Properties

Label 845.2.d.c.844.4
Level $845$
Weight $2$
Character 845.844
Analytic conductor $6.747$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(844,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.844");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 844.4
Root \(-1.09445 + 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 845.844
Dual form 845.2.d.c.844.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.456850 q^{2} +1.00000i q^{3} -1.79129 q^{4} +(-2.18890 + 0.456850i) q^{5} -0.456850i q^{6} +1.73205 q^{7} +1.73205 q^{8} +2.00000 q^{9} +(1.00000 - 0.208712i) q^{10} -2.64575i q^{11} -1.79129i q^{12} -0.791288 q^{14} +(-0.456850 - 2.18890i) q^{15} +2.79129 q^{16} +4.58258i q^{17} -0.913701 q^{18} +1.73205i q^{19} +(3.92095 - 0.818350i) q^{20} +1.73205i q^{21} +1.20871i q^{22} +4.58258i q^{23} +1.73205i q^{24} +(4.58258 - 2.00000i) q^{25} +5.00000i q^{27} -3.10260 q^{28} -4.58258 q^{29} +(0.208712 + 1.00000i) q^{30} -6.20520i q^{31} -4.73930 q^{32} +2.64575 q^{33} -2.09355i q^{34} +(-3.79129 + 0.791288i) q^{35} -3.58258 q^{36} -7.93725 q^{37} -0.791288i q^{38} +(-3.79129 + 0.791288i) q^{40} +2.64575i q^{41} -0.791288i q^{42} +10.5826i q^{43} +4.73930i q^{44} +(-4.37780 + 0.913701i) q^{45} -2.09355i q^{46} +1.82740 q^{47} +2.79129i q^{48} -4.00000 q^{49} +(-2.09355 + 0.913701i) q^{50} -4.58258 q^{51} +7.58258i q^{53} -2.28425i q^{54} +(1.20871 + 5.79129i) q^{55} +3.00000 q^{56} -1.73205 q^{57} +2.09355 q^{58} +13.9518i q^{59} +(0.818350 + 3.92095i) q^{60} -1.41742 q^{61} +2.83485i q^{62} +3.46410 q^{63} -3.41742 q^{64} -1.20871 q^{66} +1.00905 q^{67} -8.20871i q^{68} -4.58258 q^{69} +(1.73205 - 0.361500i) q^{70} -7.02355i q^{71} +3.46410 q^{72} +3.62614 q^{74} +(2.00000 + 4.58258i) q^{75} -3.10260i q^{76} -4.58258i q^{77} +6.00000 q^{79} +(-6.10985 + 1.27520i) q^{80} +1.00000 q^{81} -1.20871i q^{82} -6.01450 q^{83} -3.10260i q^{84} +(-2.09355 - 10.0308i) q^{85} -4.83465i q^{86} -4.58258i q^{87} -4.58258i q^{88} +9.57395i q^{89} +(2.00000 - 0.417424i) q^{90} -8.20871i q^{92} +6.20520 q^{93} -0.834849 q^{94} +(-0.791288 - 3.79129i) q^{95} -4.73930i q^{96} +11.4014 q^{97} +1.82740 q^{98} -5.29150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 16 q^{9} + 8 q^{10} + 12 q^{14} + 4 q^{16} + 20 q^{30} - 12 q^{35} + 8 q^{36} - 12 q^{40} - 32 q^{49} + 28 q^{55} + 24 q^{56} - 48 q^{61} - 64 q^{64} - 28 q^{66} + 84 q^{74} + 16 q^{75}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.456850 −0.323042 −0.161521 0.986869i \(-0.551640\pi\)
−0.161521 + 0.986869i \(0.551640\pi\)
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) −1.79129 −0.895644
\(5\) −2.18890 + 0.456850i −0.978906 + 0.204310i
\(6\) 0.456850i 0.186508i
\(7\) 1.73205 0.654654 0.327327 0.944911i \(-0.393852\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 1.73205 0.612372
\(9\) 2.00000 0.666667
\(10\) 1.00000 0.208712i 0.316228 0.0660006i
\(11\) 2.64575i 0.797724i −0.917011 0.398862i \(-0.869405\pi\)
0.917011 0.398862i \(-0.130595\pi\)
\(12\) 1.79129i 0.517100i
\(13\) 0 0
\(14\) −0.791288 −0.211481
\(15\) −0.456850 2.18890i −0.117958 0.565172i
\(16\) 2.79129 0.697822
\(17\) 4.58258i 1.11144i 0.831370 + 0.555719i \(0.187557\pi\)
−0.831370 + 0.555719i \(0.812443\pi\)
\(18\) −0.913701 −0.215361
\(19\) 1.73205i 0.397360i 0.980064 + 0.198680i \(0.0636654\pi\)
−0.980064 + 0.198680i \(0.936335\pi\)
\(20\) 3.92095 0.818350i 0.876751 0.182989i
\(21\) 1.73205i 0.377964i
\(22\) 1.20871i 0.257698i
\(23\) 4.58258i 0.955533i 0.878487 + 0.477767i \(0.158554\pi\)
−0.878487 + 0.477767i \(0.841446\pi\)
\(24\) 1.73205i 0.353553i
\(25\) 4.58258 2.00000i 0.916515 0.400000i
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) −3.10260 −0.586337
\(29\) −4.58258 −0.850963 −0.425481 0.904967i \(-0.639895\pi\)
−0.425481 + 0.904967i \(0.639895\pi\)
\(30\) 0.208712 + 1.00000i 0.0381055 + 0.182574i
\(31\) 6.20520i 1.11449i −0.830349 0.557244i \(-0.811859\pi\)
0.830349 0.557244i \(-0.188141\pi\)
\(32\) −4.73930 −0.837798
\(33\) 2.64575 0.460566
\(34\) 2.09355i 0.359041i
\(35\) −3.79129 + 0.791288i −0.640845 + 0.133752i
\(36\) −3.58258 −0.597096
\(37\) −7.93725 −1.30488 −0.652438 0.757842i \(-0.726254\pi\)
−0.652438 + 0.757842i \(0.726254\pi\)
\(38\) 0.791288i 0.128364i
\(39\) 0 0
\(40\) −3.79129 + 0.791288i −0.599455 + 0.125114i
\(41\) 2.64575i 0.413197i 0.978426 + 0.206598i \(0.0662394\pi\)
−0.978426 + 0.206598i \(0.933761\pi\)
\(42\) 0.791288i 0.122098i
\(43\) 10.5826i 1.61383i 0.590669 + 0.806914i \(0.298864\pi\)
−0.590669 + 0.806914i \(0.701136\pi\)
\(44\) 4.73930i 0.714477i
\(45\) −4.37780 + 0.913701i −0.652604 + 0.136206i
\(46\) 2.09355i 0.308677i
\(47\) 1.82740 0.266554 0.133277 0.991079i \(-0.457450\pi\)
0.133277 + 0.991079i \(0.457450\pi\)
\(48\) 2.79129i 0.402888i
\(49\) −4.00000 −0.571429
\(50\) −2.09355 + 0.913701i −0.296073 + 0.129217i
\(51\) −4.58258 −0.641689
\(52\) 0 0
\(53\) 7.58258i 1.04155i 0.853695 + 0.520773i \(0.174356\pi\)
−0.853695 + 0.520773i \(0.825644\pi\)
\(54\) 2.28425i 0.310847i
\(55\) 1.20871 + 5.79129i 0.162983 + 0.780897i
\(56\) 3.00000 0.400892
\(57\) −1.73205 −0.229416
\(58\) 2.09355 0.274897
\(59\) 13.9518i 1.81636i 0.418576 + 0.908182i \(0.362530\pi\)
−0.418576 + 0.908182i \(0.637470\pi\)
\(60\) 0.818350 + 3.92095i 0.105649 + 0.506193i
\(61\) −1.41742 −0.181483 −0.0907413 0.995874i \(-0.528924\pi\)
−0.0907413 + 0.995874i \(0.528924\pi\)
\(62\) 2.83485i 0.360026i
\(63\) 3.46410 0.436436
\(64\) −3.41742 −0.427178
\(65\) 0 0
\(66\) −1.20871 −0.148782
\(67\) 1.00905 0.123275 0.0616376 0.998099i \(-0.480368\pi\)
0.0616376 + 0.998099i \(0.480368\pi\)
\(68\) 8.20871i 0.995453i
\(69\) −4.58258 −0.551677
\(70\) 1.73205 0.361500i 0.207020 0.0432075i
\(71\) 7.02355i 0.833542i −0.909011 0.416771i \(-0.863162\pi\)
0.909011 0.416771i \(-0.136838\pi\)
\(72\) 3.46410 0.408248
