Properties

Label 585.2.b.g.181.4
Level $585$
Weight $2$
Character 585.181
Analytic conductor $4.671$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(181,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.181");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.4
Root \(-1.33641 + 1.33641i\) of defining polynomial
Character \(\chi\) \(=\) 585.181
Dual form 585.2.b.g.181.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.571993i q^{2} +1.67282 q^{4} -1.00000i q^{5} -2.67282i q^{7} +2.10083i q^{8} +0.571993 q^{10} -5.10083i q^{11} +(-1.57199 + 3.24482i) q^{13} +1.52884 q^{14} +2.14399 q^{16} +5.34565 q^{17} -6.24482i q^{19} -1.67282i q^{20} +2.91764 q^{22} -2.42801 q^{23} -1.00000 q^{25} +(-1.85601 - 0.899170i) q^{26} -4.47116i q^{28} -2.67282 q^{29} +0.244817i q^{31} +5.42801i q^{32} +3.05767i q^{34} -2.67282 q^{35} +3.32718i q^{37} +3.57199 q^{38} +2.10083 q^{40} +6.48963i q^{41} +10.9176 q^{43} -8.53279i q^{44} -1.38880i q^{46} -2.67282i q^{47} -0.143987 q^{49} -0.571993i q^{50} +(-2.62967 + 5.42801i) q^{52} +4.20166 q^{53} -5.10083 q^{55} +5.61515 q^{56} -1.52884i q^{58} +0.899170i q^{59} -5.81681 q^{61} -0.140034 q^{62} +1.18319 q^{64} +(3.24482 + 1.57199i) q^{65} -2.18319i q^{67} +8.94233 q^{68} -1.52884i q^{70} +6.24482i q^{71} +10.9608i q^{73} -1.90312 q^{74} -10.4465i q^{76} -13.6336 q^{77} -3.63362 q^{79} -2.14399i q^{80} -3.71203 q^{82} +9.81681i q^{83} -5.34565i q^{85} +6.24482i q^{86} +10.7160 q^{88} -7.63362i q^{89} +(8.67282 + 4.20166i) q^{91} -4.06163 q^{92} +1.52884 q^{94} -6.24482 q^{95} +11.3456i q^{97} -0.0823593i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} + 2 q^{10} - 8 q^{13} - 8 q^{14} + 10 q^{16} - 8 q^{17} - 24 q^{22} - 16 q^{23} - 6 q^{25} - 14 q^{26} + 4 q^{29} + 4 q^{35} + 20 q^{38} - 6 q^{40} + 24 q^{43} + 2 q^{49} + 20 q^{52} - 12 q^{53}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.571993i 0.404460i 0.979338 + 0.202230i \(0.0648189\pi\)
−0.979338 + 0.202230i \(0.935181\pi\)
\(3\) 0 0
\(4\) 1.67282 0.836412
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.67282i 1.01023i −0.863051 0.505116i \(-0.831450\pi\)
0.863051 0.505116i \(-0.168550\pi\)
\(8\) 2.10083i 0.742756i
\(9\) 0 0
\(10\) 0.571993 0.180880
\(11\) 5.10083i 1.53796i −0.639274 0.768979i \(-0.720765\pi\)
0.639274 0.768979i \(-0.279235\pi\)
\(12\) 0 0
\(13\) −1.57199 + 3.24482i −0.435992 + 0.899950i
\(14\) 1.52884 0.408599
\(15\) 0 0
\(16\) 2.14399 0.535997
\(17\) 5.34565 1.29651 0.648255 0.761423i \(-0.275499\pi\)
0.648255 + 0.761423i \(0.275499\pi\)
\(18\) 0 0
\(19\) 6.24482i 1.43266i −0.697762 0.716330i \(-0.745821\pi\)
0.697762 0.716330i \(-0.254179\pi\)
\(20\) 1.67282i 0.374055i
\(21\) 0 0
\(22\) 2.91764 0.622043
\(23\) −2.42801 −0.506274 −0.253137 0.967430i \(-0.581462\pi\)
−0.253137 + 0.967430i \(0.581462\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −1.85601 0.899170i −0.363994 0.176342i
\(27\) 0 0
\(28\) 4.47116i 0.844970i
\(29\) −2.67282 −0.496331 −0.248165 0.968718i \(-0.579828\pi\)
−0.248165 + 0.968718i \(0.579828\pi\)
\(30\) 0 0
\(31\) 0.244817i 0.0439704i 0.999758 + 0.0219852i \(0.00699867\pi\)
−0.999758 + 0.0219852i \(0.993001\pi\)
\(32\) 5.42801i 0.959545i
\(33\) 0 0
\(34\) 3.05767i 0.524387i
\(35\) −2.67282 −0.451790
\(36\) 0 0
\(37\) 3.32718i 0.546984i 0.961874 + 0.273492i \(0.0881788\pi\)
−0.961874 + 0.273492i \(0.911821\pi\)
\(38\) 3.57199 0.579454
\(39\) 0 0
\(40\) 2.10083 0.332170
\(41\) 6.48963i 1.01351i 0.862090 + 0.506755i \(0.169155\pi\)
−0.862090 + 0.506755i \(0.830845\pi\)
\(42\) 0 0
\(43\) 10.9176 1.66492 0.832462 0.554082i \(-0.186930\pi\)
0.832462 + 0.554082i \(0.186930\pi\)
\(44\) 8.53279i 1.28637i
\(45\) 0 0
\(46\) 1.38880i 0.204768i
\(47\) 2.67282i 0.389871i −0.980816 0.194936i \(-0.937550\pi\)
0.980816 0.194936i \(-0.0624498\pi\)
\(48\) 0 0
\(49\) −0.143987 −0.0205695
\(50\) 0.571993i 0.0808921i
\(51\) 0 0
\(52\) −2.62967 + 5.42801i −0.364669 + 0.752729i
\(53\) 4.20166 0.577143 0.288571 0.957458i \(-0.406820\pi\)
0.288571 + 0.957458i \(0.406820\pi\)
\(54\) 0 0
\(55\) −5.10083 −0.687796
\(56\) 5.61515 0.750356
\(57\) 0 0
\(58\) 1.52884i 0.200746i
\(59\) 0.899170i 0.117062i 0.998286 + 0.0585310i \(0.0186416\pi\)
−0.998286 + 0.0585310i \(0.981358\pi\)
\(60\) 0 0
\(61\) −5.81681 −0.744766 −0.372383 0.928079i \(-0.621459\pi\)
−0.372383 + 0.928079i \(0.621459\pi\)
\(62\) −0.140034 −0.0177843
\(63\) 0 0
\(64\) 1.18319 0.147899
\(65\) 3.24482 + 1.57199i 0.402470 + 0.194982i
\(66\) 0 0
\(67\) 2.18319i 0.266719i −0.991068 0.133360i \(-0.957423\pi\)
0.991068 0.133360i \(-0.0425765\pi\)
\(68\) 8.94233 1.08442
\(69\) 0 0
\(70\) 1.52884i 0.182731i
\(71\) 6.24482i 0.741123i 0.928808 + 0.370562i \(0.120835\pi\)
−0.928808 + 0.370562i \(0.879165\pi\)
\(72\) 0 0
\(73\) 10.9608i 1.28286i 0.767180 + 0.641432i \(0.221659\pi\)
−0.767180 + 0.641432i \(0.778341\pi\)
\(74\) −1.90312 −0.221233
