Properties

Label 325.2.n.b.101.2
Level $325$
Weight $2$
Character 325.101
Analytic conductor $2.595$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(101,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.2
Root \(1.39564 + 0.228425i\) of defining polynomial
Character \(\chi\) \(=\) 325.101
Dual form 325.2.n.b.251.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.395644 - 0.228425i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.895644 + 1.55130i) q^{4} +(0.395644 + 0.228425i) q^{6} +(1.50000 + 0.866025i) q^{7} +1.73205i q^{8} +(1.00000 - 1.73205i) q^{9} +(-2.29129 + 1.32288i) q^{11} -1.79129 q^{12} +(1.00000 + 3.46410i) q^{13} +0.791288 q^{14} +(-1.39564 - 2.41733i) q^{16} +(-2.29129 + 3.96863i) q^{17} -0.913701i q^{18} +(1.50000 + 0.866025i) q^{19} +1.73205i q^{21} +(-0.604356 + 1.04678i) q^{22} +(2.29129 + 3.96863i) q^{23} +(-1.50000 + 0.866025i) q^{24} +(1.18693 + 1.14213i) q^{26} +5.00000 q^{27} +(-2.68693 + 1.55130i) q^{28} +(-2.29129 - 3.96863i) q^{29} -6.20520i q^{31} +(-4.10436 - 2.36965i) q^{32} +(-2.29129 - 1.32288i) q^{33} +2.09355i q^{34} +(1.79129 + 3.10260i) q^{36} +(6.87386 - 3.96863i) q^{37} +0.791288 q^{38} +(-2.50000 + 2.59808i) q^{39} +(2.29129 - 1.32288i) q^{41} +(0.395644 + 0.685275i) q^{42} +(5.29129 - 9.16478i) q^{43} -4.73930i q^{44} +(1.81307 + 1.04678i) q^{46} -1.82740i q^{47} +(1.39564 - 2.41733i) q^{48} +(-2.00000 - 3.46410i) q^{49} -4.58258 q^{51} +(-6.26951 - 1.55130i) q^{52} -7.58258 q^{53} +(1.97822 - 1.14213i) q^{54} +(-1.50000 + 2.59808i) q^{56} +1.73205i q^{57} +(-1.81307 - 1.04678i) q^{58} +(12.0826 + 6.97588i) q^{59} +(0.708712 - 1.22753i) q^{61} +(-1.41742 - 2.45505i) q^{62} +(3.00000 - 1.73205i) q^{63} +3.41742 q^{64} -1.20871 q^{66} +(-0.873864 + 0.504525i) q^{67} +(-4.10436 - 7.10895i) q^{68} +(-2.29129 + 3.96863i) q^{69} +(6.08258 + 3.51178i) q^{71} +(3.00000 + 1.73205i) q^{72} +(1.81307 - 3.14033i) q^{74} +(-2.68693 + 1.55130i) q^{76} -4.58258 q^{77} +(-0.395644 + 1.59898i) q^{78} -6.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} +(0.604356 - 1.04678i) q^{82} -6.01450i q^{83} +(-2.68693 - 1.55130i) q^{84} -4.83465i q^{86} +(2.29129 - 3.96863i) q^{87} +(-2.29129 - 3.96863i) q^{88} +(-8.29129 + 4.78698i) q^{89} +(-1.50000 + 6.06218i) q^{91} -8.20871 q^{92} +(5.37386 - 3.10260i) q^{93} +(-0.417424 - 0.723000i) q^{94} -4.73930i q^{96} +(9.87386 + 5.70068i) q^{97} +(-1.58258 - 0.913701i) q^{98} +5.29150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} + 2 q^{3} + q^{4} - 3 q^{6} + 6 q^{7} + 4 q^{9} + 2 q^{12} + 4 q^{13} - 6 q^{14} - q^{16} + 6 q^{19} - 7 q^{22} - 6 q^{24} - 9 q^{26} + 20 q^{27} + 3 q^{28} - 21 q^{32} - 2 q^{36} - 6 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.395644 0.228425i 0.279763 0.161521i −0.353553 0.935414i \(-0.615027\pi\)
0.633316 + 0.773893i \(0.281693\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) −0.895644 + 1.55130i −0.447822 + 0.775650i
\(5\) 0 0
\(6\) 0.395644 + 0.228425i 0.161521 + 0.0932542i
\(7\) 1.50000 + 0.866025i 0.566947 + 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 1.73205i 0.612372i
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) −2.29129 + 1.32288i −0.690849 + 0.398862i −0.803930 0.594724i \(-0.797261\pi\)
0.113081 + 0.993586i \(0.463928\pi\)
\(12\) −1.79129 −0.517100
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0.791288 0.211481
\(15\) 0 0
\(16\) −1.39564 2.41733i −0.348911 0.604332i
\(17\) −2.29129 + 3.96863i −0.555719 + 0.962533i 0.442128 + 0.896952i \(0.354224\pi\)
−0.997847 + 0.0655816i \(0.979110\pi\)
\(18\) 0.913701i 0.215361i
\(19\) 1.50000 + 0.866025i 0.344124 + 0.198680i 0.662094 0.749421i \(-0.269668\pi\)
−0.317970 + 0.948101i \(0.603001\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) −0.604356 + 1.04678i −0.128849 + 0.223173i
\(23\) 2.29129 + 3.96863i 0.477767 + 0.827516i 0.999675 0.0254855i \(-0.00811315\pi\)
−0.521909 + 0.853001i \(0.674780\pi\)
\(24\) −1.50000 + 0.866025i −0.306186 + 0.176777i
\(25\) 0 0
\(26\) 1.18693 + 1.14213i 0.232776 + 0.223989i
\(27\) 5.00000 0.962250
\(28\) −2.68693 + 1.55130i −0.507782 + 0.293168i
\(29\) −2.29129 3.96863i −0.425481 0.736956i 0.570984 0.820961i \(-0.306562\pi\)
−0.996465 + 0.0840058i \(0.973229\pi\)
\(30\) 0 0
\(31\) 6.20520i 1.11449i −0.830349 0.557244i \(-0.811859\pi\)
0.830349 0.557244i \(-0.188141\pi\)
\(32\) −4.10436 2.36965i −0.725555 0.418899i
\(33\) −2.29129 1.32288i −0.398862 0.230283i
\(34\) 2.09355i 0.359041i
\(35\) 0 0
\(36\) 1.79129 + 3.10260i 0.298548 + 0.517100i
\(37\) 6.87386 3.96863i 1.13006 0.652438i 0.186107 0.982529i \(-0.440413\pi\)
0.943949 + 0.330091i \(0.107080\pi\)
\(38\) 0.791288 0.128364
\(39\) −2.50000 + 2.59808i −0.400320 + 0.416025i
\(40\) 0 0
\(41\) 2.29129 1.32288i 0.357839 0.206598i −0.310293 0.950641i \(-0.600427\pi\)
0.668132 + 0.744042i \(0.267094\pi\)
\(42\) 0.395644 + 0.685275i 0.0610492 + 0.105740i
\(43\) 5.29129 9.16478i 0.806914 1.39762i −0.108078 0.994142i \(-0.534469\pi\)
0.914991 0.403473i \(-0.132197\pi\)
\(44\) 4.73930i 0.714477i
\(45\) 0 0
\(46\) 1.81307 + 1.04678i 0.267322 + 0.154339i
\(47\) 1.82740i 0.266554i −0.991079 0.133277i \(-0.957450\pi\)
0.991079 0.133277i \(-0.0425500\pi\)
\(48\) 1.39564 2.41733i 0.201444 0.348911i
\(49\) −2.00000 3.46410i −0.285714 0.494872i
\(50\) 0 0
\(51\) −4.58258 −0.641689
\(52\) −6.26951 1.55130i −0.869424 0.215127i
\(53\) −7.58258 −1.04155 −0.520773 0.853695i \(-0.674356\pi\)
−0.520773 + 0.853695i \(0.674356\pi\)
\(54\) 1.97822 1.14213i 0.269202 0.155424i
\(55\) 0 0
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) 1.73205i 0.229416i
\(58\) −1.81307 1.04678i −0.238068 0.137448i
\(59\) 12.0826 + 6.97588i 1.57302 + 0.908182i 0.995796 + 0.0915940i \(0.0291962\pi\)
0.577221 + 0.816588i \(0.304137\pi\)
\(60\) 0 0
\(61\) 0.708712 1.22753i 0.0907413 0.157169i −0.817082 0.576522i \(-0.804410\pi\)
0.907823 + 0.419353i \(0.137743\pi\)
\(62\) −1.41742 2.45505i −0.180013 0.311792i
\(63\) 3.00000 1.73205i 0.377964 0.218218i
\(64\) 3.41742 0.427178
\(65\) 0 0
\(66\) −1.20871 −0.148782
\(67\) −0.873864 + 0.504525i −0.106759 + 0.0616376i −0.552429 0.833560i \(-0.686299\pi\)
0.445670 + 0.895198i \(0.352966\pi\)
\(68\) −4.10436 7.10895i −0.497726 0.862087i
\(69\) −2.29129 + 3.96863i −0.275839 + 0.477767i
\(70\) 0 0
\(71\) 6.08258 + 3.51178i 0.721869 + 0.416771i 0.815440 0.578841i \(-0.196495\pi\)
−0.0935712 + 0.995613i \(0.529828\pi\)
\(72\) 3.00000 + 1.73205i 0.353553 + 0.204124i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 1.81307 3.14033i 0.210765 0.365056i
\(75\) 0 0
\(76\) −2.68693 + 1.55130i −0.308212 + 0.177946i
