Properties

Label 585.2.bf.a.244.3
Level $585$
Weight $2$
Character 585.244
Analytic conductor $4.671$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(199,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 244.3
Root \(0.228425 + 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 585.244
Dual form 585.2.bf.a.199.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.228425 + 0.395644i) q^{2} +(0.895644 - 1.55130i) q^{4} +(-2.18890 - 0.456850i) q^{5} +(0.866025 - 1.50000i) q^{7} +1.73205 q^{8} +(-0.319250 - 0.970381i) q^{10} +(2.29129 - 1.32288i) q^{11} +(-3.46410 + 1.00000i) q^{13} +0.791288 q^{14} +(-1.39564 - 2.41733i) q^{16} +(-3.96863 - 2.29129i) q^{17} +(-1.50000 - 0.866025i) q^{19} +(-2.66919 + 2.98647i) q^{20} +(1.04678 + 0.604356i) q^{22} +(3.96863 - 2.29129i) q^{23} +(4.58258 + 2.00000i) q^{25} +(-1.18693 - 1.14213i) q^{26} +(-1.55130 - 2.68693i) q^{28} +(-2.29129 - 3.96863i) q^{29} -6.20520i q^{31} +(2.36965 - 4.10436i) q^{32} -2.09355i q^{34} +(-2.58092 + 2.88771i) q^{35} +(-3.96863 - 6.87386i) q^{37} -0.791288i q^{38} +(-3.79129 - 0.791288i) q^{40} +(-2.29129 + 1.32288i) q^{41} +(9.16478 + 5.29129i) q^{43} -4.73930i q^{44} +(1.81307 + 1.04678i) q^{46} +1.82740 q^{47} +(2.00000 + 3.46410i) q^{49} +(0.255488 + 2.26992i) q^{50} +(-1.55130 + 6.26951i) q^{52} +7.58258i q^{53} +(-5.61976 + 1.84887i) q^{55} +(1.50000 - 2.59808i) q^{56} +(1.04678 - 1.81307i) q^{58} +(12.0826 + 6.97588i) q^{59} +(0.708712 - 1.22753i) q^{61} +(2.45505 - 1.41742i) q^{62} -3.41742 q^{64} +(8.03943 - 0.606325i) q^{65} +(0.504525 + 0.873864i) q^{67} +(-7.10895 + 4.10436i) q^{68} +(-1.73205 - 0.361500i) q^{70} +(-6.08258 - 3.51178i) q^{71} +(1.81307 - 3.14033i) q^{74} +(-2.68693 + 1.55130i) q^{76} -4.58258i q^{77} +6.00000 q^{79} +(1.95057 + 5.92889i) q^{80} +(-1.04678 - 0.604356i) q^{82} -6.01450 q^{83} +(7.64016 + 6.82847i) q^{85} +4.83465i q^{86} +(3.96863 - 2.29129i) q^{88} +(-8.29129 + 4.78698i) q^{89} +(-1.50000 + 6.06218i) q^{91} -8.20871i q^{92} +(0.417424 + 0.723000i) q^{94} +(2.88771 + 2.58092i) q^{95} +(5.70068 - 9.87386i) q^{97} +(-0.913701 + 1.58258i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} - 4 q^{10} - 12 q^{14} - 2 q^{16} - 12 q^{19} - 24 q^{20} + 18 q^{26} - 6 q^{35} - 12 q^{40} + 42 q^{46} + 16 q^{49} + 12 q^{50} - 14 q^{55} + 12 q^{56} + 60 q^{59} + 24 q^{61} - 64 q^{64}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.228425 + 0.395644i 0.161521 + 0.279763i 0.935414 0.353553i \(-0.115027\pi\)
−0.773893 + 0.633316i \(0.781693\pi\)
\(3\) 0 0
\(4\) 0.895644 1.55130i 0.447822 0.775650i
\(5\) −2.18890 0.456850i −0.978906 0.204310i
\(6\) 0 0
\(7\) 0.866025 1.50000i 0.327327 0.566947i −0.654654 0.755929i \(-0.727186\pi\)
0.981981 + 0.188982i \(0.0605189\pi\)
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) −0.319250 0.970381i −0.100956 0.306862i
\(11\) 2.29129 1.32288i 0.690849 0.398862i −0.113081 0.993586i \(-0.536072\pi\)
0.803930 + 0.594724i \(0.202739\pi\)
\(12\) 0 0
\(13\) −3.46410 + 1.00000i −0.960769 + 0.277350i
\(14\) 0.791288 0.211481
\(15\) 0 0
\(16\) −1.39564 2.41733i −0.348911 0.604332i
\(17\) −3.96863 2.29129i −0.962533 0.555719i −0.0655816 0.997847i \(-0.520890\pi\)
−0.896952 + 0.442128i \(0.854224\pi\)
\(18\) 0 0
\(19\) −1.50000 0.866025i −0.344124 0.198680i 0.317970 0.948101i \(-0.396999\pi\)
−0.662094 + 0.749421i \(0.730332\pi\)
\(20\) −2.66919 + 2.98647i −0.596849 + 0.667795i
\(21\) 0 0
\(22\) 1.04678 + 0.604356i 0.223173 + 0.128849i
\(23\) 3.96863 2.29129i 0.827516 0.477767i −0.0254855 0.999675i \(-0.508113\pi\)
0.853001 + 0.521909i \(0.174780\pi\)
\(24\) 0 0
\(25\) 4.58258 + 2.00000i 0.916515 + 0.400000i
\(26\) −1.18693 1.14213i −0.232776 0.223989i
\(27\) 0 0
\(28\) −1.55130 2.68693i −0.293168 0.507782i
\(29\) −2.29129 3.96863i −0.425481 0.736956i 0.570984 0.820961i \(-0.306562\pi\)
−0.996465 + 0.0840058i \(0.973229\pi\)
\(30\) 0 0
\(31\) 6.20520i 1.11449i −0.830349 0.557244i \(-0.811859\pi\)
0.830349 0.557244i \(-0.188141\pi\)
\(32\) 2.36965 4.10436i 0.418899 0.725555i
\(33\) 0 0
\(34\) 2.09355i 0.359041i
\(35\) −2.58092 + 2.88771i −0.436255 + 0.488112i
\(36\) 0 0
\(37\) −3.96863 6.87386i −0.652438 1.13006i −0.982529 0.186107i \(-0.940413\pi\)
0.330091 0.943949i \(-0.392920\pi\)
\(38\) 0.791288i 0.128364i
\(39\) 0 0
\(40\) −3.79129 0.791288i −0.599455 0.125114i
\(41\) −2.29129 + 1.32288i −0.357839 + 0.206598i −0.668132 0.744042i \(-0.732906\pi\)
0.310293 + 0.950641i \(0.399573\pi\)
\(42\) 0 0
\(43\) 9.16478 + 5.29129i 1.39762 + 0.806914i 0.994142 0.108078i \(-0.0344695\pi\)
0.403473 + 0.914991i \(0.367803\pi\)
\(44\) 4.73930i 0.714477i
\(45\) 0 0
\(46\) 1.81307 + 1.04678i 0.267322 + 0.154339i
\(47\) 1.82740 0.266554 0.133277 0.991079i \(-0.457450\pi\)
0.133277 + 0.991079i \(0.457450\pi\)
\(48\) 0 0
\(49\) 2.00000 + 3.46410i 0.285714 + 0.494872i
\(50\) 0.255488 + 2.26992i 0.0361314 + 0.321015i
\(51\) 0 0
\(52\) −1.55130 + 6.26951i −0.215127 + 0.869424i
\(53\) 7.58258i 1.04155i 0.853695 + 0.520773i \(0.174356\pi\)
−0.853695 + 0.520773i \(0.825644\pi\)
\(54\) 0 0
\(55\) −5.61976 + 1.84887i −0.757768 + 0.249301i
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) 0 0
\(58\) 1.04678 1.81307i 0.137448 0.238068i
\(59\) 12.0826 + 6.97588i 1.57302 + 0.908182i 0.995796 + 0.0915940i \(0.0291962\pi\)
0.577221 + 0.816588i \(0.304137\pi\)
\(60\) 0 0
\(61\) 0.708712 1.22753i 0.0907413 0.157169i −0.817082 0.576522i \(-0.804410\pi\)
0.907823 + 0.419353i \(0.137743\pi\)
\(62\) 2.45505 1.41742i 0.311792 0.180013i
\(63\) 0 0
\(64\) −3.41742 −0.427178
\(65\) 8.03943 0.606325i 0.997168 0.0752054i
\(66\) 0 0
\(67\) 0.504525 + 0.873864i 0.0616376 + 0.106759i 0.895198 0.445670i \(-0.147034\pi\)
−0.833560 + 0.552429i \(0.813701\pi\)
\(68\) −7.10895 + 4.10436i −0.862087 + 0.497726i
\(69\) 0 0
\(70\) −1.73205 0.361500i −0.207020 0.0432075i