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 3.62614 0.421530
\(75\) 2.00000 + 4.58258i 0.230940 + 0.529150i
\(76\) 3.10260i 0.355893i
\(77\) 4.58258i 0.522233i
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) −6.10985 + 1.27520i −0.683102 + 0.142572i
\(81\) 1.00000 0.111111
\(82\) 1.20871i 0.133480i
\(83\) −6.01450 −0.660177 −0.330089 0.943950i \(-0.607079\pi\)
−0.330089 + 0.943950i \(0.607079\pi\)
\(84\) 3.10260i 0.338522i
\(85\) −2.09355 10.0308i −0.227077 1.08799i
\(86\) 4.83465i 0.521334i
\(87\) 4.58258i 0.491304i
\(88\) 4.58258i 0.488504i
\(89\) 9.57395i 1.01484i 0.861700 + 0.507419i \(0.169400\pi\)
−0.861700 + 0.507419i \(0.830600\pi\)
\(90\) 2.00000 0.417424i 0.210819 0.0440004i
\(91\) 0 0
\(92\) 8.20871i 0.855817i
\(93\) 6.20520 0.643450
\(94\) −0.834849 −0.0861081
\(95\) −0.791288 3.79129i −0.0811844 0.388978i
\(96\) 4.73930i 0.483703i
\(97\) 11.4014 1.15763 0.578816 0.815458i \(-0.303515\pi\)
0.578816 + 0.815458i \(0.303515\pi\)
\(98\) 1.82740 0.184595
\(99\) 5.29150i 0.531816i
\(100\) −8.20871 + 3.58258i −0.820871 + 0.358258i
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 2.09355 0.207292
\(103\) 3.16515i 0.311872i 0.987767 + 0.155936i \(0.0498393\pi\)
−0.987767 + 0.155936i \(0.950161\pi\)
\(104\) 0 0
\(105\) −0.791288 3.79129i −0.0772218 0.369992i
\(106\) 3.46410i 0.336463i
\(107\) 10.5826i 1.02306i 0.859267 + 0.511528i \(0.170920\pi\)
−0.859267 + 0.511528i \(0.829080\pi\)
\(108\) 8.95644i 0.861834i
\(109\) 13.1334i 1.25795i 0.777425 + 0.628976i \(0.216526\pi\)
−0.777425 + 0.628976i \(0.783474\pi\)
\(110\) −0.552200 2.64575i −0.0526502 0.252262i
\(111\) 7.93725i 0.753371i
\(112\) 4.83465 0.456832
\(113\) 7.41742i 0.697773i −0.937165 0.348886i \(-0.886560\pi\)
0.937165 0.348886i \(-0.113440\pi\)
\(114\) 0.791288 0.0741109
\(115\) −2.09355 10.0308i −0.195225 0.935377i
\(116\) 8.20871 0.762160
\(117\) 0 0
\(118\) 6.37386i 0.586762i
\(119\) 7.93725i 0.727607i
\(120\) −0.791288 3.79129i −0.0722344 0.346096i
\(121\) 4.00000 0.363636
\(122\) 0.647551 0.0586265
\(123\) −2.64575 −0.238559
\(124\) 11.1153i 0.998184i
\(125\) −9.11710 + 6.47135i −0.815459 + 0.578815i
\(126\) −1.58258 −0.140987
\(127\) 17.7477i 1.57486i −0.616407 0.787428i \(-0.711412\pi\)
0.616407 0.787428i \(-0.288588\pi\)
\(128\) 11.0399 0.975795
\(129\) −10.5826 −0.931744
\(130\) 0 0
\(131\) −7.58258 −0.662493 −0.331246 0.943544i \(-0.607469\pi\)
−0.331246 + 0.943544i \(0.607469\pi\)
\(132\) −4.73930 −0.412503
\(133\) 3.00000i 0.260133i
\(134\) −0.460985 −0.0398230
\(135\) −2.28425 10.9445i −0.196597 0.941953i
\(136\) 7.93725i 0.680614i
\(137\) −10.4877 −0.896021 −0.448010 0.894028i \(-0.647867\pi\)
−0.448010 + 0.894028i \(0.647867\pi\)
\(138\) 2.09355 0.178215
\(139\) 21.7477 1.84462 0.922309 0.386453i \(-0.126300\pi\)
0.922309 + 0.386453i \(0.126300\pi\)
\(140\) 6.79129 1.41742i 0.573969 0.119794i
\(141\) 1.82740i 0.153895i
\(142\) 3.20871i 0.269269i
\(143\) 0 0
\(144\) 5.58258 0.465215
\(145\) 10.0308 2.09355i 0.833013 0.173860i
\(146\) 0 0
\(147\) 4.00000i 0.329914i
\(148\) 14.2179 1.16870
\(149\) 16.6929i 1.36753i 0.729701 + 0.683766i \(0.239659\pi\)
−0.729701 + 0.683766i \(0.760341\pi\)
\(150\) −0.913701 2.09355i −0.0746033 0.170938i
\(151\) 9.66930i 0.786877i 0.919351 + 0.393438i \(0.128715\pi\)
−0.919351 + 0.393438i \(0.871285\pi\)
\(152\) 3.00000i 0.243332i
\(153\) 9.16515i 0.740959i
\(154\) 2.09355i 0.168703i
\(155\) 2.83485 + 13.5826i 0.227701 + 1.09098i
\(156\) 0 0
\(157\) 9.16515i 0.731459i −0.930721 0.365729i \(-0.880820\pi\)
0.930721 0.365729i \(-0.119180\pi\)
\(158\) −2.74110 −0.218070
\(159\) −7.58258 −0.601337
\(160\) 10.3739 2.16515i 0.820126 0.171170i
\(161\) 7.93725i 0.625543i
\(162\) −0.456850 −0.0358935
\(163\) −21.0707 −1.65038 −0.825191 0.564854i \(-0.808932\pi\)
−0.825191 + 0.564854i \(0.808932\pi\)
\(164\) 4.73930i 0.370077i
\(165\) −5.79129 + 1.20871i −0.450851 + 0.0940981i
\(166\) 2.74773 0.213265
\(167\) 9.57395 0.740855 0.370427 0.928861i \(-0.379211\pi\)
0.370427 + 0.928861i \(0.379211\pi\)
\(168\) 3.00000i 0.231455i
\(169\) 0 0
\(170\) 0.956439 + 4.58258i 0.0733555 + 0.351468i
\(171\) 3.46410i 0.264906i
\(172\) 18.9564i 1.44541i
\(173\) 16.5826i 1.26075i −0.776291 0.630375i \(-0.782901\pi\)
0.776291 0.630375i \(-0.217099\pi\)
\(174\) 2.09355i 0.158712i
\(175\) 7.93725 3.46410i 0.600000 0.261861i
\(176\) 7.38505i 0.556669i
\(177\) −13.9518 −1.04868
\(178\) 4.37386i 0.327835i
\(179\) −18.1652 −1.35773 −0.678864 0.734264i \(-0.737527\pi\)
−0.678864 + 0.734264i \(0.737527\pi\)
\(180\) 7.84190 1.63670i 0.584501 0.121992i
\(181\) 8.74773 0.650213 0.325107 0.945677i \(-0.394600\pi\)
0.325107 + 0.945677i \(0.394600\pi\)
\(182\) 0 0
\(183\) 1.41742i 0.104779i
\(184\) 7.93725i 0.585142i
\(185\) 17.3739 3.62614i 1.27735 0.266599i
\(186\) −2.83485 −0.207861
\(187\) 12.1244 0.886621
\(188\) −3.27340 −0.238737
\(189\) 8.66025i 0.629941i
\(190\) 0.361500 + 1.73205i 0.0262260 + 0.125656i
\(191\) −16.5826 −1.19987 −0.599937 0.800048i \(-0.704808\pi\)
−0.599937 + 0.800048i \(0.704808\pi\)
\(192\) 3.41742i 0.246631i
\(193\) −14.8655 −1.07004 −0.535020 0.844840i \(-0.679696\pi\)
−0.535020 + 0.844840i \(0.679696\pi\)
\(194\) −5.20871 −0.373964
\(195\) 0 0
\(196\) 7.16515 0.511797
\(197\) 14.6748 1.04553 0.522767 0.852476i \(-0.324900\pi\)
0.522767 + 0.852476i \(0.324900\pi\)
\(198\) 2.41742i 0.171799i
\(199\) −10.5826 −0.750179 −0.375089 0.926989i \(-0.622388\pi\)
−0.375089 + 0.926989i \(0.622388\pi\)
\(200\) 7.93725 3.46410i 0.561249 0.244949i
\(201\) 1.00905i 0.0711729i
\(202\) −4.11165 −0.289295
\(203\) −7.93725 −0.557086
\(204\) 8.20871 0.574725
\(205\) −1.20871 5.79129i −0.0844201 0.404481i
\(206\) 1.44600i 0.100748i
\(207\) 9.16515i 0.637022i
\(208\) 0 0
\(209\) 4.58258 0.316983
\(210\) 0.361500 + 1.73205i 0.0249459 + 0.119523i