\(77\) −4.58258 −0.522233
\(78\) −0.395644 + 1.59898i −0.0447979 + 0.181048i
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.604356 1.04678i 0.0667400 0.115597i
\(83\) 6.01450i 0.660177i −0.943950 0.330089i \(-0.892921\pi\)
0.943950 0.330089i \(-0.107079\pi\)
\(84\) −2.68693 1.55130i −0.293168 0.169261i
\(85\) 0 0
\(86\) 4.83465i 0.521334i
\(87\) 2.29129 3.96863i 0.245652 0.425481i
\(88\) −2.29129 3.96863i −0.244252 0.423057i
\(89\) −8.29129 + 4.78698i −0.878875 + 0.507419i −0.870287 0.492545i \(-0.836067\pi\)
−0.00858752 + 0.999963i \(0.502734\pi\)
\(90\) 0 0
\(91\) −1.50000 + 6.06218i −0.157243 + 0.635489i
\(92\) −8.20871 −0.855817
\(93\) 5.37386 3.10260i 0.557244 0.321725i
\(94\) −0.417424 0.723000i −0.0430540 0.0745718i
\(95\) 0 0
\(96\) 4.73930i 0.483703i
\(97\) 9.87386 + 5.70068i 1.00254 + 0.578816i 0.908999 0.416799i \(-0.136848\pi\)
0.0935404 + 0.995615i \(0.470182\pi\)
\(98\) −1.58258 0.913701i −0.159864 0.0922977i
\(99\) 5.29150i 0.531816i
\(100\) 0 0
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) −1.81307 + 1.04678i −0.179521 + 0.103646i
\(103\) −3.16515 −0.311872 −0.155936 0.987767i \(-0.549839\pi\)
−0.155936 + 0.987767i \(0.549839\pi\)
\(104\) −6.00000 + 1.73205i −0.588348 + 0.169842i
\(105\) 0 0
\(106\) −3.00000 + 1.73205i −0.291386 + 0.168232i
\(107\) −5.29129 9.16478i −0.511528 0.885993i −0.999911 0.0133631i \(-0.995746\pi\)
0.488383 0.872630i \(-0.337587\pi\)
\(108\) −4.47822 + 7.75650i −0.430917 + 0.746370i
\(109\) 13.1334i 1.25795i −0.777425 0.628976i \(-0.783474\pi\)
0.777425 0.628976i \(-0.216526\pi\)
\(110\) 0 0
\(111\) 6.87386 + 3.96863i 0.652438 + 0.376685i
\(112\) 4.83465i 0.456832i
\(113\) −3.70871 + 6.42368i −0.348886 + 0.604289i −0.986052 0.166438i \(-0.946773\pi\)
0.637166 + 0.770727i \(0.280107\pi\)
\(114\) 0.395644 + 0.685275i 0.0370554 + 0.0641819i
\(115\) 0 0
\(116\) 8.20871 0.762160
\(117\) 7.00000 + 1.73205i 0.647150 + 0.160128i
\(118\) 6.37386 0.586762
\(119\) −6.87386 + 3.96863i −0.630126 + 0.363803i
\(120\) 0 0
\(121\) −2.00000 + 3.46410i −0.181818 + 0.314918i
\(122\) 0.647551i 0.0586265i
\(123\) 2.29129 + 1.32288i 0.206598 + 0.119280i
\(124\) 9.62614 + 5.55765i 0.864453 + 0.499092i
\(125\) 0 0
\(126\) 0.791288 1.37055i 0.0704935 0.122098i
\(127\) 8.87386 + 15.3700i 0.787428 + 1.36387i 0.927538 + 0.373729i \(0.121921\pi\)
−0.140110 + 0.990136i \(0.544746\pi\)
\(128\) 9.56080 5.51993i 0.845063 0.487897i
\(129\) 10.5826 0.931744
\(130\) 0 0
\(131\) −7.58258 −0.662493 −0.331246 0.943544i \(-0.607469\pi\)
−0.331246 + 0.943544i \(0.607469\pi\)
\(132\) 4.10436 2.36965i 0.357238 0.206252i
\(133\) 1.50000 + 2.59808i 0.130066 + 0.225282i
\(134\) −0.230493 + 0.399225i −0.0199115 + 0.0344878i
\(135\) 0 0
\(136\) −6.87386 3.96863i −0.589429 0.340307i
\(137\) −9.08258 5.24383i −0.775977 0.448010i 0.0590258 0.998256i \(-0.481201\pi\)
−0.835003 + 0.550246i \(0.814534\pi\)
\(138\) 2.09355i 0.178215i
\(139\) 10.8739 18.8341i 0.922309 1.59749i 0.126476 0.991970i \(-0.459633\pi\)
0.795833 0.605517i \(-0.207033\pi\)
\(140\) 0 0
\(141\) 1.58258 0.913701i 0.133277 0.0769475i
\(142\) 3.20871 0.269269
\(143\) −6.87386 6.61438i −0.574821 0.553122i
\(144\) −5.58258 −0.465215
\(145\) 0 0
\(146\) 0 0
\(147\) 2.00000 3.46410i 0.164957 0.285714i
\(148\) 14.2179i 1.16870i
\(149\) 14.4564 + 8.34643i 1.18432 + 0.683766i 0.957009 0.290057i \(-0.0936742\pi\)
0.227308 + 0.973823i \(0.427008\pi\)
\(150\) 0 0
\(151\) 9.66930i 0.786877i 0.919351 + 0.393438i \(0.128715\pi\)
−0.919351 + 0.393438i \(0.871285\pi\)
\(152\) −1.50000 + 2.59808i −0.121666 + 0.210732i
\(153\) 4.58258 + 7.93725i 0.370479 + 0.641689i
\(154\) −1.81307 + 1.04678i −0.146101 + 0.0843516i
\(155\) 0 0
\(156\) −1.79129 6.20520i −0.143418 0.496814i
\(157\) −9.16515 −0.731459 −0.365729 0.930721i \(-0.619180\pi\)
−0.365729 + 0.930721i \(0.619180\pi\)
\(158\) −2.37386 + 1.37055i −0.188854 + 0.109035i
\(159\) −3.79129 6.56670i −0.300669 0.520773i
\(160\) 0 0
\(161\) 7.93725i 0.625543i
\(162\) −0.395644 0.228425i −0.0310847 0.0179468i
\(163\) 18.2477 + 10.5353i 1.42927 + 0.825191i 0.997063 0.0765827i \(-0.0244009\pi\)
0.432209 + 0.901773i \(0.357734\pi\)
\(164\) 4.73930i 0.370077i
\(165\) 0 0
\(166\) −1.37386 2.37960i −0.106632 0.184693i
\(167\) −8.29129 + 4.78698i −0.641599 + 0.370427i −0.785230 0.619204i \(-0.787455\pi\)
0.143631 + 0.989631i \(0.454122\pi\)
\(168\) −3.00000 −0.231455
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 3.00000 1.73205i 0.229416 0.132453i
\(172\) 9.47822 + 16.4168i 0.722707 + 1.25177i
\(173\) −8.29129 + 14.3609i −0.630375 + 1.09184i 0.357100 + 0.934066i \(0.383766\pi\)
−0.987475 + 0.157775i \(0.949568\pi\)
\(174\) 2.09355i 0.158712i
\(175\) 0 0
\(176\) 6.39564 + 3.69253i 0.482090 + 0.278335i
\(177\) 13.9518i 1.04868i
\(178\) −2.18693 + 3.78788i −0.163917 + 0.283913i
\(179\) −9.08258 15.7315i −0.678864 1.17583i −0.975323 0.220781i \(-0.929139\pi\)
0.296460 0.955045i \(-0.404194\pi\)
\(180\) 0 0
\(181\) 8.74773 0.650213 0.325107 0.945677i \(-0.394600\pi\)
0.325107 + 0.945677i \(0.394600\pi\)
\(182\) 0.791288 + 2.74110i 0.0586542 + 0.203184i
\(183\) 1.41742 0.104779
\(184\) −6.87386 + 3.96863i −0.506748 + 0.292571i
\(185\) 0 0
\(186\) 1.41742 2.45505i 0.103931 0.180013i
\(187\) 12.1244i 0.886621i
\(188\) 2.83485 + 1.63670i 0.206753 + 0.119369i
\(189\) 7.50000 + 4.33013i 0.545545 + 0.314970i
\(190\) 0 0
\(191\) 8.29129 14.3609i 0.599937 1.03912i −0.392893 0.919584i \(-0.628526\pi\)
0.992830 0.119536i \(-0.0381408\pi\)
\(192\) 1.70871 + 2.95958i 0.123316 + 0.213589i
\(193\) −12.8739 + 7.43273i −0.926681 + 0.535020i −0.885760 0.464143i \(-0.846362\pi\)
−0.0409206 + 0.999162i \(0.513029\pi\)
\(194\) 5.20871 0.373964
\(195\) 0 0
\(196\) 7.16515 0.511797
\(197\) −12.7087 + 7.33738i −0.905458 + 0.522767i −0.878967 0.476882i \(-0.841767\pi\)
−0.0264912 + 0.999649i \(0.508433\pi\)
\(198\) 1.20871 + 2.09355i 0.0858994 + 0.148782i
\(199\) −5.29129 + 9.16478i −0.375089 + 0.649674i −0.990340 0.138657i \(-0.955721\pi\)
0.615251 + 0.788331i \(0.289055\pi\)
\(200\) 0 0
\(201\) −0.873864 0.504525i −0.0616376 0.0355865i
\(202\) −3.56080 2.05583i −0.250537 0.144647i
\(203\) 7.93725i 0.557086i
\(204\) 4.10436 7.10895i 0.287362 0.497726i
\(205\) 0 0
\(206\) −1.25227 + 0.723000i −0.0872500 + 0.0503738i
\(207\) 9.16515 0.637022
\(208\) 6.97822 7.25198i 0.483852 0.502834i
\(209\) −4.58258 −0.316983
\(210\) 0 0
\(211\) 0.0825757 + 0.143025i 0.00568475 + 0.00984627i 0.868854 0.495069i \(-0.164857\pi\)
−0.863169 + 0.504915i \(0.831524\pi\)
\(212\) 6.79129 11.7629i 0.466428 0.807876i