\(71\) −6.08258 3.51178i −0.721869 0.416771i 0.0935712 0.995613i \(-0.470172\pi\)
−0.815440 + 0.578841i \(0.803505\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 1.81307 3.14033i 0.210765 0.365056i
\(75\) 0 0
\(76\) −2.68693 + 1.55130i −0.308212 + 0.177946i
\(77\) 4.58258i 0.522233i
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 1.95057 + 5.92889i 0.218080 + 0.662870i
\(81\) 0 0
\(82\) −1.04678 0.604356i −0.115597 0.0667400i
\(83\) −6.01450 −0.660177 −0.330089 0.943950i \(-0.607079\pi\)
−0.330089 + 0.943950i \(0.607079\pi\)
\(84\) 0 0
\(85\) 7.64016 + 6.82847i 0.828691 + 0.740652i
\(86\) 4.83465i 0.521334i
\(87\) 0 0
\(88\) 3.96863 2.29129i 0.423057 0.244252i
\(89\) −8.29129 + 4.78698i −0.878875 + 0.507419i −0.870287 0.492545i \(-0.836067\pi\)
−0.00858752 + 0.999963i \(0.502734\pi\)
\(90\) 0 0
\(91\) −1.50000 + 6.06218i −0.157243 + 0.635489i
\(92\) 8.20871i 0.855817i
\(93\) 0 0
\(94\) 0.417424 + 0.723000i 0.0430540 + 0.0745718i
\(95\) 2.88771 + 2.58092i 0.296273 + 0.264797i
\(96\) 0 0
\(97\) 5.70068 9.87386i 0.578816 1.00254i −0.416799 0.908999i \(-0.636848\pi\)
0.995615 0.0935404i \(-0.0298184\pi\)
\(98\) −0.913701 + 1.58258i −0.0922977 + 0.159864i
\(99\) 0 0
\(100\) 7.20696 5.31767i 0.720696 0.531767i
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) 0 0
\(103\) 3.16515i 0.311872i −0.987767 0.155936i \(-0.950161\pi\)
0.987767 0.155936i \(-0.0498393\pi\)
\(104\) −6.00000 + 1.73205i −0.588348 + 0.169842i
\(105\) 0 0
\(106\) −3.00000 + 1.73205i −0.291386 + 0.168232i
\(107\) 9.16478 5.29129i 0.885993 0.511528i 0.0133631 0.999911i \(-0.495746\pi\)
0.872630 + 0.488383i \(0.162413\pi\)
\(108\) 0 0
\(109\) 13.1334i 1.25795i 0.777425 + 0.628976i \(0.216526\pi\)
−0.777425 + 0.628976i \(0.783474\pi\)
\(110\) −2.01519 1.80110i −0.192141 0.171728i
\(111\) 0 0
\(112\) −4.83465 −0.456832
\(113\) 6.42368 + 3.70871i 0.604289 + 0.348886i 0.770727 0.637166i \(-0.219893\pi\)
−0.166438 + 0.986052i \(0.553227\pi\)
\(114\) 0 0
\(115\) −9.73371 + 3.20233i −0.907673 + 0.298619i
\(116\) −8.20871 −0.762160
\(117\) 0 0
\(118\) 6.37386i 0.586762i
\(119\) −6.87386 + 3.96863i −0.630126 + 0.363803i
\(120\) 0 0
\(121\) −2.00000 + 3.46410i −0.181818 + 0.314918i
\(122\) 0.647551 0.0586265
\(123\) 0 0
\(124\) −9.62614 5.55765i −0.864453 0.499092i
\(125\) −9.11710 6.47135i −0.815459 0.578815i
\(126\) 0 0
\(127\) 15.3700 8.87386i 1.36387 0.787428i 0.373729 0.927538i \(-0.378079\pi\)
0.990136 + 0.140110i \(0.0447455\pi\)
\(128\) −5.51993 9.56080i −0.487897 0.845063i
\(129\) 0 0
\(130\) 2.07630 + 3.04225i 0.182103 + 0.266823i
\(131\) 7.58258 0.662493 0.331246 0.943544i \(-0.392531\pi\)
0.331246 + 0.943544i \(0.392531\pi\)
\(132\) 0 0
\(133\) −2.59808 + 1.50000i −0.225282 + 0.130066i
\(134\) −0.230493 + 0.399225i −0.0199115 + 0.0344878i
\(135\) 0 0
\(136\) −6.87386 3.96863i −0.589429 0.340307i
\(137\) 5.24383 9.08258i 0.448010 0.775977i −0.550246 0.835003i \(-0.685466\pi\)
0.998256 + 0.0590258i \(0.0187994\pi\)
\(138\) 0 0
\(139\) −10.8739 + 18.8341i −0.922309 + 1.59749i −0.126476 + 0.991970i \(0.540367\pi\)
−0.795833 + 0.605517i \(0.792967\pi\)
\(140\) 2.16812 + 6.59014i 0.183239 + 0.556968i
\(141\) 0 0
\(142\) 3.20871i 0.269269i
\(143\) −6.61438 + 6.87386i −0.553122 + 0.574821i
\(144\) 0 0
\(145\) 3.20233 + 9.73371i 0.265939 + 0.808340i
\(146\) 0 0
\(147\) 0 0
\(148\) −14.2179 −1.16870
\(149\) 14.4564 + 8.34643i 1.18432 + 0.683766i 0.957009 0.290057i \(-0.0936742\pi\)
0.227308 + 0.973823i \(0.427008\pi\)
\(150\) 0 0
\(151\) 9.66930i 0.786877i 0.919351 + 0.393438i \(0.128715\pi\)
−0.919351 + 0.393438i \(0.871285\pi\)
\(152\) −2.59808 1.50000i −0.210732 0.121666i
\(153\) 0 0
\(154\) 1.81307 1.04678i 0.146101 0.0843516i
\(155\) −2.83485 + 13.5826i −0.227701 + 1.09098i
\(156\) 0 0
\(157\) 9.16515i 0.731459i 0.930721 + 0.365729i \(0.119180\pi\)
−0.930721 + 0.365729i \(0.880820\pi\)
\(158\) 1.37055 + 2.37386i 0.109035 + 0.188854i
\(159\) 0 0
\(160\) −7.06201 + 7.90145i −0.558301 + 0.624665i
\(161\) 7.93725i 0.625543i
\(162\) 0 0
\(163\) −10.5353 + 18.2477i −0.825191 + 1.42927i 0.0765827 + 0.997063i \(0.475599\pi\)
−0.901773 + 0.432209i \(0.857734\pi\)
\(164\) 4.73930i 0.370077i
\(165\) 0 0
\(166\) −1.37386 2.37960i −0.106632 0.184693i
\(167\) −4.78698 8.29129i −0.370427 0.641599i 0.619204 0.785230i \(-0.287455\pi\)
−0.989631 + 0.143631i \(0.954122\pi\)
\(168\) 0 0
\(169\) 11.0000 6.92820i 0.846154 0.532939i
\(170\) −0.956439 + 4.58258i −0.0733555 + 0.351468i
\(171\) 0 0
\(172\) 16.4168 9.47822i 1.25177 0.722707i
\(173\) 14.3609 + 8.29129i 1.09184 + 0.630375i 0.934066 0.357100i \(-0.116234\pi\)
0.157775 + 0.987475i \(0.449568\pi\)
\(174\) 0 0
\(175\) 6.96863 5.14181i 0.526779 0.388685i
\(176\) −6.39564 3.69253i −0.482090 0.278335i
\(177\) 0 0
\(178\) −3.78788 2.18693i −0.283913 0.163917i
\(179\) −9.08258 15.7315i −0.678864 1.17583i −0.975323 0.220781i \(-0.929139\pi\)
0.296460 0.955045i \(-0.404194\pi\)
\(180\) 0 0
\(181\) 8.74773 0.650213 0.325107 0.945677i \(-0.394600\pi\)
0.325107 + 0.945677i \(0.394600\pi\)
\(182\) −2.74110 + 0.791288i −0.203184 + 0.0586542i
\(183\) 0 0
\(184\) 6.87386 3.96863i 0.506748 0.292571i
\(185\) 5.54661 + 16.8593i 0.407795 + 1.23952i
\(186\) 0 0
\(187\) −12.1244 −0.886621
\(188\) 1.63670 2.83485i 0.119369 0.206753i
\(189\) 0 0
\(190\) −0.361500 + 1.73205i −0.0262260 + 0.125656i
\(191\) −8.29129 + 14.3609i −0.599937 + 1.03912i 0.392893 + 0.919584i \(0.371474\pi\)
−0.992830 + 0.119536i \(0.961859\pi\)
\(192\) 0 0
\(193\) −7.43273 12.8739i −0.535020 0.926681i −0.999162 0.0409206i \(-0.986971\pi\)
0.464143 0.885760i \(-0.346362\pi\)
\(194\) 5.20871 0.373964
\(195\) 0 0
\(196\) 7.16515 0.511797
\(197\) −7.33738 12.7087i −0.522767 0.905458i −0.999649 0.0264912i \(-0.991567\pi\)
0.476882 0.878967i \(-0.341767\pi\)
\(198\) 0 0
\(199\) 5.29129 9.16478i 0.375089 0.649674i −0.615251 0.788331i \(-0.710945\pi\)
0.990340 + 0.138657i \(0.0442787\pi\)
