0.557383 0.278692 0.960381i \(-0.410099\pi\)
0.278692 + 0.960381i \(0.410099\pi\)
\(644\) 10.8560 0.427787
\(645\) 4.67282 0.183992
\(646\) 19.0946 0.751268
\(647\) −45.8969 −1.80439 −0.902197 0.431325i \(-0.858046\pi\)
−0.902197 + 0.431325i \(0.858046\pi\)
\(648\) 15.5143 0.609460
\(649\) −4.58651 −0.180036
\(650\) 0 0
\(651\) −0.280067 −0.0109767
\(652\) 20.7177 0.811367
\(653\) 50.4482 1.97419 0.987095 0.160137i \(-0.0511938\pi\)
0.987095 + 0.160137i \(0.0511938\pi\)
\(654\) −2.21747 −0.0867100
\(655\) 7.63362 0.298270
\(656\) −13.9137 −0.543238
\(657\) 30.8745 1.20453
\(658\) 4.08631 0.159301
\(659\) −45.8722 −1.78693 −0.893464 0.449135i \(-0.851732\pi\)
−0.893464 + 0.449135i \(0.851732\pi\)
\(660\) −3.65209 −0.142157
\(661\) 25.8432 1.00518 0.502592 0.864524i \(-0.332380\pi\)
0.502592 + 0.864524i \(0.332380\pi\)
\(662\) 3.38614 0.131606
\(663\) 0 0
\(664\) −20.6235 −0.800345
\(665\) −16.6913 −0.647261
\(666\) −5.36073 −0.207724
\(667\) −6.48963 −0.251280
\(668\) −14.2326 −0.550674
\(669\) 2.45269 0.0948265
\(670\) 1.24877 0.0482442
\(671\) 29.6706 1.14542
\(672\) 6.20957 0.239539
\(673\) 4.97927 0.191937 0.0959683 0.995384i \(-0.469405\pi\)
0.0959683 + 0.995384i \(0.469405\pi\)
\(674\) 7.96306 0.306726
\(675\) 2.48963 0.0958261
\(676\) 0 0
\(677\) −35.8353 −1.37726 −0.688631 0.725112i \(-0.741788\pi\)
−0.688631 + 0.725112i \(0.741788\pi\)
\(678\) 3.17755 0.122033
\(679\) 30.3249 1.16376
\(680\) 11.2303 0.430662
\(681\) 1.26386 0.0484311
\(682\) 0.714288 0.0273515
\(683\) −40.4712 −1.54859 −0.774293 0.632827i \(-0.781894\pi\)
−0.774293 + 0.632827i \(0.781894\pi\)
\(684\) −29.4257 −1.12512
\(685\) 3.43196 0.131128
\(686\) 10.4817 0.400194
\(687\) 10.8112 0.412472
\(688\) −23.4073 −0.892394
\(689\) 0 0
\(690\) −0.594417 −0.0226291
\(691\) −12.2448 −0.465815 −0.232907 0.972499i \(-0.574824\pi\)
−0.232907 + 0.972499i \(0.574824\pi\)
\(692\) 36.0448 1.37022
\(693\) 38.4033 1.45882
\(694\) −4.38050 −0.166281
\(695\) −0.942326 −0.0357445
\(696\) −2.40332 −0.0910977
\(697\) −34.6913 −1.31403
\(698\) 6.39542 0.242070
\(699\) −9.99209 −0.377936
\(700\) −4.47116 −0.168994
\(701\) 11.8353 0.447012 0.223506 0.974703i \(-0.428250\pi\)
0.223506 + 0.974703i \(0.428250\pi\)
\(702\) 0 0
\(703\) 20.7776 0.783642
\(704\) 6.03525 0.227462
\(705\) 1.14399 0.0430850
\(706\) −5.52093 −0.207783
\(707\) 29.0162 1.09127
\(708\) 0.643787 0.0241950
\(709\) −6.37429 −0.239391 −0.119696 0.992811i \(-0.538192\pi\)