\(213\) 7.02355i 0.481246i
\(214\) −4.18693 2.41733i −0.286213 0.165245i
\(215\) 0 0
\(216\) 8.66025i 0.589256i
\(217\) 5.37386 9.30780i 0.364802 0.631855i
\(218\) −3.00000 5.19615i −0.203186 0.351928i
\(219\) 0 0
\(220\) 0 0
\(221\) −16.0390 3.96863i −1.07890 0.266959i
\(222\) 3.62614 0.243370
\(223\) 7.50000 4.33013i 0.502237 0.289967i −0.227400 0.973801i \(-0.573022\pi\)
0.729637 + 0.683835i \(0.239689\pi\)
\(224\) −4.10436 7.10895i −0.274234 0.474987i
\(225\) 0 0
\(226\) 3.38865i 0.225410i
\(227\) −0.708712 0.409175i −0.0470389 0.0271579i 0.476296 0.879285i \(-0.341979\pi\)
−0.523335 + 0.852127i \(0.675312\pi\)
\(228\) −2.68693 1.55130i −0.177946 0.102737i
\(229\) 26.2668i 1.73576i 0.496774 + 0.867880i \(0.334518\pi\)
−0.496774 + 0.867880i \(0.665482\pi\)
\(230\) 0 0
\(231\) −2.29129 3.96863i −0.150756 0.261116i
\(232\) 6.87386 3.96863i 0.451291 0.260553i
\(233\) −2.83485 −0.185717 −0.0928586 0.995679i \(-0.529600\pi\)
−0.0928586 + 0.995679i \(0.529600\pi\)
\(234\) 3.16515 0.913701i 0.206912 0.0597305i
\(235\) 0 0
\(236\) −21.6434 + 12.4958i −1.40886 + 0.813408i
\(237\) −3.00000 5.19615i −0.194871 0.337526i
\(238\) −1.81307 + 3.14033i −0.117524 + 0.203557i
\(239\) 0.190700i 0.0123354i 0.999981 + 0.00616769i \(0.00196325\pi\)
−0.999981 + 0.00616769i \(0.998037\pi\)
\(240\) 0 0
\(241\) −1.50000 0.866025i −0.0966235 0.0557856i 0.450910 0.892570i \(-0.351100\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 1.82740i 0.117470i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 1.26951 + 2.19885i 0.0812719 + 0.140767i
\(245\) 0 0
\(246\) 1.20871 0.0770647
\(247\) −1.50000 + 6.06218i −0.0954427 + 0.385727i
\(248\) 10.7477 0.682481
\(249\) 5.20871 3.00725i 0.330089 0.190577i
\(250\) 0 0
\(251\) 0.0825757 0.143025i 0.00521213 0.00902768i −0.863408 0.504507i \(-0.831674\pi\)
0.868620 + 0.495479i \(0.165008\pi\)
\(252\) 6.20520i 0.390891i
\(253\) −10.5000 6.06218i −0.660129 0.381126i
\(254\) 7.02178 + 4.05403i 0.440586 + 0.254372i
\(255\) 0 0
\(256\) −0.895644 + 1.55130i −0.0559777 + 0.0969563i
\(257\) −9.08258 15.7315i −0.566556 0.981303i −0.996903 0.0786397i \(-0.974942\pi\)
0.430348 0.902663i \(-0.358391\pi\)
\(258\) 4.18693 2.41733i 0.260667 0.150496i
\(259\) 13.7477 0.854242
\(260\) 0 0
\(261\) −9.16515 −0.567309
\(262\) −3.00000 + 1.73205i −0.185341 + 0.107006i
\(263\) 4.50000 + 7.79423i 0.277482 + 0.480613i 0.970758 0.240059i \(-0.0771668\pi\)
−0.693276 + 0.720672i \(0.743833\pi\)
\(264\) 2.29129 3.96863i 0.141019 0.244252i
\(265\) 0 0
\(266\) 1.18693 + 0.685275i 0.0727755 + 0.0420169i
\(267\) −8.29129 4.78698i −0.507419 0.292958i
\(268\) 1.80750i 0.110411i
\(269\) 7.50000 12.9904i 0.457283 0.792038i −0.541533 0.840679i \(-0.682156\pi\)
0.998816 + 0.0486418i \(0.0154893\pi\)
\(270\) 0 0
\(271\) 7.50000 4.33013i 0.455593 0.263036i −0.254597 0.967047i \(-0.581943\pi\)
0.710189 + 0.704011i \(0.248609\pi\)
\(272\) 12.7913 0.775586
\(273\) −6.00000 + 1.73205i −0.363137 + 0.104828i
\(274\) −4.79129 −0.289452
\(275\) 0 0
\(276\) −4.10436 7.10895i −0.247053 0.427909i
\(277\) −3.70871 + 6.42368i −0.222835 + 0.385961i −0.955668 0.294447i \(-0.904864\pi\)
0.732833 + 0.680409i \(0.238198\pi\)
\(278\) 9.93545i 0.595889i
\(279\) −10.7477 6.20520i −0.643450 0.371496i
\(280\) 0 0
\(281\) 3.65480i 0.218027i −0.994040 0.109014i \(-0.965231\pi\)
0.994040 0.109014i \(-0.0347692\pi\)
\(282\) 0.417424 0.723000i 0.0248573 0.0430540i
\(283\) −13.8739 24.0302i −0.824716 1.42845i −0.902136 0.431451i \(-0.858002\pi\)
0.0774209 0.996998i \(-0.475331\pi\)
\(284\) −10.8956 + 6.29060i −0.646538 + 0.373279i
\(285\) 0 0
\(286\) −4.23049 1.04678i −0.250154 0.0618971i
\(287\) 4.58258 0.270501
\(288\) −8.20871 + 4.73930i −0.483703 + 0.279266i
\(289\) −2.00000 3.46410i −0.117647 0.203771i
\(290\) 0 0
\(291\) 11.4014i 0.668359i
\(292\) 0 0
\(293\) −15.7087 9.06943i −0.917713 0.529842i −0.0348081 0.999394i \(-0.511082\pi\)
−0.882905 + 0.469552i \(0.844415\pi\)
\(294\) 1.82740i 0.106576i
\(295\) 0 0
\(296\) 6.87386 + 11.9059i 0.399535 + 0.692015i
\(297\) −11.4564 + 6.61438i −0.664770 + 0.383805i
\(298\) 7.62614 0.441770
\(299\) −11.4564 + 11.9059i −0.662543 + 0.688535i
\(300\) 0 0
\(301\) 15.8739 9.16478i 0.914954 0.528249i
\(302\) 2.20871 + 3.82560i 0.127097 + 0.220139i
\(303\) 4.50000 7.79423i 0.258518 0.447767i
\(304\) 4.83465i 0.277286i
\(305\) 0 0
\(306\) 3.62614 + 2.09355i 0.207292 + 0.119680i
\(307\) 24.2487i 1.38395i −0.721923 0.691974i \(-0.756741\pi\)
0.721923 0.691974i \(-0.243259\pi\)
\(308\) 4.10436 7.10895i 0.233867 0.405070i
\(309\) −1.58258 2.74110i −0.0900296 0.155936i
\(310\) 0 0
\(311\) 7.58258 0.429968 0.214984 0.976618i \(-0.431030\pi\)
0.214984 + 0.976618i \(0.431030\pi\)
\(312\) −4.50000 4.33013i −0.254762 0.245145i
\(313\) 3.25227 0.183829 0.0919147 0.995767i \(-0.470701\pi\)
0.0919147 + 0.995767i \(0.470701\pi\)
\(314\) −3.62614 + 2.09355i −0.204635 + 0.118146i
\(315\) 0 0
\(316\) 5.37386 9.30780i 0.302303 0.523605i
\(317\) 0.190700i 0.0107108i 0.999986 + 0.00535540i \(0.00170469\pi\)
−0.999986 + 0.00535540i \(0.998295\pi\)
\(318\) −3.00000 1.73205i −0.168232 0.0971286i
\(319\) 10.5000 + 6.06218i 0.587887 + 0.339417i
\(320\) 0 0
\(321\) 5.29129 9.16478i 0.295331 0.511528i
\(322\) 1.81307 + 3.14033i 0.101038 + 0.175004i
\(323\) −6.87386 + 3.96863i −0.382472 + 0.220820i
\(324\) 1.79129 0.0995160
\(325\) 0 0
\(326\) 9.62614 0.533142
\(327\) 11.3739 6.56670i 0.628976 0.363140i
\(328\) 2.29129 + 3.96863i 0.126515 + 0.219131i
\(329\) 1.58258 2.74110i 0.0872502 0.151122i
\(330\) 0 0
\(331\) −3.87386 2.23658i −0.212927 0.122933i 0.389744 0.920923i \(-0.372563\pi\)
−0.602671 + 0.797990i \(0.705897\pi\)
\(332\) 9.33030 + 5.38685i 0.512067 + 0.295642i
\(333\) 15.8745i 0.869918i
\(334\) −2.18693 + 3.78788i −0.119664 + 0.207263i
\(335\) 0 0
\(336\) 4.18693 2.41733i 0.228416 0.131876i
\(337\) −30.7477 −1.67494 −0.837468 0.546487i \(-0.815965\pi\)
−0.837468 + 0.546487i \(0.815965\pi\)
\(338\) −2.76951 + 5.25378i −0.150641 + 0.285768i
\(339\) −7.41742 −0.402859
\(340\) 0 0
\(341\) 8.20871 + 14.2179i 0.444527 + 0.769943i
\(342\) 0.791288 1.37055i 0.0427879 0.0741109i
\(343\) 19.0526i 1.02874i
\(344\) 15.8739 + 9.16478i 0.855861 + 0.494132i
\(345\) 0 0
\(346\) 7.57575i 0.407275i
\(347\) −10.6652 + 18.4726i −0.572535 + 0.991660i 0.423769 + 0.905770i \(0.360707\pi\)
−0.996305 + 0.0858901i \(0.972627\pi\)
\(348\) 4.10436 + 7.10895i 0.220017 + 0.381080i
\(349\) −2.12614 + 1.22753i −0.113809 + 0.0657079i −0.555824 0.831300i \(-0.687597\pi\)
0.442015 + 0.897008i \(0.354264\pi\)
\(350\) 0 0
\(351\) 5.00000 + 17.3205i 0.266880 + 0.924500i