\(200\) 7.93725 + 3.46410i 0.561249 + 0.244949i
\(201\) 0 0
\(202\) −2.05583 + 3.56080i −0.144647 + 0.250537i
\(203\) −7.93725 −0.557086
\(204\) 0 0
\(205\) 5.61976 1.84887i 0.392501 0.129131i
\(206\) 1.25227 0.723000i 0.0872500 0.0503738i
\(207\) 0 0
\(208\) 7.25198 + 6.97822i 0.502834 + 0.483852i
\(209\) −4.58258 −0.316983
\(210\) 0 0
\(211\) 0.0825757 + 0.143025i 0.00568475 + 0.00984627i 0.868854 0.495069i \(-0.164857\pi\)
−0.863169 + 0.504915i \(0.831524\pi\)
\(212\) 11.7629 + 6.79129i 0.807876 + 0.466428i
\(213\) 0 0
\(214\) 4.18693 + 2.41733i 0.286213 + 0.165245i
\(215\) −17.6435 15.7690i −1.20327 1.07544i
\(216\) 0 0
\(217\) −9.30780 5.37386i −0.631855 0.364802i
\(218\) −5.19615 + 3.00000i −0.351928 + 0.203186i
\(219\) 0 0
\(220\) −2.16515 + 10.3739i −0.145974 + 0.699406i
\(221\) 16.0390 + 3.96863i 1.07890 + 0.266959i
\(222\) 0 0
\(223\) 4.33013 + 7.50000i 0.289967 + 0.502237i 0.973801 0.227400i \(-0.0730224\pi\)
−0.683835 + 0.729637i \(0.739689\pi\)
\(224\) −4.10436 7.10895i −0.274234 0.474987i
\(225\) 0 0
\(226\) 3.38865i 0.225410i
\(227\) 0.409175 0.708712i 0.0271579 0.0470389i −0.852127 0.523335i \(-0.824688\pi\)
0.879285 + 0.476296i \(0.158021\pi\)
\(228\) 0 0
\(229\) 26.2668i 1.73576i −0.496774 0.867880i \(-0.665482\pi\)
0.496774 0.867880i \(-0.334518\pi\)
\(230\) −3.49041 3.11959i −0.230151 0.205700i
\(231\) 0 0
\(232\) −3.96863 6.87386i −0.260553 0.451291i
\(233\) 2.83485i 0.185717i 0.995679 + 0.0928586i \(0.0296004\pi\)
−0.995679 + 0.0928586i \(0.970400\pi\)
\(234\) 0 0
\(235\) −4.00000 0.834849i −0.260931 0.0544595i
\(236\) 21.6434 12.4958i 1.40886 0.813408i
\(237\) 0 0
\(238\) −3.14033 1.81307i −0.203557 0.117524i
\(239\) 0.190700i 0.0123354i 0.999981 + 0.00616769i \(0.00196325\pi\)
−0.999981 + 0.00616769i \(0.998037\pi\)
\(240\) 0 0
\(241\) −1.50000 0.866025i −0.0966235 0.0557856i 0.450910 0.892570i \(-0.351100\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) −1.82740 −0.117470
\(243\) 0 0
\(244\) −1.26951 2.19885i −0.0812719 0.140767i
\(245\) −2.79523 8.49628i −0.178580 0.542807i
\(246\) 0 0
\(247\) 6.06218 + 1.50000i 0.385727 + 0.0954427i
\(248\) 10.7477i 0.682481i
\(249\) 0 0
\(250\) 0.477776 5.08535i 0.0302172 0.321626i
\(251\) −0.0825757 + 0.143025i −0.00521213 + 0.00902768i −0.868620 0.495479i \(-0.834992\pi\)
0.863408 + 0.504507i \(0.168326\pi\)
\(252\) 0 0
\(253\) 6.06218 10.5000i 0.381126 0.660129i
\(254\) 7.02178 + 4.05403i 0.440586 + 0.254372i
\(255\) 0 0
\(256\) −0.895644 + 1.55130i −0.0559777 + 0.0969563i
\(257\) 15.7315 9.08258i 0.981303 0.566556i 0.0786397 0.996903i \(-0.474942\pi\)
0.902663 + 0.430348i \(0.141609\pi\)
\(258\) 0 0
\(259\) −13.7477 −0.854242
\(260\) 6.25987 13.0146i 0.388221 0.807132i
\(261\) 0 0
\(262\) 1.73205 + 3.00000i 0.107006 + 0.185341i
\(263\) 7.79423 4.50000i 0.480613 0.277482i −0.240059 0.970758i \(-0.577167\pi\)
0.720672 + 0.693276i \(0.243833\pi\)
\(264\) 0 0
\(265\) 3.46410 16.5975i 0.212798 1.01958i
\(266\) −1.18693 0.685275i −0.0727755 0.0420169i
\(267\) 0 0
\(268\) 1.80750 0.110411
\(269\) 7.50000 12.9904i 0.457283 0.792038i −0.541533 0.840679i \(-0.682156\pi\)
0.998816 + 0.0486418i \(0.0154893\pi\)
\(270\) 0 0
\(271\) 7.50000 4.33013i 0.455593 0.263036i −0.254597 0.967047i \(-0.581943\pi\)
0.710189 + 0.704011i \(0.248609\pi\)
\(272\) 12.7913i 0.775586i
\(273\) 0 0
\(274\) 4.79129 0.289452
\(275\) 13.1458 1.47960i 0.792719 0.0892234i
\(276\) 0 0
\(277\) 6.42368 + 3.70871i 0.385961 + 0.222835i 0.680409 0.732833i \(-0.261802\pi\)
−0.294447 + 0.955668i \(0.595136\pi\)
\(278\) −9.93545 −0.595889
\(279\) 0 0
\(280\) −4.47028 + 5.00166i −0.267151 + 0.298906i
\(281\) 3.65480i 0.218027i 0.994040 + 0.109014i \(0.0347692\pi\)
−0.994040 + 0.109014i \(0.965231\pi\)
\(282\) 0 0
\(283\) 24.0302 13.8739i 1.42845 0.824716i 0.431451 0.902136i \(-0.358002\pi\)
0.996998 + 0.0774209i \(0.0246685\pi\)
\(284\) −10.8956 + 6.29060i −0.646538 + 0.373279i
\(285\) 0 0
\(286\) −4.23049 1.04678i −0.250154 0.0618971i
\(287\) 4.58258i 0.270501i
\(288\) 0 0
\(289\) 2.00000 + 3.46410i 0.117647 + 0.203771i
\(290\) −3.11959 + 3.49041i −0.183189 + 0.204964i
\(291\) 0 0
\(292\) 0 0
\(293\) −9.06943 + 15.7087i −0.529842 + 0.917713i 0.469552 + 0.882905i \(0.344415\pi\)
−0.999394 + 0.0348081i \(0.988918\pi\)
\(294\) 0 0
\(295\) −23.2606 20.7894i −1.35429 1.21041i
\(296\) −6.87386 11.9059i −0.399535 0.692015i
\(297\) 0 0
\(298\) 7.62614i 0.441770i
\(299\) −11.4564 + 11.9059i −0.662543 + 0.688535i
\(300\) 0 0
\(301\) 15.8739 9.16478i 0.914954 0.528249i
\(302\) −3.82560 + 2.20871i −0.220139 + 0.127097i
\(303\) 0 0
\(304\) 4.83465i 0.277286i
\(305\) −2.11210 + 2.36316i −0.120938 + 0.135314i
\(306\) 0 0
\(307\) −24.2487 −1.38395 −0.691974 0.721923i \(-0.743259\pi\)
−0.691974 + 0.721923i \(0.743259\pi\)
\(308\) −7.10895 4.10436i −0.405070 0.233867i
\(309\) 0 0
\(310\) −6.02141 + 1.98101i −0.341993 + 0.112514i
\(311\) −7.58258 −0.429968 −0.214984 0.976618i \(-0.568970\pi\)
−0.214984 + 0.976618i \(0.568970\pi\)
\(312\) 0 0
\(313\) 3.25227i 0.183829i 0.995767 + 0.0919147i \(0.0292987\pi\)
−0.995767 + 0.0919147i \(0.970701\pi\)
\(314\) −3.62614 + 2.09355i −0.204635 + 0.118146i
\(315\) 0 0
\(316\) 5.37386 9.30780i 0.302303 0.523605i
\(317\) −0.190700 −0.0107108 −0.00535540 0.999986i \(-0.501705\pi\)
−0.00535540 + 0.999986i \(0.501705\pi\)
\(318\) 0 0
\(319\) −10.5000 6.06218i −0.587887 0.339417i
\(320\) 7.48040 + 1.56125i 0.418167 + 0.0872766i
\(321\) 0 0
\(322\) 3.14033 1.81307i 0.175004 0.101038i
\(323\) 3.96863 + 6.87386i 0.220820 + 0.382472i
\(324\) 0 0
\(325\) −17.8745 2.34563i −0.991499 0.130112i
\(326\) −9.62614 −0.533142
\(327\) 0 0
\(328\) −3.96863 + 2.29129i −0.219131 + 0.126515i
\(329\) 1.58258 2.74110i 0.0872502 0.151122i
\(330\) 0 0
\(331\) −3.87386 2.23658i −0.212927 0.122933i 0.389744 0.920923i \(-0.372563\pi\)
−0.602671 + 0.797990i \(0.705897\pi\)
