Properties

Label 4225.2.a.bk.1.3
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4225,2,Mod(1,4225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.18890\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.456850 q^{2} +1.00000 q^{3} -1.79129 q^{4} +0.456850 q^{6} +1.73205 q^{7} -1.73205 q^{8} -2.00000 q^{9} -2.64575 q^{11} -1.79129 q^{12} +0.791288 q^{14} +2.79129 q^{16} +4.58258 q^{17} -0.913701 q^{18} +1.73205 q^{19} +1.73205 q^{21} -1.20871 q^{22} -4.58258 q^{23} -1.73205 q^{24} -5.00000 q^{27} -3.10260 q^{28} +4.58258 q^{29} +6.20520 q^{31} +4.73930 q^{32} -2.64575 q^{33} +2.09355 q^{34} +3.58258 q^{36} -7.93725 q^{37} +0.791288 q^{38} -2.64575 q^{41} +0.791288 q^{42} -10.5826 q^{43} +4.73930 q^{44} -2.09355 q^{46} +1.82740 q^{47} +2.79129 q^{48} -4.00000 q^{49} +4.58258 q^{51} +7.58258 q^{53} -2.28425 q^{54} -3.00000 q^{56} +1.73205 q^{57} +2.09355 q^{58} -13.9518 q^{59} -1.41742 q^{61} +2.83485 q^{62} -3.46410 q^{63} -3.41742 q^{64} -1.20871 q^{66} -1.00905 q^{67} -8.20871 q^{68} -4.58258 q^{69} +7.02355 q^{71} +3.46410 q^{72} -3.62614 q^{74} -3.10260 q^{76} -4.58258 q^{77} -6.00000 q^{79} +1.00000 q^{81} -1.20871 q^{82} -6.01450 q^{83} -3.10260 q^{84} -4.83465 q^{86} +4.58258 q^{87} +4.58258 q^{88} -9.57395 q^{89} +8.20871 q^{92} +6.20520 q^{93} +0.834849 q^{94} +4.73930 q^{96} -11.4014 q^{97} -1.82740 q^{98} +5.29150 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 2 q^{4} - 8 q^{9} + 2 q^{12} - 6 q^{14} + 2 q^{16} - 14 q^{22} - 20 q^{27} - 4 q^{36} - 6 q^{38} - 6 q^{42} - 24 q^{43} + 2 q^{48} - 16 q^{49} + 12 q^{53} - 12 q^{56} - 24 q^{61} + 48 q^{62}+ \cdots + 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.456850 0.323042 0.161521 0.986869i \(-0.448360\pi\)
0.161521 + 0.986869i \(0.448360\pi\)
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) −1.79129 −0.895644
\(5\) 0 0
\(6\) 0.456850 0.186508
\(7\) 1.73205 0.654654 0.327327 0.944911i \(-0.393852\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) −1.73205 −0.612372
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −2.64575 −0.797724 −0.398862 0.917011i \(-0.630595\pi\)
−0.398862 + 0.917011i \(0.630595\pi\)
\(12\) −1.79129 −0.517100
\(13\) 0 0
\(14\) 0.791288 0.211481
\(15\) 0 0
\(16\) 2.79129 0.697822
\(17\) 4.58258 1.11144 0.555719 0.831370i \(-0.312443\pi\)
0.555719 + 0.831370i \(0.312443\pi\)
\(18\) −0.913701 −0.215361
\(19\) 1.73205 0.397360 0.198680 0.980064i \(-0.436335\pi\)
0.198680 + 0.980064i \(0.436335\pi\)
\(20\) 0 0
\(21\) 1.73205 0.377964
\(22\) −1.20871 −0.257698
\(23\) −4.58258 −0.955533 −0.477767 0.878487i \(-0.658554\pi\)
−0.477767 + 0.878487i \(0.658554\pi\)
\(24\) −1.73205 −0.353553
\(25\) 0 0
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) −3.10260 −0.586337
\(29\) 4.58258 0.850963 0.425481 0.904967i \(-0.360105\pi\)
0.425481 + 0.904967i \(0.360105\pi\)
\(30\) 0 0
\(31\) 6.20520 1.11449 0.557244 0.830349i \(-0.311859\pi\)
0.557244 + 0.830349i \(0.311859\pi\)
\(32\) 4.73930 0.837798
\(33\) −2.64575 −0.460566
\(34\) 2.09355 0.359041
\(35\) 0 0
\(36\) 3.58258 0.597096
\(37\) −7.93725 −1.30488 −0.652438 0.757842i \(-0.726254\pi\)
−0.652438 + 0.757842i \(0.726254\pi\)
\(38\) 0.791288 0.128364
\(39\) 0 0
\(40\) 0 0
\(41\) −2.64575 −0.413197 −0.206598 0.978426i \(-0.566239\pi\)
−0.206598 + 0.978426i \(0.566239\pi\)
\(42\) 0.791288 0.122098
\(43\) −10.5826 −1.61383 −0.806914 0.590669i \(-0.798864\pi\)
−0.806914 + 0.590669i \(0.798864\pi\)
\(44\) 4.73930 0.714477
\(45\) 0 0
\(46\) −2.09355 −0.308677
\(47\) 1.82740 0.266554 0.133277 0.991079i \(-0.457450\pi\)
0.133277 + 0.991079i \(0.457450\pi\)
\(48\) 2.79129 0.402888
\(49\) −4.00000 −0.571429
\(50\) 0 0
\(51\) 4.58258 0.641689
\(52\) 0 0
\(53\) 7.58258 1.04155 0.520773 0.853695i \(-0.325644\pi\)
0.520773 + 0.853695i \(0.325644\pi\)
\(54\) −2.28425 −0.310847
\(55\) 0 0
\(56\) −3.00000 −0.400892
\(57\) 1.73205 0.229416
\(58\) 2.09355 0.274897
\(59\) −13.9518 −1.81636 −0.908182 0.418576i \(-0.862530\pi\)
−0.908182 + 0.418576i \(0.862530\pi\)
\(60\) 0 0
\(61\) −1.41742 −0.181483 −0.0907413 0.995874i \(-0.528924\pi\)
−0.0907413 + 0.995874i \(0.528924\pi\)
\(62\) 2.83485 0.360026
\(63\) −3.46410 −0.436436
\(64\) −3.41742 −0.427178
\(65\) 0 0
\(66\) −1.20871 −0.148782
\(67\) −1.00905 −0.123275 −0.0616376 0.998099i \(-0.519632\pi\)
−0.0616376 + 0.998099i \(0.519632\pi\)
\(68\) −8.20871 −0.995453
\(69\) −4.58258 −0.551677
\(70\) 0 0
\(71\) 7.02355 0.833542 0.416771 0.909011i \(-0.363162\pi\)
0.416771 + 0.909011i \(0.363162\pi\)
\(72\) 3.46410 0.408248
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −3.62614 −0.421530
\(75\) 0 0
\(76\) −3.10260 −0.355893
\(77\) −4.58258 −0.522233
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −1.20871 −0.133480
\(83\) −6.01450 −0.660177 −0.330089 0.943950i \(-0.607079\pi\)
−0.330089 + 0.943950i \(0.607079\pi\)
\(84\) −3.10260 −0.338522