\(352\) 12.5390 0.668332
\(353\) −5.91742 + 3.41643i −0.314953 + 0.181838i −0.649141 0.760668i \(-0.724871\pi\)
0.334188 + 0.942506i \(0.391538\pi\)
\(354\) 3.18693 + 5.51993i 0.169384 + 0.293381i
\(355\) 0 0
\(356\) 17.1497i 0.908933i
\(357\) −6.87386 3.96863i −0.363803 0.210042i
\(358\) −7.18693 4.14938i −0.379841 0.219301i
\(359\) 19.5293i 1.03072i −0.856975 0.515359i \(-0.827659\pi\)
0.856975 0.515359i \(-0.172341\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) 3.46099 1.99820i 0.181905 0.105023i
\(363\) −4.00000 −0.209946
\(364\) −8.06080 7.75650i −0.422500 0.406551i
\(365\) 0 0
\(366\) 0.560795 0.323775i 0.0293132 0.0169240i
\(367\) −0.873864 1.51358i −0.0456153 0.0790080i 0.842316 0.538984i \(-0.181192\pi\)
−0.887932 + 0.459976i \(0.847858\pi\)
\(368\) 6.39564 11.0776i 0.333396 0.577459i
\(369\) 5.29150i 0.275465i
\(370\) 0 0
\(371\) −11.3739 6.56670i −0.590502 0.340926i
\(372\) 11.1153i 0.576302i
\(373\) −6.50000 + 11.2583i −0.336557 + 0.582934i −0.983783 0.179364i \(-0.942596\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(374\) −2.76951 4.79693i −0.143208 0.248043i
\(375\) 0 0
\(376\) 3.16515 0.163230
\(377\) 11.4564 11.9059i 0.590037 0.613184i
\(378\) 3.95644 0.203497
\(379\) 9.24773 5.33918i 0.475024 0.274255i −0.243317 0.969947i \(-0.578235\pi\)
0.718340 + 0.695692i \(0.244902\pi\)
\(380\) 0 0
\(381\) −8.87386 + 15.3700i −0.454622 + 0.787428i
\(382\) 7.57575i 0.387609i
\(383\) 20.4564 + 11.8105i 1.04528 + 0.603490i 0.921323 0.388798i \(-0.127110\pi\)
0.123952 + 0.992288i \(0.460443\pi\)
\(384\) 9.56080 + 5.51993i 0.487897 + 0.281688i
\(385\) 0 0
\(386\) −3.39564 + 5.88143i −0.172834 + 0.299357i
\(387\) −10.5826 18.3296i −0.537943 0.931744i
\(388\) −17.6869 + 10.2116i −0.897918 + 0.518413i
\(389\) −3.16515 −0.160480 −0.0802398 0.996776i \(-0.525569\pi\)
−0.0802398 + 0.996776i \(0.525569\pi\)
\(390\) 0 0
\(391\) −21.0000 −1.06202
\(392\) 6.00000 3.46410i 0.303046 0.174964i
\(393\) −3.79129 6.56670i −0.191245 0.331246i
\(394\) −3.35208 + 5.80598i −0.168876 + 0.292501i
\(395\) 0 0
\(396\) −8.20871 4.73930i −0.412503 0.238159i
\(397\) 17.6216 + 10.1738i 0.884402 + 0.510610i 0.872107 0.489315i \(-0.162753\pi\)
0.0122949 + 0.999924i \(0.496086\pi\)
\(398\) 4.83465i 0.242339i
\(399\) −1.50000 + 2.59808i −0.0750939 + 0.130066i
\(400\) 0 0
\(401\) −25.8303 + 14.9131i −1.28990 + 0.744726i −0.978637 0.205596i \(-0.934087\pi\)
−0.311267 + 0.950323i \(0.600753\pi\)
\(402\) −0.460985 −0.0229918
\(403\) 21.4955 6.20520i 1.07076 0.309103i
\(404\) 16.1216 0.802079
\(405\) 0 0
\(406\) −1.81307 3.14033i −0.0899811 0.155852i
\(407\) −10.5000 + 18.1865i −0.520466 + 0.901473i
\(408\) 7.93725i 0.392953i
\(409\) −7.50000 4.33013i −0.370851 0.214111i 0.302979 0.952997i \(-0.402019\pi\)
−0.673830 + 0.738886i \(0.735352\pi\)
\(410\) 0 0
\(411\) 10.4877i 0.517318i
\(412\) 2.83485 4.91010i 0.139663 0.241903i
\(413\) 12.0826 + 20.9276i 0.594545 + 1.02978i
\(414\) 3.62614 2.09355i 0.178215 0.102892i
\(415\) 0 0
\(416\) 4.10436 16.5876i 0.201233 0.813272i
\(417\) 21.7477 1.06499
\(418\) −1.81307 + 1.04678i −0.0886801 + 0.0511995i
\(419\) 2.91742 + 5.05313i 0.142526 + 0.246861i 0.928447 0.371465i \(-0.121144\pi\)
−0.785922 + 0.618326i \(0.787811\pi\)
\(420\) 0 0
\(421\) 5.48220i 0.267186i −0.991036 0.133593i \(-0.957348\pi\)
0.991036 0.133593i \(-0.0426515\pi\)
\(422\) 0.0653411 + 0.0377247i 0.00318076 + 0.00183641i
\(423\) −3.16515 1.82740i −0.153895 0.0888513i
\(424\) 13.1334i 0.637815i
\(425\) 0 0
\(426\) 1.60436 + 2.77883i 0.0777313 + 0.134635i
\(427\) 2.12614 1.22753i 0.102891 0.0594041i
\(428\) 18.9564 0.916294
\(429\) 2.29129 9.26013i 0.110624 0.447083i
\(430\) 0 0
\(431\) 7.33485 4.23478i 0.353307 0.203982i −0.312834 0.949808i \(-0.601278\pi\)
0.666141 + 0.745826i \(0.267945\pi\)
\(432\) −6.97822 12.0866i −0.335740 0.581518i
\(433\) 4.87386 8.44178i 0.234223 0.405686i −0.724824 0.688934i \(-0.758079\pi\)
0.959047 + 0.283248i \(0.0914121\pi\)
\(434\) 4.91010i 0.235692i
\(435\) 0 0
\(436\) 20.3739 + 11.7629i 0.975731 + 0.563339i
\(437\) 7.93725i 0.379690i
\(438\) 0 0
\(439\) 7.24773 + 12.5534i 0.345915 + 0.599143i 0.985520 0.169562i \(-0.0542352\pi\)
−0.639604 + 0.768704i \(0.720902\pi\)
\(440\) 0 0
\(441\) −8.00000 −0.380952
\(442\) −7.25227 + 2.09355i −0.344955 + 0.0995801i
\(443\) −19.9129 −0.946089 −0.473045 0.881038i \(-0.656845\pi\)
−0.473045 + 0.881038i \(0.656845\pi\)
\(444\) −12.3131 + 7.10895i −0.584352 + 0.337376i
\(445\) 0 0
\(446\) 1.97822 3.42638i 0.0936714 0.162244i
\(447\) 16.6929i 0.789545i
\(448\) 5.12614 + 2.95958i 0.242187 + 0.139827i
\(449\) −9.54356 5.50998i −0.450388 0.260032i 0.257606 0.966250i \(-0.417066\pi\)
−0.707994 + 0.706218i \(0.750400\pi\)
\(450\) 0 0
\(451\) −3.50000 + 6.06218i −0.164809 + 0.285457i
\(452\) −6.64337 11.5067i −0.312478 0.541228i
\(453\) −8.37386 + 4.83465i −0.393438 + 0.227152i
\(454\) −0.373864 −0.0175463
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) 1.50000 0.866025i 0.0701670 0.0405110i −0.464506 0.885570i \(-0.653768\pi\)
0.534673 + 0.845059i \(0.320435\pi\)
\(458\) 6.00000 + 10.3923i 0.280362 + 0.485601i
\(459\) −11.4564 + 19.8431i −0.534741 + 0.926198i
\(460\) 0 0
\(461\) 31.0390 + 17.9204i 1.44563 + 0.834635i 0.998217 0.0596914i \(-0.0190117\pi\)
0.447414 + 0.894327i \(0.352345\pi\)
\(462\) −1.81307 1.04678i −0.0843516 0.0487004i
\(463\) 39.4002i 1.83108i 0.402223 + 0.915542i \(0.368238\pi\)
−0.402223 + 0.915542i \(0.631762\pi\)
\(464\) −6.39564 + 11.0776i −0.296910 + 0.514264i
\(465\) 0 0
\(466\) −1.12159 + 0.647551i −0.0519567 + 0.0299972i
\(467\) 24.3303 1.12587 0.562936 0.826500i \(-0.309672\pi\)
0.562936 + 0.826500i \(0.309672\pi\)
\(468\) −8.95644 + 9.30780i −0.414012 + 0.430253i
\(469\) −1.74773 −0.0807025
\(470\) 0 0
\(471\) −4.58258 7.93725i −0.211154 0.365729i
\(472\) −12.0826 + 20.9276i −0.556146 + 0.963272i
\(473\) 27.9989i 1.28739i
\(474\) −2.37386 1.37055i −0.109035 0.0629515i
\(475\) 0 0
\(476\) 14.2179i 0.651677i
\(477\) −7.58258 + 13.1334i −0.347182 + 0.601337i
\(478\) 0.0435608 + 0.0754495i 0.00199242 + 0.00345098i
\(479\) −4.03901 + 2.33193i −0.184547 + 0.106548i −0.589427 0.807821i \(-0.700647\pi\)
0.404880 + 0.914370i \(0.367313\pi\)
\(480\) 0 0
\(481\) 20.6216 + 19.8431i 0.940264 + 0.904769i
\(482\) −0.791288 −0.0360422
\(483\) −6.87386 + 3.96863i −0.312772 + 0.180579i
\(484\) −3.58258 6.20520i −0.162844 0.282055i
\(485\) 0 0
\(486\) 7.30960i 0.331570i
\(487\) −9.24773 5.33918i −0.419055 0.241941i 0.275618 0.961267i \(-0.411117\pi\)
−0.694673 + 0.719326i \(0.744451\pi\)