\(332\) −5.38685 + 9.33030i −0.295642 + 0.512067i
\(333\) 0 0
\(334\) 2.18693 3.78788i 0.119664 0.207263i
\(335\) −0.705131 2.14329i −0.0385254 0.117101i
\(336\) 0 0
\(337\) 30.7477i 1.67494i 0.546487 + 0.837468i \(0.315965\pi\)
−0.546487 + 0.837468i \(0.684035\pi\)
\(338\) 5.25378 + 2.76951i 0.285768 + 0.150641i
\(339\) 0 0
\(340\) 17.4359 5.73630i 0.945593 0.311095i
\(341\) −8.20871 14.2179i −0.444527 0.769943i
\(342\) 0 0
\(343\) 19.0526 1.02874
\(344\) 15.8739 + 9.16478i 0.855861 + 0.494132i
\(345\) 0 0
\(346\) 7.57575i 0.407275i
\(347\) −18.4726 10.6652i −0.991660 0.572535i −0.0858901 0.996305i \(-0.527373\pi\)
−0.905770 + 0.423769i \(0.860707\pi\)
\(348\) 0 0
\(349\) 2.12614 1.22753i 0.113809 0.0657079i −0.442015 0.897008i \(-0.645736\pi\)
0.555824 + 0.831300i \(0.312403\pi\)
\(350\) 3.62614 + 1.58258i 0.193825 + 0.0845922i
\(351\) 0 0
\(352\) 12.5390i 0.668332i
\(353\) 3.41643 + 5.91742i 0.181838 + 0.314953i 0.942506 0.334188i \(-0.108462\pi\)
−0.760668 + 0.649141i \(0.775129\pi\)
\(354\) 0 0
\(355\) 11.7098 + 10.4658i 0.621492 + 0.555465i
\(356\) 17.1497i 0.908933i
\(357\) 0 0
\(358\) 4.14938 7.18693i 0.219301 0.379841i
\(359\) 19.5293i 1.03072i −0.856975 0.515359i \(-0.827659\pi\)
0.856975 0.515359i \(-0.172341\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) 1.99820 + 3.46099i 0.105023 + 0.181905i
\(363\) 0 0
\(364\) 8.06080 + 7.75650i 0.422500 + 0.406551i
\(365\) 0 0
\(366\) 0 0
\(367\) −1.51358 + 0.873864i −0.0790080 + 0.0456153i −0.538984 0.842316i \(-0.681192\pi\)
0.459976 + 0.887932i \(0.347858\pi\)
\(368\) −11.0776 6.39564i −0.577459 0.333396i
\(369\) 0 0
\(370\) −5.40329 + 6.04556i −0.280903 + 0.314294i
\(371\) 11.3739 + 6.56670i 0.590502 + 0.340926i
\(372\) 0 0
\(373\) −11.2583 6.50000i −0.582934 0.336557i 0.179364 0.983783i \(-0.442596\pi\)
−0.762299 + 0.647225i \(0.775929\pi\)
\(374\) −2.76951 4.79693i −0.143208 0.248043i
\(375\) 0 0
\(376\) 3.16515 0.163230
\(377\) 11.9059 + 11.4564i 0.613184 + 0.590037i
\(378\) 0 0
\(379\) −9.24773 + 5.33918i −0.475024 + 0.274255i −0.718340 0.695692i \(-0.755098\pi\)
0.243317 + 0.969947i \(0.421765\pi\)
\(380\) 6.59014 2.16812i 0.338067 0.111222i
\(381\) 0 0
\(382\) −7.57575 −0.387609
\(383\) 11.8105 20.4564i 0.603490 1.04528i −0.388798 0.921323i \(-0.627110\pi\)
0.992288 0.123952i \(-0.0395570\pi\)
\(384\) 0 0
\(385\) −2.09355 + 10.0308i −0.106697 + 0.511217i
\(386\) 3.39564 5.88143i 0.172834 0.299357i
\(387\) 0 0
\(388\) −10.2116 17.6869i −0.518413 0.897918i
\(389\) −3.16515 −0.160480 −0.0802398 0.996776i \(-0.525569\pi\)
−0.0802398 + 0.996776i \(0.525569\pi\)
\(390\) 0 0
\(391\) −21.0000 −1.06202
\(392\) 3.46410 + 6.00000i 0.174964 + 0.303046i
\(393\) 0 0
\(394\) 3.35208 5.80598i 0.168876 0.292501i
\(395\) −13.1334 2.74110i −0.660813 0.137920i
\(396\) 0 0
\(397\) 10.1738 17.6216i 0.510610 0.884402i −0.489315 0.872107i \(-0.662753\pi\)
0.999924 0.0122949i \(-0.00391368\pi\)
\(398\) 4.83465 0.242339
\(399\) 0 0
\(400\) −1.56099 13.8689i −0.0780496 0.693443i
\(401\) 25.8303 14.9131i 1.28990 0.744726i 0.311267 0.950323i \(-0.399247\pi\)
0.978637 + 0.205596i \(0.0659134\pi\)
\(402\) 0 0
\(403\) 6.20520 + 21.4955i 0.309103 + 1.07076i
\(404\) 16.1216 0.802079
\(405\) 0 0
\(406\) −1.81307 3.14033i −0.0899811 0.155852i
\(407\) −18.1865 10.5000i −0.901473 0.520466i
\(408\) 0 0
\(409\) 7.50000 + 4.33013i 0.370851 + 0.214111i 0.673830 0.738886i \(-0.264648\pi\)
−0.302979 + 0.952997i \(0.597981\pi\)
\(410\) 2.01519 + 1.80110i 0.0995230 + 0.0889498i
\(411\) 0 0
\(412\) −4.91010 2.83485i −0.241903 0.139663i
\(413\) 20.9276 12.0826i 1.02978 0.594545i
\(414\) 0 0
\(415\) 13.1652 + 2.74773i 0.646252 + 0.134881i
\(416\) −4.10436 + 16.5876i −0.201233 + 0.813272i
\(417\) 0 0
\(418\) −1.04678 1.81307i −0.0511995 0.0886801i
\(419\) 2.91742 + 5.05313i 0.142526 + 0.246861i 0.928447 0.371465i \(-0.121144\pi\)
−0.785922 + 0.618326i \(0.787811\pi\)
\(420\) 0 0
\(421\) 5.48220i 0.267186i −0.991036 0.133593i \(-0.957348\pi\)
0.991036 0.133593i \(-0.0426515\pi\)
\(422\) −0.0377247 + 0.0653411i −0.00183641 + 0.00318076i
\(423\) 0 0
\(424\) 13.1334i 0.637815i
\(425\) −13.6040 18.4373i −0.659889 0.894338i
\(426\) 0 0
\(427\) −1.22753 2.12614i −0.0594041 0.102891i
\(428\) 18.9564i 0.916294i
\(429\) 0 0
\(430\) 2.20871 10.5826i 0.106514 0.510337i
\(431\) −7.33485 + 4.23478i −0.353307 + 0.203982i −0.666141 0.745826i \(-0.732055\pi\)
0.312834 + 0.949808i \(0.398722\pi\)
\(432\) 0 0
\(433\) 8.44178 + 4.87386i 0.405686 + 0.234223i 0.688934 0.724824i \(-0.258079\pi\)
−0.283248 + 0.959047i \(0.591412\pi\)
\(434\) 4.91010i 0.235692i
\(435\) 0 0
\(436\) 20.3739 + 11.7629i 0.975731 + 0.563339i
\(437\) −7.93725 −0.379690
\(438\) 0 0
\(439\) −7.24773 12.5534i −0.345915 0.599143i 0.639604 0.768704i \(-0.279098\pi\)
−0.985520 + 0.169562i \(0.945765\pi\)
\(440\) −9.73371 + 3.20233i −0.464036 + 0.152665i
\(441\) 0 0
\(442\) 2.09355 + 7.25227i 0.0995801 + 0.344955i
\(443\) 19.9129i 0.946089i 0.881038 + 0.473045i \(0.156845\pi\)
−0.881038 + 0.473045i \(0.843155\pi\)
\(444\) 0 0
\(445\) 20.3357 6.69034i 0.964007 0.317153i
\(446\) −1.97822 + 3.42638i −0.0936714 + 0.162244i
\(447\) 0 0
\(448\) −2.95958 + 5.12614i −0.139827 + 0.242187i
\(449\) −9.54356 5.50998i −0.450388 0.260032i 0.257606 0.966250i \(-0.417066\pi\)
−0.707994 + 0.706218i \(0.750400\pi\)
\(450\) 0 0
\(451\) −3.50000 + 6.06218i −0.164809 + 0.285457i
\(452\) 11.5067 6.64337i 0.541228 0.312478i
\(453\) 0 0
\(454\) 0.373864 0.0175463
\(455\) 6.05286 12.5842i 0.283762 0.589958i
\(456\) 0 0
\(457\) −0.866025 1.50000i −0.0405110 0.0701670i 0.845059 0.534673i \(-0.179565\pi\)
−0.885570 + 0.464506i \(0.846232\pi\)
\(458\) 10.3923 6.00000i 0.485601 0.280362i
\(459\) 0 0
\(460\) −3.75015 + 17.9681i −0.174852 + 0.837765i
\(461\) −31.0390 17.9204i −1.44563 0.834635i −0.447414 0.894327i \(-0.647655\pi\)
−0.998217 + 0.0596914i \(0.980988\pi\)