−0.119696 + 0.992811i \(0.538192\pi\)
\(710\) 3.57199 0.134055
\(711\) 10.2352 0.383851
\(712\) −16.0369 −0.601010
\(713\) −0.594417 −0.0222611
\(714\) 3.49794 0.130907
\(715\) 0 0
\(716\) −4.29588 −0.160545
\(717\) −1.62306 −0.0606141
\(718\) 5.44083 0.203050
\(719\) −34.9009 −1.30158 −0.650791 0.759257i \(-0.725563\pi\)
−0.650791 + 0.759257i \(0.725563\pi\)
\(720\) −6.03920 −0.225068
\(721\) 28.4112 1.05809
\(722\) −11.4386 −0.425700
\(723\) −1.46890 −0.0546290
\(724\) 22.9687 0.853625
\(725\) 2.67282 0.0992662
\(726\) 3.67678 0.136458
\(727\) 19.8106 0.734734 0.367367 0.930076i \(-0.380259\pi\)
0.367367 + 0.930076i \(0.380259\pi\)
\(728\) 0 0
\(729\) −17.6050 −0.652036
\(730\) 6.26950 0.232045
\(731\) −58.3619 −2.15859
\(732\) −4.16472 −0.153932
\(733\) −12.6050 −0.465576 −0.232788 0.972528i \(-0.574785\pi\)
−0.232788 + 0.972528i \(0.574785\pi\)
\(734\) 9.72615 0.358999
\(735\) −0.0616272 −0.00227315
\(736\) 13.1792 0.485793
\(737\) 11.1361 0.410203
\(738\) −10.4561 −0.384893
\(739\) 37.1747 1.36749 0.683747 0.729719i \(-0.260349\pi\)
0.683747 + 0.729719i \(0.260349\pi\)
\(740\) 5.56578 0.204602
\(741\) 0 0
\(742\) 6.42366 0.235820
\(743\) 27.9322 1.02473 0.512366 0.858767i \(-0.328769\pi\)
0.512366 + 0.858767i \(0.328769\pi\)
\(744\) −0.220132 −0.00807043
\(745\) 11.3456 0.415672
\(746\) 1.04977 0.0384348
\(747\) 27.6521 1.01174
\(748\) 45.6133 1.66779
\(749\) 0.374285 0.0136761
\(750\) 0.244817 0.00893945
\(751\) −13.6257 −0.497209 −0.248605 0.968605i \(-0.579972\pi\)
−0.248605 + 0.968605i \(0.579972\pi\)
\(752\) −5.73050 −0.208970
\(753\) −10.9009 −0.397249
\(754\) 0 0
\(755\) −21.0224 −0.765084
\(756\) −11.1316 −0.404851
\(757\) −30.8560 −1.12148 −0.560740 0.827992i \(-0.689483\pi\)
−0.560740 + 0.827992i \(0.689483\pi\)
\(758\) 18.5143 0.672470
\(759\) −5.30080 −0.192407
\(760\) −13.1193 −0.475887
\(761\) −17.0162 −0.616837 −0.308419 0.951251i \(-0.599800\pi\)
−0.308419 + 0.951251i \(0.599800\pi\)
\(762\) 2.95289 0.106972
\(763\) −24.2096 −0.876445
\(764\) 17.8847 0.647044
\(765\) −15.0577 −0.544411
\(766\) 16.0969 0.581604
\(767\) 0 0
\(768\) 1.81060 0.0653343
\(769\) 29.0162 1.04635 0.523176 0.852225i \(-0.324747\pi\)
0.523176 + 0.852225i \(0.324747\pi\)
\(770\) 7.79834 0.281033
\(771\) 3.96644 0.142848
\(772\) −32.2175 −1.15953
\(773\) 40.5160 1.45726 0.728630 0.684908i \(-0.240158\pi\)
0.728630 + 0.684908i \(0.240158\pi\)