\(488\) 2.12614 + 1.22753i 0.0962457 + 0.0555675i
\(489\) 21.0707i 0.952848i
\(490\) 0 0
\(491\) −9.70871 16.8160i −0.438148 0.758895i 0.559399 0.828899i \(-0.311032\pi\)
−0.997547 + 0.0700041i \(0.977699\pi\)
\(492\) −4.10436 + 2.36965i −0.185039 + 0.106832i
\(493\) 21.0000 0.945792
\(494\) 0.791288 + 2.74110i 0.0356017 + 0.123328i
\(495\) 0 0
\(496\) −15.0000 + 8.66025i −0.673520 + 0.388857i
\(497\) 6.08258 + 10.5353i 0.272841 + 0.472574i
\(498\) 1.37386 2.37960i 0.0615643 0.106632i
\(499\) 0.723000i 0.0323659i 0.999869 + 0.0161830i \(0.00515142\pi\)
−0.999869 + 0.0161830i \(0.994849\pi\)
\(500\) 0 0
\(501\) −8.29129 4.78698i −0.370427 0.213866i
\(502\) 0.0754495i 0.00336747i
\(503\) 0.0825757 0.143025i 0.00368187 0.00637718i −0.864179 0.503185i \(-0.832161\pi\)
0.867860 + 0.496808i \(0.165495\pi\)
\(504\) 3.00000 + 5.19615i 0.133631 + 0.231455i
\(505\) 0 0
\(506\) −5.53901 −0.246239
\(507\) −11.5000 6.06218i −0.510733 0.269231i
\(508\) −31.7913 −1.41051
\(509\) 7.33485 4.23478i 0.325111 0.187703i −0.328557 0.944484i \(-0.606562\pi\)
0.653669 + 0.756781i \(0.273229\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.8981i 1.01196i
\(513\) 7.50000 + 4.33013i 0.331133 + 0.191180i
\(514\) −7.18693 4.14938i −0.317002 0.183021i
\(515\) 0 0
\(516\) −9.47822 + 16.4168i −0.417255 + 0.722707i
\(517\) 2.41742 + 4.18710i 0.106318 + 0.184149i
\(518\) 5.43920 3.14033i 0.238985 0.137978i
\(519\) −16.5826 −0.727894
\(520\) 0 0
\(521\) 27.4955 1.20460 0.602299 0.798271i \(-0.294252\pi\)
0.602299 + 0.798271i \(0.294252\pi\)
\(522\) −3.62614 + 2.09355i −0.158712 + 0.0916322i
\(523\) 0.0825757 + 0.143025i 0.00361078 + 0.00625406i 0.867825 0.496870i \(-0.165517\pi\)
−0.864214 + 0.503124i \(0.832184\pi\)
\(524\) 6.79129 11.7629i 0.296679 0.513863i
\(525\) 0 0
\(526\) 3.56080 + 2.05583i 0.155258 + 0.0896383i
\(527\) 24.6261 + 14.2179i 1.07273 + 0.619342i
\(528\) 7.38505i 0.321393i
\(529\) 1.00000 1.73205i 0.0434783 0.0753066i
\(530\) 0 0
\(531\) 24.1652 13.9518i 1.04868 0.605455i
\(532\) −5.37386 −0.232987
\(533\) 6.87386 + 6.61438i 0.297740 + 0.286501i
\(534\) −4.37386 −0.189276
\(535\) 0 0
\(536\) −0.873864 1.51358i −0.0377452 0.0653765i
\(537\) 9.08258 15.7315i 0.391942 0.678864i
\(538\) 6.85275i 0.295443i
\(539\) 9.16515 + 5.29150i 0.394771 + 0.227921i
\(540\) 0 0
\(541\) 10.3923i 0.446800i 0.974727 + 0.223400i \(0.0717156\pi\)
−0.974727 + 0.223400i \(0.928284\pi\)
\(542\) 1.97822 3.42638i 0.0849718 0.147175i
\(543\) 4.37386 + 7.57575i 0.187700 + 0.325107i
\(544\) 18.8085 10.8591i 0.806409 0.465580i
\(545\) 0 0
\(546\) −1.97822 + 2.05583i −0.0846600 + 0.0879812i
\(547\) −28.7477 −1.22916 −0.614582 0.788853i \(-0.710675\pi\)
−0.614582 + 0.788853i \(0.710675\pi\)
\(548\) 16.2695 9.39320i 0.694999 0.401258i
\(549\) −1.41742 2.45505i −0.0604942 0.104779i
\(550\) 0 0
\(551\) 7.93725i 0.338138i
\(552\) −6.87386 3.96863i −0.292571 0.168916i
\(553\) −9.00000 5.19615i −0.382719 0.220963i
\(554\) 3.38865i 0.143970i
\(555\) 0 0
\(556\) 19.4782 + 33.7373i 0.826061 + 1.43078i
\(557\) 6.70871 3.87328i 0.284257 0.164116i −0.351092 0.936341i \(-0.614190\pi\)
0.635349 + 0.772225i \(0.280856\pi\)
\(558\) −5.66970 −0.240017
\(559\) 37.0390 + 9.16478i 1.56658 + 0.387629i
\(560\) 0 0
\(561\) 10.5000 6.06218i 0.443310 0.255945i
\(562\) −0.834849 1.44600i −0.0352160 0.0609958i
\(563\) −4.50000 + 7.79423i −0.189652 + 0.328488i −0.945134 0.326682i \(-0.894069\pi\)
0.755482 + 0.655169i \(0.227403\pi\)
\(564\) 3.27340i 0.137835i
\(565\) 0 0
\(566\) −10.9782 6.33828i −0.461449 0.266418i
\(567\) 1.73205i 0.0727393i
\(568\) −6.08258 + 10.5353i −0.255219 + 0.442053i
\(569\) −3.87386 6.70973i −0.162401 0.281286i 0.773328 0.634006i \(-0.218590\pi\)
−0.935729 + 0.352719i \(0.885257\pi\)
\(570\) 0 0
\(571\) −35.0780 −1.46797 −0.733985 0.679166i \(-0.762342\pi\)
−0.733985 + 0.679166i \(0.762342\pi\)
\(572\) 16.4174 4.73930i 0.686447 0.198160i
\(573\) 16.5826 0.692747
\(574\) 1.81307 1.04678i 0.0756760 0.0436916i
\(575\) 0 0
\(576\) 3.41742 5.91915i 0.142393 0.246631i
\(577\) 6.92820i 0.288425i 0.989547 + 0.144212i \(0.0460649\pi\)
−0.989547 + 0.144212i \(0.953935\pi\)
\(578\) −1.58258 0.913701i −0.0658265 0.0380049i
\(579\) −12.8739 7.43273i −0.535020 0.308894i
\(580\) 0 0
\(581\) 5.20871 9.02175i 0.216094 0.374285i
\(582\) 2.60436 + 4.51088i 0.107954 + 0.186982i
\(583\) 17.3739 10.0308i 0.719552 0.415433i
\(584\) 0 0
\(585\) 0 0
\(586\) −8.28674 −0.342322
\(587\) 34.2042 19.7478i 1.41176 0.815078i 0.416203 0.909272i \(-0.363361\pi\)
0.995554 + 0.0941934i \(0.0300272\pi\)
\(588\) 3.58258 + 6.20520i 0.147743 + 0.255898i
\(589\) 5.37386 9.30780i 0.221426 0.383521i
\(590\) 0 0
\(591\) −12.7087 7.33738i −0.522767 0.301819i
\(592\) −19.1869 11.0776i −0.788578 0.455286i
\(593\) 21.1660i 0.869184i −0.900627 0.434592i \(-0.856893\pi\)
0.900627 0.434592i \(-0.143107\pi\)
\(594\) −3.02178 + 5.23388i −0.123985 + 0.214749i
\(595\) 0 0
\(596\) −25.8956 + 14.9509i −1.06073 + 0.612411i
\(597\) −10.5826 −0.433116
\(598\) −1.81307 + 7.32743i −0.0741419 + 0.299641i
\(599\) 15.4955 0.633127 0.316564 0.948571i \(-0.397471\pi\)
0.316564 + 0.948571i \(0.397471\pi\)
\(600\) 0 0
\(601\) −8.45644 14.6470i −0.344945 0.597463i 0.640398 0.768043i \(-0.278769\pi\)
−0.985344 + 0.170580i \(0.945436\pi\)
\(602\) 4.18693 7.25198i 0.170647 0.295569i
\(603\) 2.01810i 0.0821834i
\(604\) −15.0000 8.66025i −0.610341 0.352381i
\(605\) 0 0
\(606\) 4.11165i 0.167024i
\(607\) 3.87386 6.70973i 0.157235 0.272339i −0.776635 0.629950i \(-0.783075\pi\)
0.933871 + 0.357611i \(0.116409\pi\)
\(608\) −4.10436 7.10895i −0.166454 0.288306i
\(609\) 6.87386 3.96863i 0.278543 0.160817i
\(610\) 0 0
\(611\) 6.33030 1.82740i 0.256097 0.0739287i
\(612\) −16.4174 −0.663635
\(613\) 5.12614 2.95958i 0.207043 0.119536i −0.392894 0.919584i \(-0.628526\pi\)
0.599936 + 0.800048i \(0.295193\pi\)
\(614\) −5.53901 9.59386i −0.223536 0.387176i
\(615\) 0 0
\(616\) 7.93725i 0.319801i
\(617\) 12.0826 + 6.97588i 0.486426 + 0.280838i 0.723091 0.690753i \(-0.242721\pi\)
−0.236664 + 0.971591i \(0.576054\pi\)
\(618\) −1.25227 0.723000i −0.0503738 0.0290833i
\(619\) 29.7309i 1.19499i −0.801874 0.597493i \(-0.796164\pi\)
0.801874 0.597493i \(-0.203836\pi\)
\(620\) 0 0
\(621\) 11.4564 + 19.8431i 0.459731 + 0.796278i
\(622\) 3.00000 1.73205i 0.120289 0.0694489i
\(623\) −16.5826 −0.664367
\(624\) 9.76951 + 2.41733i 0.391093 + 0.0967705i
\(625\) 0 0
\(626\) 1.28674 0.742901i 0.0514286 0.0296923i
\(627\) −2.29129 3.96863i −0.0915052 0.158492i
\(628\) 8.20871 14.2179i 0.327563 0.567356i
\(629\) 36.3731i 1.45029i
\(630\) 0 0