\(211\) −0.165151 −0.0113695 −0.00568475 0.999984i \(-0.501810\pi\)
−0.00568475 + 0.999984i \(0.501810\pi\)
\(212\) 13.5826i 0.932855i
\(213\) 7.02355 0.481246
\(214\) 4.83465i 0.330490i
\(215\) −4.83465 23.1642i −0.329721 1.57979i
\(216\) 8.66025i 0.589256i
\(217\) 10.7477i 0.729603i
\(218\) 6.00000i 0.406371i
\(219\) 0 0
\(220\) −2.16515 10.3739i −0.145974 0.699406i
\(221\) 0 0
\(222\) 3.62614i 0.243370i
\(223\) 8.66025 0.579934 0.289967 0.957037i \(-0.406356\pi\)
0.289967 + 0.957037i \(0.406356\pi\)
\(224\) −8.20871 −0.548468
\(225\) 9.16515 4.00000i 0.611010 0.266667i
\(226\) 3.38865i 0.225410i
\(227\) −0.818350 −0.0543158 −0.0271579 0.999631i \(-0.508646\pi\)
−0.0271579 + 0.999631i \(0.508646\pi\)
\(228\) 3.10260 0.205475
\(229\) 26.2668i 1.73576i −0.496774 0.867880i \(-0.665482\pi\)
0.496774 0.867880i \(-0.334518\pi\)
\(230\) 0.956439 + 4.58258i 0.0630657 + 0.302166i
\(231\) 4.58258 0.301511
\(232\) −7.93725 −0.521106
\(233\) 2.83485i 0.185717i 0.995679 + 0.0928586i \(0.0296004\pi\)
−0.995679 + 0.0928586i \(0.970400\pi\)
\(234\) 0 0
\(235\) −4.00000 + 0.834849i −0.260931 + 0.0544595i
\(236\) 24.9916i 1.62682i
\(237\) 6.00000i 0.389742i
\(238\) 3.62614i 0.235048i
\(239\) 0.190700i 0.0123354i −0.999981 0.00616769i \(-0.998037\pi\)
0.999981 0.00616769i \(-0.00196325\pi\)
\(240\) −1.27520 6.10985i −0.0823138 0.394389i
\(241\) 1.73205i 0.111571i 0.998443 + 0.0557856i \(0.0177663\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) −1.82740 −0.117470
\(243\) 16.0000i 1.02640i
\(244\) 2.53901 0.162544
\(245\) 8.75560 1.82740i 0.559375 0.116748i
\(246\) 1.20871 0.0770647
\(247\) 0 0
\(248\) 10.7477i 0.682481i
\(249\) 6.01450i 0.381154i
\(250\) 4.16515 2.95644i 0.263427 0.186982i
\(251\) −0.165151 −0.0104243 −0.00521213 0.999986i \(-0.501659\pi\)
−0.00521213 + 0.999986i \(0.501659\pi\)
\(252\) −6.20520 −0.390891
\(253\) 12.1244 0.762252
\(254\) 8.10805i 0.508745i
\(255\) 10.0308 2.09355i 0.628153 0.131103i
\(256\) 1.79129 0.111955
\(257\) 18.1652i 1.13311i 0.824024 + 0.566556i \(0.191724\pi\)
−0.824024 + 0.566556i \(0.808276\pi\)
\(258\) 4.83465 0.300992
\(259\) −13.7477 −0.854242
\(260\) 0 0
\(261\) −9.16515 −0.567309
\(262\) 3.46410 0.214013
\(263\) 9.00000i 0.554964i 0.960731 + 0.277482i \(0.0894999\pi\)
−0.960731 + 0.277482i \(0.910500\pi\)
\(264\) 4.58258 0.282038
\(265\) −3.46410 16.5975i −0.212798 1.01958i
\(266\) 1.37055i 0.0840339i
\(267\) −9.57395 −0.585917
\(268\) −1.80750 −0.110411
\(269\) 15.0000 0.914566 0.457283 0.889321i \(-0.348823\pi\)
0.457283 + 0.889321i \(0.348823\pi\)
\(270\) 1.04356 + 5.00000i 0.0635091 + 0.304290i
\(271\) 8.66025i 0.526073i 0.964786 + 0.263036i \(0.0847240\pi\)
−0.964786 + 0.263036i \(0.915276\pi\)
\(272\) 12.7913i 0.775586i
\(273\) 0 0
\(274\) 4.79129 0.289452
\(275\) −5.29150 12.1244i −0.319090 0.731126i
\(276\) 8.20871 0.494106
\(277\) 7.41742i 0.445670i 0.974856 + 0.222835i \(0.0715311\pi\)
−0.974856 + 0.222835i \(0.928469\pi\)
\(278\) −9.93545 −0.595889
\(279\) 12.4104i 0.742992i
\(280\) −6.56670 + 1.37055i −0.392436 + 0.0819061i
\(281\) 3.65480i 0.218027i −0.994040 0.109014i \(-0.965231\pi\)
0.994040 0.109014i \(-0.0347692\pi\)
\(282\) 0.834849i 0.0497145i
\(283\) 27.7477i 1.64943i −0.565548 0.824716i \(-0.691335\pi\)
0.565548 0.824716i \(-0.308665\pi\)
\(284\) 12.5812i 0.746557i
\(285\) 3.79129 0.791288i 0.224577 0.0468718i
\(286\) 0 0
\(287\) 4.58258i 0.270501i
\(288\) −9.47860 −0.558532
\(289\) −4.00000 −0.235294
\(290\) −4.58258 + 0.956439i −0.269098 + 0.0561640i
\(291\) 11.4014i 0.668359i
\(292\) 0 0
\(293\) 18.1389 1.05968 0.529842 0.848097i \(-0.322251\pi\)
0.529842 + 0.848097i \(0.322251\pi\)
\(294\) 1.82740i 0.106576i
\(295\) −6.37386 30.5390i −0.371101 1.77805i
\(296\) −13.7477 −0.799070
\(297\) 13.2288 0.767610
\(298\) 7.62614i 0.441770i
\(299\) 0 0
\(300\) −3.58258 8.20871i −0.206840 0.473930i
\(301\) 18.3296i 1.05650i
\(302\) 4.41742i 0.254194i
\(303\) 9.00000i 0.517036i
\(304\) 4.83465i 0.277286i
\(305\) 3.10260 0.647551i 0.177654 0.0370786i
\(306\) 4.18710i 0.239361i
\(307\) 24.2487 1.38395 0.691974 0.721923i \(-0.256741\pi\)
0.691974 + 0.721923i \(0.256741\pi\)
\(308\) 8.20871i 0.467735i
\(309\) −3.16515 −0.180059
\(310\) −1.29510 6.20520i −0.0735568 0.352432i
\(311\) 7.58258 0.429968 0.214984 0.976618i \(-0.431030\pi\)
0.214984 + 0.976618i \(0.431030\pi\)
\(312\) 0 0
\(313\) 3.25227i 0.183829i −0.995767 0.0919147i \(-0.970701\pi\)
0.995767 0.0919147i \(-0.0292987\pi\)
\(314\) 4.18710i 0.236292i
\(315\) −7.58258 + 1.58258i −0.427230 + 0.0891680i
\(316\) −10.7477 −0.604607
\(317\) −0.190700 −0.0107108 −0.00535540 0.999986i \(-0.501705\pi\)
−0.00535540 + 0.999986i \(0.501705\pi\)
\(318\) 3.46410 0.194257
\(319\) 12.1244i 0.678834i
\(320\) 7.48040 1.56125i 0.418167 0.0872766i
\(321\) −10.5826 −0.590662
\(322\) 3.62614i 0.202077i
\(323\) −7.93725 −0.441641
\(324\) −1.79129 −0.0995160
\(325\) 0 0
\(326\) 9.62614 0.533142
\(327\) −13.1334 −0.726279
\(328\) 4.58258i 0.253030i
\(329\) 3.16515 0.174500
\(330\) 2.64575 0.552200i 0.145644 0.0303976i
\(331\) 4.47315i 0.245867i 0.992415 + 0.122933i \(0.0392301\pi\)
−0.992415 + 0.122933i \(0.960770\pi\)
\(332\) 10.7737 0.591284
\(333\) −15.8745 −0.869918
\(334\) −4.37386 −0.239327
\(335\) −2.20871 + 0.460985i −0.120675 + 0.0251863i
\(336\) 4.83465i 0.263752i
\(337\) 30.7477i 1.67494i −0.546487 0.837468i \(-0.684035\pi\)
0.546487 0.837468i \(-0.315965\pi\)
\(338\) 0 0
\(339\) 7.41742 0.402859
\(340\) 3.75015 + 17.9681i 0.203381 + 0.974455i
\(341\) −16.4174 −0.889053
\(342\) 1.58258i 0.0855759i
\(343\) −19.0526 −1.02874
\(344\) 18.3296i 0.988264i
\(345\) 10.0308 2.09355i 0.540040 0.112713i
\(346\) 7.57575i 0.407275i
\(347\) 21.3303i 1.14507i 0.819880 + 0.572535i \(0.194040\pi\)
−0.819880 + 0.572535i \(0.805960\pi\)
\(348\) 8.20871i 0.440033i
\(349\) 2.45505i 0.131416i 0.997839 + 0.0657079i \(0.0209306\pi\)