\(774\) −17.5905 −0.632276
\(775\) 0.244817 0.00879409
\(776\) 23.8353 0.855637
\(777\) 3.80624 0.136548
\(778\) −18.2801 −0.655372
\(779\) 40.5266 1.45202
\(780\) 0 0
\(781\) 31.8538 1.13982
\(782\) 7.42405 0.265484
\(783\) 6.65435 0.237807
\(784\) 0.308705 0.0110252
\(785\) −9.83528 −0.351036
\(786\) 1.86884 0.0666593
\(787\) −34.0264 −1.21291 −0.606455 0.795118i \(-0.707409\pi\)
−0.606455 + 0.795118i \(0.707409\pi\)
\(788\) −28.7407 −1.02384
\(789\) 3.48737 0.124154
\(790\) 2.07841 0.0739464
\(791\) 34.6913 1.23348
\(792\) 30.1849 1.07257
\(793\) 0 0
\(794\) 7.26990 0.257999
\(795\) 1.79834 0.0637805
\(796\) −19.3166 −0.684659
\(797\) −14.7776 −0.523450 −0.261725 0.965143i \(-0.584291\pi\)
−0.261725 + 0.965143i \(0.584291\pi\)
\(798\) −4.08631 −0.144654
\(799\) −14.2880 −0.505472
\(800\) −5.42801 −0.191909
\(801\) 21.5025 0.759752
\(802\) −0.560135 −0.0197790
\(803\) 55.9092 1.97299
\(804\) −1.56312 −0.0551270
\(805\) −6.48963 −0.228730
\(806\) 0 0
\(807\) −0.489634 −0.0172359
\(808\) 22.8066 0.802335
\(809\) −36.0554 −1.26764 −0.633820 0.773480i \(-0.718514\pi\)
−0.633820 + 0.773480i \(0.718514\pi\)
\(810\) −4.22408 −0.148419
\(811\) 5.31040 0.186473 0.0932366 0.995644i \(-0.470279\pi\)
0.0932366 + 0.995644i \(0.470279\pi\)
\(812\) −11.9506 −0.419385
\(813\) −1.36412 −0.0478417
\(814\) −9.70750 −0.340248
\(815\) −12.3849 −0.433822
\(816\) −4.90538 −0.171723
\(817\) 68.1787 2.38527
\(818\) −4.46060 −0.155961
\(819\) 0 0
\(820\) 10.8560 0.379108
\(821\) 13.6336 0.475817 0.237908 0.971288i \(-0.423538\pi\)
0.237908 + 0.971288i \(0.423538\pi\)
\(822\) 0.840202 0.0293054
\(823\) 39.6459 1.38197 0.690984 0.722870i \(-0.257177\pi\)
0.690984 + 0.722870i \(0.257177\pi\)
\(824\) 22.3311 0.777942
\(825\) 2.18319 0.0760089
\(826\) −1.37468 −0.0478314
\(827\) 23.8952 0.830918 0.415459 0.909612i \(-0.363621\pi\)
0.415459 + 0.909612i \(0.363621\pi\)
\(828\) −11.4408 −0.397596
\(829\) −27.3562 −0.950121 −0.475060 0.879953i \(-0.657574\pi\)
−0.475060 + 0.879953i \(0.657574\pi\)
\(830\) 5.61515 0.194905
\(831\) 3.26386 0.113222
\(832\) 0 0
\(833\) 0.769701 0.0266686
\(834\) −0.230697 −0.00798839
\(835\) 8.50811 0.294435
\(836\) −53.2857 −1.84292
\(837\) 0.609505 0.0210676
\(838\) −5.83528 −0.201576
\(839\) −29.5411 −1.01987 −0.509936 0.860212i \(-0.670331\pi\)
−0.509936 + 0.860212i \(0.670331\pi\)
\(840\) −2.40332 −0.0829225
\(841\) −21.8560 −0.753656
\(842\) −17.8398 −0.614800