\(631\) −5.12614 2.95958i −0.204068 0.117819i 0.394483 0.918903i \(-0.370924\pi\)
−0.598552 + 0.801084i \(0.704257\pi\)
\(632\) 10.3923i 0.413384i
\(633\) −0.0825757 + 0.143025i −0.00328209 + 0.00568475i
\(634\) 0.0435608 + 0.0754495i 0.00173002 + 0.00299648i
\(635\) 0 0
\(636\) 13.5826 0.538584
\(637\) 10.0000 10.3923i 0.396214 0.411758i
\(638\) 5.53901 0.219292
\(639\) 12.1652 7.02355i 0.481246 0.277847i
\(640\) 0 0
\(641\) −9.08258 + 15.7315i −0.358740 + 0.621356i −0.987751 0.156041i \(-0.950127\pi\)
0.629010 + 0.777397i \(0.283460\pi\)
\(642\) 4.83465i 0.190809i
\(643\) −18.8739 10.8968i −0.744313 0.429729i 0.0793227 0.996849i \(-0.474724\pi\)
−0.823635 + 0.567120i \(0.808058\pi\)
\(644\) −12.3131 7.10895i −0.485203 0.280132i
\(645\) 0 0
\(646\) −1.81307 + 3.14033i −0.0713342 + 0.123554i
\(647\) 13.5000 + 23.3827i 0.530740 + 0.919268i 0.999357 + 0.0358667i \(0.0114192\pi\)
−0.468617 + 0.883402i \(0.655247\pi\)
\(648\) 1.50000 0.866025i 0.0589256 0.0340207i
\(649\) −36.9129 −1.44896
\(650\) 0 0
\(651\) 10.7477 0.421237
\(652\) −32.6869 + 18.8718i −1.28012 + 0.739077i
\(653\) −21.4129 37.0882i −0.837951 1.45137i −0.891605 0.452814i \(-0.850420\pi\)
0.0536545 0.998560i \(-0.482913\pi\)
\(654\) 3.00000 5.19615i 0.117309 0.203186i
\(655\) 0 0
\(656\) −6.39564 3.69253i −0.249708 0.144169i
\(657\) 0 0
\(658\) 1.44600i 0.0563710i
\(659\) −15.2477 + 26.4098i −0.593967 + 1.02878i 0.399725 + 0.916635i \(0.369106\pi\)
−0.993692 + 0.112146i \(0.964228\pi\)
\(660\) 0 0
\(661\) 15.8739 9.16478i 0.617422 0.356469i −0.158443 0.987368i \(-0.550647\pi\)
0.775865 + 0.630900i \(0.217314\pi\)
\(662\) −2.04356 −0.0794252
\(663\) −4.58258 15.8745i −0.177972 0.616515i
\(664\) 10.4174 0.404274
\(665\) 0 0
\(666\) −3.62614 6.28065i −0.140510 0.243370i
\(667\) 10.5000 18.1865i 0.406562 0.704185i
\(668\) 17.1497i 0.663542i
\(669\) 7.50000 + 4.33013i 0.289967 + 0.167412i
\(670\) 0 0
\(671\) 3.75015i 0.144773i
\(672\) 4.10436 7.10895i 0.158329 0.274234i
\(673\) −12.0826 20.9276i −0.465749 0.806701i 0.533486 0.845809i \(-0.320882\pi\)
−0.999235 + 0.0391079i \(0.987548\pi\)
\(674\) −12.1652 + 7.02355i −0.468584 + 0.270537i
\(675\) 0 0
\(676\) −0.895644 23.2695i −0.0344478 0.894981i
\(677\) 2.83485 0.108952 0.0544760 0.998515i \(-0.482651\pi\)
0.0544760 + 0.998515i \(0.482651\pi\)
\(678\) −2.93466 + 1.69433i −0.112705 + 0.0650702i
\(679\) 9.87386 + 17.1020i 0.378924 + 0.656316i
\(680\) 0 0
\(681\) 0.818350i 0.0313593i
\(682\) 6.49545 + 3.75015i 0.248724 + 0.143601i
\(683\) 28.6652 + 16.5498i 1.09684 + 0.633262i 0.935390 0.353619i \(-0.115049\pi\)
0.161452 + 0.986881i \(0.448382\pi\)
\(684\) 6.20520i 0.237262i
\(685\) 0 0
\(686\) −4.35208 7.53803i −0.166163 0.287803i
\(687\) −22.7477 + 13.1334i −0.867880 + 0.501071i
\(688\) −29.5390 −1.12616
\(689\) −7.58258 26.2668i −0.288873 1.00069i
\(690\) 0 0
\(691\) 17.1261 9.88778i 0.651509 0.376149i −0.137525 0.990498i \(-0.543915\pi\)
0.789034 + 0.614349i \(0.210581\pi\)
\(692\) −14.8521 25.7246i −0.564591 0.977901i
\(693\) −4.58258 + 7.93725i −0.174078 + 0.301511i
\(694\) 9.74475i 0.369906i
\(695\) 0 0
\(696\) 6.87386 + 3.96863i 0.260553 + 0.150430i
\(697\) 12.1244i 0.459243i
\(698\) −0.560795 + 0.971326i −0.0212264 + 0.0367652i
\(699\) −1.41742 2.45505i −0.0536119 0.0928586i
\(700\) 0 0
\(701\) −21.1652 −0.799397 −0.399698 0.916647i \(-0.630885\pi\)
−0.399698 + 0.916647i \(0.630885\pi\)
\(702\) 5.93466 + 5.71063i 0.223989 + 0.215534i
\(703\) 13.7477 0.518505
\(704\) −7.83030 + 4.52083i −0.295116 + 0.170385i
\(705\) 0 0
\(706\) −1.56080 + 2.70338i −0.0587413 + 0.101743i
\(707\) 15.5885i 0.586264i
\(708\) −21.6434 12.4958i −0.813408 0.469621i
\(709\) −31.5000 18.1865i −1.18301 0.683010i −0.226299 0.974058i \(-0.572663\pi\)
−0.956708 + 0.291048i \(0.905996\pi\)
\(710\) 0 0
\(711\) −6.00000 + 10.3923i −0.225018 + 0.389742i
\(712\) −8.29129 14.3609i −0.310729 0.538199i
\(713\) 24.6261 14.2179i 0.922256 0.532465i
\(714\) −3.62614 −0.135705
\(715\) 0 0
\(716\) 32.5390 1.21604
\(717\) −0.165151 + 0.0953502i −0.00616769 + 0.00356092i
\(718\) −4.46099 7.72665i −0.166482 0.288356i
\(719\) 12.2477 21.2137i 0.456763 0.791137i −0.542025 0.840363i \(-0.682342\pi\)
0.998788 + 0.0492257i \(0.0156754\pi\)
\(720\) 0 0
\(721\) −4.74773 2.74110i −0.176815 0.102084i
\(722\) −6.33030 3.65480i −0.235589 0.136018i
\(723\) 1.73205i 0.0644157i
\(724\) −7.83485 + 13.5704i −0.291180 + 0.504338i
\(725\) 0 0
\(726\) −1.58258 + 0.913701i −0.0587349 + 0.0339106i
\(727\) 15.2523 0.565675 0.282838 0.959168i \(-0.408724\pi\)
0.282838 + 0.959168i \(0.408724\pi\)
\(728\) −10.5000 2.59808i −0.389156 0.0962911i
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 24.2477 + 41.9983i 0.896835 + 1.55336i
\(732\) −1.26951 + 2.19885i −0.0469223 + 0.0812719i
\(733\) 22.8027i 0.842237i 0.907006 + 0.421119i \(0.138362\pi\)
−0.907006 + 0.421119i \(0.861638\pi\)
\(734\) −0.691478 0.399225i −0.0255229 0.0147357i
\(735\) 0 0
\(736\) 21.7182i 0.800544i
\(737\) 1.33485 2.31203i 0.0491698 0.0851646i
\(738\) −1.20871 2.09355i −0.0444933 0.0770647i
\(739\) 14.7523 8.51723i 0.542671 0.313311i −0.203490 0.979077i \(-0.565228\pi\)
0.746161 + 0.665766i \(0.231895\pi\)
\(740\) 0 0
\(741\) −6.00000 + 1.73205i −0.220416 + 0.0636285i
\(742\) −6.00000 −0.220267
\(743\) −4.96099 + 2.86423i −0.182001 + 0.105078i −0.588232 0.808692i \(-0.700176\pi\)
0.406232 + 0.913770i \(0.366843\pi\)
\(744\) 5.37386 + 9.30780i 0.197015 + 0.341241i
\(745\) 0 0
\(746\) 5.93905i 0.217444i
\(747\) −10.4174 6.01450i −0.381154 0.220059i
\(748\) 18.8085 + 10.8591i 0.687708 + 0.397048i
\(749\) 18.3296i 0.669748i
\(750\) 0 0
\(751\) −5.87386 10.1738i −0.214340 0.371248i 0.738728 0.674004i \(-0.235427\pi\)
−0.953068 + 0.302755i \(0.902093\pi\)
\(752\) −4.41742 + 2.55040i −0.161087 + 0.0930036i
\(753\) 0.165151 0.00601845
\(754\) 1.81307 7.32743i 0.0660281 0.266849i
\(755\) 0 0
\(756\) −13.4347 + 7.75650i −0.488614 + 0.282101i
\(757\) 4.87386 + 8.44178i 0.177144 + 0.306822i 0.940901 0.338682i \(-0.109981\pi\)
−0.763757 + 0.645503i \(0.776648\pi\)
\(758\) 2.43920 4.22483i 0.0885959 0.153453i
\(759\) 12.1244i 0.440086i
\(760\) 0 0
\(761\) −30.7087 17.7297i −1.11319 0.642701i −0.173536 0.984827i \(-0.555519\pi\)
−0.939654 + 0.342127i \(0.888853\pi\)
\(762\) 8.10805i 0.293724i
\(763\) 11.3739 19.7001i 0.411762 0.713192i
\(764\) 14.8521 + 25.7246i 0.537330 + 0.930682i
\(765\) 0 0
\(766\) 10.7913 0.389905
\(767\) −12.0826 + 48.8311i −0.436277 + 1.76319i
\(768\) −1.79129 −0.0646375
\(769\) 13.5000 7.79423i 0.486822 0.281067i −0.236433 0.971648i \(-0.575978\pi\)
0.723255 + 0.690581i \(0.242645\pi\)