\(85\) 0 0
\(86\) −4.83465 −0.521334
\(87\) 4.58258 0.491304
\(88\) 4.58258 0.488504
\(89\) −9.57395 −1.01484 −0.507419 0.861700i \(-0.669400\pi\)
−0.507419 + 0.861700i \(0.669400\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.20871 0.855817
\(93\) 6.20520 0.643450
\(94\) 0.834849 0.0861081
\(95\) 0 0
\(96\) 4.73930 0.483703
\(97\) −11.4014 −1.15763 −0.578816 0.815458i \(-0.696485\pi\)
−0.578816 + 0.815458i \(0.696485\pi\)
\(98\) −1.82740 −0.184595
\(99\) 5.29150 0.531816
\(100\) 0 0
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 2.09355 0.207292
\(103\) −3.16515 −0.311872 −0.155936 0.987767i \(-0.549839\pi\)
−0.155936 + 0.987767i \(0.549839\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.46410 0.336463
\(107\) −10.5826 −1.02306 −0.511528 0.859267i \(-0.670920\pi\)
−0.511528 + 0.859267i \(0.670920\pi\)
\(108\) 8.95644 0.861834
\(109\) 13.1334 1.25795 0.628976 0.777425i \(-0.283474\pi\)
0.628976 + 0.777425i \(0.283474\pi\)
\(110\) 0 0
\(111\) −7.93725 −0.753371
\(112\) 4.83465 0.456832
\(113\) −7.41742 −0.697773 −0.348886 0.937165i \(-0.613440\pi\)
−0.348886 + 0.937165i \(0.613440\pi\)
\(114\) 0.791288 0.0741109
\(115\) 0 0
\(116\) −8.20871 −0.762160
\(117\) 0 0
\(118\) −6.37386 −0.586762
\(119\) 7.93725 0.727607
\(120\) 0 0
\(121\) −4.00000 −0.363636
\(122\) −0.647551 −0.0586265
\(123\) −2.64575 −0.238559
\(124\) −11.1153 −0.998184
\(125\) 0 0
\(126\) −1.58258 −0.140987
\(127\) −17.7477 −1.57486 −0.787428 0.616407i \(-0.788588\pi\)
−0.787428 + 0.616407i \(0.788588\pi\)
\(128\) −11.0399 −0.975795
\(129\) −10.5826 −0.931744
\(130\) 0 0
\(131\) −7.58258 −0.662493 −0.331246 0.943544i \(-0.607469\pi\)
−0.331246 + 0.943544i \(0.607469\pi\)
\(132\) 4.73930 0.412503
\(133\) 3.00000 0.260133
\(134\) −0.460985 −0.0398230
\(135\) 0 0
\(136\) −7.93725 −0.680614
\(137\) −10.4877 −0.896021 −0.448010 0.894028i \(-0.647867\pi\)
−0.448010 + 0.894028i \(0.647867\pi\)
\(138\) −2.09355 −0.178215
\(139\) −21.7477 −1.84462 −0.922309 0.386453i \(-0.873700\pi\)
−0.922309 + 0.386453i \(0.873700\pi\)
\(140\) 0 0
\(141\) 1.82740 0.153895
\(142\) 3.20871 0.269269
\(143\) 0 0
\(144\) −5.58258 −0.465215
\(145\) 0 0
\(146\) 0 0
\(147\) −4.00000 −0.329914
\(148\) 14.2179 1.16870
\(149\) 16.6929 1.36753 0.683766 0.729701i \(-0.260341\pi\)
0.683766 + 0.729701i \(0.260341\pi\)
\(150\) 0 0
\(151\) 9.66930 0.786877 0.393438 0.919351i \(-0.371285\pi\)
0.393438 + 0.919351i \(0.371285\pi\)
\(152\) −3.00000 −0.243332
\(153\) −9.16515 −0.740959
\(154\) −2.09355 −0.168703
\(155\) 0 0
\(156\) 0 0
\(157\) 9.16515 0.731459 0.365729 0.930721i \(-0.380820\pi\)
0.365729 + 0.930721i \(0.380820\pi\)
\(158\) −2.74110 −0.218070
\(159\) 7.58258 0.601337
\(160\) 0 0
\(161\) −7.93725 −0.625543
\(162\) 0.456850 0.0358935
\(163\) 21.0707 1.65038 0.825191 0.564854i \(-0.191068\pi\)
0.825191 + 0.564854i \(0.191068\pi\)
\(164\) 4.73930 0.370077
\(165\) 0 0
\(166\) −2.74773 −0.213265
\(167\) 9.57395 0.740855 0.370427 0.928861i \(-0.379211\pi\)
0.370427 + 0.928861i \(0.379211\pi\)
\(168\) −3.00000 −0.231455
\(169\) 0 0
\(170\) 0 0
\(171\) −3.46410 −0.264906
\(172\) 18.9564 1.44541
\(173\) 16.5826 1.26075 0.630375 0.776291i \(-0.282901\pi\)
0.630375 + 0.776291i \(0.282901\pi\)
\(174\) 2.09355 0.158712
\(175\) 0 0
\(176\) −7.38505 −0.556669
\(177\) −13.9518 −1.04868
\(178\) −4.37386 −0.327835
\(179\) −18.1652 −1.35773 −0.678864 0.734264i \(-0.737527\pi\)
−0.678864 + 0.734264i \(0.737527\pi\)
\(180\) 0 0
\(181\) −8.74773 −0.650213 −0.325107 0.945677i \(-0.605400\pi\)
−0.325107 + 0.945677i \(0.605400\pi\)
\(182\) 0 0
\(183\) −1.41742 −0.104779
\(184\) 7.93725 0.585142
\(185\) 0 0
\(186\) 2.83485 0.207861
\(187\) −12.1244 −0.886621
\(188\) −3.27340 −0.238737
\(189\) −8.66025 −0.629941
\(190\) 0 0
\(191\) −16.5826 −1.19987 −0.599937 0.800048i \(-0.704808\pi\)
−0.599937 + 0.800048i \(0.704808\pi\)
\(192\) −3.41742 −0.246631
\(193\) 14.8655 1.07004 0.535020 0.844840i \(-0.320304\pi\)
0.535020 + 0.844840i \(0.320304\pi\)
\(194\) −5.20871 −0.373964
\(195\) 0 0
\(196\) 7.16515 0.511797
\(197\) −14.6748 −1.04553 −0.522767 0.852476i \(-0.675100\pi\)
−0.522767 + 0.852476i \(0.675100\pi\)
\(198\) 2.41742 0.171799
\(199\) −10.5826 −0.750179 −0.375089 0.926989i \(-0.622388\pi\)
−0.375089 + 0.926989i \(0.622388\pi\)
\(200\) 0 0
\(201\) −1.00905 −0.0711729
\(202\) −4.11165 −0.289295
\(203\) 7.93725 0.557086
\(204\) −8.20871 −0.574725
\(205\) 0 0
\(206\) −1.44600 −0.100748
\(207\) 9.16515 0.637022
\(208\) 0 0
\(209\) −4.58258 −0.316983
\(210\) 0 0
\(211\) −0.165151 −0.0113695 −0.00568475 0.999984i \(-0.501810\pi\)
−0.00568475 + 0.999984i \(0.501810\pi\)
\(212\) −13.5826 −0.932855
\(213\) 7.02355 0.481246
\(214\) −4.83465 −0.330490
\(215\) 0 0
\(216\) 8.66025 0.589256
\(217\) 10.7477 0.729603
\(218\) 6.00000 0.406371
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −3.62614 −0.243370