−0.997839 + 0.0657079i \(0.979069\pi\)
\(350\) −3.62614 + 1.58258i −0.193825 + 0.0845922i
\(351\) 0 0
\(352\) 12.5390i 0.668332i
\(353\) −6.83285 −0.363676 −0.181838 0.983328i \(-0.558205\pi\)
−0.181838 + 0.983328i \(0.558205\pi\)
\(354\) 6.37386 0.338767
\(355\) 3.20871 + 15.3739i 0.170301 + 0.815960i
\(356\) 17.1497i 0.908933i
\(357\) −7.93725 −0.420084
\(358\) 8.29875 0.438603
\(359\) 19.5293i 1.03072i 0.856975 + 0.515359i \(0.172341\pi\)
−0.856975 + 0.515359i \(0.827659\pi\)
\(360\) −7.58258 + 1.58258i −0.399637 + 0.0834091i
\(361\) 16.0000 0.842105
\(362\) −3.99640 −0.210046
\(363\) 4.00000i 0.209946i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.647551i 0.0338480i
\(367\) 1.74773i 0.0912306i 0.998959 + 0.0456153i \(0.0145248\pi\)
−0.998959 + 0.0456153i \(0.985475\pi\)
\(368\) 12.7913i 0.666792i
\(369\) 5.29150i 0.275465i
\(370\) −7.93725 + 1.65660i −0.412638 + 0.0861226i
\(371\) 13.1334i 0.681852i
\(372\) −11.1153 −0.576302
\(373\) 13.0000i 0.673114i −0.941663 0.336557i \(-0.890737\pi\)
0.941663 0.336557i \(-0.109263\pi\)
\(374\) −5.53901 −0.286416
\(375\) −6.47135 9.11710i −0.334179 0.470805i
\(376\) 3.16515 0.163230
\(377\) 0 0
\(378\) 3.95644i 0.203497i
\(379\) 10.6784i 0.548510i −0.961657 0.274255i \(-0.911569\pi\)
0.961657 0.274255i \(-0.0884313\pi\)
\(380\) 1.41742 + 6.79129i 0.0727123 + 0.348386i
\(381\) 17.7477 0.909244
\(382\) 7.57575 0.387609
\(383\) −23.6211 −1.20698 −0.603490 0.797371i \(-0.706224\pi\)
−0.603490 + 0.797371i \(0.706224\pi\)
\(384\) 11.0399i 0.563375i
\(385\) 2.09355 + 10.0308i 0.106697 + 0.511217i
\(386\) 6.79129 0.345667
\(387\) 21.1652i 1.07589i
\(388\) −20.4231 −1.03683
\(389\) 3.16515 0.160480 0.0802398 0.996776i \(-0.474431\pi\)
0.0802398 + 0.996776i \(0.474431\pi\)
\(390\) 0 0
\(391\) −21.0000 −1.06202
\(392\) −6.92820 −0.349927
\(393\) 7.58258i 0.382490i
\(394\) −6.70417 −0.337751
\(395\) −13.1334 + 2.74110i −0.660813 + 0.137920i
\(396\) 9.47860i 0.476318i
\(397\) 20.3477 1.02122 0.510610 0.859812i \(-0.329420\pi\)
0.510610 + 0.859812i \(0.329420\pi\)
\(398\) 4.83465 0.242339
\(399\) −3.00000 −0.150188
\(400\) 12.7913 5.58258i 0.639564 0.279129i
\(401\) 29.8263i 1.48945i −0.667370 0.744726i \(-0.732580\pi\)
0.667370 0.744726i \(-0.267420\pi\)
\(402\) 0.460985i 0.0229918i
\(403\) 0 0
\(404\) −16.1216 −0.802079
\(405\) −2.18890 + 0.456850i −0.108767 + 0.0227011i
\(406\) 3.62614 0.179962
\(407\) 21.0000i 1.04093i
\(408\) −7.93725 −0.392953
\(409\) 8.66025i 0.428222i −0.976809 0.214111i \(-0.931315\pi\)
0.976809 0.214111i \(-0.0686854\pi\)
\(410\) 0.552200 + 2.64575i 0.0272712 + 0.130664i
\(411\) 10.4877i 0.517318i
\(412\) 5.66970i 0.279326i
\(413\) 24.1652i 1.18909i
\(414\) 4.18710i 0.205785i
\(415\) 13.1652 2.74773i 0.646252 0.134881i
\(416\) 0 0
\(417\) 21.7477i 1.06499i
\(418\) −2.09355 −0.102399
\(419\) 5.83485 0.285051 0.142526 0.989791i \(-0.454478\pi\)
0.142526 + 0.989791i \(0.454478\pi\)
\(420\) 1.41742 + 6.79129i 0.0691632 + 0.331381i
\(421\) 5.48220i 0.267186i −0.991036 0.133593i \(-0.957348\pi\)
0.991036 0.133593i \(-0.0426515\pi\)
\(422\) 0.0754495 0.00367282
\(423\) 3.65480 0.177703
\(424\) 13.1334i 0.637815i
\(425\) 9.16515 + 21.0000i 0.444575 + 1.01865i
\(426\) −3.20871 −0.155463
\(427\) −2.45505 −0.118808
\(428\) 18.9564i 0.916294i
\(429\) 0 0
\(430\) 2.20871 + 10.5826i 0.106514 + 0.510337i
\(431\) 8.46955i 0.407964i 0.978975 + 0.203982i \(0.0653884\pi\)
−0.978975 + 0.203982i \(0.934612\pi\)
\(432\) 13.9564i 0.671479i
\(433\) 9.74773i 0.468446i 0.972183 + 0.234223i \(0.0752546\pi\)
−0.972183 + 0.234223i \(0.924745\pi\)
\(434\) 4.91010i 0.235692i
\(435\) 2.09355 + 10.0308i 0.100378 + 0.480940i
\(436\) 23.5257i 1.12668i
\(437\) −7.93725 −0.379690
\(438\) 0 0
\(439\) 14.4955 0.691830 0.345915 0.938266i \(-0.387569\pi\)
0.345915 + 0.938266i \(0.387569\pi\)
\(440\) 2.09355 + 10.0308i 0.0998061 + 0.478200i
\(441\) −8.00000 −0.380952
\(442\) 0 0
\(443\) 19.9129i 0.946089i 0.881038 + 0.473045i \(0.156845\pi\)
−0.881038 + 0.473045i \(0.843155\pi\)
\(444\) 14.2179i 0.674752i
\(445\) −4.37386 20.9564i −0.207341 0.993430i
\(446\) −3.95644 −0.187343
\(447\) −16.6929 −0.789545
\(448\) −5.91915 −0.279654
\(449\) 11.0200i 0.520064i −0.965600 0.260032i \(-0.916267\pi\)
0.965600 0.260032i \(-0.0837331\pi\)
\(450\) −4.18710 + 1.82740i −0.197382 + 0.0861445i
\(451\) 7.00000 0.329617
\(452\) 13.2867i 0.624956i
\(453\) −9.66930 −0.454304
\(454\) 0.373864 0.0175463
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) −1.73205 −0.0810219 −0.0405110 0.999179i \(-0.512899\pi\)
−0.0405110 + 0.999179i \(0.512899\pi\)
\(458\) 12.0000i 0.560723i
\(459\) −22.9129 −1.06948
\(460\) 3.75015 + 17.9681i 0.174852 + 0.837765i
\(461\) 35.8408i 1.66927i −0.550803 0.834635i \(-0.685678\pi\)
0.550803 0.834635i \(-0.314322\pi\)
\(462\) −2.09355 −0.0974008
\(463\) 39.4002 1.83108 0.915542 0.402223i \(-0.131762\pi\)
0.915542 + 0.402223i \(0.131762\pi\)
\(464\) −12.7913 −0.593821
\(465\) −13.5826 + 2.83485i −0.629877 + 0.131463i
\(466\) 1.29510i 0.0599944i
\(467\) 24.3303i 1.12587i 0.826500 + 0.562936i \(0.190328\pi\)
−0.826500 + 0.562936i \(0.809672\pi\)
\(468\) 0 0
\(469\) 1.74773 0.0807025
\(470\) 1.82740 0.381401i 0.0842917 0.0175927i
\(471\) 9.16515 0.422308
\(472\) 24.1652i 1.11229i
\(473\) 27.9989 1.28739
\(474\) 2.74110i 0.125903i
\(475\) 3.46410 + 7.93725i 0.158944 + 0.364186i
\(476\) 14.2179i 0.651677i
\(477\) 15.1652i 0.694365i
\(478\) 0.0871215i 0.00398485i
\(479\) 4.66385i 0.213097i 0.994308 + 0.106548i \(0.0339799\pi\)
−0.994308 + 0.106548i \(0.966020\pi\)
\(480\) 2.16515 + 10.3739i 0.0988252 + 0.473500i
\(481\) 0 0
\(482\) 0.791288i 0.0360422i
\(483\) −7.93725 −0.361158
\(484\) −7.16515 −0.325689
\(485\) −24.9564 + 5.20871i −1.13321 + 0.236515i
\(486\) 7.30960i 0.331570i
\(487\) −10.6784 −0.483882 −0.241941 0.970291i \(-0.577784\pi\)