\(770\) 0 0
\(771\) 9.08258 15.7315i 0.327101 0.566556i
\(772\) 26.6283i 0.958374i
\(773\) −20.9174 12.0767i −0.752347 0.434368i 0.0741940 0.997244i \(-0.476362\pi\)
−0.826541 + 0.562876i \(0.809695\pi\)
\(774\) −8.37386 4.83465i −0.300992 0.173778i
\(775\) 0 0
\(776\) −9.87386 + 17.1020i −0.354451 + 0.613927i
\(777\) 6.87386 + 11.9059i 0.246598 + 0.427121i
\(778\) −1.25227 + 0.723000i −0.0448962 + 0.0259208i
\(779\) 4.58258 0.164188
\(780\) 0 0
\(781\) −18.5826 −0.664937
\(782\) −8.30852 + 4.79693i −0.297112 + 0.171538i
\(783\) −11.4564 19.8431i −0.409420 0.709136i
\(784\) −5.58258 + 9.66930i −0.199378 + 0.345332i
\(785\) 0 0
\(786\) −3.00000 1.73205i −0.107006 0.0617802i
\(787\) −14.1261 8.15573i −0.503542 0.290720i 0.226633 0.973980i \(-0.427228\pi\)
−0.730175 + 0.683260i \(0.760562\pi\)
\(788\) 26.2867i 0.936425i
\(789\) −4.50000 + 7.79423i −0.160204 + 0.277482i
\(790\) 0 0
\(791\) −11.1261 + 6.42368i −0.395600 + 0.228400i
\(792\) −9.16515 −0.325669
\(793\) 4.96099 + 1.22753i 0.176170 + 0.0435907i
\(794\) 9.29583 0.329897
\(795\) 0 0
\(796\) −9.47822 16.4168i −0.335947 0.581877i
\(797\) 22.0390 38.1727i 0.780662 1.35215i −0.150895 0.988550i \(-0.548215\pi\)
0.931557 0.363596i \(-0.118451\pi\)
\(798\) 1.37055i 0.0485170i
\(799\) 7.25227 + 4.18710i 0.256567 + 0.148129i
\(800\) 0 0
\(801\) 19.1479i 0.676558i
\(802\) −6.81307 + 11.8006i −0.240578 + 0.416693i
\(803\) 0 0
\(804\) 1.56534 0.903750i 0.0552053 0.0318728i
\(805\) 0 0
\(806\) 7.08712 7.36515i 0.249633 0.259426i
\(807\) 15.0000 0.528025
\(808\) 13.5000 7.79423i 0.474928 0.274200i
\(809\) 27.4129 + 47.4805i 0.963785 + 1.66933i 0.712843 + 0.701323i \(0.247407\pi\)
0.250942 + 0.968002i \(0.419260\pi\)
\(810\) 0 0
\(811\) 50.5155i 1.77384i 0.461923 + 0.886920i \(0.347160\pi\)
−0.461923 + 0.886920i \(0.652840\pi\)
\(812\) 12.3131 + 7.10895i 0.432104 + 0.249475i
\(813\) 7.50000 + 4.33013i 0.263036 + 0.151864i
\(814\) 9.59386i 0.336264i
\(815\) 0 0
\(816\) 6.39564 + 11.0776i 0.223892 + 0.387793i
\(817\) 15.8739 9.16478i 0.555356 0.320635i
\(818\) −3.95644 −0.138334
\(819\) 9.00000 + 8.66025i 0.314485 + 0.302614i
\(820\) 0 0
\(821\) 15.7087 9.06943i 0.548238 0.316525i −0.200173 0.979761i \(-0.564150\pi\)
0.748411 + 0.663235i \(0.230817\pi\)
\(822\) −2.39564 4.14938i −0.0835577 0.144726i
\(823\) −15.7087 + 27.2083i −0.547571 + 0.948421i 0.450869 + 0.892590i \(0.351114\pi\)
−0.998440 + 0.0558311i \(0.982219\pi\)
\(824\) 5.48220i 0.190982i
\(825\) 0 0
\(826\) 9.56080 + 5.51993i 0.332663 + 0.192063i
\(827\) 10.7737i 0.374638i −0.982299 0.187319i \(-0.940020\pi\)
0.982299 0.187319i \(-0.0599799\pi\)
\(828\) −8.20871 + 14.2179i −0.285272 + 0.494106i
\(829\) 16.6652 + 28.8649i 0.578805 + 1.00252i 0.995617 + 0.0935264i \(0.0298139\pi\)
−0.416812 + 0.908993i \(0.636853\pi\)
\(830\) 0 0
\(831\) −7.41742 −0.257308
\(832\) 3.41742 + 11.8383i 0.118478 + 0.410419i
\(833\) 18.3303 0.635107
\(834\) 8.60436 4.96773i 0.297944 0.172018i
\(835\) 0 0
\(836\) 4.10436 7.10895i 0.141952 0.245868i
\(837\) 31.0260i 1.07242i
\(838\) 2.30852 + 1.33283i 0.0797466 + 0.0460417i
\(839\) −37.8303 21.8413i −1.30605 0.754047i −0.324613 0.945847i \(-0.605234\pi\)
−0.981434 + 0.191800i \(0.938567\pi\)
\(840\) 0 0
\(841\) 4.00000 6.92820i 0.137931 0.238904i
\(842\) −1.25227 2.16900i −0.0431562 0.0747487i
\(843\) 3.16515 1.82740i 0.109014 0.0629390i
\(844\) −0.295834 −0.0101830
\(845\) 0 0
\(846\) −1.66970 −0.0574054
\(847\) −6.00000 + 3.46410i −0.206162 + 0.119028i
\(848\) 10.5826 + 18.3296i 0.363407 + 0.629440i
\(849\) 13.8739 24.0302i 0.476150 0.824716i
\(850\) 0 0
\(851\) 31.5000 + 18.1865i 1.07981 + 0.623426i
\(852\) −10.8956 6.29060i −0.373279 0.215513i
\(853\) 5.63310i 0.192874i −0.995339 0.0964369i \(-0.969255\pi\)
0.995339 0.0964369i \(-0.0307446\pi\)
\(854\) 0.560795 0.971326i 0.0191900 0.0332381i
\(855\) 0 0
\(856\) 15.8739 9.16478i 0.542557 0.313246i
\(857\) 4.74773 0.162179 0.0810896 0.996707i \(-0.474160\pi\)
0.0810896 + 0.996707i \(0.474160\pi\)
\(858\) −1.20871 4.18710i −0.0412648 0.142945i
\(859\) −44.2432 −1.50956 −0.754779 0.655979i \(-0.772256\pi\)
−0.754779 + 0.655979i \(0.772256\pi\)
\(860\) 0 0
\(861\) 2.29129 + 3.96863i 0.0780869 + 0.135250i
\(862\) 1.93466 3.35093i 0.0658947 0.114133i
\(863\) 13.6657i 0.465186i 0.972574 + 0.232593i \(0.0747210\pi\)
−0.972574 + 0.232593i \(0.925279\pi\)
\(864\) −20.5218 11.8483i −0.698165 0.403086i
\(865\) 0 0
\(866\) 4.45325i 0.151328i
\(867\) 2.00000 3.46410i 0.0679236 0.117647i
\(868\) 9.62614 + 16.6730i 0.326732 + 0.565917i
\(869\) 13.7477 7.93725i 0.466360 0.269253i
\(870\) 0 0
\(871\) −2.62159 2.52263i −0.0888292 0.0854759i
\(872\) 22.7477 0.770335
\(873\) 19.7477 11.4014i 0.668359 0.385877i
\(874\) 1.81307 + 3.14033i 0.0613279 + 0.106223i
\(875\) 0 0
\(876\) 0 0
\(877\) 6.87386 + 3.96863i 0.232114 + 0.134011i 0.611547 0.791208i \(-0.290548\pi\)
−0.379433 + 0.925219i \(0.623881\pi\)
\(878\) 5.73504 + 3.31113i 0.193548 + 0.111745i
\(879\) 18.1389i 0.611809i
\(880\) 0 0
\(881\) −18.2477 31.6060i −0.614782 1.06483i −0.990423 0.138068i \(-0.955911\pi\)
0.375641 0.926765i \(-0.377422\pi\)
\(882\) −3.16515 + 1.82740i −0.106576 + 0.0615318i
\(883\) −36.2432 −1.21968 −0.609840 0.792524i \(-0.708766\pi\)
−0.609840 + 0.792524i \(0.708766\pi\)
\(884\) 20.5218 21.3269i 0.690222 0.717300i
\(885\) 0 0
\(886\) −7.87841 + 4.54860i −0.264680 + 0.152813i
\(887\) 27.2477 + 47.1944i 0.914889 + 1.58463i 0.807064 + 0.590465i \(0.201055\pi\)
0.107826 + 0.994170i \(0.465611\pi\)
\(888\) −6.87386 + 11.9059i −0.230672 + 0.399535i
\(889\) 30.7400i 1.03099i
\(890\) 0 0
\(891\) 2.29129 + 1.32288i 0.0767610 + 0.0443180i
\(892\) 15.5130i 0.519414i
\(893\) 1.58258 2.74110i 0.0529589 0.0917275i
\(894\) 3.81307 + 6.60443i 0.127528 + 0.220885i
\(895\) 0 0
\(896\) 19.1216 0.638808
\(897\) −16.0390 3.96863i −0.535527 0.132509i
\(898\) −5.03447 −0.168002
\(899\) −24.6261 + 14.2179i −0.821328 + 0.474194i
\(900\) 0 0
\(901\) 17.3739 30.0924i 0.578807 1.00252i
\(902\) 3.19795i 0.106480i
\(903\) 15.8739 + 9.16478i 0.528249 + 0.304985i
\(904\) −11.1261 6.42368i −0.370050 0.213648i
\(905\) 0 0
\(906\) −2.20871 + 3.82560i −0.0733795 + 0.127097i
\(907\) −3.12614 5.41463i −0.103802 0.179790i 0.809446 0.587194i \(-0.199767\pi\)
−0.913248 + 0.407404i \(0.866434\pi\)
\(908\) 1.26951 0.732950i 0.0421301 0.0243238i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −7.91288 −0.262165 −0.131083 0.991371i \(-0.541845\pi\)
−0.131083 + 0.991371i \(0.541845\pi\)
\(912\) 4.18693 2.41733i 0.138643 0.0800457i
\(913\) 7.95644 + 13.7810i 0.263320 + 0.456083i