\(223\) 8.66025 0.579934 0.289967 0.957037i \(-0.406356\pi\)
0.289967 + 0.957037i \(0.406356\pi\)
\(224\) 8.20871 0.548468
\(225\) 0 0
\(226\) −3.38865 −0.225410
\(227\) 0.818350 0.0543158 0.0271579 0.999631i \(-0.491354\pi\)
0.0271579 + 0.999631i \(0.491354\pi\)
\(228\) −3.10260 −0.205475
\(229\) 26.2668 1.73576 0.867880 0.496774i \(-0.165482\pi\)
0.867880 + 0.496774i \(0.165482\pi\)
\(230\) 0 0
\(231\) −4.58258 −0.301511
\(232\) −7.93725 −0.521106
\(233\) −2.83485 −0.185717 −0.0928586 0.995679i \(-0.529600\pi\)
−0.0928586 + 0.995679i \(0.529600\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 24.9916 1.62682
\(237\) −6.00000 −0.389742
\(238\) 3.62614 0.235048
\(239\) −0.190700 −0.0123354 −0.00616769 0.999981i \(-0.501963\pi\)
−0.00616769 + 0.999981i \(0.501963\pi\)
\(240\) 0 0
\(241\) 1.73205 0.111571 0.0557856 0.998443i \(-0.482234\pi\)
0.0557856 + 0.998443i \(0.482234\pi\)
\(242\) −1.82740 −0.117470
\(243\) 16.0000 1.02640
\(244\) 2.53901 0.162544
\(245\) 0 0
\(246\) −1.20871 −0.0770647
\(247\) 0 0
\(248\) −10.7477 −0.682481
\(249\) −6.01450 −0.381154
\(250\) 0 0
\(251\) 0.165151 0.0104243 0.00521213 0.999986i \(-0.498341\pi\)
0.00521213 + 0.999986i \(0.498341\pi\)
\(252\) 6.20520 0.390891
\(253\) 12.1244 0.762252
\(254\) −8.10805 −0.508745
\(255\) 0 0
\(256\) 1.79129 0.111955
\(257\) 18.1652 1.13311 0.566556 0.824024i \(-0.308276\pi\)
0.566556 + 0.824024i \(0.308276\pi\)
\(258\) −4.83465 −0.300992
\(259\) −13.7477 −0.854242
\(260\) 0 0
\(261\) −9.16515 −0.567309
\(262\) −3.46410 −0.214013
\(263\) 9.00000 0.554964 0.277482 0.960731i \(-0.410500\pi\)
0.277482 + 0.960731i \(0.410500\pi\)
\(264\) 4.58258 0.282038
\(265\) 0 0
\(266\) 1.37055 0.0840339
\(267\) −9.57395 −0.585917
\(268\) 1.80750 0.110411
\(269\) −15.0000 −0.914566 −0.457283 0.889321i \(-0.651177\pi\)
−0.457283 + 0.889321i \(0.651177\pi\)
\(270\) 0 0
\(271\) 8.66025 0.526073 0.263036 0.964786i \(-0.415276\pi\)
0.263036 + 0.964786i \(0.415276\pi\)
\(272\) 12.7913 0.775586
\(273\) 0 0
\(274\) −4.79129 −0.289452
\(275\) 0 0
\(276\) 8.20871 0.494106
\(277\) 7.41742 0.445670 0.222835 0.974856i \(-0.428469\pi\)
0.222835 + 0.974856i \(0.428469\pi\)
\(278\) −9.93545 −0.595889
\(279\) −12.4104 −0.742992
\(280\) 0 0
\(281\) −3.65480 −0.218027 −0.109014 0.994040i \(-0.534769\pi\)
−0.109014 + 0.994040i \(0.534769\pi\)
\(282\) 0.834849 0.0497145
\(283\) 27.7477 1.64943 0.824716 0.565548i \(-0.191335\pi\)
0.824716 + 0.565548i \(0.191335\pi\)
\(284\) −12.5812 −0.746557
\(285\) 0 0
\(286\) 0 0
\(287\) −4.58258 −0.270501
\(288\) −9.47860 −0.558532
\(289\) 4.00000 0.235294
\(290\) 0 0
\(291\) −11.4014 −0.668359
\(292\) 0 0
\(293\) −18.1389 −1.05968 −0.529842 0.848097i \(-0.677749\pi\)
−0.529842 + 0.848097i \(0.677749\pi\)
\(294\) −1.82740 −0.106576
\(295\) 0 0
\(296\) 13.7477 0.799070
\(297\) 13.2288 0.767610
\(298\) 7.62614 0.441770
\(299\) 0 0
\(300\) 0 0
\(301\) −18.3296 −1.05650
\(302\) 4.41742 0.254194
\(303\) −9.00000 −0.517036
\(304\) 4.83465 0.277286
\(305\) 0 0
\(306\) −4.18710 −0.239361
\(307\) 24.2487 1.38395 0.691974 0.721923i \(-0.256741\pi\)
0.691974 + 0.721923i \(0.256741\pi\)
\(308\) 8.20871 0.467735
\(309\) −3.16515 −0.180059
\(310\) 0 0
\(311\) −7.58258 −0.429968 −0.214984 0.976618i \(-0.568970\pi\)
−0.214984 + 0.976618i \(0.568970\pi\)
\(312\) 0 0
\(313\) −3.25227 −0.183829 −0.0919147 0.995767i \(-0.529299\pi\)
−0.0919147 + 0.995767i \(0.529299\pi\)
\(314\) 4.18710 0.236292
\(315\) 0 0
\(316\) 10.7477 0.604607
\(317\) 0.190700 0.0107108 0.00535540 0.999986i \(-0.498295\pi\)
0.00535540 + 0.999986i \(0.498295\pi\)
\(318\) 3.46410 0.194257
\(319\) −12.1244 −0.678834
\(320\) 0 0
\(321\) −10.5826 −0.590662
\(322\) −3.62614 −0.202077
\(323\) 7.93725 0.441641
\(324\) −1.79129 −0.0995160
\(325\) 0 0
\(326\) 9.62614 0.533142
\(327\) 13.1334 0.726279
\(328\) 4.58258 0.253030
\(329\) 3.16515 0.174500
\(330\) 0 0
\(331\) −4.47315 −0.245867 −0.122933 0.992415i \(-0.539230\pi\)
−0.122933 + 0.992415i \(0.539230\pi\)
\(332\) 10.7737 0.591284
\(333\) 15.8745 0.869918
\(334\) 4.37386 0.239327
\(335\) 0 0
\(336\) 4.83465 0.263752
\(337\) −30.7477 −1.67494 −0.837468 0.546487i \(-0.815965\pi\)
−0.837468 + 0.546487i \(0.815965\pi\)
\(338\) 0 0
\(339\) −7.41742 −0.402859
\(340\) 0 0
\(341\) −16.4174 −0.889053
\(342\) −1.58258 −0.0855759
\(343\) −19.0526 −1.02874
\(344\) 18.3296 0.988264
\(345\) 0 0
\(346\) 7.57575 0.407275
\(347\) −21.3303 −1.14507 −0.572535 0.819880i \(-0.694040\pi\)
−0.572535 + 0.819880i \(0.694040\pi\)
\(348\) −8.20871 −0.440033
\(349\) −2.45505 −0.131416 −0.0657079 0.997839i \(-0.520931\pi\)
−0.0657079 + 0.997839i \(0.520931\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −12.5390 −0.668332
\(353\) −6.83285 −0.363676 −0.181838 0.983328i \(-0.558205\pi\)
−0.181838 + 0.983328i \(0.558205\pi\)
\(354\) −6.37386 −0.338767
\(355\) 0 0
\(356\) 17.1497 0.908933
\(357\) 7.93725 0.420084