−0.241941 + 0.970291i \(0.577784\pi\)
\(488\) −2.45505 −0.111135
\(489\) 21.0707i 0.952848i
\(490\) −4.00000 + 0.834849i −0.180702 + 0.0377146i
\(491\) 19.4174 0.876296 0.438148 0.898903i \(-0.355635\pi\)
0.438148 + 0.898903i \(0.355635\pi\)
\(492\) 4.73930 0.213664
\(493\) 21.0000i 0.945792i
\(494\) 0 0
\(495\) 2.41742 + 11.5826i 0.108655 + 0.520598i
\(496\) 17.3205i 0.777714i
\(497\) 12.1652i 0.545682i
\(498\) 2.74773i 0.123129i
\(499\) 0.723000i 0.0323659i −0.999869 0.0161830i \(-0.994849\pi\)
0.999869 0.0161830i \(-0.00515142\pi\)
\(500\) 16.3314 11.5921i 0.730361 0.518413i
\(501\) 9.57395i 0.427733i
\(502\) 0.0754495 0.00336747
\(503\) 0.165151i 0.00736374i 0.999993 + 0.00368187i \(0.00117198\pi\)
−0.999993 + 0.00368187i \(0.998828\pi\)
\(504\) 6.00000 0.267261
\(505\) −19.7001 + 4.11165i −0.876643 + 0.182966i
\(506\) −5.53901 −0.246239
\(507\) 0 0
\(508\) 31.7913i 1.41051i
\(509\) 8.46955i 0.375406i −0.982226 0.187703i \(-0.939896\pi\)
0.982226 0.187703i \(-0.0601043\pi\)
\(510\) −4.58258 + 0.956439i −0.202920 + 0.0423518i
\(511\) 0 0
\(512\) −22.8981 −1.01196
\(513\) −8.66025 −0.382360
\(514\) 8.29875i 0.366042i
\(515\) −1.44600 6.92820i −0.0637184 0.305293i
\(516\) 18.9564 0.834511
\(517\) 4.83485i 0.212636i
\(518\) 6.28065 0.275956
\(519\) 16.5826 0.727894
\(520\) 0 0
\(521\) 27.4955 1.20460 0.602299 0.798271i \(-0.294252\pi\)
0.602299 + 0.798271i \(0.294252\pi\)
\(522\) 4.18710 0.183264
\(523\) 0.165151i 0.00722157i 0.999993 + 0.00361078i \(0.00114935\pi\)
−0.999993 + 0.00361078i \(0.998851\pi\)
\(524\) 13.5826 0.593358
\(525\) 3.46410 + 7.93725i 0.151186 + 0.346410i
\(526\) 4.11165i 0.179277i
\(527\) 28.4358 1.23868
\(528\) 7.38505 0.321393
\(529\) 2.00000 0.0869565
\(530\) 1.58258 + 7.58258i 0.0687427 + 0.329366i
\(531\) 27.9035i 1.21091i
\(532\) 5.37386i 0.232987i
\(533\) 0 0
\(534\) 4.37386 0.189276
\(535\) −4.83465 23.1642i −0.209020 1.00148i
\(536\) 1.74773 0.0754903
\(537\) 18.1652i 0.783884i
\(538\) −6.85275 −0.295443
\(539\) 10.5830i 0.455842i
\(540\) 4.09175 + 19.6048i 0.176081 + 0.843655i
\(541\) 10.3923i 0.446800i 0.974727 + 0.223400i \(0.0717156\pi\)
−0.974727 + 0.223400i \(0.928284\pi\)
\(542\) 3.95644i 0.169944i
\(543\) 8.74773i 0.375401i
\(544\) 21.7182i 0.931161i
\(545\) −6.00000 28.7477i −0.257012 1.23142i
\(546\) 0 0
\(547\) 28.7477i 1.22916i −0.788853 0.614582i \(-0.789325\pi\)
0.788853 0.614582i \(-0.210675\pi\)
\(548\) 18.7864 0.802516
\(549\) −2.83485 −0.120988
\(550\) 2.41742 + 5.53901i 0.103079 + 0.236184i
\(551\) 7.93725i 0.338138i
\(552\) −7.93725 −0.337832
\(553\) 10.3923 0.441926
\(554\) 3.38865i 0.143970i
\(555\) 3.62614 + 17.3739i 0.153921 + 0.737479i
\(556\) −38.9564 −1.65212
\(557\) −7.74655 −0.328232 −0.164116 0.986441i \(-0.552477\pi\)
−0.164116 + 0.986441i \(0.552477\pi\)
\(558\) 5.66970i 0.240017i
\(559\) 0 0
\(560\) −10.5826 + 2.20871i −0.447195 + 0.0933351i
\(561\) 12.1244i 0.511891i
\(562\) 1.66970i 0.0704319i
\(563\) 9.00000i 0.379305i −0.981851 0.189652i \(-0.939264\pi\)
0.981851 0.189652i \(-0.0607361\pi\)
\(564\) 3.27340i 0.137835i
\(565\) 3.38865 + 16.2360i 0.142562 + 0.683054i
\(566\) 12.6766i 0.532835i
\(567\) 1.73205 0.0727393
\(568\) 12.1652i 0.510438i
\(569\) −7.74773 −0.324802 −0.162401 0.986725i \(-0.551924\pi\)
−0.162401 + 0.986725i \(0.551924\pi\)
\(570\) −1.73205 + 0.361500i −0.0725476 + 0.0151416i
\(571\) −35.0780 −1.46797 −0.733985 0.679166i \(-0.762342\pi\)
−0.733985 + 0.679166i \(0.762342\pi\)
\(572\) 0 0
\(573\) 16.5826i 0.692747i
\(574\) 2.09355i 0.0873831i
\(575\) 9.16515 + 21.0000i 0.382213 + 0.875761i
\(576\) −6.83485 −0.284785
\(577\) −6.92820 −0.288425 −0.144212 0.989547i \(-0.546065\pi\)
−0.144212 + 0.989547i \(0.546065\pi\)
\(578\) 1.82740 0.0760099
\(579\) 14.8655i 0.617787i
\(580\) −17.9681 + 3.75015i −0.746083 + 0.155717i
\(581\) −10.4174 −0.432188
\(582\) 5.20871i 0.215908i
\(583\) 20.0616 0.830867
\(584\) 0 0
\(585\) 0 0
\(586\) −8.28674 −0.342322
\(587\) −39.4956 −1.63016 −0.815078 0.579351i \(-0.803306\pi\)
−0.815078 + 0.579351i \(0.803306\pi\)
\(588\) 7.16515i 0.295486i
\(589\) 10.7477 0.442852
\(590\) 2.91190 + 13.9518i 0.119881 + 0.574385i
\(591\) 14.6748i 0.603639i
\(592\) −22.1552 −0.910571
\(593\) −21.1660 −0.869184 −0.434592 0.900627i \(-0.643107\pi\)
−0.434592 + 0.900627i \(0.643107\pi\)
\(594\) −6.04356 −0.247970
\(595\) −3.62614 17.3739i −0.148657 0.712259i
\(596\) 29.9017i 1.22482i
\(597\) 10.5826i 0.433116i
\(598\) 0 0
\(599\) −15.4955 −0.633127 −0.316564 0.948571i \(-0.602529\pi\)
−0.316564 + 0.948571i \(0.602529\pi\)
\(600\) 3.46410 + 7.93725i 0.141421 + 0.324037i
\(601\) 16.9129 0.689891 0.344945 0.938623i \(-0.387897\pi\)
0.344945 + 0.938623i \(0.387897\pi\)
\(602\) 8.37386i 0.341293i
\(603\) 2.01810 0.0821834
\(604\) 17.3205i 0.704761i
\(605\) −8.75560 + 1.82740i −0.355966 + 0.0742944i
\(606\) 4.11165i 0.167024i
\(607\) 7.74773i 0.314471i −0.987561 0.157235i \(-0.949742\pi\)
0.987561 0.157235i \(-0.0502581\pi\)
\(608\) 8.20871i 0.332907i
\(609\) 7.93725i 0.321634i
\(610\) −1.41742 + 0.295834i −0.0573898 + 0.0119780i
\(611\) 0 0
\(612\) 16.4174i 0.663635i
\(613\) 5.91915 0.239072 0.119536 0.992830i \(-0.461859\pi\)
0.119536 + 0.992830i \(0.461859\pi\)
\(614\) −11.0780 −0.447073
\(615\) 5.79129 1.20871i 0.233527 0.0487400i
\(616\) 7.93725i 0.319801i
\(617\) 13.9518 0.561677 0.280838 0.959755i \(-0.409388\pi\)
0.280838 + 0.959755i \(0.409388\pi\)
\(618\) 1.44600 0.0581667
\(619\) 29.7309i 1.19499i 0.801874 + 0.597493i \(0.203836\pi\)
−0.801874 + 0.597493i \(0.796164\pi\)
\(620\) −5.07803 24.3303i −0.203939 0.977128i
\(621\) −22.9129 −0.919462
\(622\) −3.46410 −0.138898
\(623\) 16.5826i 0.664367i
\(624\) 0 0
\(625\) 17.0000 18.3303i 0.680000 0.733212i
\(626\) 1.48580i 0.0593846i
\(627\) 4.58258i 0.183010i
\(628\) 16.4174i 0.655127i
\(629\) 36.3731i 1.45029i