\(75\) 0 0
\(76\) 10.4465i 1.19829i
\(77\) −13.6336 −1.55370
\(78\) 0 0
\(79\) −3.63362 −0.408814 −0.204407 0.978886i \(-0.565527\pi\)
−0.204407 + 0.978886i \(0.565527\pi\)
\(80\) 2.14399i 0.239705i
\(81\) 0 0
\(82\) −3.71203 −0.409925
\(83\) 9.81681i 1.07753i 0.842455 + 0.538767i \(0.181110\pi\)
−0.842455 + 0.538767i \(0.818890\pi\)
\(84\) 0 0
\(85\) 5.34565i 0.579817i
\(86\) 6.24482i 0.673396i
\(87\) 0 0
\(88\) 10.7160 1.14233
\(89\) 7.63362i 0.809162i −0.914502 0.404581i \(-0.867417\pi\)
0.914502 0.404581i \(-0.132583\pi\)
\(90\) 0 0
\(91\) 8.67282 + 4.20166i 0.909159 + 0.440454i
\(92\) −4.06163 −0.423454
\(93\) 0 0
\(94\) 1.52884 0.157688
\(95\) −6.24482 −0.640705
\(96\) 0 0
\(97\) 11.3456i 1.15198i 0.817458 + 0.575988i \(0.195383\pi\)
−0.817458 + 0.575988i \(0.804617\pi\)
\(98\) 0.0823593i 0.00831955i
\(99\) 0 0
\(100\) −1.67282 −0.167282
\(101\) 10.8560 1.08021 0.540107 0.841596i \(-0.318384\pi\)
0.540107 + 0.841596i \(0.318384\pi\)
\(102\) 0 0
\(103\) −10.6297 −1.04737 −0.523686 0.851911i \(-0.675444\pi\)
−0.523686 + 0.851911i \(0.675444\pi\)
\(104\) −6.81681 3.30249i −0.668443 0.323836i
\(105\) 0 0
\(106\) 2.40332i 0.233431i
\(107\) −0.140034 −0.0135376 −0.00676878 0.999977i \(-0.502155\pi\)
−0.00676878 + 0.999977i \(0.502155\pi\)
\(108\) 0 0
\(109\) 9.05767i 0.867568i −0.901017 0.433784i \(-0.857178\pi\)
0.901017 0.433784i \(-0.142822\pi\)
\(110\) 2.91764i 0.278186i
\(111\) 0 0
\(112\) 5.73050i 0.541481i
\(113\) −12.9793 −1.22099 −0.610493 0.792021i \(-0.709029\pi\)
−0.610493 + 0.792021i \(0.709029\pi\)
\(114\) 0 0
\(115\) 2.42801i 0.226413i
\(116\) −4.47116 −0.415137
\(117\) 0 0
\(118\) −0.514319 −0.0473469
\(119\) 14.2880i 1.30978i
\(120\) 0 0
\(121\) −15.0185 −1.36532
\(122\) 3.32718i 0.301228i
\(123\) 0 0
\(124\) 0.409536i 0.0367774i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −12.0616 −1.07030 −0.535148 0.844758i \(-0.679744\pi\)
−0.535148 + 0.844758i \(0.679744\pi\)
\(128\) 11.5328i 1.01936i
\(129\) 0 0
\(130\) −0.899170 + 1.85601i −0.0788624 + 0.162783i
\(131\) −7.63362 −0.666953 −0.333476 0.942758i \(-0.608222\pi\)
−0.333476 + 0.942758i \(0.608222\pi\)
\(132\) 0 0
\(133\) −16.6913 −1.44732
\(134\) 1.24877 0.107877
\(135\) 0 0
\(136\) 11.2303i 0.962990i
\(137\) 3.43196i 0.293212i 0.989195 + 0.146606i \(0.0468350\pi\)
−0.989195 + 0.146606i \(0.953165\pi\)
\(138\) 0 0
\(139\) −0.942326 −0.0799270 −0.0399635 0.999201i \(-0.512724\pi\)
−0.0399635 + 0.999201i \(0.512724\pi\)
\(140\) −4.47116 −0.377882
\(141\) 0 0
\(142\) −3.57199 −0.299755
\(143\) 16.5513 + 8.01847i 1.38409 + 0.670538i
\(144\) 0 0
\(145\) 2.67282i 0.221966i
\(146\) −6.26950 −0.518868
\(147\) 0 0
\(148\) 5.56578i 0.457504i
\(149\) 11.3456i 0.929472i −0.885449 0.464736i \(-0.846149\pi\)
0.885449 0.464736i \(-0.153851\pi\)
\(150\) 0 0
\(151\) 21.0224i 1.71078i 0.517984 + 0.855390i \(0.326683\pi\)
−0.517984 + 0.855390i \(0.673317\pi\)
\(152\) 13.1193 1.06412
\(153\) 0 0
\(154\) 7.79834i 0.628408i
\(155\) 0.244817 0.0196642
\(156\) 0 0
\(157\) −9.83528 −0.784941 −0.392470 0.919765i \(-0.628379\pi\)
−0.392470 + 0.919765i \(0.628379\pi\)
\(158\) 2.07841i 0.165349i
\(159\) 0 0
\(160\) 5.42801 0.429122
\(161\) 6.48963i 0.511455i
\(162\) 0 0
\(163\) 12.3849i 0.970056i 0.874499 + 0.485028i \(0.161191\pi\)
−0.874499 + 0.485028i \(0.838809\pi\)
\(164\) 10.8560i 0.847712i
\(165\) 0 0
\(166\) −5.61515 −0.435820
\(167\) 8.50811i 0.658377i 0.944264 + 0.329188i \(0.106775\pi\)
−0.944264 + 0.329188i \(0.893225\pi\)
\(168\) 0 0
\(169\) −8.05767 10.2017i −0.619821 0.784743i
\(170\) 3.05767 0.234513
\(171\) 0 0
\(172\) 18.2633 1.39256
\(173\) −21.5473 −1.63821 −0.819106 0.573643i \(-0.805530\pi\)
−0.819106 + 0.573643i \(0.805530\pi\)
\(174\) 0 0
\(175\) 2.67282i 0.202046i
\(176\) 10.9361i 0.824340i
\(177\) 0 0
\(178\) 4.36638 0.327274
\(179\) 2.56804 0.191944 0.0959722 0.995384i \(-0.469404\pi\)
0.0959722 + 0.995384i \(0.469404\pi\)
\(180\) 0 0
\(181\) 13.7305 1.02058 0.510290 0.860002i \(-0.329538\pi\)
0.510290 + 0.860002i \(0.329538\pi\)
\(182\) −2.40332 + 4.96080i −0.178146 + 0.367719i
\(183\) 0 0
\(184\) 5.10083i 0.376038i
\(185\) 3.32718 0.244619
\(186\) 0 0
\(187\) 27.2672i 1.99398i
\(188\) 4.47116i 0.326093i
\(189\) 0 0
\(190\) 3.57199i 0.259140i
\(191\) 10.6913 0.773595 0.386797 0.922165i \(-0.373581\pi\)
0.386797 + 0.922165i \(0.373581\pi\)
\(192\) 0 0
\(193\) 19.2593i 1.38632i −0.720785 0.693159i \(-0.756219\pi\)
0.720785 0.693159i \(-0.243781\pi\)
\(194\) −6.48963 −0.465929
\(195\) 0 0
\(196\) −0.240864 −0.0172046
\(197\) 17.1809i 1.22409i −0.790823 0.612045i \(-0.790347\pi\)
0.790823 0.612045i \(-0.209653\pi\)
\(198\) 0 0
\(199\) −11.5473 −0.818567 −0.409283 0.912407i \(-0.634221\pi\)
−0.409283 + 0.912407i \(0.634221\pi\)
\(200\) 2.10083i 0.148551i
\(201\) 0 0
\(202\) 6.20957i 0.436904i
\(203\) 7.14399i 0.501410i
\(204\) 0 0