\(358\) −8.29875 −0.438603
\(359\) −19.5293 −1.03072 −0.515359 0.856975i \(-0.672341\pi\)
−0.515359 + 0.856975i \(0.672341\pi\)
\(360\) 0 0
\(361\) −16.0000 −0.842105
\(362\) −3.99640 −0.210046
\(363\) −4.00000 −0.209946
\(364\) 0 0
\(365\) 0 0
\(366\) −0.647551 −0.0338480
\(367\) −1.74773 −0.0912306 −0.0456153 0.998959i \(-0.514525\pi\)
−0.0456153 + 0.998959i \(0.514525\pi\)
\(368\) −12.7913 −0.666792
\(369\) 5.29150 0.275465
\(370\) 0 0
\(371\) 13.1334 0.681852
\(372\) −11.1153 −0.576302
\(373\) −13.0000 −0.673114 −0.336557 0.941663i \(-0.609263\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) −5.53901 −0.286416
\(375\) 0 0
\(376\) −3.16515 −0.163230
\(377\) 0 0
\(378\) −3.95644 −0.203497
\(379\) −10.6784 −0.548510 −0.274255 0.961657i \(-0.588431\pi\)
−0.274255 + 0.961657i \(0.588431\pi\)
\(380\) 0 0
\(381\) −17.7477 −0.909244
\(382\) −7.57575 −0.387609
\(383\) −23.6211 −1.20698 −0.603490 0.797371i \(-0.706224\pi\)
−0.603490 + 0.797371i \(0.706224\pi\)
\(384\) −11.0399 −0.563375
\(385\) 0 0
\(386\) 6.79129 0.345667
\(387\) 21.1652 1.07589
\(388\) 20.4231 1.03683
\(389\) 3.16515 0.160480 0.0802398 0.996776i \(-0.474431\pi\)
0.0802398 + 0.996776i \(0.474431\pi\)
\(390\) 0 0
\(391\) −21.0000 −1.06202
\(392\) 6.92820 0.349927
\(393\) −7.58258 −0.382490
\(394\) −6.70417 −0.337751
\(395\) 0 0
\(396\) −9.47860 −0.476318
\(397\) 20.3477 1.02122 0.510610 0.859812i \(-0.329420\pi\)
0.510610 + 0.859812i \(0.329420\pi\)
\(398\) −4.83465 −0.242339
\(399\) 3.00000 0.150188
\(400\) 0 0
\(401\) −29.8263 −1.48945 −0.744726 0.667370i \(-0.767420\pi\)
−0.744726 + 0.667370i \(0.767420\pi\)
\(402\) −0.460985 −0.0229918
\(403\) 0 0
\(404\) 16.1216 0.802079
\(405\) 0 0
\(406\) 3.62614 0.179962
\(407\) 21.0000 1.04093
\(408\) −7.93725 −0.392953
\(409\) −8.66025 −0.428222 −0.214111 0.976809i \(-0.568685\pi\)
−0.214111 + 0.976809i \(0.568685\pi\)
\(410\) 0 0
\(411\) −10.4877 −0.517318
\(412\) 5.66970 0.279326
\(413\) −24.1652 −1.18909
\(414\) 4.18710 0.205785
\(415\) 0 0
\(416\) 0 0
\(417\) −21.7477 −1.06499
\(418\) −2.09355 −0.102399
\(419\) −5.83485 −0.285051 −0.142526 0.989791i \(-0.545522\pi\)
−0.142526 + 0.989791i \(0.545522\pi\)
\(420\) 0 0
\(421\) 5.48220 0.267186 0.133593 0.991036i \(-0.457348\pi\)
0.133593 + 0.991036i \(0.457348\pi\)
\(422\) −0.0754495 −0.00367282
\(423\) −3.65480 −0.177703
\(424\) −13.1334 −0.637815
\(425\) 0 0
\(426\) 3.20871 0.155463
\(427\) −2.45505 −0.118808
\(428\) 18.9564 0.916294
\(429\) 0 0
\(430\) 0 0
\(431\) −8.46955 −0.407964 −0.203982 0.978975i \(-0.565388\pi\)
−0.203982 + 0.978975i \(0.565388\pi\)
\(432\) −13.9564 −0.671479
\(433\) −9.74773 −0.468446 −0.234223 0.972183i \(-0.575255\pi\)
−0.234223 + 0.972183i \(0.575255\pi\)
\(434\) 4.91010 0.235692
\(435\) 0 0
\(436\) −23.5257 −1.12668
\(437\) −7.93725 −0.379690
\(438\) 0 0
\(439\) 14.4955 0.691830 0.345915 0.938266i \(-0.387569\pi\)
0.345915 + 0.938266i \(0.387569\pi\)
\(440\) 0 0
\(441\) 8.00000 0.380952
\(442\) 0 0
\(443\) 19.9129 0.946089 0.473045 0.881038i \(-0.343155\pi\)
0.473045 + 0.881038i \(0.343155\pi\)
\(444\) 14.2179 0.674752
\(445\) 0 0
\(446\) 3.95644 0.187343
\(447\) 16.6929 0.789545
\(448\) −5.91915 −0.279654
\(449\) 11.0200 0.520064 0.260032 0.965600i \(-0.416267\pi\)
0.260032 + 0.965600i \(0.416267\pi\)
\(450\) 0 0
\(451\) 7.00000 0.329617
\(452\) 13.2867 0.624956
\(453\) 9.66930 0.454304
\(454\) 0.373864 0.0175463
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) 1.73205 0.0810219 0.0405110 0.999179i \(-0.487101\pi\)
0.0405110 + 0.999179i \(0.487101\pi\)
\(458\) 12.0000 0.560723
\(459\) −22.9129 −1.06948
\(460\) 0 0
\(461\) 35.8408 1.66927 0.834635 0.550803i \(-0.185678\pi\)
0.834635 + 0.550803i \(0.185678\pi\)
\(462\) −2.09355 −0.0974008
\(463\) −39.4002 −1.83108 −0.915542 0.402223i \(-0.868238\pi\)
−0.915542 + 0.402223i \(0.868238\pi\)
\(464\) 12.7913 0.593821
\(465\) 0 0
\(466\) −1.29510 −0.0599944
\(467\) 24.3303 1.12587 0.562936 0.826500i \(-0.309672\pi\)
0.562936 + 0.826500i \(0.309672\pi\)
\(468\) 0 0
\(469\) −1.74773 −0.0807025
\(470\) 0 0
\(471\) 9.16515 0.422308
\(472\) 24.1652 1.11229
\(473\) 27.9989 1.28739
\(474\) −2.74110 −0.125903
\(475\) 0 0
\(476\) −14.2179 −0.651677
\(477\) −15.1652 −0.694365
\(478\) −0.0871215 −0.00398485
\(479\) −4.66385 −0.213097 −0.106548 0.994308i \(-0.533980\pi\)
−0.106548 + 0.994308i \(0.533980\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.791288 0.0360422
\(483\) −7.93725 −0.361158
\(484\) 7.16515 0.325689
\(485\) 0 0
\(486\) 7.30960 0.331570
\(487\) 10.6784 0.483882 0.241941 0.970291i \(-0.422216\pi\)
0.241941 + 0.970291i \(0.422216\pi\)
\(488\) 2.45505 0.111135
\(489\) 21.0707 0.952848
\(490\) 0 0
\(491\) −19.4174 −0.876296 −0.438148 0.898903i \(-0.644365\pi\)
−0.438148 + 0.898903i \(0.644365\pi\)
\(492\) 4.73930 0.213664
\(493\) 21.0000 0.945792
\(494\) 0 0
\(495\) 0 0
\(496\) 17.3205 0.777714