\(462\) 0 0
\(463\) −39.4002 −1.83108 −0.915542 0.402223i \(-0.868238\pi\)
−0.915542 + 0.402223i \(0.868238\pi\)
\(464\) −6.39564 + 11.0776i −0.296910 + 0.514264i
\(465\) 0 0
\(466\) −1.12159 + 0.647551i −0.0519567 + 0.0299972i
\(467\) 24.3303i 1.12587i 0.826500 + 0.562936i \(0.190328\pi\)
−0.826500 + 0.562936i \(0.809672\pi\)
\(468\) 0 0
\(469\) 1.74773 0.0807025
\(470\) −0.583398 1.77328i −0.0269101 0.0817951i
\(471\) 0 0
\(472\) 20.9276 + 12.0826i 0.963272 + 0.556146i
\(473\) 27.9989 1.28739
\(474\) 0 0
\(475\) −5.14181 6.96863i −0.235923 0.319743i
\(476\) 14.2179i 0.651677i
\(477\) 0 0
\(478\) −0.0754495 + 0.0435608i −0.00345098 + 0.00199242i
\(479\) −4.03901 + 2.33193i −0.184547 + 0.106548i −0.589427 0.807821i \(-0.700647\pi\)
0.404880 + 0.914370i \(0.367313\pi\)
\(480\) 0 0
\(481\) 20.6216 + 19.8431i 0.940264 + 0.904769i
\(482\) 0.791288i 0.0360422i
\(483\) 0 0
\(484\) 3.58258 + 6.20520i 0.162844 + 0.282055i
\(485\) −16.9891 + 19.0086i −0.771435 + 0.863134i
\(486\) 0 0
\(487\) −5.33918 + 9.24773i −0.241941 + 0.419055i −0.961267 0.275618i \(-0.911117\pi\)
0.719326 + 0.694673i \(0.244451\pi\)
\(488\) 1.22753 2.12614i 0.0555675 0.0962457i
\(489\) 0 0
\(490\) 2.72300 3.04668i 0.123013 0.137635i
\(491\) 9.70871 + 16.8160i 0.438148 + 0.758895i 0.997547 0.0700041i \(-0.0223012\pi\)
−0.559399 + 0.828899i \(0.688968\pi\)
\(492\) 0 0
\(493\) 21.0000i 0.945792i
\(494\) 0.791288 + 2.74110i 0.0356017 + 0.123328i
\(495\) 0 0
\(496\) −15.0000 + 8.66025i −0.673520 + 0.388857i
\(497\) −10.5353 + 6.08258i −0.472574 + 0.272841i
\(498\) 0 0
\(499\) 0.723000i 0.0323659i −0.999869 0.0161830i \(-0.994849\pi\)
0.999869 0.0161830i \(-0.00515142\pi\)
\(500\) −18.2047 + 8.34734i −0.814139 + 0.373305i
\(501\) 0 0
\(502\) −0.0754495 −0.00336747
\(503\) −0.143025 0.0825757i −0.00637718 0.00368187i 0.496808 0.867860i \(-0.334505\pi\)
−0.503185 + 0.864179i \(0.667839\pi\)
\(504\) 0 0
\(505\) −6.28926 19.1166i −0.279868 0.850678i
\(506\) 5.53901 0.246239
\(507\) 0 0
\(508\) 31.7913i 1.41051i
\(509\) 7.33485 4.23478i 0.325111 0.187703i −0.328557 0.944484i \(-0.606562\pi\)
0.653669 + 0.756781i \(0.273229\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.8981 −1.01196
\(513\) 0 0
\(514\) 7.18693 + 4.14938i 0.317002 + 0.183021i
\(515\) −1.44600 + 6.92820i −0.0637184 + 0.305293i
\(516\) 0 0
\(517\) 4.18710 2.41742i 0.184149 0.106318i
\(518\) −3.14033 5.43920i −0.137978 0.238985i
\(519\) 0 0
\(520\) 13.9247 1.05019i 0.610638 0.0460537i
\(521\) −27.4955 −1.20460 −0.602299 0.798271i \(-0.705748\pi\)
−0.602299 + 0.798271i \(0.705748\pi\)
\(522\) 0 0
\(523\) −0.143025 + 0.0825757i −0.00625406 + 0.00361078i −0.503124 0.864214i \(-0.667816\pi\)
0.496870 + 0.867825i \(0.334483\pi\)
\(524\) 6.79129 11.7629i 0.296679 0.513863i
\(525\) 0 0
\(526\) 3.56080 + 2.05583i 0.155258 + 0.0896383i
\(527\) −14.2179 + 24.6261i −0.619342 + 1.07273i
\(528\) 0 0
\(529\) −1.00000 + 1.73205i −0.0434783 + 0.0753066i
\(530\) 7.35799 2.42074i 0.319611 0.105150i
\(531\) 0 0
\(532\) 5.37386i 0.232987i
\(533\) 6.61438 6.87386i 0.286501 0.297740i
\(534\) 0 0
\(535\) −22.4781 + 7.39517i −0.971814 + 0.319721i
\(536\) 0.873864 + 1.51358i 0.0377452 + 0.0653765i
\(537\) 0 0
\(538\) 6.85275 0.295443
\(539\) 9.16515 + 5.29150i 0.394771 + 0.227921i
\(540\) 0 0
\(541\) 10.3923i 0.446800i 0.974727 + 0.223400i \(0.0717156\pi\)
−0.974727 + 0.223400i \(0.928284\pi\)
\(542\) 3.42638 + 1.97822i 0.147175 + 0.0849718i
\(543\) 0 0
\(544\) −18.8085 + 10.8591i −0.806409 + 0.465580i
\(545\) 6.00000 28.7477i 0.257012 1.23142i
\(546\) 0 0
\(547\) 28.7477i 1.22916i 0.788853 + 0.614582i \(0.210675\pi\)
−0.788853 + 0.614582i \(0.789325\pi\)
\(548\) −9.39320 16.2695i −0.401258 0.694999i
\(549\) 0 0
\(550\) 3.58822 + 4.86306i 0.153002 + 0.207362i
\(551\) 7.93725i 0.338138i
\(552\) 0 0
\(553\) 5.19615 9.00000i 0.220963 0.382719i
\(554\) 3.38865i 0.143970i
\(555\) 0 0
\(556\) 19.4782 + 33.7373i 0.826061 + 1.43078i
\(557\) 3.87328 + 6.70871i 0.164116 + 0.284257i 0.936341 0.351092i \(-0.114190\pi\)
−0.772225 + 0.635349i \(0.780856\pi\)
\(558\) 0 0
\(559\) −37.0390 9.16478i −1.56658 0.387629i
\(560\) 10.5826 + 2.20871i 0.447195 + 0.0933351i
\(561\) 0 0
\(562\) −1.44600 + 0.834849i −0.0609958 + 0.0352160i
\(563\) 7.79423 + 4.50000i 0.328488 + 0.189652i 0.655169 0.755482i \(-0.272597\pi\)
−0.326682 + 0.945134i \(0.605931\pi\)
\(564\) 0 0
\(565\) −12.3665 11.0527i −0.520261 0.464989i
\(566\) 10.9782 + 6.33828i 0.461449 + 0.266418i
\(567\) 0 0
\(568\) −10.5353 6.08258i −0.442053 0.255219i
\(569\) −3.87386 6.70973i −0.162401 0.281286i 0.773328 0.634006i \(-0.218590\pi\)
−0.935729 + 0.352719i \(0.885257\pi\)
\(570\) 0 0
\(571\) −35.0780 −1.46797 −0.733985 0.679166i \(-0.762342\pi\)
−0.733985 + 0.679166i \(0.762342\pi\)
\(572\) 4.73930 + 16.4174i 0.198160 + 0.686447i
\(573\) 0 0
\(574\) −1.81307 + 1.04678i −0.0756760 + 0.0436916i
\(575\) 22.7691 2.56275i 0.949537 0.106874i
\(576\) 0 0
\(577\) 6.92820 0.288425 0.144212 0.989547i \(-0.453935\pi\)
0.144212 + 0.989547i \(0.453935\pi\)
\(578\) −0.913701 + 1.58258i −0.0380049 + 0.0658265i
\(579\) 0 0
\(580\) 17.9681 + 3.75015i 0.746083 + 0.155717i
\(581\) −5.20871 + 9.02175i −0.216094 + 0.374285i
\(582\) 0 0
\(583\) 10.0308 + 17.3739i 0.415433 + 0.719552i
\(584\) 0 0
\(585\) 0 0
\(586\) −8.28674 −0.342322
\(587\) 19.7478 + 34.2042i 0.815078 + 1.41176i 0.909272 + 0.416203i \(0.136639\pi\)
−0.0941934 + 0.995554i \(0.530027\pi\)
\(588\) 0 0
\(589\) −5.37386 + 9.30780i −0.221426 + 0.383521i
\(590\) 2.91190 13.9518i 0.119881 0.574385i
\(591\) 0 0
\(592\) −11.0776 + 19.1869i −0.455286 + 0.788578i
\(593\) −21.1660 −0.869184 −0.434592 0.900627i \(-0.643107\pi\)
−0.434592 + 0.900627i \(0.643107\pi\)
\(594\) 0 0
\(595\) 16.8593 5.54661i 0.691163 0.227389i
\(596\) 25.8956 14.9509i 1.06073 0.612411i
\(597\) 0 0
\(598\) −7.32743 1.81307i −0.299641 0.0741419i