\(205\) 6.48963 0.453256
\(206\) 6.08010i 0.423621i
\(207\) 0 0
\(208\) −3.37033 + 6.95684i −0.233691 + 0.482370i
\(209\) −31.8538 −2.20337
\(210\) 0 0
\(211\) 24.1233 1.66071 0.830357 0.557232i \(-0.188137\pi\)
0.830357 + 0.557232i \(0.188137\pi\)
\(212\) 7.02864 0.482729
\(213\) 0 0
\(214\) 0.0800983i 0.00547541i
\(215\) 10.9176i 0.744577i
\(216\) 0 0
\(217\) 0.654353 0.0444203
\(218\) 5.18093 0.350897
\(219\) 0 0
\(220\) −8.53279 −0.575281
\(221\) −8.40332 + 17.3456i −0.565269 + 1.16679i
\(222\) 0 0
\(223\) 5.73050i 0.383743i −0.981420 0.191871i \(-0.938544\pi\)
0.981420 0.191871i \(-0.0614556\pi\)
\(224\) 14.5081 0.969364
\(225\) 0 0
\(226\) 7.42405i 0.493841i
\(227\) 2.95289i 0.195990i 0.995187 + 0.0979951i \(0.0312430\pi\)
−0.995187 + 0.0979951i \(0.968757\pi\)
\(228\) 0 0
\(229\) 25.2593i 1.66918i 0.550869 + 0.834592i \(0.314297\pi\)
−0.550869 + 0.834592i \(0.685703\pi\)
\(230\) −1.38880 −0.0915750
\(231\) 0 0
\(232\) 5.61515i 0.368653i
\(233\) 23.3456 1.52942 0.764712 0.644372i \(-0.222881\pi\)
0.764712 + 0.644372i \(0.222881\pi\)
\(234\) 0 0
\(235\) −2.67282 −0.174356
\(236\) 1.50415i 0.0979120i
\(237\) 0 0
\(238\) 8.17262 0.529753
\(239\) 3.79213i 0.245292i −0.992450 0.122646i \(-0.960862\pi\)
0.992450 0.122646i \(-0.0391380\pi\)
\(240\) 0 0
\(241\) 3.43196i 0.221072i −0.993872 0.110536i \(-0.964743\pi\)
0.993872 0.110536i \(-0.0352567\pi\)
\(242\) 8.59046i 0.552216i
\(243\) 0 0
\(244\) −9.73050 −0.622931
\(245\) 0.143987i 0.00919896i
\(246\) 0 0
\(247\) 20.2633 + 9.81681i 1.28932 + 0.624629i
\(248\) −0.514319 −0.0326593
\(249\) 0 0
\(250\) −0.571993 −0.0361760
\(251\) 25.4689 1.60758 0.803791 0.594911i \(-0.202813\pi\)
0.803791 + 0.594911i \(0.202813\pi\)
\(252\) 0 0
\(253\) 12.3849i 0.778629i
\(254\) 6.89917i 0.432892i
\(255\) 0 0
\(256\) −4.23030 −0.264394
\(257\) −9.26724 −0.578075 −0.289037 0.957318i \(-0.593335\pi\)
−0.289037 + 0.957318i \(0.593335\pi\)
\(258\) 0 0
\(259\) 8.89296 0.552581
\(260\) 5.42801 + 2.62967i 0.336631 + 0.163085i
\(261\) 0 0
\(262\) 4.36638i 0.269756i
\(263\) 8.14794 0.502423 0.251212 0.967932i \(-0.419171\pi\)
0.251212 + 0.967932i \(0.419171\pi\)
\(264\) 0 0
\(265\) 4.20166i 0.258106i
\(266\) 9.54731i 0.585383i
\(267\) 0 0
\(268\) 3.65209i 0.223087i
\(269\) −1.14399 −0.0697501 −0.0348750 0.999392i \(-0.511103\pi\)
−0.0348750 + 0.999392i \(0.511103\pi\)
\(270\) 0 0
\(271\) 3.18714i 0.193605i −0.995304 0.0968026i \(-0.969138\pi\)
0.995304 0.0968026i \(-0.0308615\pi\)
\(272\) 11.4610 0.694925
\(273\) 0 0
\(274\) −1.96306 −0.118593
\(275\) 5.10083i 0.307592i
\(276\) 0 0
\(277\) 7.62571 0.458185 0.229092 0.973405i \(-0.426424\pi\)
0.229092 + 0.973405i \(0.426424\pi\)
\(278\) 0.539004i 0.0323273i
\(279\) 0 0
\(280\) 5.61515i 0.335569i
\(281\) 20.2386i 1.20733i 0.797237 + 0.603667i \(0.206294\pi\)
−0.797237 + 0.603667i \(0.793706\pi\)
\(282\) 0 0
\(283\) 19.8969 1.18275 0.591374 0.806397i \(-0.298586\pi\)
0.591374 + 0.806397i \(0.298586\pi\)
\(284\) 10.4465i 0.619884i
\(285\) 0 0
\(286\) −4.58651 + 9.46721i −0.271206 + 0.559808i
\(287\) 17.3456 1.02388
\(288\) 0 0
\(289\) 11.5759 0.680938
\(290\) −1.52884 −0.0897764
\(291\) 0 0
\(292\) 18.3355i 1.07300i
\(293\) 26.0185i 1.52002i 0.649914 + 0.760008i \(0.274805\pi\)
−0.649914 + 0.760008i \(0.725195\pi\)
\(294\) 0 0
\(295\) 0.899170 0.0523517
\(296\) −6.98983 −0.406276
\(297\) 0 0
\(298\) 6.48963 0.375934
\(299\) 3.81681 7.87844i 0.220732 0.455622i
\(300\) 0 0
\(301\) 29.1809i 1.68196i
\(302\) −12.0247 −0.691943
\(303\) 0 0
\(304\) 13.3888i 0.767901i
\(305\) 5.81681i 0.333070i
\(306\) 0 0
\(307\) 2.39276i 0.136562i −0.997666 0.0682809i \(-0.978249\pi\)
0.997666 0.0682809i \(-0.0217514\pi\)
\(308\) −22.8066 −1.29953
\(309\) 0 0
\(310\) 0.140034i 0.00795338i
\(311\) −3.54731 −0.201149 −0.100575 0.994930i \(-0.532068\pi\)
−0.100575 + 0.994930i \(0.532068\pi\)
\(312\) 0 0
\(313\) 4.97927 0.281445 0.140722 0.990049i \(-0.455057\pi\)
0.140722 + 0.990049i \(0.455057\pi\)
\(314\) 5.62571i 0.317477i
\(315\) 0 0
\(316\) −6.07841 −0.341937
\(317\) 18.5944i 1.04437i −0.852833 0.522183i \(-0.825118\pi\)
0.852833 0.522183i \(-0.174882\pi\)
\(318\) 0 0
\(319\) 13.6336i 0.763336i
\(320\) 1.18319i 0.0661423i
\(321\) 0 0
\(322\) −3.71203 −0.206863
\(323\) 33.3826i 1.85746i
\(324\) 0 0
\(325\) 1.57199 3.24482i 0.0871985 0.179990i
\(326\) −7.08405 −0.392349
\(327\) 0 0
\(328\) −13.6336 −0.752791
\(329\) −7.14399 −0.393861
\(330\) 0 0
\(331\) 5.91990i 0.325387i −0.986677 0.162694i \(-0.947982\pi\)
0.986677 0.162694i \(-0.0520182\pi\)
\(332\) 16.4218i 0.901263i
\(333\) 0 0
\(334\) −4.86658 −0.266287
\(335\) −2.18319 −0.119280
\(336\) 0 0
\(337\) 13.9216 0.758358 0.379179 0.925323i \(-0.376207\pi\)
0.379179 + 0.925323i \(0.376207\pi\)
\(338\) 5.83528 4.60894i 0.317397 0.250693i
\(339\) 0 0
\(340\) 8.94233i 0.484966i
\(341\) 1.24877 0.0676247
\(342\) 0 0
\(343\) 18.3249i 0.989452i