\(497\) 12.1652 0.545682
\(498\) −2.74773 −0.123129
\(499\) −0.723000 −0.0323659 −0.0161830 0.999869i \(-0.505151\pi\)
−0.0161830 + 0.999869i \(0.505151\pi\)
\(500\) 0 0
\(501\) 9.57395 0.427733
\(502\) 0.0754495 0.00336747
\(503\) 0.165151 0.00736374 0.00368187 0.999993i \(-0.498828\pi\)
0.00368187 + 0.999993i \(0.498828\pi\)
\(504\) 6.00000 0.267261
\(505\) 0 0
\(506\) 5.53901 0.246239
\(507\) 0 0
\(508\) 31.7913 1.41051
\(509\) −8.46955 −0.375406 −0.187703 0.982226i \(-0.560104\pi\)
−0.187703 + 0.982226i \(0.560104\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.8981 1.01196
\(513\) −8.66025 −0.382360
\(514\) 8.29875 0.366042
\(515\) 0 0
\(516\) 18.9564 0.834511
\(517\) −4.83485 −0.212636
\(518\) −6.28065 −0.275956
\(519\) 16.5826 0.727894
\(520\) 0 0
\(521\) 27.4955 1.20460 0.602299 0.798271i \(-0.294252\pi\)
0.602299 + 0.798271i \(0.294252\pi\)
\(522\) −4.18710 −0.183264
\(523\) 0.165151 0.00722157 0.00361078 0.999993i \(-0.498851\pi\)
0.00361078 + 0.999993i \(0.498851\pi\)
\(524\) 13.5826 0.593358
\(525\) 0 0
\(526\) 4.11165 0.179277
\(527\) 28.4358 1.23868
\(528\) −7.38505 −0.321393
\(529\) −2.00000 −0.0869565
\(530\) 0 0
\(531\) 27.9035 1.21091
\(532\) −5.37386 −0.232987
\(533\) 0 0
\(534\) −4.37386 −0.189276
\(535\) 0 0
\(536\) 1.74773 0.0754903
\(537\) −18.1652 −0.783884
\(538\) −6.85275 −0.295443
\(539\) 10.5830 0.455842
\(540\) 0 0
\(541\) 10.3923 0.446800 0.223400 0.974727i \(-0.428284\pi\)
0.223400 + 0.974727i \(0.428284\pi\)
\(542\) 3.95644 0.169944
\(543\) −8.74773 −0.375401
\(544\) 21.7182 0.931161
\(545\) 0 0
\(546\) 0 0
\(547\) 28.7477 1.22916 0.614582 0.788853i \(-0.289325\pi\)
0.614582 + 0.788853i \(0.289325\pi\)
\(548\) 18.7864 0.802516
\(549\) 2.83485 0.120988
\(550\) 0 0
\(551\) 7.93725 0.338138
\(552\) 7.93725 0.337832
\(553\) −10.3923 −0.441926
\(554\) 3.38865 0.143970
\(555\) 0 0
\(556\) 38.9564 1.65212
\(557\) −7.74655 −0.328232 −0.164116 0.986441i \(-0.552477\pi\)
−0.164116 + 0.986441i \(0.552477\pi\)
\(558\) −5.66970 −0.240017
\(559\) 0 0
\(560\) 0 0
\(561\) −12.1244 −0.511891
\(562\) −1.66970 −0.0704319
\(563\) 9.00000 0.379305 0.189652 0.981851i \(-0.439264\pi\)
0.189652 + 0.981851i \(0.439264\pi\)
\(564\) −3.27340 −0.137835
\(565\) 0 0
\(566\) 12.6766 0.532835
\(567\) 1.73205 0.0727393
\(568\) −12.1652 −0.510438
\(569\) −7.74773 −0.324802 −0.162401 0.986725i \(-0.551924\pi\)
−0.162401 + 0.986725i \(0.551924\pi\)
\(570\) 0 0
\(571\) 35.0780 1.46797 0.733985 0.679166i \(-0.237658\pi\)
0.733985 + 0.679166i \(0.237658\pi\)
\(572\) 0 0
\(573\) −16.5826 −0.692747
\(574\) −2.09355 −0.0873831
\(575\) 0 0
\(576\) 6.83485 0.284785
\(577\) 6.92820 0.288425 0.144212 0.989547i \(-0.453935\pi\)
0.144212 + 0.989547i \(0.453935\pi\)
\(578\) 1.82740 0.0760099
\(579\) 14.8655 0.617787
\(580\) 0 0
\(581\) −10.4174 −0.432188
\(582\) −5.20871 −0.215908
\(583\) −20.0616 −0.830867
\(584\) 0 0
\(585\) 0 0
\(586\) −8.28674 −0.342322
\(587\) 39.4956 1.63016 0.815078 0.579351i \(-0.196694\pi\)
0.815078 + 0.579351i \(0.196694\pi\)
\(588\) 7.16515 0.295486
\(589\) 10.7477 0.442852
\(590\) 0 0
\(591\) −14.6748 −0.603639
\(592\) −22.1552 −0.910571
\(593\) 21.1660 0.869184 0.434592 0.900627i \(-0.356893\pi\)
0.434592 + 0.900627i \(0.356893\pi\)
\(594\) 6.04356 0.247970
\(595\) 0 0
\(596\) −29.9017 −1.22482
\(597\) −10.5826 −0.433116
\(598\) 0 0
\(599\) 15.4955 0.633127 0.316564 0.948571i \(-0.397471\pi\)
0.316564 + 0.948571i \(0.397471\pi\)
\(600\) 0 0
\(601\) 16.9129 0.689891 0.344945 0.938623i \(-0.387897\pi\)
0.344945 + 0.938623i \(0.387897\pi\)
\(602\) −8.37386 −0.341293
\(603\) 2.01810 0.0821834
\(604\) −17.3205 −0.704761
\(605\) 0 0
\(606\) −4.11165 −0.167024
\(607\) 7.74773 0.314471 0.157235 0.987561i \(-0.449742\pi\)
0.157235 + 0.987561i \(0.449742\pi\)
\(608\) 8.20871 0.332907
\(609\) 7.93725 0.321634
\(610\) 0 0
\(611\) 0 0
\(612\) 16.4174 0.663635
\(613\) 5.91915 0.239072 0.119536 0.992830i \(-0.461859\pi\)
0.119536 + 0.992830i \(0.461859\pi\)
\(614\) 11.0780 0.447073
\(615\) 0 0
\(616\) 7.93725 0.319801
\(617\) −13.9518 −0.561677 −0.280838 0.959755i \(-0.590612\pi\)
−0.280838 + 0.959755i \(0.590612\pi\)
\(618\) −1.44600 −0.0581667
\(619\) −29.7309 −1.19499 −0.597493 0.801874i \(-0.703836\pi\)
−0.597493 + 0.801874i \(0.703836\pi\)
\(620\) 0 0
\(621\) 22.9129 0.919462
\(622\) −3.46410 −0.138898
\(623\) −16.5826 −0.664367
\(624\) 0 0
\(625\) 0 0
\(626\) −1.48580 −0.0593846
\(627\) −4.58258 −0.183010
\(628\) −16.4174 −0.655127
\(629\) −36.3731 −1.45029
\(630\) 0 0
\(631\) 5.91915 0.235638 0.117819 0.993035i \(-0.462410\pi\)
0.117819 + 0.993035i \(0.462410\pi\)
\(632\) 10.3923 0.413384
\(633\) −0.165151 −0.00656418
\(634\) 0.0871215 0.00346004
\(635\) 0 0
\(636\) −13.5826 −0.538584
\(637\) 0 0
\(638\) −5.53901 −0.219292
\(639\) −14.0471 −0.555695
\(640\) 0 0
\(641\) −18.1652 −0.717480 −0.358740 0.933437i \(-0.616794\pi\)