\(630\) 3.46410 0.723000i 0.138013 0.0288050i
\(631\) 5.91915i 0.235638i 0.993035 + 0.117819i \(0.0375902\pi\)
−0.993035 + 0.117819i \(0.962410\pi\)
\(632\) 10.3923 0.413384
\(633\) 0.165151i 0.00656418i
\(634\) 0.0871215 0.00346004
\(635\) 8.10805 + 38.8480i 0.321758 + 1.54164i
\(636\) 13.5826 0.538584
\(637\) 0 0
\(638\) 5.53901i 0.219292i
\(639\) 14.0471i 0.555695i
\(640\) −24.1652 + 5.04356i −0.955211 + 0.199364i
\(641\) 18.1652 0.717480 0.358740 0.933437i \(-0.383206\pi\)
0.358740 + 0.933437i \(0.383206\pi\)
\(642\) 4.83465 0.190809
\(643\) 21.7937 0.859458 0.429729 0.902958i \(-0.358609\pi\)
0.429729 + 0.902958i \(0.358609\pi\)
\(644\) 14.2179i 0.560264i
\(645\) 23.1642 4.83465i 0.912090 0.190364i
\(646\) 3.62614 0.142668
\(647\) 27.0000i 1.06148i −0.847535 0.530740i \(-0.821914\pi\)
0.847535 0.530740i \(-0.178086\pi\)
\(648\) 1.73205 0.0680414
\(649\) 36.9129 1.44896
\(650\) 0 0
\(651\) 10.7477 0.421237
\(652\) 37.7436 1.47815
\(653\) 42.8258i 1.67590i −0.545746 0.837951i \(-0.683754\pi\)
0.545746 0.837951i \(-0.316246\pi\)
\(654\) 6.00000 0.234619
\(655\) 16.5975 3.46410i 0.648518 0.135354i
\(656\) 7.38505i 0.288338i
\(657\) 0 0
\(658\) −1.44600 −0.0563710
\(659\) −30.4955 −1.18793 −0.593967 0.804489i \(-0.702439\pi\)
−0.593967 + 0.804489i \(0.702439\pi\)
\(660\) 10.3739 2.16515i 0.403802 0.0842784i
\(661\) 18.3296i 0.712937i 0.934307 + 0.356469i \(0.116019\pi\)
−0.934307 + 0.356469i \(0.883981\pi\)
\(662\) 2.04356i 0.0794252i
\(663\) 0 0
\(664\) −10.4174 −0.404274
\(665\) −1.37055 6.56670i −0.0531477 0.254646i
\(666\) 7.25227 0.281020
\(667\) 21.0000i 0.813123i
\(668\) −17.1497 −0.663542
\(669\) 8.66025i 0.334825i
\(670\) 1.00905 0.210601i 0.0389830 0.00813623i
\(671\) 3.75015i 0.144773i
\(672\) 8.20871i 0.316658i
\(673\) 24.1652i 0.931498i −0.884917 0.465749i \(-0.845785\pi\)
0.884917 0.465749i \(-0.154215\pi\)
\(674\) 14.0471i 0.541074i
\(675\) 10.0000 + 22.9129i 0.384900 + 0.881917i
\(676\) 0 0
\(677\) 2.83485i 0.108952i 0.998515 + 0.0544760i \(0.0173489\pi\)
−0.998515 + 0.0544760i \(0.982651\pi\)
\(678\) −3.38865 −0.130140
\(679\) 19.7477 0.757848
\(680\) −3.62614 17.3739i −0.139056 0.666257i
\(681\) 0.818350i 0.0313593i
\(682\) 7.50030 0.287202
\(683\) −33.0997 −1.26652 −0.633262 0.773938i \(-0.718284\pi\)
−0.633262 + 0.773938i \(0.718284\pi\)
\(684\) 6.20520i 0.237262i
\(685\) 22.9564 4.79129i 0.877120 0.183066i
\(686\) 8.70417 0.332327
\(687\) 26.2668 1.00214
\(688\) 29.5390i 1.12616i
\(689\) 0 0
\(690\) −4.58258 + 0.956439i −0.174456 + 0.0364110i
\(691\) 19.7756i 0.752298i 0.926559 + 0.376149i \(0.122752\pi\)
−0.926559 + 0.376149i \(0.877248\pi\)
\(692\) 29.7042i 1.12918i
\(693\) 9.16515i 0.348155i
\(694\) 9.74475i 0.369906i
\(695\) −47.6036 + 9.93545i −1.80571 + 0.376873i
\(696\) 7.93725i 0.300861i
\(697\) −12.1244 −0.459243
\(698\) 1.12159i 0.0424528i
\(699\) −2.83485 −0.107224
\(700\) −14.2179 + 6.20520i −0.537386 + 0.234535i
\(701\) −21.1652 −0.799397 −0.399698 0.916647i \(-0.630885\pi\)
−0.399698 + 0.916647i \(0.630885\pi\)
\(702\) 0 0
\(703\) 13.7477i 0.518505i
\(704\) 9.04165i 0.340770i
\(705\) −0.834849 4.00000i −0.0314422 0.150649i
\(706\) 3.12159 0.117483
\(707\) 15.5885 0.586264
\(708\) 24.9916 0.939242
\(709\) 36.3731i 1.36602i −0.730409 0.683010i \(-0.760671\pi\)
0.730409 0.683010i \(-0.239329\pi\)
\(710\) −1.46590 7.02355i −0.0550143 0.263589i
\(711\) 12.0000 0.450035
\(712\) 16.5826i 0.621458i
\(713\) 28.4358 1.06493
\(714\) 3.62614 0.135705
\(715\) 0 0
\(716\) 32.5390 1.21604
\(717\) 0.190700 0.00712184
\(718\) 8.92197i 0.332965i
\(719\) 24.4955 0.913526 0.456763 0.889588i \(-0.349009\pi\)
0.456763 + 0.889588i \(0.349009\pi\)
\(720\) −12.2197 + 2.55040i −0.455402 + 0.0950478i
\(721\) 5.48220i 0.204168i
\(722\) −7.30960 −0.272035
\(723\) −1.73205 −0.0644157
\(724\) −15.6697 −0.582360
\(725\) −21.0000 + 9.16515i −0.779920 + 0.340385i
\(726\) 1.82740i 0.0678212i
\(727\) 15.2523i 0.565675i 0.959168 + 0.282838i \(0.0912758\pi\)
−0.959168 + 0.282838i \(0.908724\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −48.4955 −1.79367
\(732\) 2.53901i 0.0938447i
\(733\) 22.8027 0.842237 0.421119 0.907006i \(-0.361638\pi\)
0.421119 + 0.907006i \(0.361638\pi\)
\(734\) 0.798450i 0.0294713i
\(735\) 1.82740 + 8.75560i 0.0674047 + 0.322955i
\(736\) 21.7182i 0.800544i
\(737\) 2.66970i 0.0983396i
\(738\) 2.41742i 0.0889866i
\(739\) 17.0345i 0.626623i −0.949650 0.313311i \(-0.898562\pi\)
0.949650 0.313311i \(-0.101438\pi\)
\(740\) −31.1216 + 6.49545i −1.14405 + 0.238778i
\(741\) 0 0
\(742\) 6.00000i 0.220267i
\(743\) −5.72845 −0.210157 −0.105078 0.994464i \(-0.533509\pi\)
−0.105078 + 0.994464i \(0.533509\pi\)
\(744\) 10.7477 0.394031
\(745\) −7.62614 36.5390i −0.279400 1.33869i
\(746\) 5.93905i 0.217444i
\(747\) −12.0290 −0.440118
\(748\) −21.7182 −0.794096
\(749\) 18.3296i 0.669748i
\(750\) 2.95644 + 4.16515i 0.107954 + 0.152090i
\(751\) 11.7477 0.428681 0.214340 0.976759i \(-0.431240\pi\)
0.214340 + 0.976759i \(0.431240\pi\)
\(752\) 5.10080 0.186007
\(753\) 0.165151i 0.00601845i
\(754\) 0 0
\(755\) −4.41742 21.1652i −0.160767 0.770279i
\(756\) 15.5130i 0.564203i
\(757\) 9.74773i 0.354287i −0.984185 0.177144i \(-0.943314\pi\)
0.984185 0.177144i \(-0.0566857\pi\)
\(758\) 4.87841i 0.177192i
\(759\) 12.1244i 0.440086i
\(760\) −1.37055 6.56670i −0.0497151 0.238199i
\(761\) 35.4594i 1.28540i 0.766118 + 0.642701i \(0.222186\pi\)
−0.766118 + 0.642701i \(0.777814\pi\)
\(762\) −8.10805 −0.293724
\(763\) 22.7477i 0.823523i
\(764\) 29.7042 1.07466
\(765\) −4.18710 20.0616i −0.151385 0.725329i
\(766\) 10.7913 0.389905
\(767\) 0 0
\(768\) 1.79129i 0.0646375i
\(769\) 15.5885i 0.562134i −0.959688 0.281067i \(-0.909312\pi\)
0.959688 0.281067i \(-0.0906883\pi\)
\(770\) −0.956439 4.58258i −0.0344677 0.165145i
\(771\) −18.1652 −0.654202
\(772\) 26.6283 0.958374