\(914\) 0.395644 0.685275i 0.0130867 0.0226669i
\(915\) 0 0
\(916\) −40.7477 23.5257i −1.34634 0.777311i
\(917\) −11.3739 6.56670i −0.375598 0.216852i
\(918\) 10.4678i 0.345487i
\(919\) −27.0826 + 46.9084i −0.893372 + 1.54737i −0.0575648 + 0.998342i \(0.518334\pi\)
−0.835807 + 0.549023i \(0.815000\pi\)
\(920\) 0 0
\(921\) 21.0000 12.1244i 0.691974 0.399511i
\(922\) 16.3739 0.539244
\(923\) −6.08258 + 24.5824i −0.200210 + 0.809141i
\(924\) 8.20871 0.270047
\(925\) 0 0
\(926\) 9.00000 + 15.5885i 0.295758 + 0.512268i
\(927\) −3.16515 + 5.48220i −0.103957 + 0.180059i
\(928\) 21.7182i 0.712935i
\(929\) −22.8303 13.1811i −0.749038 0.432457i 0.0763082 0.997084i \(-0.475687\pi\)
−0.825346 + 0.564627i \(0.809020\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) 2.53901 4.39770i 0.0831682 0.144052i
\(933\) 3.79129 + 6.56670i 0.124121 + 0.214984i
\(934\) 9.62614 5.55765i 0.314977 0.181852i
\(935\) 0 0
\(936\) −3.00000 + 12.1244i −0.0980581 + 0.396297i
\(937\) −31.4955 −1.02891 −0.514456 0.857517i \(-0.672006\pi\)
−0.514456 + 0.857517i \(0.672006\pi\)
\(938\) −0.691478 + 0.399225i −0.0225775 + 0.0130352i
\(939\) 1.62614 + 2.81655i 0.0530670 + 0.0919147i
\(940\) 0 0
\(941\) 26.4575i 0.862490i 0.902235 + 0.431245i \(0.141926\pi\)
−0.902235 + 0.431245i \(0.858074\pi\)
\(942\) −3.62614 2.09355i −0.118146 0.0682116i
\(943\) 10.5000 + 6.06218i 0.341927 + 0.197412i
\(944\) 38.9434i 1.26750i
\(945\) 0 0
\(946\) 6.39564 + 11.0776i 0.207940 + 0.360163i
\(947\) 12.4129 7.16658i 0.403364 0.232883i −0.284570 0.958655i \(-0.591851\pi\)
0.687935 + 0.725773i \(0.258518\pi\)
\(948\) 10.7477 0.349070
\(949\) 0 0
\(950\) 0 0
\(951\) −0.165151 + 0.0953502i −0.00535540 + 0.00309194i
\(952\) −6.87386 11.9059i −0.222783 0.385872i
\(953\) −4.03901 + 6.99578i −0.130837 + 0.226616i −0.923999 0.382394i \(-0.875100\pi\)
0.793163 + 0.609010i \(0.208433\pi\)
\(954\) 6.92820i 0.224309i
\(955\) 0 0
\(956\) −0.295834 0.170800i −0.00956794 0.00552406i
\(957\) 12.1244i 0.391925i
\(958\) −1.06534 + 1.84522i −0.0344196 + 0.0596165i
\(959\) −9.08258 15.7315i −0.293292 0.507996i
\(960\) 0 0
\(961\) −7.50455 −0.242082
\(962\) 12.6915 + 3.14033i 0.409190 + 0.101248i
\(963\) −21.1652 −0.682037
\(964\) 2.68693 1.55130i 0.0865402 0.0499640i
\(965\) 0 0
\(966\) −1.81307 + 3.14033i −0.0583345 + 0.101038i
\(967\) 37.3821i 1.20213i 0.799201 + 0.601064i \(0.205256\pi\)
−0.799201 + 0.601064i \(0.794744\pi\)
\(968\) −6.00000 3.46410i −0.192847 0.111340i
\(969\) −6.87386 3.96863i −0.220820 0.127491i
\(970\) 0 0
\(971\) 9.24773 16.0175i 0.296774 0.514027i −0.678622 0.734487i \(-0.737423\pi\)
0.975396 + 0.220460i \(0.0707560\pi\)
\(972\) 14.3303 + 24.8208i 0.459645 + 0.796128i
\(973\) 32.6216 18.8341i 1.04580 0.603793i
\(974\) −4.87841 −0.156314
\(975\) 0 0
\(976\) −3.95644 −0.126643
\(977\) −30.5780 + 17.6542i −0.978278 + 0.564809i −0.901750 0.432258i \(-0.857717\pi\)
−0.0765281 + 0.997067i \(0.524383\pi\)
\(978\) 4.81307 + 8.33648i 0.153905 + 0.266571i
\(979\) 12.6652 21.9367i 0.404780 0.701100i
\(980\) 0 0
\(981\) −22.7477 13.1334i −0.726279 0.419317i
\(982\) −7.68239 4.43543i −0.245155 0.141540i
\(983\) 55.0840i 1.75691i 0.477827 + 0.878454i \(0.341424\pi\)
−0.477827 + 0.878454i \(0.658576\pi\)
\(984\) −2.29129 + 3.96863i −0.0730436 + 0.126515i
\(985\) 0 0
\(986\) 8.30852 4.79693i 0.264597 0.152765i
\(987\) 3.16515 0.100748
\(988\) −8.06080 7.75650i −0.256448 0.246767i
\(989\) 48.4955 1.54207
\(990\) 0 0
\(991\) 6.50000 + 11.2583i 0.206479 + 0.357633i 0.950603 0.310409i \(-0.100466\pi\)
−0.744124 + 0.668042i \(0.767133\pi\)
\(992\) −14.7042 + 25.4684i −0.466858 + 0.808621i
\(993\) 4.47315i 0.141951i
\(994\) 4.81307 + 2.77883i 0.152661 + 0.0881390i
\(995\) 0 0
\(996\) 10.7737i 0.341378i
\(997\) 0.0825757 0.143025i 0.00261520 0.00452966i −0.864715 0.502263i \(-0.832501\pi\)
0.867330 + 0.497733i \(0.165834\pi\)
\(998\) 0.165151 + 0.286051i 0.00522778 + 0.00905477i
\(999\) 34.3693 19.8431i 1.08740 0.627809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.n.b.101.2 4
5.2 odd 4 65.2.l.a.49.3 yes 8
5.3 odd 4 65.2.l.a.49.2 yes 8
5.4 even 2 325.2.n.c.101.1 4
13.2 odd 12 4225.2.a.bj.1.3 4
13.4 even 6 inner 325.2.n.b.251.2 4
13.11 odd 12 4225.2.a.bj.1.2 4
15.2 even 4 585.2.bf.a.244.2 8
15.8 even 4 585.2.bf.a.244.3 8
20.3 even 4 1040.2.df.b.49.4 8
20.7 even 4 1040.2.df.b.49.1 8
65.2 even 12 845.2.b.f.339.6 8
65.3 odd 12 845.2.d.c.844.5 8
65.4 even 6 325.2.n.c.251.1 4
65.7 even 12 845.2.n.c.529.3 8
65.8 even 4 845.2.n.c.484.3 8
65.12 odd 4 845.2.l.c.699.2 8
65.17 odd 12 65.2.l.a.4.2 8
65.18 even 4 845.2.n.d.484.1 8
65.22 odd 12 845.2.l.c.654.3 8
65.23 odd 12 845.2.d.c.844.3 8
65.24 odd 12 4225.2.a.bk.1.3 4
65.28 even 12 845.2.b.f.339.3 8
65.32 even 12 845.2.n.d.529.1 8
65.33 even 12 845.2.n.d.529.2 8
65.37 even 12 845.2.b.f.339.4 8
65.38 odd 4 845.2.l.c.699.3 8
65.42 odd 12 845.2.d.c.844.4 8
65.43 odd 12 65.2.l.a.4.3 yes 8
65.47 even 4 845.2.n.d.484.2 8
65.48 odd 12 845.2.l.c.654.2 8
65.54 odd 12 4225.2.a.bk.1.2 4
65.57 even 4 845.2.n.c.484.4 8
65.58 even 12 845.2.n.c.529.4 8
65.62 odd 12 845.2.d.c.844.6 8
65.63 even 12 845.2.b.f.339.5 8
195.17 even 12 585.2.bf.a.199.3 8
195.173 even 12 585.2.bf.a.199.2 8
260.43 even 12 1040.2.df.b.849.1 8
260.147 even 12 1040.2.df.b.849.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.2 8 65.17 odd 12
65.2.l.a.4.3 yes 8 65.43 odd 12
65.2.l.a.49.2 yes 8 5.3 odd 4
65.2.l.a.49.3 yes 8 5.2 odd 4
325.2.n.b.101.2 4 1.1 even 1 trivial
325.2.n.b.251.2 4 13.4 even 6 inner
325.2.n.c.101.1 4 5.4 even 2
325.2.n.c.251.1 4 65.4 even 6
585.2.bf.a.199.2 8 195.173 even 12
585.2.bf.a.199.3 8 195.17 even 12
585.2.bf.a.244.2 8 15.2 even 4
585.2.bf.a.244.3 8 15.8 even 4
845.2.b.f.339.3 8 65.28 even 12
845.2.b.f.339.4 8 65.37 even 12
845.2.b.f.339.5 8 65.63 even 12
845.2.b.f.339.6 8 65.2 even 12
845.2.d.c.844.3 8 65.23 odd 12
845.2.d.c.844.4 8 65.42 odd 12
845.2.d.c.844.5 8 65.3 odd 12
845.2.d.c.844.6 8 65.62 odd 12
845.2.l.c.654.2 8 65.48 odd 12
845.2.l.c.654.3 8 65.22 odd 12
845.2.l.c.699.2 8 65.12 odd 4
845.2.l.c.699.3 8 65.38 odd 4
845.2.n.c.484.3 8 65.8 even 4
845.2.n.c.484.4 8 65.57 even 4
845.2.n.c.529.3 8 65.7 even 12
845.2.n.c.529.4 8 65.58 even 12
845.2.n.d.484.1 8 65.18 even 4
845.2.n.d.484.2 8 65.47 even 4
845.2.n.d.529.1 8 65.32 even 12
845.2.n.d.529.2 8 65.33 even 12
1040.2.df.b.49.1 8 20.7 even 4
1040.2.df.b.49.4 8 20.3 even 4
1040.2.df.b.849.1 8 260.43 even 12
1040.2.df.b.849.4 8 260.147 even 12
4225.2.a.bj.1.2 4 13.11 odd 12
4225.2.a.bj.1.3 4 13.2 odd 12
4225.2.a.bk.1.2 4 65.54 odd 12
4225.2.a.bk.1.3 4 65.24 odd 12