−0.358740 + 0.933437i \(0.616794\pi\)
\(642\) −4.83465 −0.190809
\(643\) 21.7937 0.859458 0.429729 0.902958i \(-0.358609\pi\)
0.429729 + 0.902958i \(0.358609\pi\)
\(644\) 14.2179 0.560264
\(645\) 0 0
\(646\) 3.62614 0.142668
\(647\) −27.0000 −1.06148 −0.530740 0.847535i \(-0.678086\pi\)
−0.530740 + 0.847535i \(0.678086\pi\)
\(648\) −1.73205 −0.0680414
\(649\) 36.9129 1.44896
\(650\) 0 0
\(651\) 10.7477 0.421237
\(652\) −37.7436 −1.47815
\(653\) −42.8258 −1.67590 −0.837951 0.545746i \(-0.816246\pi\)
−0.837951 + 0.545746i \(0.816246\pi\)
\(654\) 6.00000 0.234619
\(655\) 0 0
\(656\) −7.38505 −0.288338
\(657\) 0 0
\(658\) 1.44600 0.0563710
\(659\) 30.4955 1.18793 0.593967 0.804489i \(-0.297561\pi\)
0.593967 + 0.804489i \(0.297561\pi\)
\(660\) 0 0
\(661\) 18.3296 0.712937 0.356469 0.934307i \(-0.383981\pi\)
0.356469 + 0.934307i \(0.383981\pi\)
\(662\) −2.04356 −0.0794252
\(663\) 0 0
\(664\) 10.4174 0.404274
\(665\) 0 0
\(666\) 7.25227 0.281020
\(667\) −21.0000 −0.813123
\(668\) −17.1497 −0.663542
\(669\) 8.66025 0.334825
\(670\) 0 0
\(671\) 3.75015 0.144773
\(672\) 8.20871 0.316658
\(673\) 24.1652 0.931498 0.465749 0.884917i \(-0.345785\pi\)
0.465749 + 0.884917i \(0.345785\pi\)
\(674\) −14.0471 −0.541074
\(675\) 0 0
\(676\) 0 0
\(677\) −2.83485 −0.108952 −0.0544760 0.998515i \(-0.517349\pi\)
−0.0544760 + 0.998515i \(0.517349\pi\)
\(678\) −3.38865 −0.130140
\(679\) −19.7477 −0.757848
\(680\) 0 0
\(681\) 0.818350 0.0313593
\(682\) −7.50030 −0.287202
\(683\) 33.0997 1.26652 0.633262 0.773938i \(-0.281716\pi\)
0.633262 + 0.773938i \(0.281716\pi\)
\(684\) 6.20520 0.237262
\(685\) 0 0
\(686\) −8.70417 −0.332327
\(687\) 26.2668 1.00214
\(688\) −29.5390 −1.12616
\(689\) 0 0
\(690\) 0 0
\(691\) −19.7756 −0.752298 −0.376149 0.926559i \(-0.622752\pi\)
−0.376149 + 0.926559i \(0.622752\pi\)
\(692\) −29.7042 −1.12918
\(693\) 9.16515 0.348155
\(694\) −9.74475 −0.369906
\(695\) 0 0
\(696\) −7.93725 −0.300861
\(697\) −12.1244 −0.459243
\(698\) −1.12159 −0.0424528
\(699\) −2.83485 −0.107224
\(700\) 0 0
\(701\) 21.1652 0.799397 0.399698 0.916647i \(-0.369115\pi\)
0.399698 + 0.916647i \(0.369115\pi\)
\(702\) 0 0
\(703\) −13.7477 −0.518505
\(704\) 9.04165 0.340770
\(705\) 0 0
\(706\) −3.12159 −0.117483
\(707\) −15.5885 −0.586264
\(708\) 24.9916 0.939242
\(709\) 36.3731 1.36602 0.683010 0.730409i \(-0.260671\pi\)
0.683010 + 0.730409i \(0.260671\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 16.5826 0.621458
\(713\) −28.4358 −1.06493
\(714\) 3.62614 0.135705
\(715\) 0 0
\(716\) 32.5390 1.21604
\(717\) −0.190700 −0.00712184
\(718\) −8.92197 −0.332965
\(719\) 24.4955 0.913526 0.456763 0.889588i \(-0.349009\pi\)
0.456763 + 0.889588i \(0.349009\pi\)
\(720\) 0 0
\(721\) −5.48220 −0.204168
\(722\) −7.30960 −0.272035
\(723\) 1.73205 0.0644157
\(724\) 15.6697 0.582360
\(725\) 0 0
\(726\) −1.82740 −0.0678212
\(727\) 15.2523 0.565675 0.282838 0.959168i \(-0.408724\pi\)
0.282838 + 0.959168i \(0.408724\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −48.4955 −1.79367
\(732\) 2.53901 0.0938447
\(733\) 22.8027 0.842237 0.421119 0.907006i \(-0.361638\pi\)
0.421119 + 0.907006i \(0.361638\pi\)
\(734\) −0.798450 −0.0294713
\(735\) 0 0
\(736\) −21.7182 −0.800544
\(737\) 2.66970 0.0983396
\(738\) 2.41742 0.0889866
\(739\) 17.0345 0.626623 0.313311 0.949650i \(-0.398562\pi\)
0.313311 + 0.949650i \(0.398562\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.00000 0.220267
\(743\) −5.72845 −0.210157 −0.105078 0.994464i \(-0.533509\pi\)
−0.105078 + 0.994464i \(0.533509\pi\)
\(744\) −10.7477 −0.394031
\(745\) 0 0
\(746\) −5.93905 −0.217444
\(747\) 12.0290 0.440118
\(748\) 21.7182 0.794096
\(749\) −18.3296 −0.669748
\(750\) 0 0
\(751\) −11.7477 −0.428681 −0.214340 0.976759i \(-0.568760\pi\)
−0.214340 + 0.976759i \(0.568760\pi\)
\(752\) 5.10080 0.186007
\(753\) 0.165151 0.00601845
\(754\) 0 0
\(755\) 0 0
\(756\) 15.5130 0.564203
\(757\) 9.74773 0.354287 0.177144 0.984185i \(-0.443314\pi\)
0.177144 + 0.984185i \(0.443314\pi\)
\(758\) −4.87841 −0.177192
\(759\) 12.1244 0.440086
\(760\) 0 0
\(761\) 35.4594 1.28540 0.642701 0.766118i \(-0.277814\pi\)
0.642701 + 0.766118i \(0.277814\pi\)
\(762\) −8.10805 −0.293724
\(763\) 22.7477 0.823523
\(764\) 29.7042 1.07466
\(765\) 0 0
\(766\) −10.7913 −0.389905
\(767\) 0 0
\(768\) 1.79129 0.0646375
\(769\) −15.5885 −0.562134 −0.281067 0.959688i \(-0.590688\pi\)
−0.281067 + 0.959688i \(0.590688\pi\)
\(770\) 0 0
\(771\) 18.1652 0.654202
\(772\) −26.6283 −0.958374
\(773\) 24.1534 0.868736 0.434368 0.900735i \(-0.356972\pi\)
0.434368 + 0.900735i \(0.356972\pi\)
\(774\) 9.66930 0.347556
\(775\) 0 0
\(776\) 19.7477 0.708902
\(777\) −13.7477 −0.493197
\(778\) 1.44600 0.0518416
\(779\) −4.58258 −0.164188
\(780\) 0 0
\(781\) −18.5826 −0.664937
\(782\) −9.59386 −0.343076
\(783\) −22.9129 −0.818839
\(784\) −11.1652 −0.398755
\(785\) 0 0
\(786\) −3.46410 −0.123560