\(344\) 22.9361i 1.23663i
\(345\) 0 0
\(346\) 12.3249i 0.662592i
\(347\) −7.65831 −0.411119 −0.205560 0.978645i \(-0.565901\pi\)
−0.205560 + 0.978645i \(0.565901\pi\)
\(348\) 0 0
\(349\) 11.1809i 0.598501i 0.954175 + 0.299251i \(0.0967367\pi\)
−0.954175 + 0.299251i \(0.903263\pi\)
\(350\) −1.52884 −0.0817198
\(351\) 0 0
\(352\) 27.6873 1.47574
\(353\) 9.65209i 0.513729i −0.966447 0.256864i \(-0.917311\pi\)
0.966447 0.256864i \(-0.0826894\pi\)
\(354\) 0 0
\(355\) 6.24482 0.331440
\(356\) 12.7697i 0.676793i
\(357\) 0 0
\(358\) 1.46890i 0.0776339i
\(359\) 9.51206i 0.502027i −0.967984 0.251014i \(-0.919236\pi\)
0.967984 0.251014i \(-0.0807639\pi\)
\(360\) 0 0
\(361\) −19.9977 −1.05251
\(362\) 7.85375i 0.412784i
\(363\) 0 0
\(364\) 14.5081 + 7.02864i 0.760431 + 0.368401i
\(365\) 10.9608 0.573714
\(366\) 0 0
\(367\) −17.0040 −0.887599 −0.443800 0.896126i \(-0.646370\pi\)
−0.443800 + 0.896126i \(0.646370\pi\)
\(368\) −5.20561 −0.271361
\(369\) 0 0
\(370\) 1.90312i 0.0989386i
\(371\) 11.2303i 0.583048i
\(372\) 0 0
\(373\) −1.83528 −0.0950273 −0.0475136 0.998871i \(-0.515130\pi\)
−0.0475136 + 0.998871i \(0.515130\pi\)
\(374\) 15.5967 0.806485
\(375\) 0 0
\(376\) 5.61515 0.289579
\(377\) 4.20166 8.67282i 0.216397 0.446673i
\(378\) 0 0
\(379\) 32.3681i 1.66264i −0.555797 0.831318i \(-0.687587\pi\)
0.555797 0.831318i \(-0.312413\pi\)
\(380\) −10.4465 −0.535893
\(381\) 0 0
\(382\) 6.11535i 0.312888i
\(383\) 28.1417i 1.43798i 0.695023 + 0.718988i \(0.255394\pi\)
−0.695023 + 0.718988i \(0.744606\pi\)
\(384\) 0 0
\(385\) 13.6336i 0.694834i
\(386\) 11.0162 0.560710
\(387\) 0 0
\(388\) 18.9793i 0.963526i
\(389\) 31.9585 1.62036 0.810181 0.586180i \(-0.199369\pi\)
0.810181 + 0.586180i \(0.199369\pi\)
\(390\) 0 0
\(391\) −12.9793 −0.656390
\(392\) 0.302491i 0.0152781i
\(393\) 0 0
\(394\) 9.82738 0.495096
\(395\) 3.63362i 0.182827i
\(396\) 0 0
\(397\) 12.7098i 0.637885i 0.947774 + 0.318942i \(0.103328\pi\)
−0.947774 + 0.318942i \(0.896672\pi\)
\(398\) 6.60498i 0.331078i
\(399\) 0 0
\(400\) −2.14399 −0.107199
\(401\) 0.979268i 0.0489023i 0.999701 + 0.0244512i \(0.00778382\pi\)
−0.999701 + 0.0244512i \(0.992216\pi\)
\(402\) 0 0
\(403\) −0.794386 0.384851i −0.0395712 0.0191708i
\(404\) 18.1602 0.903504
\(405\) 0 0
\(406\) −4.08631 −0.202800
\(407\) 16.9714 0.841239
\(408\) 0 0
\(409\) 7.79834i 0.385603i 0.981238 + 0.192802i \(0.0617574\pi\)
−0.981238 + 0.192802i \(0.938243\pi\)
\(410\) 3.71203i 0.183324i
\(411\) 0 0
\(412\) −17.7816 −0.876035
\(413\) 2.40332 0.118260
\(414\) 0 0
\(415\) 9.81681 0.481888
\(416\) −17.6129 8.53279i −0.863543 0.418354i
\(417\) 0 0
\(418\) 18.2201i 0.891176i
\(419\) −10.2017 −0.498384 −0.249192 0.968454i \(-0.580165\pi\)
−0.249192 + 0.968454i \(0.580165\pi\)
\(420\) 0 0
\(421\) 31.1888i 1.52005i 0.649893 + 0.760025i \(0.274814\pi\)
−0.649893 + 0.760025i \(0.725186\pi\)
\(422\) 13.7983i 0.671693i
\(423\) 0 0
\(424\) 8.82698i 0.428676i
\(425\) −5.34565 −0.259302
\(426\) 0 0
\(427\) 15.5473i 0.752387i
\(428\) −0.234252 −0.0113230
\(429\) 0 0
\(430\) 6.24482 0.301152
\(431\) 22.9361i 1.10479i −0.833581 0.552397i \(-0.813713\pi\)
0.833581 0.552397i \(-0.186287\pi\)
\(432\) 0 0
\(433\) −16.2880 −0.782750 −0.391375 0.920231i \(-0.628000\pi\)
−0.391375 + 0.920231i \(0.628000\pi\)
\(434\) 0.374285i 0.0179663i
\(435\) 0 0
\(436\) 15.1519i 0.725644i
\(437\) 15.1625i 0.725319i
\(438\) 0 0
\(439\) 23.7569 1.13385 0.566927 0.823768i \(-0.308132\pi\)
0.566927 + 0.823768i \(0.308132\pi\)
\(440\) 10.7160i 0.510864i
\(441\) 0 0
\(442\) −9.92159 4.80664i −0.471922 0.228629i
\(443\) 2.75292 0.130795 0.0653976 0.997859i \(-0.479168\pi\)
0.0653976 + 0.997859i \(0.479168\pi\)
\(444\) 0 0
\(445\) −7.63362 −0.361868
\(446\) 3.27781 0.155209
\(447\) 0 0
\(448\) 3.16246i 0.149412i
\(449\) 27.1025i 1.27905i 0.768772 + 0.639524i \(0.220868\pi\)
−0.768772 + 0.639524i \(0.779132\pi\)
\(450\) 0 0
\(451\) 33.1025 1.55874
\(452\) −21.7120 −1.02125
\(453\) 0 0
\(454\) −1.68903 −0.0792703
\(455\) 4.20166 8.67282i 0.196977 0.406588i
\(456\) 0 0
\(457\) 40.1523i 1.87824i −0.343583 0.939122i \(-0.611641\pi\)
0.343583 0.939122i \(-0.388359\pi\)
\(458\) −14.4482 −0.675119
\(459\) 0 0
\(460\) 4.06163i 0.189374i
\(461\) 2.00791i 0.0935175i 0.998906 + 0.0467587i \(0.0148892\pi\)
−0.998906 + 0.0467587i \(0.985111\pi\)
\(462\) 0 0
\(463\) 2.67282i 0.124217i 0.998069 + 0.0621083i \(0.0197824\pi\)
−0.998069 + 0.0621083i \(0.980218\pi\)
\(464\) −5.73050 −0.266032
\(465\) 0 0
\(466\) 13.3536i 0.618591i
\(467\) −31.8890 −1.47565 −0.737824 0.674994i \(-0.764146\pi\)
−0.737824 + 0.674994i \(0.764146\pi\)
\(468\) 0 0
\(469\) −5.83528 −0.269448
\(470\) 1.52884i 0.0705200i
\(471\) 0 0
\(472\) −1.88900 −0.0869484
\(473\) 55.6890i 2.56058i
\(474\) 0 0
\(475\) 6.24482i 0.286532i
\(476\) 23.9013i 1.09551i
\(477\) 0 0
\(478\) 2.16907 0.0992110