\(599\) 15.4955 0.633127 0.316564 0.948571i \(-0.397471\pi\)
0.316564 + 0.948571i \(0.397471\pi\)
\(600\) 0 0
\(601\) −8.45644 14.6470i −0.344945 0.597463i 0.640398 0.768043i \(-0.278769\pi\)
−0.985344 + 0.170580i \(0.945436\pi\)
\(602\) 7.25198 + 4.18693i 0.295569 + 0.170647i
\(603\) 0 0
\(604\) 15.0000 + 8.66025i 0.610341 + 0.352381i
\(605\) 5.96038 6.66888i 0.242324 0.271128i
\(606\) 0 0
\(607\) −6.70973 3.87386i −0.272339 0.157235i 0.357611 0.933871i \(-0.383591\pi\)
−0.629950 + 0.776635i \(0.716925\pi\)
\(608\) −7.10895 + 4.10436i −0.288306 + 0.166454i
\(609\) 0 0
\(610\) −1.41742 0.295834i −0.0573898 0.0119780i
\(611\) −6.33030 + 1.82740i −0.256097 + 0.0739287i
\(612\) 0 0
\(613\) 2.95958 + 5.12614i 0.119536 + 0.207043i 0.919584 0.392894i \(-0.128526\pi\)
−0.800048 + 0.599936i \(0.795193\pi\)
\(614\) −5.53901 9.59386i −0.223536 0.387176i
\(615\) 0 0
\(616\) 7.93725i 0.319801i
\(617\) −6.97588 + 12.0826i −0.280838 + 0.486426i −0.971591 0.236664i \(-0.923946\pi\)
0.690753 + 0.723091i \(0.257279\pi\)
\(618\) 0 0
\(619\) 29.7309i 1.19499i 0.801874 + 0.597493i \(0.203836\pi\)
−0.801874 + 0.597493i \(0.796164\pi\)
\(620\) 18.5316 + 16.5629i 0.744249 + 0.665180i
\(621\) 0 0
\(622\) −1.73205 3.00000i −0.0694489 0.120289i
\(623\) 16.5826i 0.664367i
\(624\) 0 0
\(625\) 17.0000 + 18.3303i 0.680000 + 0.733212i
\(626\) −1.28674 + 0.742901i −0.0514286 + 0.0296923i
\(627\) 0 0
\(628\) 14.2179 + 8.20871i 0.567356 + 0.327563i
\(629\) 36.3731i 1.45029i
\(630\) 0 0
\(631\) −5.12614 2.95958i −0.204068 0.117819i 0.394483 0.918903i \(-0.370924\pi\)
−0.598552 + 0.801084i \(0.704257\pi\)
\(632\) 10.3923 0.413384
\(633\) 0 0
\(634\) −0.0435608 0.0754495i −0.00173002 0.00299648i
\(635\) −37.6974 + 12.4022i −1.49598 + 0.492167i
\(636\) 0 0
\(637\) −10.3923 10.0000i −0.411758 0.396214i
\(638\) 5.53901i 0.219292i
\(639\) 0 0
\(640\) 7.71472 + 23.4494i 0.304951 + 0.926920i
\(641\) 9.08258 15.7315i 0.358740 0.621356i −0.629010 0.777397i \(-0.716540\pi\)
0.987751 + 0.156041i \(0.0498731\pi\)
\(642\) 0 0
\(643\) 10.8968 18.8739i 0.429729 0.744313i −0.567120 0.823635i \(-0.691942\pi\)
0.996849 + 0.0793227i \(0.0252757\pi\)
\(644\) −12.3131 7.10895i −0.485203 0.280132i
\(645\) 0 0
\(646\) −1.81307 + 3.14033i −0.0713342 + 0.123554i
\(647\) −23.3827 + 13.5000i −0.919268 + 0.530740i −0.883402 0.468617i \(-0.844753\pi\)
−0.0358667 + 0.999357i \(0.511419\pi\)
\(648\) 0 0
\(649\) 36.9129 1.44896
\(650\) −3.15495 7.60774i −0.123747 0.298400i
\(651\) 0 0
\(652\) 18.8718 + 32.6869i 0.739077 + 1.28012i
\(653\) −37.0882 + 21.4129i −1.45137 + 0.837951i −0.998560 0.0536545i \(-0.982913\pi\)
−0.452814 + 0.891605i \(0.649580\pi\)
\(654\) 0 0
\(655\) −16.5975 3.46410i −0.648518 0.135354i
\(656\) 6.39564 + 3.69253i 0.249708 + 0.144169i
\(657\) 0 0
\(658\) 1.44600 0.0563710
\(659\) −15.2477 + 26.4098i −0.593967 + 1.02878i 0.399725 + 0.916635i \(0.369106\pi\)
−0.993692 + 0.112146i \(0.964228\pi\)
\(660\) 0 0
\(661\) 15.8739 9.16478i 0.617422 0.356469i −0.158443 0.987368i \(-0.550647\pi\)
0.775865 + 0.630900i \(0.217314\pi\)
\(662\) 2.04356i 0.0794252i
\(663\) 0 0
\(664\) −10.4174 −0.404274
\(665\) 6.37221 2.09642i 0.247104 0.0812957i
\(666\) 0 0
\(667\) −18.1865 10.5000i −0.704185 0.406562i
\(668\) −17.1497 −0.663542
\(669\) 0 0
\(670\) 0.686911 0.768563i 0.0265377 0.0296922i
\(671\) 3.75015i 0.144773i
\(672\) 0 0
\(673\) 20.9276 12.0826i 0.806701 0.465749i −0.0391079 0.999235i \(-0.512452\pi\)
0.845809 + 0.533486i \(0.179118\pi\)
\(674\) −12.1652 + 7.02355i −0.468584 + 0.270537i
\(675\) 0 0
\(676\) −0.895644 23.2695i −0.0344478 0.894981i
\(677\) 2.83485i 0.108952i 0.998515 + 0.0544760i \(0.0173489\pi\)
−0.998515 + 0.0544760i \(0.982651\pi\)
\(678\) 0 0
\(679\) −9.87386 17.1020i −0.378924 0.656316i
\(680\) 13.2331 + 11.8273i 0.507468 + 0.453555i
\(681\) 0 0
\(682\) 3.75015 6.49545i 0.143601 0.248724i
\(683\) 16.5498 28.6652i 0.633262 1.09684i −0.353619 0.935390i \(-0.615049\pi\)
0.986881 0.161452i \(-0.0516177\pi\)
\(684\) 0 0
\(685\) −15.6276 + 17.4852i −0.597100 + 0.668076i
\(686\) 4.35208 + 7.53803i 0.166163 + 0.287803i
\(687\) 0 0
\(688\) 29.5390i 1.12616i
\(689\) −7.58258 26.2668i −0.288873 1.00069i
\(690\) 0 0
\(691\) 17.1261 9.88778i 0.651509 0.376149i −0.137525 0.990498i \(-0.543915\pi\)
0.789034 + 0.614349i \(0.210581\pi\)
\(692\) 25.7246 14.8521i 0.977901 0.564591i
\(693\) 0 0
\(694\) 9.74475i 0.369906i
\(695\) 32.4062 36.2582i 1.22924 1.37535i
\(696\) 0 0
\(697\) 12.1244 0.459243
\(698\) 0.971326 + 0.560795i 0.0367652 + 0.0212264i
\(699\) 0 0
\(700\) −1.73509 15.4157i −0.0655802 0.582658i
\(701\) 21.1652 0.799397 0.399698 0.916647i \(-0.369115\pi\)
0.399698 + 0.916647i \(0.369115\pi\)
\(702\) 0 0
\(703\) 13.7477i 0.518505i
\(704\) −7.83030 + 4.52083i −0.295116 + 0.170385i
\(705\) 0 0
\(706\) −1.56080 + 2.70338i −0.0587413 + 0.101743i
\(707\) 15.5885 0.586264
\(708\) 0 0
\(709\) 31.5000 + 18.1865i 1.18301 + 0.683010i 0.956708 0.291048i \(-0.0940040\pi\)
0.226299 + 0.974058i \(0.427337\pi\)
\(710\) −1.46590 + 7.02355i −0.0550143 + 0.263589i
\(711\) 0 0
\(712\) −14.3609 + 8.29129i −0.538199 + 0.310729i
\(713\) −14.2179 24.6261i −0.532465 0.922256i
\(714\) 0 0
\(715\) 17.6185 12.0244i 0.658896 0.449688i
\(716\) −32.5390 −1.21604
\(717\) 0 0
\(718\) 7.72665 4.46099i 0.288356 0.166482i
\(719\) 12.2477 21.2137i 0.456763 0.791137i −0.542025 0.840363i \(-0.682342\pi\)
0.998788 + 0.0492257i \(0.0156754\pi\)
\(720\) 0 0
\(721\) −4.74773 2.74110i −0.176815 0.102084i
\(722\) 3.65480 6.33030i 0.136018 0.235589i
\(723\) 0 0
\(724\) 7.83485 13.5704i 0.291180 0.504338i
\(725\) −2.56275 22.7691i −0.0951780 0.845623i
\(726\) 0 0
\(727\) 15.2523i 0.565675i −0.959168 0.282838i \(-0.908724\pi\)
0.959168 0.282838i \(-0.0912758\pi\)
\(728\) −2.59808 + 10.5000i −0.0962911 + 0.389156i
\(729\) 0 0
\(730\) 0 0
\(731\) −24.2477 41.9983i −0.896835 1.55336i