\(787\) −16.3115 −0.581441 −0.290720 0.956808i \(-0.593895\pi\)
−0.290720 + 0.956808i \(0.593895\pi\)
\(788\) 26.2867 0.936425
\(789\) 9.00000 0.320408
\(790\) 0 0
\(791\) −12.8474 −0.456799
\(792\) −9.16515 −0.325669
\(793\) 0 0
\(794\) 9.29583 0.329897
\(795\) 0 0
\(796\) 18.9564 0.671893
\(797\) −44.0780 −1.56132 −0.780662 0.624954i \(-0.785118\pi\)
−0.780662 + 0.624954i \(0.785118\pi\)
\(798\) 1.37055 0.0485170
\(799\) 8.37420 0.296258
\(800\) 0 0
\(801\) 19.1479 0.676558
\(802\) −13.6261 −0.481156
\(803\) 0 0
\(804\) 1.80750 0.0637456
\(805\) 0 0
\(806\) 0 0
\(807\) −15.0000 −0.528025
\(808\) 15.5885 0.548400
\(809\) −54.8258 −1.92757 −0.963785 0.266679i \(-0.914074\pi\)
−0.963785 + 0.266679i \(0.914074\pi\)
\(810\) 0 0
\(811\) −50.5155 −1.77384 −0.886920 0.461923i \(-0.847160\pi\)
−0.886920 + 0.461923i \(0.847160\pi\)
\(812\) −14.2179 −0.498951
\(813\) 8.66025 0.303728
\(814\) 9.59386 0.336264
\(815\) 0 0
\(816\) 12.7913 0.447785
\(817\) −18.3296 −0.641270
\(818\) −3.95644 −0.138334
\(819\) 0 0
\(820\) 0 0
\(821\) −18.1389 −0.633051 −0.316525 0.948584i \(-0.602516\pi\)
−0.316525 + 0.948584i \(0.602516\pi\)
\(822\) −4.79129 −0.167115
\(823\) 31.4174 1.09514 0.547571 0.836759i \(-0.315552\pi\)
0.547571 + 0.836759i \(0.315552\pi\)
\(824\) 5.48220 0.190982
\(825\) 0 0
\(826\) −11.0399 −0.384126
\(827\) 10.7737 0.374638 0.187319 0.982299i \(-0.440020\pi\)
0.187319 + 0.982299i \(0.440020\pi\)
\(828\) −16.4174 −0.570545
\(829\) 33.3303 1.15761 0.578805 0.815466i \(-0.303519\pi\)
0.578805 + 0.815466i \(0.303519\pi\)
\(830\) 0 0
\(831\) 7.41742 0.257308
\(832\) 0 0
\(833\) −18.3303 −0.635107
\(834\) −9.93545 −0.344037
\(835\) 0 0
\(836\) 8.20871 0.283904
\(837\) −31.0260 −1.07242
\(838\) −2.66565 −0.0920834
\(839\) 43.6827 1.50809 0.754047 0.656821i \(-0.228099\pi\)
0.754047 + 0.656821i \(0.228099\pi\)
\(840\) 0 0
\(841\) −8.00000 −0.275862
\(842\) 2.50455 0.0863123
\(843\) −3.65480 −0.125878
\(844\) 0.295834 0.0101830
\(845\) 0 0
\(846\) −1.66970 −0.0574054
\(847\) −6.92820 −0.238056
\(848\) 21.1652 0.726814
\(849\) 27.7477 0.952300
\(850\) 0 0
\(851\) 36.3731 1.24685
\(852\) −12.5812 −0.431025
\(853\) 5.63310 0.192874 0.0964369 0.995339i \(-0.469255\pi\)
0.0964369 + 0.995339i \(0.469255\pi\)
\(854\) −1.12159 −0.0383800
\(855\) 0 0
\(856\) 18.3296 0.626491
\(857\) 4.74773 0.162179 0.0810896 0.996707i \(-0.474160\pi\)
0.0810896 + 0.996707i \(0.474160\pi\)
\(858\) 0 0
\(859\) −44.2432 −1.50956 −0.754779 0.655979i \(-0.772256\pi\)
−0.754779 + 0.655979i \(0.772256\pi\)
\(860\) 0 0
\(861\) −4.58258 −0.156174
\(862\) −3.86932 −0.131789
\(863\) 13.6657 0.465186 0.232593 0.972574i \(-0.425279\pi\)
0.232593 + 0.972574i \(0.425279\pi\)
\(864\) −23.6965 −0.806172
\(865\) 0 0
\(866\) −4.45325 −0.151328
\(867\) 4.00000 0.135847
\(868\) −19.2523 −0.653465
\(869\) 15.8745 0.538506
\(870\) 0 0
\(871\) 0 0
\(872\) −22.7477 −0.770335
\(873\) 22.8027 0.771755
\(874\) −3.62614 −0.122656
\(875\) 0 0
\(876\) 0 0
\(877\) −7.93725 −0.268022 −0.134011 0.990980i \(-0.542786\pi\)
−0.134011 + 0.990980i \(0.542786\pi\)
\(878\) 6.62225 0.223490
\(879\) −18.1389 −0.611809
\(880\) 0 0
\(881\) −36.4955 −1.22956 −0.614782 0.788697i \(-0.710756\pi\)
−0.614782 + 0.788697i \(0.710756\pi\)
\(882\) 3.65480 0.123064
\(883\) −36.2432 −1.21968 −0.609840 0.792524i \(-0.708766\pi\)
−0.609840 + 0.792524i \(0.708766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 9.09720 0.305627
\(887\) 54.4955 1.82978 0.914889 0.403705i \(-0.132278\pi\)
0.914889 + 0.403705i \(0.132278\pi\)
\(888\) 13.7477 0.461344
\(889\) −30.7400 −1.03099
\(890\) 0 0
\(891\) −2.64575 −0.0886360
\(892\) −15.5130 −0.519414
\(893\) 3.16515 0.105918
\(894\) 7.62614 0.255056
\(895\) 0 0
\(896\) −19.1216 −0.638808
\(897\) 0 0
\(898\) 5.03447 0.168002
\(899\) 28.4358 0.948387
\(900\) 0 0
\(901\) 34.7477 1.15761
\(902\) 3.19795 0.106480
\(903\) −18.3296 −0.609970
\(904\) 12.8474 0.427297
\(905\) 0 0
\(906\) 4.41742 0.146759
\(907\) 6.25227 0.207603 0.103802 0.994598i \(-0.466899\pi\)
0.103802 + 0.994598i \(0.466899\pi\)
\(908\) −1.46590 −0.0486476
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −7.91288 −0.262165 −0.131083 0.991371i \(-0.541845\pi\)
−0.131083 + 0.991371i \(0.541845\pi\)
\(912\) 4.83465 0.160091
\(913\) 15.9129 0.526639
\(914\) 0.791288 0.0261735
\(915\) 0 0
\(916\) −47.0514 −1.55462
\(917\) −13.1334 −0.433703
\(918\) −10.4678 −0.345487
\(919\) 54.1652 1.78674 0.893372 0.449318i \(-0.148333\pi\)
0.893372 + 0.449318i \(0.148333\pi\)
\(920\) 0 0
\(921\) 24.2487 0.799022
\(922\) 16.3739 0.539244
\(923\) 0 0
\(924\) 8.20871 0.270047
\(925\) 0 0
\(926\) −18.0000 −0.591517
\(927\) 6.33030 0.207914
\(928\) 21.7182 0.712935
\(929\) −26.3622 −0.864915 −0.432457 0.901654i \(-0.642353\pi\)
−0.432457 + 0.901654i \(0.642353\pi\)
\(930\) 0 0
\(931\) −6.92820 −0.227063
\(932\) 5.07803 0.166336
\(933\) −7.58258 −0.248242