\(479\) 6.73445i 0.307705i 0.988094 + 0.153852i \(0.0491680\pi\)
−0.988094 + 0.153852i \(0.950832\pi\)
\(480\) 0 0
\(481\) −10.7961 5.23030i −0.492259 0.238481i
\(482\) 1.96306 0.0894148
\(483\) 0 0
\(484\) −25.1233 −1.14197
\(485\) 11.3456 0.515179
\(486\) 0 0
\(487\) 39.6521i 1.79681i −0.439170 0.898404i \(-0.644727\pi\)
0.439170 0.898404i \(-0.355273\pi\)
\(488\) 12.2201i 0.553179i
\(489\) 0 0
\(490\) −0.0823593 −0.00372062
\(491\) −31.0946 −1.40328 −0.701640 0.712531i \(-0.747549\pi\)
−0.701640 + 0.712531i \(0.747549\pi\)
\(492\) 0 0
\(493\) −14.2880 −0.643498
\(494\) −5.61515 + 11.5905i −0.252638 + 0.521480i
\(495\) 0 0
\(496\) 0.524884i 0.0235680i
\(497\) 16.6913 0.748707
\(498\) 0 0
\(499\) 13.1087i 0.586828i −0.955986 0.293414i \(-0.905209\pi\)
0.955986 0.293414i \(-0.0947914\pi\)
\(500\) 1.67282i 0.0748110i
\(501\) 0 0
\(502\) 14.5680i 0.650203i
\(503\) 8.59273 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(504\) 0 0
\(505\) 10.8560i 0.483086i
\(506\) −7.08405 −0.314924
\(507\) 0 0
\(508\) −20.1770 −0.895209
\(509\) 29.8353i 1.32243i 0.750198 + 0.661213i \(0.229958\pi\)
−0.750198 + 0.661213i \(0.770042\pi\)
\(510\) 0 0
\(511\) 29.2963 1.29599
\(512\) 20.6459i 0.912428i
\(513\) 0 0
\(514\) 5.30080i 0.233808i
\(515\) 10.6297i 0.468399i
\(516\) 0 0
\(517\) −13.6336 −0.599606
\(518\) 5.08671i 0.223497i
\(519\) 0 0
\(520\) −3.30249 + 6.81681i −0.144824 + 0.298937i
\(521\) −10.0969 −0.442352 −0.221176 0.975234i \(-0.570990\pi\)
−0.221176 + 0.975234i \(0.570990\pi\)
\(522\) 0 0
\(523\) 16.1479 0.706100 0.353050 0.935604i \(-0.385145\pi\)
0.353050 + 0.935604i \(0.385145\pi\)
\(524\) −12.7697 −0.557847
\(525\) 0 0
\(526\) 4.66057i 0.203210i
\(527\) 1.30871i 0.0570081i
\(528\) 0 0
\(529\) −17.1048 −0.743686
\(530\) 2.40332 0.104394
\(531\) 0 0
\(532\) −27.9216 −1.21055
\(533\) −21.0577 10.2017i −0.912109 0.441883i
\(534\) 0 0
\(535\) 0.140034i 0.00605418i
\(536\) 4.58651 0.198107
\(537\) 0 0
\(538\) 0.654353i 0.0282111i
\(539\) 0.734451i 0.0316350i
\(540\) 0 0
\(541\) 26.7776i 1.15126i 0.817711 + 0.575630i \(0.195243\pi\)
−0.817711 + 0.575630i \(0.804757\pi\)
\(542\) 1.82302 0.0783056
\(543\) 0 0
\(544\) 29.0162i 1.24406i
\(545\) −9.05767 −0.387988
\(546\) 0 0
\(547\) 12.3865 0.529610 0.264805 0.964302i \(-0.414692\pi\)
0.264805 + 0.964302i \(0.414692\pi\)
\(548\) 5.74106i 0.245246i
\(549\) 0 0
\(550\) −2.91764 −0.124409
\(551\) 16.6913i 0.711073i
\(552\) 0 0
\(553\) 9.71203i 0.412997i
\(554\) 4.36186i 0.185318i
\(555\) 0 0
\(556\) −1.57634 −0.0668519
\(557\) 10.4218i 0.441586i −0.975321 0.220793i \(-0.929136\pi\)
0.975321 0.220793i \(-0.0708644\pi\)
\(558\) 0 0
\(559\) −17.1625 + 35.4257i −0.725895 + 1.49835i
\(560\) −5.73050 −0.242158
\(561\) 0 0
\(562\) −11.5763 −0.488319
\(563\) −9.78156 −0.412244 −0.206122 0.978526i \(-0.566084\pi\)
−0.206122 + 0.978526i \(0.566084\pi\)
\(564\) 0 0
\(565\) 12.9793i 0.546042i
\(566\) 11.3809i 0.478375i
\(567\) 0 0
\(568\) −13.1193 −0.550474
\(569\) 30.2201 1.26689 0.633447 0.773786i \(-0.281639\pi\)
0.633447 + 0.773786i \(0.281639\pi\)
\(570\) 0 0
\(571\) −39.8643 −1.66827 −0.834135 0.551561i \(-0.814033\pi\)
−0.834135 + 0.551561i \(0.814033\pi\)
\(572\) 27.6873 + 13.4135i 1.15767 + 0.560846i
\(573\) 0 0
\(574\) 9.92159i 0.414119i
\(575\) 2.42801 0.101255
\(576\) 0 0
\(577\) 8.46326i 0.352330i 0.984361 + 0.176165i \(0.0563692\pi\)
−0.984361 + 0.176165i \(0.943631\pi\)
\(578\) 6.62136i 0.275412i
\(579\) 0 0
\(580\) 4.47116i 0.185655i
\(581\) 26.2386 1.08856
\(582\) 0 0
\(583\) 21.4320i 0.887621i
\(584\) −23.0268 −0.952855
\(585\) 0 0
\(586\) −14.8824 −0.614786
\(587\) 9.32718i 0.384974i −0.981300 0.192487i \(-0.938345\pi\)
0.981300 0.192487i \(-0.0616553\pi\)
\(588\) 0 0
\(589\) 1.52884 0.0629946
\(590\) 0.514319i 0.0211742i
\(591\) 0 0
\(592\) 7.13342i 0.293182i
\(593\) 8.07841i 0.331740i 0.986148 + 0.165870i \(0.0530433\pi\)
−0.986148 + 0.165870i \(0.946957\pi\)
\(594\) 0 0
\(595\) −14.2880 −0.585750
\(596\) 18.9793i 0.777421i
\(597\) 0 0
\(598\) 4.50641 + 2.18319i 0.184281 + 0.0892773i
\(599\) −19.1440 −0.782202 −0.391101 0.920348i \(-0.627906\pi\)
−0.391101 + 0.920348i \(0.627906\pi\)
\(600\) 0 0
\(601\) −4.28797 −0.174910 −0.0874550 0.996168i \(-0.527873\pi\)
−0.0874550 + 0.996168i \(0.527873\pi\)
\(602\) 16.6913 0.680286
\(603\) 0 0
\(604\) 35.1668i 1.43092i
\(605\) 15.0185i 0.610588i
\(606\) 0 0
\(607\) 29.2426 1.18692 0.593459 0.804864i \(-0.297762\pi\)
0.593459 + 0.804864i \(0.297762\pi\)
\(608\) 33.8969 1.37470
\(609\) 0 0
\(610\) −3.32718 −0.134713
\(611\) 8.67282 + 4.20166i 0.350865 + 0.169981i
\(612\) 0 0
\(613\) 1.42405i 0.0575170i −0.999586 0.0287585i \(-0.990845\pi\)
0.999586 0.0287585i \(-0.00915538\pi\)
\(614\) 1.36864 0.0552338
\(615\) 0 0
\(616\) 28.6419i 1.15402i
\(617\) 46.5266i 1.87309i −0.350548 0.936545i \(-0.614005\pi\)
0.350548 0.936545i \(-0.385995\pi\)
\(618\) 0 0