\(843\) −8.66226 −0.298344
\(844\) −40.3540 −1.38904
\(845\) 0 0
\(846\) −4.30644 −0.148059
\(847\) 40.1417 1.37929
\(848\) −9.00830 −0.309346
\(849\) 8.51601 0.292269
\(850\) −3.05767 −0.104877
\(851\) 8.07841 0.276924
\(852\) −4.47116 −0.153180
\(853\) 5.61515 0.192259 0.0961295 0.995369i \(-0.469354\pi\)
0.0961295 + 0.995369i \(0.469354\pi\)
\(854\) 8.89296 0.304311
\(855\) 17.5905 0.601581
\(856\) 0.294187 0.0100551
\(857\) −39.9216 −1.36370 −0.681848 0.731494i \(-0.738823\pi\)
−0.681848 + 0.731494i \(0.738823\pi\)
\(858\) 0 0
\(859\) 28.6498 0.977520 0.488760 0.872418i \(-0.337449\pi\)
0.488760 + 0.872418i \(0.337449\pi\)
\(860\) 18.2633 0.622773
\(861\) 7.42405 0.253011
\(862\) −13.1193 −0.446845
\(863\) −38.5530 −1.31236 −0.656179 0.754605i \(-0.727828\pi\)
−0.656179 + 0.754605i \(0.727828\pi\)
\(864\) −13.5137 −0.459747
\(865\) −21.5473 −0.732630
\(866\) −9.31661 −0.316591
\(867\) −4.95458 −0.168266
\(868\) −1.09462 −0.0371537
\(869\) 18.5345 0.628739
\(870\) 0.654353 0.0221846
\(871\) 0 0
\(872\) −19.0286 −0.644391
\(873\) −31.9585 −1.08163
\(874\) −8.67282 −0.293363
\(875\) 2.67282 0.0903579
\(876\) −7.84771 −0.265150
\(877\) −27.3826 −0.924644 −0.462322 0.886712i \(-0.652984\pi\)
−0.462322 + 0.886712i \(0.652984\pi\)
\(878\) 13.5888 0.458599
\(879\) −11.1361 −0.375611
\(880\) −10.9361 −0.368656
\(881\) −25.0841 −0.845103 −0.422552 0.906339i \(-0.638865\pi\)
−0.422552 + 0.906339i \(0.638865\pi\)
\(882\) 0.231991 0.00781153
\(883\) −50.5513 −1.70119 −0.850593 0.525825i \(-0.823757\pi\)
−0.850593 + 0.525825i \(0.823757\pi\)
\(884\) 0 0
\(885\) −0.384851 −0.0129366
\(886\) 1.57465 0.0529015
\(887\) −19.6583 −0.660061 −0.330031 0.943970i \(-0.607059\pi\)
−0.330031 + 0.943970i \(0.607059\pi\)
\(888\) 2.99170 0.100395
\(889\) 32.2386 1.08125
\(890\) 4.36638 0.146361
\(891\) −37.6689 −1.26195
\(892\) 9.58611 0.320967
\(893\) 16.6913 0.558553
\(894\) 2.77761 0.0928971
\(895\) 2.56804 0.0858401
\(896\) 30.8251 1.02979
\(897\) 0 0
\(898\) −15.5025 −0.517324
\(899\) 0.654353 0.0218239
\(900\) 4.71203 0.157068
\(901\) −22.4606 −0.748271
\(902\) −18.9344 −0.630447
\(903\) 12.4896 0.415629
\(904\) 27.2672 0.906895
\(905\) −13.7305 −0.456417
\(906\) −5.14665 −0.170986
\(907\) 22.0537 0.732282 0.366141 0.930559i \(-0.380679\pi\)
0.366141 + 0.930559i \(0.380679\pi\)
\(908\) 4.93967 0.163929
\(909\) −30.5793 −1.01425
\(910\) 0 0
\(911\) −14.0079 −0.464103 −0.232051 0.972704i \(-0.574544\pi\)