\(934\) 11.1153 0.363704
\(935\) 0 0
\(936\) 0 0
\(937\) 31.4955 1.02891 0.514456 0.857517i \(-0.327994\pi\)
0.514456 + 0.857517i \(0.327994\pi\)
\(938\) −0.798450 −0.0260703
\(939\) −3.25227 −0.106134
\(940\) 0 0
\(941\) −26.4575 −0.862490 −0.431245 0.902235i \(-0.641926\pi\)
−0.431245 + 0.902235i \(0.641926\pi\)
\(942\) 4.18710 0.136423
\(943\) 12.1244 0.394823
\(944\) −38.9434 −1.26750
\(945\) 0 0
\(946\) 12.7913 0.415881
\(947\) −14.3332 −0.465765 −0.232883 0.972505i \(-0.574816\pi\)
−0.232883 + 0.972505i \(0.574816\pi\)
\(948\) 10.7477 0.349070
\(949\) 0 0
\(950\) 0 0
\(951\) 0.190700 0.00618388
\(952\) −13.7477 −0.445566
\(953\) 8.07803 0.261673 0.130837 0.991404i \(-0.458234\pi\)
0.130837 + 0.991404i \(0.458234\pi\)
\(954\) −6.92820 −0.224309
\(955\) 0 0
\(956\) 0.341599 0.0110481
\(957\) −12.1244 −0.391925
\(958\) −2.13068 −0.0688392
\(959\) −18.1652 −0.586583
\(960\) 0 0
\(961\) 7.50455 0.242082
\(962\) 0 0
\(963\) 21.1652 0.682037
\(964\) −3.10260 −0.0999281
\(965\) 0 0
\(966\) −3.62614 −0.116669
\(967\) 37.3821 1.20213 0.601064 0.799201i \(-0.294744\pi\)
0.601064 + 0.799201i \(0.294744\pi\)
\(968\) 6.92820 0.222681
\(969\) 7.93725 0.254981
\(970\) 0 0
\(971\) −18.4955 −0.593547 −0.296774 0.954948i \(-0.595911\pi\)
−0.296774 + 0.954948i \(0.595911\pi\)
\(972\) −28.6606 −0.919289
\(973\) −37.6682 −1.20759
\(974\) 4.87841 0.156314
\(975\) 0 0
\(976\) −3.95644 −0.126643
\(977\) −35.3085 −1.12962 −0.564809 0.825222i \(-0.691050\pi\)
−0.564809 + 0.825222i \(0.691050\pi\)
\(978\) 9.62614 0.307810
\(979\) 25.3303 0.809560
\(980\) 0 0
\(981\) −26.2668 −0.838635
\(982\) −8.87086 −0.283080
\(983\) −55.0840 −1.75691 −0.878454 0.477827i \(-0.841424\pi\)
−0.878454 + 0.477827i \(0.841424\pi\)
\(984\) 4.58258 0.146087
\(985\) 0 0
\(986\) 9.59386 0.305531
\(987\) 3.16515 0.100748
\(988\) 0 0
\(989\) 48.4955 1.54207
\(990\) 0 0
\(991\) −13.0000 −0.412959 −0.206479 0.978451i \(-0.566201\pi\)
−0.206479 + 0.978451i \(0.566201\pi\)
\(992\) 29.4083 0.933715
\(993\) −4.47315 −0.141951
\(994\) 5.55765 0.176278
\(995\) 0 0
\(996\) 10.7737 0.341378
\(997\) 0.165151 0.00523040 0.00261520 0.999997i \(-0.499168\pi\)
0.00261520 + 0.999997i \(0.499168\pi\)
\(998\) −0.330303 −0.0104556
\(999\) 39.6863 1.25562
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.bk.1.3 4
5.2 odd 4 845.2.b.f.339.5 8
5.3 odd 4 845.2.b.f.339.4 8
5.4 even 2 4225.2.a.bj.1.2 4
13.6 odd 12 325.2.n.c.101.1 4
13.11 odd 12 325.2.n.c.251.1 4
13.12 even 2 inner 4225.2.a.bk.1.2 4
65.2 even 12 845.2.l.c.654.2 8
65.3 odd 12 845.2.n.c.529.3 8
65.7 even 12 845.2.l.c.699.3 8
65.8 even 4 845.2.d.c.844.6 8
65.12 odd 4 845.2.b.f.339.3 8
65.17 odd 12 845.2.n.d.484.1 8
65.18 even 4 845.2.d.c.844.4 8
65.19 odd 12 325.2.n.b.101.2 4
65.22 odd 12 845.2.n.c.484.3 8
65.23 odd 12 845.2.n.d.529.1 8
65.24 odd 12 325.2.n.b.251.2 4
65.28 even 12 845.2.l.c.654.3 8
65.32 even 12 65.2.l.a.49.2 yes 8
65.33 even 12 845.2.l.c.699.2 8
65.37 even 12 65.2.l.a.4.3 yes 8
65.38 odd 4 845.2.b.f.339.6 8
65.42 odd 12 845.2.n.d.529.2 8
65.43 odd 12 845.2.n.c.484.4 8
65.47 even 4 845.2.d.c.844.3 8
65.48 odd 12 845.2.n.d.484.2 8
65.57 even 4 845.2.d.c.844.5 8
65.58 even 12 65.2.l.a.49.3 yes 8
65.62 odd 12 845.2.n.c.529.4 8
65.63 even 12 65.2.l.a.4.2 8
65.64 even 2 4225.2.a.bj.1.3 4
195.32 odd 12 585.2.bf.a.244.3 8
195.128 odd 12 585.2.bf.a.199.3 8
195.167 odd 12 585.2.bf.a.199.2 8
195.188 odd 12 585.2.bf.a.244.2 8
260.63 odd 12 1040.2.df.b.849.4 8
260.123 odd 12 1040.2.df.b.49.1 8
260.167 odd 12 1040.2.df.b.849.1 8
260.227 odd 12 1040.2.df.b.49.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.2 8 65.63 even 12
65.2.l.a.4.3 yes 8 65.37 even 12
65.2.l.a.49.2 yes 8 65.32 even 12
65.2.l.a.49.3 yes 8 65.58 even 12
325.2.n.b.101.2 4 65.19 odd 12
325.2.n.b.251.2 4 65.24 odd 12
325.2.n.c.101.1 4 13.6 odd 12
325.2.n.c.251.1 4 13.11 odd 12
585.2.bf.a.199.2 8 195.167 odd 12
585.2.bf.a.199.3 8 195.128 odd 12
585.2.bf.a.244.2 8 195.188 odd 12
585.2.bf.a.244.3 8 195.32 odd 12
845.2.b.f.339.3 8 65.12 odd 4
845.2.b.f.339.4 8 5.3 odd 4
845.2.b.f.339.5 8 5.2 odd 4
845.2.b.f.339.6 8 65.38 odd 4
845.2.d.c.844.3 8 65.47 even 4
845.2.d.c.844.4 8 65.18 even 4
845.2.d.c.844.5 8 65.57 even 4
845.2.d.c.844.6 8 65.8 even 4
845.2.l.c.654.2 8 65.2 even 12
845.2.l.c.654.3 8 65.28 even 12
845.2.l.c.699.2 8 65.33 even 12
845.2.l.c.699.3 8 65.7 even 12
845.2.n.c.484.3 8 65.22 odd 12
845.2.n.c.484.4 8 65.43 odd 12
845.2.n.c.529.3 8 65.3 odd 12
845.2.n.c.529.4 8 65.62 odd 12
845.2.n.d.484.1 8 65.17 odd 12
845.2.n.d.484.2 8 65.48 odd 12
845.2.n.d.529.1 8 65.23 odd 12
845.2.n.d.529.2 8 65.42 odd 12
1040.2.df.b.49.1 8 260.123 odd 12
1040.2.df.b.49.4 8 260.227 odd 12
1040.2.df.b.849.1 8 260.167 odd 12
1040.2.df.b.849.4 8 260.63 odd 12
4225.2.a.bj.1.2 4 5.4 even 2
4225.2.a.bj.1.3 4 65.64 even 2
4225.2.a.bk.1.2 4 13.12 even 2 inner
4225.2.a.bk.1.3 4 1.1 even 1 trivial