\(619\) 34.2818i 1.37790i −0.724809 0.688950i \(-0.758072\pi\)
0.724809 0.688950i \(-0.241928\pi\)
\(620\) 0.409536 0.0164473
\(621\) 0 0
\(622\) 2.02904i 0.0813569i
\(623\) −20.4033 −0.817442
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 2.84811i 0.113833i
\(627\) 0 0
\(628\) −16.4527 −0.656534
\(629\) 17.7859i 0.709171i
\(630\) 0 0
\(631\) 2.32322i 0.0924861i 0.998930 + 0.0462430i \(0.0147249\pi\)
−0.998930 + 0.0462430i \(0.985275\pi\)
\(632\) 7.63362i 0.303649i
\(633\) 0 0
\(634\) 10.6359 0.422405
\(635\) 12.0616i 0.478651i
\(636\) 0 0
\(637\) 0.226346 0.467210i 0.00896815 0.0185115i
\(638\) −7.79834 −0.308739
\(639\) 0 0
\(640\) 11.5328 0.455874
\(641\) −28.1312 −1.11111 −0.555557 0.831478i \(-0.687495\pi\)
−0.555557 + 0.831478i \(0.687495\pi\)
\(642\) 0 0
\(643\) 14.1338i 0.557383i 0.960381 + 0.278692i \(0.0899008\pi\)
−0.960381 + 0.278692i \(0.910099\pi\)
\(644\) 10.8560i 0.427787i
\(645\) 0 0
\(646\) 19.0946 0.751268
\(647\) −45.8969 −1.80439 −0.902197 0.431325i \(-0.858046\pi\)
−0.902197 + 0.431325i \(0.858046\pi\)
\(648\) 0 0
\(649\) 4.58651 0.180036
\(650\) 1.85601 + 0.899170i 0.0727988 + 0.0352683i
\(651\) 0 0
\(652\) 20.7177i 0.811367i
\(653\) −50.4482 −1.97419 −0.987095 0.160137i \(-0.948806\pi\)
−0.987095 + 0.160137i \(0.948806\pi\)
\(654\) 0 0
\(655\) 7.63362i 0.298270i
\(656\) 13.9137i 0.543238i
\(657\) 0 0
\(658\) 4.08631i 0.159301i
\(659\) 45.8722 1.78693 0.893464 0.449135i \(-0.148268\pi\)
0.893464 + 0.449135i \(0.148268\pi\)
\(660\) 0 0
\(661\) 25.8432i 1.00518i −0.864524 0.502592i \(-0.832380\pi\)
0.864524 0.502592i \(-0.167620\pi\)
\(662\) 3.38614 0.131606
\(663\) 0 0
\(664\) −20.6235 −0.800345
\(665\) 16.6913i 0.647261i
\(666\) 0 0
\(667\) 6.48963 0.251280
\(668\) 14.2326i 0.550674i
\(669\) 0 0
\(670\) 1.24877i 0.0482442i
\(671\) 29.6706i 1.14542i
\(672\) 0 0
\(673\) −4.97927 −0.191937 −0.0959683 0.995384i \(-0.530595\pi\)
−0.0959683 + 0.995384i \(0.530595\pi\)
\(674\) 7.96306i 0.306726i
\(675\) 0 0
\(676\) −13.4791 17.0656i −0.518426 0.656368i
\(677\) 35.8353 1.37726 0.688631 0.725112i \(-0.258212\pi\)
0.688631 + 0.725112i \(0.258212\pi\)
\(678\) 0 0
\(679\) 30.3249 1.16376
\(680\) 11.2303 0.430662
\(681\) 0 0
\(682\) 0.714288i 0.0273515i
\(683\) 40.4712i 1.54859i −0.632827 0.774293i \(-0.718106\pi\)
0.632827 0.774293i \(-0.281894\pi\)
\(684\) 0 0
\(685\) 3.43196 0.131128
\(686\) 10.4817 0.400194
\(687\) 0 0
\(688\) 23.4073 0.892394
\(689\) −6.60498 + 13.6336i −0.251630 + 0.519400i
\(690\) 0 0
\(691\) 12.2448i 0.465815i −0.972499 0.232907i \(-0.925176\pi\)
0.972499 0.232907i \(-0.0748239\pi\)
\(692\) −36.0448 −1.37022
\(693\) 0 0
\(694\) 4.38050i 0.166281i
\(695\) 0.942326i 0.0357445i
\(696\) 0 0
\(697\) 34.6913i 1.31403i
\(698\) −6.39542 −0.242070
\(699\) 0 0
\(700\) 4.47116i 0.168994i
\(701\) 11.8353 0.447012 0.223506 0.974703i \(-0.428250\pi\)
0.223506 + 0.974703i \(0.428250\pi\)
\(702\) 0 0
\(703\) 20.7776 0.783642
\(704\) 6.03525i 0.227462i
\(705\) 0 0
\(706\) 5.52093 0.207783
\(707\) 29.0162i 1.09127i
\(708\) 0 0
\(709\) 6.37429i 0.239391i 0.992811 + 0.119696i \(0.0381919\pi\)
−0.992811 + 0.119696i \(0.961808\pi\)
\(710\) 3.57199i 0.134055i
\(711\) 0 0
\(712\) 16.0369 0.601010
\(713\) 0.594417i 0.0222611i
\(714\) 0 0
\(715\) 8.01847 16.5513i 0.299874 0.618982i
\(716\) 4.29588 0.160545
\(717\) 0 0
\(718\) 5.44083 0.203050
\(719\) −34.9009 −1.30158 −0.650791 0.759257i \(-0.725563\pi\)
−0.650791 + 0.759257i \(0.725563\pi\)
\(720\) 0 0
\(721\) 28.4112i 1.05809i
\(722\) 11.4386i 0.425700i
\(723\) 0 0
\(724\) 22.9687 0.853625
\(725\) 2.67282 0.0992662
\(726\) 0 0
\(727\) −19.8106 −0.734734 −0.367367 0.930076i \(-0.619741\pi\)
−0.367367 + 0.930076i \(0.619741\pi\)
\(728\) −8.82698 + 18.2201i −0.327150 + 0.675283i
\(729\) 0 0
\(730\) 6.26950i 0.232045i
\(731\) 58.3619 2.15859
\(732\) 0 0
\(733\) 12.6050i 0.465576i −0.972528 0.232788i \(-0.925215\pi\)
0.972528 0.232788i \(-0.0747848\pi\)
\(734\) 9.72615i 0.358999i
\(735\) 0 0
\(736\) 13.1792i 0.485793i
\(737\) −11.1361 −0.410203
\(738\) 0 0
\(739\) 37.1747i 1.36749i −0.729719 0.683747i \(-0.760349\pi\)
0.729719 0.683747i \(-0.239651\pi\)
\(740\) 5.56578 0.204602
\(741\) 0 0
\(742\) 6.42366 0.235820
\(743\) 27.9322i 1.02473i −0.858767 0.512366i \(-0.828769\pi\)
0.858767 0.512366i \(-0.171231\pi\)
\(744\) 0 0
\(745\) −11.3456 −0.415672
\(746\) 1.04977i 0.0384348i
\(747\) 0 0
\(748\) 45.6133i 1.66779i
\(749\) 0.374285i 0.0136761i
\(750\) 0 0
\(751\) 13.6257 0.497209 0.248605 0.968605i \(-0.420028\pi\)
0.248605 + 0.968605i \(0.420028\pi\)
\(752\) 5.73050i 0.208970i
\(753\) 0 0
\(754\) 4.96080 + 2.40332i 0.180662 + 0.0875238i
\(755\) 21.0224 0.765084
\(756\) 0 0
\(757\) −30.8560 −1.12148 −0.560740 0.827992i \(-0.689483\pi\)
−0.560740 + 0.827992i \(0.689483\pi\)
\(758\) 18.5143 0.672470
\(759\) 0 0
\(760\) 13.1193i 0.475887i