\(773\) 24.1534 0.868736 0.434368 0.900735i \(-0.356972\pi\)
0.434368 + 0.900735i \(0.356972\pi\)
\(774\) 9.66930i 0.347556i
\(775\) −12.4104 28.4358i −0.445795 1.02144i
\(776\) 19.7477 0.708902
\(777\) 13.7477i 0.493197i
\(778\) −1.44600 −0.0518416
\(779\) −4.58258 −0.164188
\(780\) 0 0
\(781\) −18.5826 −0.664937
\(782\) 9.59386 0.343076
\(783\) 22.9129i 0.818839i
\(784\) −11.1652 −0.398755
\(785\) 4.18710 + 20.0616i 0.149444 + 0.716030i
\(786\) 3.46410i 0.123560i
\(787\) −16.3115 −0.581441 −0.290720 0.956808i \(-0.593895\pi\)
−0.290720 + 0.956808i \(0.593895\pi\)
\(788\) −26.2867 −0.936425
\(789\) −9.00000 −0.320408
\(790\) 6.00000 1.25227i 0.213470 0.0445539i
\(791\) 12.8474i 0.456799i
\(792\) 9.16515i 0.325669i
\(793\) 0 0
\(794\) −9.29583 −0.329897
\(795\) 16.5975 3.46410i 0.588653 0.122859i
\(796\) 18.9564 0.671893
\(797\) 44.0780i 1.56132i −0.624954 0.780662i \(-0.714882\pi\)
0.624954 0.780662i \(-0.285118\pi\)
\(798\) 1.37055 0.0485170
\(799\) 8.37420i 0.296258i
\(800\) −21.7182 + 9.47860i −0.767855 + 0.335119i
\(801\) 19.1479i 0.676558i
\(802\) 13.6261i 0.481156i
\(803\) 0 0
\(804\) 1.80750i 0.0637456i
\(805\) −3.62614 17.3739i −0.127805 0.612348i
\(806\) 0 0
\(807\) 15.0000i 0.528025i
\(808\) 15.5885 0.548400
\(809\) 54.8258 1.92757 0.963785 0.266679i \(-0.0859263\pi\)
0.963785 + 0.266679i \(0.0859263\pi\)
\(810\) 1.00000 0.208712i 0.0351364 0.00733340i
\(811\) 50.5155i 1.77384i 0.461923 + 0.886920i \(0.347160\pi\)
−0.461923 + 0.886920i \(0.652840\pi\)
\(812\) 14.2179 0.498951
\(813\) −8.66025 −0.303728
\(814\) 9.59386i 0.336264i
\(815\) 46.1216 9.62614i 1.61557 0.337189i
\(816\) −12.7913 −0.447785
\(817\) −18.3296 −0.641270
\(818\) 3.95644i 0.138334i
\(819\) 0 0
\(820\) 2.16515 + 10.3739i 0.0756104 + 0.362271i
\(821\) 18.1389i 0.633051i 0.948584 + 0.316525i \(0.102516\pi\)
−0.948584 + 0.316525i \(0.897484\pi\)
\(822\) 4.79129i 0.167115i
\(823\) 31.4174i 1.09514i −0.836759 0.547571i \(-0.815552\pi\)
0.836759 0.547571i \(-0.184448\pi\)
\(824\) 5.48220i 0.190982i
\(825\) 12.1244 5.29150i 0.422116 0.184226i
\(826\) 11.0399i 0.384126i
\(827\) 10.7737 0.374638 0.187319 0.982299i \(-0.440020\pi\)
0.187319 + 0.982299i \(0.440020\pi\)
\(828\) 16.4174i 0.570545i
\(829\) 33.3303 1.15761 0.578805 0.815466i \(-0.303519\pi\)
0.578805 + 0.815466i \(0.303519\pi\)
\(830\) −6.01450 + 1.25530i −0.208766 + 0.0435721i
\(831\) −7.41742 −0.257308
\(832\) 0 0
\(833\) 18.3303i 0.635107i
\(834\) 9.93545i 0.344037i
\(835\) −20.9564 + 4.37386i −0.725227 + 0.151364i
\(836\) −8.20871 −0.283904
\(837\) 31.0260 1.07242
\(838\) −2.66565 −0.0920834
\(839\) 43.6827i 1.50809i −0.656821 0.754047i \(-0.728099\pi\)
0.656821 0.754047i \(-0.271901\pi\)
\(840\) −1.37055 6.56670i −0.0472885 0.226573i
\(841\) −8.00000 −0.275862
\(842\) 2.50455i 0.0863123i
\(843\) 3.65480 0.125878
\(844\) 0.295834 0.0101830
\(845\) 0 0
\(846\) −1.66970 −0.0574054
\(847\) 6.92820 0.238056
\(848\) 21.1652i 0.726814i
\(849\) 27.7477 0.952300
\(850\) −4.18710 9.59386i −0.143616 0.329067i
\(851\) 36.3731i 1.24685i
\(852\) −12.5812 −0.431025
\(853\) −5.63310 −0.192874 −0.0964369 0.995339i \(-0.530745\pi\)
−0.0964369 + 0.995339i \(0.530745\pi\)
\(854\) 1.12159 0.0383800
\(855\) −1.58258 7.58258i −0.0541229 0.259319i
\(856\) 18.3296i 0.626491i
\(857\) 4.74773i 0.162179i 0.996707 + 0.0810896i \(0.0258400\pi\)
−0.996707 + 0.0810896i \(0.974160\pi\)
\(858\) 0 0
\(859\) 44.2432 1.50956 0.754779 0.655979i \(-0.227744\pi\)
0.754779 + 0.655979i \(0.227744\pi\)
\(860\) 8.66025 + 41.4938i 0.295312 + 1.41493i
\(861\) −4.58258 −0.156174
\(862\) 3.86932i 0.131789i
\(863\) 13.6657 0.465186 0.232593 0.972574i \(-0.425279\pi\)
0.232593 + 0.972574i \(0.425279\pi\)
\(864\) 23.6965i 0.806172i
\(865\) 7.57575 + 36.2976i 0.257583 + 1.23416i
\(866\) 4.45325i 0.151328i
\(867\) 4.00000i 0.135847i
\(868\) 19.2523i 0.653465i
\(869\) 15.8745i 0.538506i
\(870\) −0.956439 4.58258i −0.0324263 0.155364i
\(871\) 0 0
\(872\) 22.7477i 0.770335i
\(873\) 22.8027 0.771755
\(874\) 3.62614 0.122656
\(875\) −15.7913 + 11.2087i −0.533843 + 0.378924i
\(876\) 0 0
\(877\) 7.93725 0.268022 0.134011 0.990980i \(-0.457214\pi\)
0.134011 + 0.990980i \(0.457214\pi\)
\(878\) −6.62225 −0.223490
\(879\) 18.1389i 0.611809i
\(880\) 3.37386 + 16.1652i 0.113733 + 0.544927i
\(881\) 36.4955 1.22956 0.614782 0.788697i \(-0.289244\pi\)
0.614782 + 0.788697i \(0.289244\pi\)
\(882\) 3.65480 0.123064
\(883\) 36.2432i 1.21968i 0.792524 + 0.609840i \(0.208766\pi\)
−0.792524 + 0.609840i \(0.791234\pi\)
\(884\) 0 0
\(885\) 30.5390 6.37386i 1.02656 0.214255i
\(886\) 9.09720i 0.305627i
\(887\) 54.4955i 1.82978i −0.403705 0.914889i \(-0.632278\pi\)
0.403705 0.914889i \(-0.367722\pi\)
\(888\) 13.7477i 0.461344i
\(889\) 30.7400i 1.03099i
\(890\) 1.99820 + 9.57395i 0.0669798 + 0.320920i
\(891\) 2.64575i 0.0886360i
\(892\) −15.5130 −0.519414
\(893\) 3.16515i 0.105918i
\(894\) 7.62614 0.255056
\(895\) 39.7617 8.29875i 1.32909 0.277397i
\(896\) 19.1216 0.638808
\(897\) 0 0
\(898\) 5.03447i 0.168002i
\(899\) 28.4358i 0.948387i
\(900\) −16.4174 + 7.16515i −0.547247 + 0.238838i
\(901\) −34.7477 −1.15761
\(902\) −3.19795 −0.106480
\(903\) −18.3296 −0.609970
\(904\) 12.8474i 0.427297i
\(905\) −19.1479 + 3.99640i −0.636498 + 0.132845i
\(906\) 4.41742 0.146759
\(907\) 6.25227i 0.207603i 0.994598 + 0.103802i \(0.0331007\pi\)
−0.994598 + 0.103802i \(0.966899\pi\)
\(908\) 1.46590 0.0486476
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −7.91288 −0.262165 −0.131083 0.991371i \(-0.541845\pi\)
−0.131083 + 0.991371i \(0.541845\pi\)
\(912\) −4.83465 −0.160091
\(913\) 15.9129i 0.526639i
\(914\) 0.791288 0.0261735
\(915\) 0.647551 + 3.10260i 0.0214074 + 0.102569i
\(916\) 47.0514i 1.55462i
\(917\) −13.1334 −0.433703
\(918\) 10.4678 0.345487
\(919\) −54.1652 −1.78674 −0.893372 0.449318i \(-0.851667\pi\)