\(732\) 0 0
\(733\) −22.8027 −0.842237 −0.421119 0.907006i \(-0.638362\pi\)
−0.421119 + 0.907006i \(0.638362\pi\)
\(734\) −0.691478 0.399225i −0.0255229 0.0147357i
\(735\) 0 0
\(736\) 21.7182i 0.800544i
\(737\) 2.31203 + 1.33485i 0.0851646 + 0.0491698i
\(738\) 0 0
\(739\) −14.7523 + 8.51723i −0.542671 + 0.313311i −0.746161 0.665766i \(-0.768105\pi\)
0.203490 + 0.979077i \(0.434772\pi\)
\(740\) 31.1216 + 6.49545i 1.14405 + 0.238778i
\(741\) 0 0
\(742\) 6.00000i 0.220267i
\(743\) 2.86423 + 4.96099i 0.105078 + 0.182001i 0.913770 0.406232i \(-0.133157\pi\)
−0.808692 + 0.588232i \(0.799824\pi\)
\(744\) 0 0
\(745\) −27.8306 24.8739i −1.01964 0.911310i
\(746\) 5.93905i 0.217444i
\(747\) 0 0
\(748\) −10.8591 + 18.8085i −0.397048 + 0.687708i
\(749\) 18.3296i 0.669748i
\(750\) 0 0
\(751\) −5.87386 10.1738i −0.214340 0.371248i 0.738728 0.674004i \(-0.235427\pi\)
−0.953068 + 0.302755i \(0.902093\pi\)
\(752\) −2.55040 4.41742i −0.0930036 0.161087i
\(753\) 0 0
\(754\) −1.81307 + 7.32743i −0.0660281 + 0.266849i
\(755\) 4.41742 21.1652i 0.160767 0.770279i
\(756\) 0 0
\(757\) 8.44178 4.87386i 0.306822 0.177144i −0.338682 0.940901i \(-0.609981\pi\)
0.645503 + 0.763757i \(0.276648\pi\)
\(758\) −4.22483 2.43920i −0.153453 0.0885959i
\(759\) 0 0
\(760\) 5.00166 + 4.47028i 0.181429 + 0.162154i
\(761\) 30.7087 + 17.7297i 1.11319 + 0.642701i 0.939654 0.342127i \(-0.111147\pi\)
0.173536 + 0.984827i \(0.444481\pi\)
\(762\) 0 0
\(763\) 19.7001 + 11.3739i 0.713192 + 0.411762i
\(764\) 14.8521 + 25.7246i 0.537330 + 0.930682i
\(765\) 0 0
\(766\) 10.7913 0.389905
\(767\) −48.8311 12.0826i −1.76319 0.436277i
\(768\) 0 0
\(769\) −13.5000 + 7.79423i −0.486822 + 0.281067i −0.723255 0.690581i \(-0.757355\pi\)
0.236433 + 0.971648i \(0.424022\pi\)
\(770\) −4.44685 + 1.46299i −0.160253 + 0.0527224i
\(771\) 0 0
\(772\) −26.6283 −0.958374
\(773\) −12.0767 + 20.9174i −0.434368 + 0.752347i −0.997244 0.0741940i \(-0.976362\pi\)
0.562876 + 0.826541i \(0.309695\pi\)
\(774\) 0 0
\(775\) 12.4104 28.4358i 0.445795 1.02144i
\(776\) 9.87386 17.1020i 0.354451 0.613927i
\(777\) 0 0
\(778\) −0.723000 1.25227i −0.0259208 0.0448962i
\(779\) 4.58258 0.164188
\(780\) 0 0
\(781\) −18.5826 −0.664937
\(782\) −4.79693 8.30852i −0.171538 0.297112i
\(783\) 0 0
\(784\) 5.58258 9.66930i 0.199378 0.345332i
\(785\) 4.18710 20.0616i 0.149444 0.716030i
\(786\) 0 0
\(787\) −8.15573 + 14.1261i −0.290720 + 0.503542i −0.973980 0.226633i \(-0.927228\pi\)
0.683260 + 0.730175i \(0.260562\pi\)
\(788\) −26.2867 −0.936425
\(789\) 0 0
\(790\) −1.91550 5.82229i −0.0681504 0.207148i
\(791\) 11.1261 6.42368i 0.395600 0.228400i
\(792\) 0 0
\(793\) −1.22753 + 4.96099i −0.0435907 + 0.176170i
\(794\) 9.29583 0.329897
\(795\) 0 0
\(796\) −9.47822 16.4168i −0.335947 0.581877i
\(797\) 38.1727 + 22.0390i 1.35215 + 0.780662i 0.988550 0.150895i \(-0.0482154\pi\)
0.363596 + 0.931557i \(0.381549\pi\)
\(798\) 0 0
\(799\) −7.25227 4.18710i −0.256567 0.148129i
\(800\) 19.0678 14.0692i 0.674149 0.497422i
\(801\) 0 0
\(802\) 11.8006 + 6.81307i 0.416693 + 0.240578i
\(803\) 0 0
\(804\) 0 0
\(805\) −3.62614 + 17.3739i −0.127805 + 0.612348i
\(806\) −7.08712 + 7.36515i −0.249633 + 0.259426i
\(807\) 0 0
\(808\) 7.79423 + 13.5000i 0.274200 + 0.474928i
\(809\) 27.4129 + 47.4805i 0.963785 + 1.66933i 0.712843 + 0.701323i \(0.247407\pi\)
0.250942 + 0.968002i \(0.419260\pi\)
\(810\) 0 0
\(811\) 50.5155i 1.77384i 0.461923 + 0.886920i \(0.347160\pi\)
−0.461923 + 0.886920i \(0.652840\pi\)
\(812\) −7.10895 + 12.3131i −0.249475 + 0.432104i
\(813\) 0 0
\(814\) 9.59386i 0.336264i
\(815\) 31.3973 35.1294i 1.09980 1.23053i
\(816\) 0 0
\(817\) −9.16478 15.8739i −0.320635 0.555356i
\(818\) 3.95644i 0.138334i
\(819\) 0 0
\(820\) 2.16515 10.3739i 0.0756104 0.362271i
\(821\) −15.7087 + 9.06943i −0.548238 + 0.316525i −0.748411 0.663235i \(-0.769183\pi\)
0.200173 + 0.979761i \(0.435850\pi\)
\(822\) 0 0
\(823\) −27.2083 15.7087i −0.948421 0.547571i −0.0558311 0.998440i \(-0.517781\pi\)
−0.892590 + 0.450869i \(0.851114\pi\)
\(824\) 5.48220i 0.190982i
\(825\) 0 0
\(826\) 9.56080 + 5.51993i 0.332663 + 0.192063i
\(827\) 10.7737 0.374638 0.187319 0.982299i \(-0.440020\pi\)
0.187319 + 0.982299i \(0.440020\pi\)
\(828\) 0 0
\(829\) −16.6652 28.8649i −0.578805 1.00252i −0.995617 0.0935264i \(-0.970186\pi\)
0.416812 0.908993i \(-0.363147\pi\)
\(830\) 1.92013 + 5.83636i 0.0666487 + 0.202583i
\(831\) 0 0
\(832\) 11.8383 3.41742i 0.410419 0.118478i
\(833\) 18.3303i 0.635107i
\(834\) 0 0
\(835\) 6.69034 + 20.3357i 0.231529 + 0.703747i
\(836\) −4.10436 + 7.10895i −0.141952 + 0.245868i
\(837\) 0 0
\(838\) −1.33283 + 2.30852i −0.0460417 + 0.0797466i
\(839\) −37.8303 21.8413i −1.30605 0.754047i −0.324613 0.945847i \(-0.605234\pi\)
−0.981434 + 0.191800i \(0.938567\pi\)
\(840\) 0 0
\(841\) 4.00000 6.92820i 0.137931 0.238904i
\(842\) 2.16900 1.25227i 0.0747487 0.0431562i
\(843\) 0 0
\(844\) 0.295834 0.0101830
\(845\) −27.2431 + 10.1398i −0.937190 + 0.348820i
\(846\) 0 0
\(847\) 3.46410 + 6.00000i 0.119028 + 0.206162i
\(848\) 18.3296 10.5826i 0.629440 0.363407i
\(849\) 0 0
\(850\) 4.18710 9.59386i 0.143616 0.329067i
\(851\) −31.5000 18.1865i −1.07981 0.623426i
\(852\) 0 0
\(853\) 5.63310 0.192874 0.0964369 0.995339i \(-0.469255\pi\)
0.0964369 + 0.995339i \(0.469255\pi\)
\(854\) 0.560795 0.971326i 0.0191900 0.0332381i
\(855\) 0 0
\(856\) 15.8739 9.16478i 0.542557 0.313246i
\(857\) 4.74773i 0.162179i 0.996707 + 0.0810896i \(0.0258400\pi\)
−0.996707 + 0.0810896i \(0.974160\pi\)
\(858\) 0 0
\(859\) 44.2432 1.50956 0.754779 0.655979i \(-0.227744\pi\)
0.754779 + 0.655979i \(0.227744\pi\)
\(860\) −40.2648 + 13.2469i −1.37302 + 0.451715i
\(861\) 0 0
\(862\) −3.35093 1.93466i −0.114133 0.0658947i
\(863\) 13.6657 0.465186 0.232593 0.972574i \(-0.425279\pi\)
0.232593 + 0.972574i \(0.425279\pi\)
\(864\) 0 0
\(865\) −27.6468 24.7096i −0.940019 0.840152i