−0.232051 + 0.972704i \(0.574544\pi\)
\(912\) 5.73050 0.189756
\(913\) 50.0739 1.65720
\(914\) 22.9668 0.759676
\(915\) 2.48963 0.0823048
\(916\) 42.2544 1.39613
\(917\) 20.4033 0.673777
\(918\) −7.61249 −0.251250
\(919\) 21.8353 0.720279 0.360140 0.932898i \(-0.382729\pi\)
0.360140 + 0.932898i \(0.382729\pi\)
\(920\) −5.10083 −0.168169
\(921\) −1.02412 −0.0337458
\(922\) 1.14851 0.0378241
\(923\) 0 0
\(924\) −9.76140 −0.321126
\(925\) −3.32718 −0.109397
\(926\) 1.52884 0.0502407
\(927\) −29.9418 −0.983416
\(928\) −14.5081 −0.476252
\(929\) −15.2224 −0.499431 −0.249715 0.968319i \(-0.580337\pi\)
−0.249715 + 0.968319i \(0.580337\pi\)
\(930\) 0.0599353 0.00196536
\(931\) −0.899170 −0.0294691
\(932\) −39.0532 −1.27923
\(933\) 1.51827 0.0497060
\(934\) 18.2403 0.596841
\(935\) −27.2672 −0.891734
\(936\) 0 0
\(937\) −25.4610 −0.831774 −0.415887 0.909416i \(-0.636529\pi\)
−0.415887 + 0.909416i \(0.636529\pi\)
\(938\) 3.33774 0.108981
\(939\) −2.13116 −0.0695478
\(940\) 4.47116 0.145833
\(941\) 24.9299 0.812691 0.406346 0.913719i \(-0.366803\pi\)
0.406346 + 0.913719i \(0.366803\pi\)
\(942\) −2.40784 −0.0784518
\(943\) 15.7569 0.513114
\(944\) 1.92781 0.0627448
\(945\) 6.65435 0.216466
\(946\) −31.8538 −1.03565
\(947\) −16.6807 −0.542051 −0.271025 0.962572i \(-0.587363\pi\)
−0.271025 + 0.962572i \(0.587363\pi\)
\(948\) −2.60160 −0.0844960
\(949\) 0 0
\(950\) 3.57199 0.115891
\(951\) −7.95854 −0.258073
\(952\) 30.0166 0.972844
\(953\) 27.1730 0.880221 0.440110 0.897944i \(-0.354939\pi\)
0.440110 + 0.897944i \(0.354939\pi\)
\(954\) −6.76970 −0.219177
\(955\) −10.6913 −0.345962
\(956\) −6.34356 −0.205165
\(957\) 5.83528 0.188628
\(958\) −3.85206 −0.124454
\(959\) 9.17302 0.296212
\(960\) 0.506413 0.0163444
\(961\) −30.9401 −0.998067
\(962\) 0 0
\(963\) −0.394448 −0.0127109
\(964\) −5.74106 −0.184907
\(965\) 19.2593 0.619980
\(966\) −1.58877 −0.0511179
\(967\) 6.75914 0.217359 0.108680 0.994077i \(-0.465338\pi\)
0.108680 + 0.994077i \(0.465338\pi\)
\(968\) 31.5513 1.01410
\(969\) 14.2880 0.458996
\(970\) −6.48963 −0.208370
\(971\) 46.6419 1.49681 0.748405 0.663242i \(-0.230820\pi\)
0.748405 + 0.663242i \(0.230820\pi\)
\(972\) 17.7816 0.570344
\(973\) −2.51867 −0.0807449
\(974\) 22.6807 0.726737
\(975\) 0 0
\(976\) −12.4712 −0.399192
\(977\) −52.7467 −1.68752 −0.843758 0.536723i \(-0.819662\pi\)
−0.843758 + 0.536723i \(0.819662\pi\)
\(978\) −3.03202 −0.0969534