\(761\) 17.0162i 0.616837i −0.951251 0.308419i \(-0.900200\pi\)
0.951251 0.308419i \(-0.0997997\pi\)
\(762\) 0 0
\(763\) −24.2096 −0.876445
\(764\) 17.8847 0.647044
\(765\) 0 0
\(766\) −16.0969 −0.581604
\(767\) −2.91764 1.41349i −0.105350 0.0510381i
\(768\) 0 0
\(769\) 29.0162i 1.04635i 0.852225 + 0.523176i \(0.175253\pi\)
−0.852225 + 0.523176i \(0.824747\pi\)
\(770\) −7.79834 −0.281033
\(771\) 0 0
\(772\) 32.2175i 1.15953i
\(773\) 40.5160i 1.45726i −0.684908 0.728630i \(-0.740158\pi\)
0.684908 0.728630i \(-0.259842\pi\)
\(774\) 0 0
\(775\) 0.244817i 0.00879409i
\(776\) −23.8353 −0.855637
\(777\) 0 0
\(778\) 18.2801i 0.655372i
\(779\) 40.5266 1.45202
\(780\) 0 0
\(781\) 31.8538 1.13982
\(782\) 7.42405i 0.265484i
\(783\) 0 0
\(784\) −0.308705 −0.0110252
\(785\) 9.83528i 0.351036i
\(786\) 0 0
\(787\) 34.0264i 1.21291i 0.795118 + 0.606455i \(0.207409\pi\)
−0.795118 + 0.606455i \(0.792591\pi\)
\(788\) 28.7407i 1.02384i
\(789\) 0 0
\(790\) −2.07841 −0.0739464
\(791\) 34.6913i 1.23348i
\(792\) 0 0
\(793\) 9.14399 18.8745i 0.324712 0.670253i
\(794\) −7.26990 −0.257999
\(795\) 0 0
\(796\) −19.3166 −0.684659
\(797\) −14.7776 −0.523450 −0.261725 0.965143i \(-0.584291\pi\)
−0.261725 + 0.965143i \(0.584291\pi\)
\(798\) 0 0
\(799\) 14.2880i 0.505472i
\(800\) 5.42801i 0.191909i
\(801\) 0 0
\(802\) −0.560135 −0.0197790
\(803\) 55.9092 1.97299
\(804\) 0 0
\(805\) 6.48963 0.228730
\(806\) 0.220132 0.454384i 0.00775382 0.0160050i
\(807\) 0 0
\(808\) 22.8066i 0.802335i
\(809\) 36.0554 1.26764 0.633820 0.773480i \(-0.281486\pi\)
0.633820 + 0.773480i \(0.281486\pi\)
\(810\) 0 0
\(811\) 5.31040i 0.186473i 0.995644 + 0.0932366i \(0.0297213\pi\)
−0.995644 + 0.0932366i \(0.970279\pi\)
\(812\) 11.9506i 0.419385i
\(813\) 0 0
\(814\) 9.70750i 0.340248i
\(815\) 12.3849 0.433822
\(816\) 0 0
\(817\) 68.1787i 2.38527i
\(818\) −4.46060 −0.155961
\(819\) 0 0
\(820\) 10.8560 0.379108
\(821\) 13.6336i 0.475817i −0.971288 0.237908i \(-0.923538\pi\)
0.971288 0.237908i \(-0.0764618\pi\)
\(822\) 0 0
\(823\) −39.6459 −1.38197 −0.690984 0.722870i \(-0.742823\pi\)
−0.690984 + 0.722870i \(0.742823\pi\)
\(824\) 22.3311i 0.777942i
\(825\) 0 0
\(826\) 1.37468i 0.0478314i
\(827\) 23.8952i 0.830918i 0.909612 + 0.415459i \(0.136379\pi\)
−0.909612 + 0.415459i \(0.863621\pi\)
\(828\) 0 0
\(829\) 27.3562 0.950121 0.475060 0.879953i \(-0.342426\pi\)
0.475060 + 0.879953i \(0.342426\pi\)
\(830\) 5.61515i 0.194905i
\(831\) 0 0
\(832\) −1.85997 + 3.83923i −0.0644827 + 0.133101i
\(833\) −0.769701 −0.0266686
\(834\) 0 0
\(835\) 8.50811 0.294435
\(836\) −53.2857 −1.84292
\(837\) 0 0
\(838\) 5.83528i 0.201576i
\(839\) 29.5411i 1.01987i −0.860212 0.509936i \(-0.829669\pi\)
0.860212 0.509936i \(-0.170331\pi\)
\(840\) 0 0
\(841\) −21.8560 −0.753656
\(842\) −17.8398 −0.614800
\(843\) 0 0
\(844\) 40.3540 1.38904
\(845\) −10.2017 + 8.05767i −0.350948 + 0.277192i
\(846\) 0 0
\(847\) 40.1417i 1.37929i
\(848\) 9.00830 0.309346
\(849\) 0 0
\(850\) 3.05767i 0.104877i
\(851\) 8.07841i 0.276924i
\(852\) 0 0
\(853\) 5.61515i 0.192259i −0.995369 0.0961295i \(-0.969354\pi\)
0.995369 0.0961295i \(-0.0306463\pi\)
\(854\) −8.89296 −0.304311
\(855\) 0 0
\(856\) 0.294187i 0.0100551i
\(857\) −39.9216 −1.36370 −0.681848 0.731494i \(-0.738823\pi\)
−0.681848 + 0.731494i \(0.738823\pi\)
\(858\) 0 0
\(859\) 28.6498 0.977520 0.488760 0.872418i \(-0.337449\pi\)
0.488760 + 0.872418i \(0.337449\pi\)
\(860\) 18.2633i 0.622773i
\(861\) 0 0
\(862\) 13.1193 0.446845
\(863\) 38.5530i 1.31236i 0.754605 + 0.656179i \(0.227828\pi\)
−0.754605 + 0.656179i \(0.772172\pi\)
\(864\) 0 0
\(865\) 21.5473i 0.732630i
\(866\) 9.31661i 0.316591i
\(867\) 0 0
\(868\) 1.09462 0.0371537
\(869\) 18.5345i 0.628739i
\(870\) 0 0
\(871\) 7.08405 + 3.43196i 0.240034 + 0.116288i
\(872\) 19.0286 0.644391
\(873\) 0 0
\(874\) −8.67282 −0.293363
\(875\) 2.67282 0.0903579
\(876\) 0 0
\(877\) 27.3826i 0.924644i −0.886712 0.462322i \(-0.847016\pi\)
0.886712 0.462322i \(-0.152984\pi\)
\(878\) 13.5888i 0.458599i
\(879\) 0 0
\(880\) −10.9361 −0.368656
\(881\) −25.0841 −0.845103 −0.422552 0.906339i \(-0.638865\pi\)
−0.422552 + 0.906339i \(0.638865\pi\)
\(882\) 0 0
\(883\) 50.5513 1.70119 0.850593 0.525825i \(-0.176243\pi\)
0.850593 + 0.525825i \(0.176243\pi\)
\(884\) −14.0573 + 29.0162i −0.472797 + 0.975921i
\(885\) 0 0
\(886\) 1.57465i 0.0529015i
\(887\) 19.6583 0.660061 0.330031 0.943970i \(-0.392941\pi\)
0.330031 + 0.943970i \(0.392941\pi\)
\(888\) 0 0
\(889\) 32.2386i 1.08125i
\(890\) 4.36638i 0.146361i
\(891\) 0 0
\(892\) 9.58611i 0.320967i
\(893\) −16.6913 −0.558553
\(894\) 0 0
\(895\) 2.56804i 0.0858401i
\(896\) 30.8251 1.02979
\(897\) 0 0
\(898\) −15.5025 −0.517324
\(899\) 0.654353i 0.0218239i
\(900\) 0 0
\(901\) 22.4606 0.748271
\(902\) 18.9344i 0.630447i
\(903\) 0 0
\(904\) 27.2672i 0.906895i
\(905\) 13.7305i 0.456417i
\(906\) 0 0
\(907\) −22.0537 −0.732282 −0.366141 0.930559i \(-0.619321\pi\)