−0.893372 + 0.449318i \(0.851667\pi\)
\(920\) −3.62614 17.3739i −0.119550 0.572799i
\(921\) 24.2487i 0.799022i
\(922\) 16.3739i 0.539244i
\(923\) 0 0
\(924\) −8.20871 −0.270047
\(925\) −36.3731 + 15.8745i −1.19594 + 0.521951i
\(926\) −18.0000 −0.591517
\(927\) 6.33030i 0.207914i
\(928\) 21.7182 0.712935
\(929\) 26.3622i 0.864915i −0.901654 0.432457i \(-0.857647\pi\)
0.901654 0.432457i \(-0.142353\pi\)
\(930\) 6.20520 1.29510i 0.203477 0.0424680i
\(931\) 6.92820i 0.227063i
\(932\) 5.07803i 0.166336i
\(933\) 7.58258i 0.248242i
\(934\) 11.1153i 0.363704i
\(935\) −26.5390 + 5.53901i −0.867919 + 0.181145i
\(936\) 0 0
\(937\) 31.4955i 1.02891i −0.857517 0.514456i \(-0.827994\pi\)
0.857517 0.514456i \(-0.172006\pi\)
\(938\) −0.798450 −0.0260703
\(939\) 3.25227 0.106134
\(940\) 7.16515 1.49545i 0.233701 0.0487763i
\(941\) 26.4575i 0.862490i 0.902235 + 0.431245i \(0.141926\pi\)
−0.902235 + 0.431245i \(0.858074\pi\)
\(942\) −4.18710 −0.136423
\(943\) −12.1244 −0.394823
\(944\) 38.9434i 1.26750i
\(945\) −3.95644 18.9564i −0.128703 0.616653i
\(946\) −12.7913 −0.415881
\(947\) −14.3332 −0.465765 −0.232883 0.972505i \(-0.574816\pi\)
−0.232883 + 0.972505i \(0.574816\pi\)
\(948\) 10.7477i 0.349070i
\(949\) 0 0
\(950\) −1.58258 3.62614i −0.0513455 0.117647i
\(951\) 0.190700i 0.00618388i
\(952\) 13.7477i 0.445566i
\(953\) 8.07803i 0.261673i −0.991404 0.130837i \(-0.958234\pi\)
0.991404 0.130837i \(-0.0417663\pi\)
\(954\) 6.92820i 0.224309i
\(955\) 36.2976 7.57575i 1.17456 0.245146i
\(956\) 0.341599i 0.0110481i
\(957\) −12.1244 −0.391925
\(958\) 2.13068i 0.0688392i
\(959\) −18.1652 −0.586583
\(960\) 1.56125 + 7.48040i 0.0503892 + 0.241429i
\(961\) −7.50455 −0.242082
\(962\) 0 0
\(963\) 21.1652i 0.682037i
\(964\) 3.10260i 0.0999281i
\(965\) 32.5390 6.79129i 1.04747 0.218619i
\(966\) 3.62614 0.116669
\(967\) −37.3821 −1.20213 −0.601064 0.799201i \(-0.705256\pi\)
−0.601064 + 0.799201i \(0.705256\pi\)
\(968\) 6.92820 0.222681
\(969\) 7.93725i 0.254981i
\(970\) 11.4014 2.37960i 0.366075 0.0764044i
\(971\) −18.4955 −0.593547 −0.296774 0.954948i \(-0.595911\pi\)
−0.296774 + 0.954948i \(0.595911\pi\)
\(972\) 28.6606i 0.919289i
\(973\) 37.6682 1.20759
\(974\) 4.87841 0.156314
\(975\) 0 0
\(976\) −3.95644 −0.126643
\(977\) 35.3085 1.12962 0.564809 0.825222i \(-0.308950\pi\)
0.564809 + 0.825222i \(0.308950\pi\)
\(978\) 9.62614i 0.307810i
\(979\) 25.3303 0.809560
\(980\) −15.6838 + 3.27340i −0.501001 + 0.104565i
\(981\) 26.2668i 0.838635i
\(982\) −8.87086 −0.283080
\(983\) 55.0840 1.75691 0.878454 0.477827i \(-0.158576\pi\)
0.878454 + 0.477827i \(0.158576\pi\)
\(984\) −4.58258 −0.146087
\(985\) −32.1216 + 6.70417i −1.02348 + 0.213613i
\(986\) 9.59386i 0.305531i
\(987\) 3.16515i 0.100748i
\(988\) 0 0
\(989\) −48.4955 −1.54207
\(990\) −1.10440 5.29150i −0.0351002 0.168175i
\(991\) −13.0000 −0.412959 −0.206479 0.978451i \(-0.566201\pi\)
−0.206479 + 0.978451i \(0.566201\pi\)
\(992\) 29.4083i 0.933715i
\(993\) −4.47315 −0.141951
\(994\) 5.55765i 0.176278i
\(995\) 23.1642 4.83465i 0.734355 0.153269i
\(996\) 10.7737i 0.341378i
\(997\) 0.165151i 0.00523040i −0.999997 0.00261520i \(-0.999168\pi\)
0.999997 0.00261520i \(-0.000832444\pi\)
\(998\) 0.330303i 0.0104556i
\(999\) 39.6863i 1.25562i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.d.c.844.4 8
5.4 even 2 inner 845.2.d.c.844.5 8
13.2 odd 12 845.2.n.d.529.1 8
13.3 even 3 845.2.l.c.654.3 8
13.4 even 6 845.2.l.c.699.2 8
13.5 odd 4 845.2.b.f.339.6 8
13.6 odd 12 845.2.n.c.484.4 8
13.7 odd 12 845.2.n.d.484.2 8
13.8 odd 4 845.2.b.f.339.4 8
13.9 even 3 65.2.l.a.49.3 yes 8
13.10 even 6 65.2.l.a.4.2 8
13.11 odd 12 845.2.n.c.529.3 8
13.12 even 2 inner 845.2.d.c.844.6 8
39.23 odd 6 585.2.bf.a.199.3 8
39.35 odd 6 585.2.bf.a.244.2 8
52.23 odd 6 1040.2.df.b.849.4 8
52.35 odd 6 1040.2.df.b.49.1 8
65.4 even 6 845.2.l.c.699.3 8
65.8 even 4 4225.2.a.bj.1.2 4
65.9 even 6 65.2.l.a.49.2 yes 8
65.18 even 4 4225.2.a.bj.1.3 4
65.19 odd 12 845.2.n.d.484.1 8
65.22 odd 12 325.2.n.c.101.1 4
65.23 odd 12 325.2.n.b.251.2 4
65.24 odd 12 845.2.n.d.529.2 8
65.29 even 6 845.2.l.c.654.2 8
65.34 odd 4 845.2.b.f.339.5 8
65.44 odd 4 845.2.b.f.339.3 8
65.47 even 4 4225.2.a.bk.1.3 4
65.48 odd 12 325.2.n.b.101.2 4
65.49 even 6 65.2.l.a.4.3 yes 8
65.54 odd 12 845.2.n.c.529.4 8
65.57 even 4 4225.2.a.bk.1.2 4
65.59 odd 12 845.2.n.c.484.3 8
65.62 odd 12 325.2.n.c.251.1 4
65.64 even 2 inner 845.2.d.c.844.3 8
195.74 odd 6 585.2.bf.a.244.3 8
195.179 odd 6 585.2.bf.a.199.2 8
260.139 odd 6 1040.2.df.b.49.4 8
260.179 odd 6 1040.2.df.b.849.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.2 8 13.10 even 6
65.2.l.a.4.3 yes 8 65.49 even 6
65.2.l.a.49.2 yes 8 65.9 even 6
65.2.l.a.49.3 yes 8 13.9 even 3
325.2.n.b.101.2 4 65.48 odd 12
325.2.n.b.251.2 4 65.23 odd 12
325.2.n.c.101.1 4 65.22 odd 12
325.2.n.c.251.1 4 65.62 odd 12
585.2.bf.a.199.2 8 195.179 odd 6
585.2.bf.a.199.3 8 39.23 odd 6
585.2.bf.a.244.2 8 39.35 odd 6
585.2.bf.a.244.3 8 195.74 odd 6
845.2.b.f.339.3 8 65.44 odd 4
845.2.b.f.339.4 8 13.8 odd 4
845.2.b.f.339.5 8 65.34 odd 4
845.2.b.f.339.6 8 13.5 odd 4
845.2.d.c.844.3 8 65.64 even 2 inner
845.2.d.c.844.4 8 1.1 even 1 trivial
845.2.d.c.844.5 8 5.4 even 2 inner
845.2.d.c.844.6 8 13.12 even 2 inner
845.2.l.c.654.2 8 65.29 even 6
845.2.l.c.654.3 8 13.3 even 3
845.2.l.c.699.2 8 13.4 even 6
845.2.l.c.699.3 8 65.4 even 6
845.2.n.c.484.3 8 65.59 odd 12
845.2.n.c.484.4 8 13.6 odd 12
845.2.n.c.529.3 8 13.11 odd 12
845.2.n.c.529.4 8 65.54 odd 12
845.2.n.d.484.1 8 65.19 odd 12
845.2.n.d.484.2 8 13.7 odd 12
845.2.n.d.529.1 8 13.2 odd 12
845.2.n.d.529.2 8 65.24 odd 12
1040.2.df.b.49.1 8 52.35 odd 6
1040.2.df.b.49.4 8 260.139 odd 6
1040.2.df.b.849.1 8 260.179 odd 6
1040.2.df.b.849.4 8 52.23 odd 6
4225.2.a.bj.1.2 4 65.8 even 4
4225.2.a.bj.1.3 4 65.18 even 4
4225.2.a.bk.1.2 4 65.57 even 4
4225.2.a.bk.1.3 4 65.47 even 4