\(979\) 38.9378 1.24446
\(980\) −0.240864 −0.00769412
\(981\) 25.5137 0.814591
\(982\) 17.7859 0.567571
\(983\) 20.9977 0.669724 0.334862 0.942267i \(-0.391310\pi\)
0.334862 + 0.942267i \(0.391310\pi\)
\(984\) 5.83528 0.186022
\(985\) 17.1809 0.547430
\(986\) −8.17262 −0.260269
\(987\) 3.05767 0.0973268
\(988\) 0 0
\(989\) 26.5081 0.842909
\(990\) −8.21844 −0.261199
\(991\) −32.3170 −1.02658 −0.513292 0.858214i \(-0.671574\pi\)
−0.513292 + 0.858214i \(0.671574\pi\)
\(992\) −1.32887 −0.0421916
\(993\) 2.53376 0.0804064
\(994\) 9.54731 0.302822
\(995\) 11.5473 0.366074
\(996\) −7.02864 −0.222711
\(997\) −21.3905 −0.677444 −0.338722 0.940887i \(-0.609995\pi\)
−0.338722 + 0.940887i \(0.609995\pi\)
\(998\) 7.49811 0.237348
\(999\) −8.28345 −0.262077
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.a.i.1.2 3
3.2 odd 2 7605.2.a.cc.1.2 3
5.4 even 2 4225.2.a.be.1.2 3
13.2 odd 12 845.2.m.h.316.3 12
13.3 even 3 845.2.e.k.191.2 6
13.4 even 6 845.2.e.i.146.2 6
13.5 odd 4 65.2.c.a.51.4 yes 6
13.6 odd 12 845.2.m.h.361.4 12
13.7 odd 12 845.2.m.h.361.3 12
13.8 odd 4 65.2.c.a.51.3 6
13.9 even 3 845.2.e.k.146.2 6
13.10 even 6 845.2.e.i.191.2 6
13.11 odd 12 845.2.m.h.316.4 12
13.12 even 2 845.2.a.k.1.2 3
39.5 even 4 585.2.b.g.181.3 6
39.8 even 4 585.2.b.g.181.4 6
39.38 odd 2 7605.2.a.bs.1.2 3
52.31 even 4 1040.2.k.d.961.3 6
52.47 even 4 1040.2.k.d.961.4 6
65.8 even 4 325.2.d.e.324.3 6
65.18 even 4 325.2.d.f.324.3 6
65.34 odd 4 325.2.c.g.51.4 6
65.44 odd 4 325.2.c.g.51.3 6
65.47 even 4 325.2.d.f.324.4 6
65.57 even 4 325.2.d.e.324.4 6
65.64 even 2 4225.2.a.bc.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.c.a.51.3 6 13.8 odd 4
65.2.c.a.51.4 yes 6 13.5 odd 4
325.2.c.g.51.3 6 65.44 odd 4
325.2.c.g.51.4 6 65.34 odd 4
325.2.d.e.324.3 6 65.8 even 4
325.2.d.e.324.4 6 65.57 even 4
325.2.d.f.324.3 6 65.18 even 4
325.2.d.f.324.4 6 65.47 even 4
585.2.b.g.181.3 6 39.5 even 4
585.2.b.g.181.4 6 39.8 even 4
845.2.a.i.1.2 3 1.1 even 1 trivial
845.2.a.k.1.2 3 13.12 even 2
845.2.e.i.146.2 6 13.4 even 6
845.2.e.i.191.2 6 13.10 even 6
845.2.e.k.146.2 6 13.9 even 3
845.2.e.k.191.2 6 13.3 even 3
845.2.m.h.316.3 12 13.2 odd 12
845.2.m.h.316.4 12 13.11 odd 12
845.2.m.h.361.3 12 13.7 odd 12
845.2.m.h.361.4 12 13.6 odd 12
1040.2.k.d.961.3 6 52.31 even 4
1040.2.k.d.961.4 6 52.47 even 4
4225.2.a.bc.1.2 3 65.64 even 2
4225.2.a.be.1.2 3 5.4 even 2
7605.2.a.bs.1.2 3 39.38 odd 2
7605.2.a.cc.1.2 3 3.2 odd 2