−0.366141 + 0.930559i \(0.619321\pi\)
\(908\) 4.93967i 0.163929i
\(909\) 0 0
\(910\) 4.96080 + 2.40332i 0.164449 + 0.0796693i
\(911\) 14.0079 0.464103 0.232051 0.972704i \(-0.425456\pi\)
0.232051 + 0.972704i \(0.425456\pi\)
\(912\) 0 0
\(913\) 50.0739 1.65720
\(914\) 22.9668 0.759676
\(915\) 0 0
\(916\) 42.2544i 1.39613i
\(917\) 20.4033i 0.673777i
\(918\) 0 0
\(919\) 21.8353 0.720279 0.360140 0.932898i \(-0.382729\pi\)
0.360140 + 0.932898i \(0.382729\pi\)
\(920\) −5.10083 −0.168169
\(921\) 0 0
\(922\) −1.14851 −0.0378241
\(923\) −20.2633 9.81681i −0.666974 0.323124i
\(924\) 0 0
\(925\) 3.32718i 0.109397i
\(926\) −1.52884 −0.0502407
\(927\) 0 0
\(928\) 14.5081i 0.476252i
\(929\) 15.2224i 0.499431i 0.968319 + 0.249715i \(0.0803370\pi\)
−0.968319 + 0.249715i \(0.919663\pi\)
\(930\) 0 0
\(931\) 0.899170i 0.0294691i
\(932\) 39.0532 1.27923
\(933\) 0 0
\(934\) 18.2403i 0.596841i
\(935\) −27.2672 −0.891734
\(936\) 0 0
\(937\) −25.4610 −0.831774 −0.415887 0.909416i \(-0.636529\pi\)
−0.415887 + 0.909416i \(0.636529\pi\)
\(938\) 3.33774i 0.108981i
\(939\) 0 0
\(940\) −4.47116 −0.145833
\(941\) 24.9299i 0.812691i −0.913719 0.406346i \(-0.866803\pi\)
0.913719 0.406346i \(-0.133197\pi\)
\(942\) 0 0
\(943\) 15.7569i 0.513114i
\(944\) 1.92781i 0.0627448i
\(945\) 0 0
\(946\) 31.8538 1.03565
\(947\) 16.6807i 0.542051i −0.962572 0.271025i \(-0.912637\pi\)
0.962572 0.271025i \(-0.0873628\pi\)
\(948\) 0 0
\(949\) −35.5658 17.2303i −1.15451 0.559319i
\(950\) −3.57199 −0.115891
\(951\) 0 0
\(952\) 30.0166 0.972844
\(953\) 27.1730 0.880221 0.440110 0.897944i \(-0.354939\pi\)
0.440110 + 0.897944i \(0.354939\pi\)
\(954\) 0 0
\(955\) 10.6913i 0.345962i
\(956\) 6.34356i 0.205165i
\(957\) 0 0
\(958\) −3.85206 −0.124454
\(959\) 9.17302 0.296212
\(960\) 0 0
\(961\) 30.9401 0.998067
\(962\) 2.99170 6.17528i 0.0964561 0.199099i
\(963\) 0 0
\(964\) 5.74106i 0.184907i
\(965\) −19.2593 −0.619980
\(966\) 0 0
\(967\) 6.75914i 0.217359i 0.994077 + 0.108680i \(0.0346622\pi\)
−0.994077 + 0.108680i \(0.965338\pi\)
\(968\) 31.5513i 1.01410i
\(969\) 0 0
\(970\) 6.48963i 0.208370i
\(971\) −46.6419 −1.49681 −0.748405 0.663242i \(-0.769180\pi\)
−0.748405 + 0.663242i \(0.769180\pi\)
\(972\) 0 0
\(973\) 2.51867i 0.0807449i
\(974\) 22.6807 0.726737
\(975\) 0 0
\(976\) −12.4712 −0.399192
\(977\) 52.7467i 1.68752i 0.536723 + 0.843758i \(0.319662\pi\)
−0.536723 + 0.843758i \(0.680338\pi\)
\(978\) 0 0
\(979\) −38.9378 −1.24446
\(980\) 0.240864i 0.00769412i
\(981\) 0 0
\(982\) 17.7859i 0.567571i
\(983\) 20.9977i 0.669724i 0.942267 + 0.334862i \(0.108690\pi\)
−0.942267 + 0.334862i \(0.891310\pi\)
\(984\) 0 0
\(985\) −17.1809 −0.547430
\(986\) 8.17262i 0.260269i
\(987\) 0 0
\(988\) 33.8969 + 16.4218i 1.07840 + 0.522447i
\(989\) −26.5081 −0.842909
\(990\) 0 0
\(991\) −32.3170 −1.02658 −0.513292 0.858214i \(-0.671574\pi\)
−0.513292 + 0.858214i \(0.671574\pi\)
\(992\) −1.32887 −0.0421916
\(993\) 0 0
\(994\) 9.54731i 0.302822i
\(995\) 11.5473i 0.366074i
\(996\) 0 0
\(997\) −21.3905 −0.677444 −0.338722 0.940887i \(-0.609995\pi\)
−0.338722 + 0.940887i \(0.609995\pi\)
\(998\) 7.49811 0.237348
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.b.g.181.4 6
3.2 odd 2 65.2.c.a.51.3 6
12.11 even 2 1040.2.k.d.961.4 6
13.5 odd 4 7605.2.a.cc.1.2 3
13.8 odd 4 7605.2.a.bs.1.2 3
13.12 even 2 inner 585.2.b.g.181.3 6
15.2 even 4 325.2.d.f.324.4 6
15.8 even 4 325.2.d.e.324.3 6
15.14 odd 2 325.2.c.g.51.4 6
39.2 even 12 845.2.e.k.191.2 6
39.5 even 4 845.2.a.i.1.2 3
39.8 even 4 845.2.a.k.1.2 3
39.11 even 12 845.2.e.i.191.2 6
39.17 odd 6 845.2.m.h.361.4 12
39.20 even 12 845.2.e.i.146.2 6
39.23 odd 6 845.2.m.h.316.3 12
39.29 odd 6 845.2.m.h.316.4 12
39.32 even 12 845.2.e.k.146.2 6
39.35 odd 6 845.2.m.h.361.3 12
39.38 odd 2 65.2.c.a.51.4 yes 6
156.155 even 2 1040.2.k.d.961.3 6
195.38 even 4 325.2.d.f.324.3 6
195.44 even 4 4225.2.a.be.1.2 3
195.77 even 4 325.2.d.e.324.4 6
195.164 even 4 4225.2.a.bc.1.2 3
195.194 odd 2 325.2.c.g.51.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.c.a.51.3 6 3.2 odd 2
65.2.c.a.51.4 yes 6 39.38 odd 2
325.2.c.g.51.3 6 195.194 odd 2
325.2.c.g.51.4 6 15.14 odd 2
325.2.d.e.324.3 6 15.8 even 4
325.2.d.e.324.4 6 195.77 even 4
325.2.d.f.324.3 6 195.38 even 4
325.2.d.f.324.4 6 15.2 even 4
585.2.b.g.181.3 6 13.12 even 2 inner
585.2.b.g.181.4 6 1.1 even 1 trivial
845.2.a.i.1.2 3 39.5 even 4
845.2.a.k.1.2 3 39.8 even 4
845.2.e.i.146.2 6 39.20 even 12
845.2.e.i.191.2 6 39.11 even 12
845.2.e.k.146.2 6 39.32 even 12
845.2.e.k.191.2 6 39.2 even 12
845.2.m.h.316.3 12 39.23 odd 6
845.2.m.h.316.4 12 39.29 odd 6
845.2.m.h.361.3 12 39.35 odd 6
845.2.m.h.361.4 12 39.17 odd 6
1040.2.k.d.961.3 6 156.155 even 2
1040.2.k.d.961.4 6 12.11 even 2
4225.2.a.bc.1.2 3 195.164 even 4
4225.2.a.be.1.2 3 195.44 even 4
7605.2.a.bs.1.2 3 13.8 odd 4
7605.2.a.cc.1.2 3 13.5 odd 4