\(866\) 4.45325i 0.151328i
\(867\) 0 0
\(868\) −16.6730 + 9.62614i −0.565917 + 0.326732i
\(869\) 13.7477 7.93725i 0.466360 0.269253i
\(870\) 0 0
\(871\) −2.62159 2.52263i −0.0888292 0.0854759i
\(872\) 22.7477i 0.770335i
\(873\) 0 0
\(874\) −1.81307 3.14033i −0.0613279 0.106223i
\(875\) −17.6027 + 8.07130i −0.595079 + 0.272860i
\(876\) 0 0
\(877\) 3.96863 6.87386i 0.134011 0.232114i −0.791208 0.611547i \(-0.790548\pi\)
0.925219 + 0.379433i \(0.123881\pi\)
\(878\) 3.31113 5.73504i 0.111745 0.193548i
\(879\) 0 0
\(880\) 12.3125 + 11.0044i 0.415054 + 0.370959i
\(881\) 18.2477 + 31.6060i 0.614782 + 1.06483i 0.990423 + 0.138068i \(0.0440892\pi\)
−0.375641 + 0.926765i \(0.622578\pi\)
\(882\) 0 0
\(883\) 36.2432i 1.21968i −0.792524 0.609840i \(-0.791234\pi\)
0.792524 0.609840i \(-0.208766\pi\)
\(884\) 20.5218 21.3269i 0.690222 0.717300i
\(885\) 0 0
\(886\) −7.87841 + 4.54860i −0.264680 + 0.152813i
\(887\) −47.1944 + 27.2477i −1.58463 + 0.914889i −0.590465 + 0.807064i \(0.701055\pi\)
−0.994170 + 0.107826i \(0.965611\pi\)
\(888\) 0 0
\(889\) 30.7400i 1.03099i
\(890\) 7.29219 + 6.51747i 0.244435 + 0.218466i
\(891\) 0 0
\(892\) 15.5130 0.519414
\(893\) −2.74110 1.58258i −0.0917275 0.0529589i
\(894\) 0 0
\(895\) 12.6939 + 38.5840i 0.424311 + 1.28972i
\(896\) −19.1216 −0.638808
\(897\) 0 0
\(898\) 5.03447i 0.168002i
\(899\) −24.6261 + 14.2179i −0.821328 + 0.474194i
\(900\) 0 0
\(901\) 17.3739 30.0924i 0.578807 1.00252i
\(902\) −3.19795 −0.106480
\(903\) 0 0
\(904\) 11.1261 + 6.42368i 0.370050 + 0.213648i
\(905\) −19.1479 3.99640i −0.636498 0.132845i
\(906\) 0 0
\(907\) −5.41463 + 3.12614i −0.179790 + 0.103802i −0.587194 0.809446i \(-0.699767\pi\)
0.407404 + 0.913248i \(0.366434\pi\)
\(908\) −0.732950 1.26951i −0.0243238 0.0421301i
\(909\) 0 0
\(910\) 6.36150 0.479778i 0.210882 0.0159045i
\(911\) 7.91288 0.262165 0.131083 0.991371i \(-0.458155\pi\)
0.131083 + 0.991371i \(0.458155\pi\)
\(912\) 0 0
\(913\) −13.7810 + 7.95644i −0.456083 + 0.263320i
\(914\) 0.395644 0.685275i 0.0130867 0.0226669i
\(915\) 0 0
\(916\) −40.7477 23.5257i −1.34634 0.777311i
\(917\) 6.56670 11.3739i 0.216852 0.375598i
\(918\) 0 0
\(919\) 27.0826 46.9084i 0.893372 1.54737i 0.0575648 0.998342i \(-0.481666\pi\)
0.835807 0.549023i \(-0.185000\pi\)
\(920\) −16.8593 + 5.54661i −0.555834 + 0.182866i
\(921\) 0 0
\(922\) 16.3739i 0.539244i
\(923\) 24.5824 + 6.08258i 0.809141 + 0.200210i
\(924\) 0 0
\(925\) −4.43881 39.4373i −0.145947 1.29669i
\(926\) −9.00000 15.5885i −0.295758 0.512268i
\(927\) 0 0
\(928\) −21.7182 −0.712935
\(929\) −22.8303 13.1811i −0.749038 0.432457i 0.0763082 0.997084i \(-0.475687\pi\)
−0.825346 + 0.564627i \(0.809020\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) 4.39770 + 2.53901i 0.144052 + 0.0831682i
\(933\) 0 0
\(934\) −9.62614 + 5.55765i −0.314977 + 0.181852i
\(935\) 26.5390 + 5.53901i 0.867919 + 0.181145i
\(936\) 0 0
\(937\) 31.4955i 1.02891i 0.857517 + 0.514456i \(0.172006\pi\)
−0.857517 + 0.514456i \(0.827994\pi\)
\(938\) 0.399225 + 0.691478i 0.0130352 + 0.0225775i
\(939\) 0 0
\(940\) −4.87768 + 5.45748i −0.159092 + 0.178003i
\(941\) 26.4575i 0.862490i −0.902235 0.431245i \(-0.858074\pi\)
0.902235 0.431245i \(-0.141926\pi\)
\(942\) 0 0
\(943\) −6.06218 + 10.5000i −0.197412 + 0.341927i
\(944\) 38.9434i 1.26750i
\(945\) 0 0
\(946\) 6.39564 + 11.0776i 0.207940 + 0.360163i
\(947\) 7.16658 + 12.4129i 0.232883 + 0.403364i 0.958655 0.284570i \(-0.0918509\pi\)
−0.725773 + 0.687935i \(0.758518\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1.58258 3.62614i 0.0513455 0.117647i
\(951\) 0 0
\(952\) −11.9059 + 6.87386i −0.385872 + 0.222783i
\(953\) 6.99578 + 4.03901i 0.226616 + 0.130837i 0.609010 0.793163i \(-0.291567\pi\)
−0.382394 + 0.923999i \(0.624900\pi\)
\(954\) 0 0
\(955\) 24.7096 27.6468i 0.799584 0.894629i
\(956\) 0.295834 + 0.170800i 0.00956794 + 0.00552406i
\(957\) 0 0
\(958\) −1.84522 1.06534i −0.0596165 0.0344196i
\(959\) −9.08258 15.7315i −0.293292 0.507996i
\(960\) 0 0
\(961\) −7.50455 −0.242082
\(962\) −3.14033 + 12.6915i −0.101248 + 0.409190i
\(963\) 0 0
\(964\) −2.68693 + 1.55130i −0.0865402 + 0.0499640i
\(965\) 10.3881 + 31.5753i 0.334404 + 1.01644i
\(966\) 0 0
\(967\) 37.3821 1.20213 0.601064 0.799201i \(-0.294744\pi\)
0.601064 + 0.799201i \(0.294744\pi\)
\(968\) −3.46410 + 6.00000i −0.111340 + 0.192847i
\(969\) 0 0
\(970\) −11.4014 2.37960i −0.366075 0.0764044i
\(971\) −9.24773 + 16.0175i −0.296774 + 0.514027i −0.975396 0.220460i \(-0.929244\pi\)
0.678622 + 0.734487i \(0.262577\pi\)
\(972\) 0 0
\(973\) 18.8341 + 32.6216i 0.603793 + 1.04580i
\(974\) −4.87841 −0.156314
\(975\) 0 0
\(976\) −3.95644 −0.126643
\(977\) −17.6542 30.5780i −0.564809 0.978278i −0.997067 0.0765281i \(-0.975617\pi\)
0.432258 0.901750i \(-0.357717\pi\)
\(978\) 0 0
\(979\) −12.6652 + 21.9367i −0.404780 + 0.701100i
\(980\) −15.6838 3.27340i −0.501001 0.104565i
\(981\) 0 0
\(982\) −4.43543 + 7.68239i −0.141540 + 0.245155i
\(983\) 55.0840 1.75691 0.878454 0.477827i \(-0.158576\pi\)
0.878454 + 0.477827i \(0.158576\pi\)
\(984\) 0 0
\(985\) 10.2548 + 31.1702i 0.326746 + 0.993165i
\(986\) −8.30852 + 4.79693i −0.264597 + 0.152765i
\(987\) 0 0
\(988\) 7.75650 8.06080i 0.246767 0.256448i
\(989\) 48.4955 1.54207
\(990\) 0 0
\(991\) 6.50000 + 11.2583i 0.206479 + 0.357633i 0.950603 0.310409i \(-0.100466\pi\)
−0.744124 + 0.668042i \(0.767133\pi\)
\(992\) −25.4684 14.7042i −0.808621 0.466858i
\(993\) 0 0
\(994\) −4.81307 2.77883i −0.152661 0.0881390i
\(995\) −15.7690 + 17.6435i −0.499912 + 0.559336i
\(996\) 0 0
\(997\) −0.143025 0.0825757i −0.00452966 0.00261520i 0.497733 0.867330i \(-0.334166\pi\)
−0.502263 + 0.864715i \(0.667499\pi\)
\(998\) 0.286051 0.165151i 0.00905477 0.00522778i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.bf.a.244.3 8
3.2 odd 2 65.2.l.a.49.2 yes 8
5.4 even 2 inner 585.2.bf.a.244.2 8
12.11 even 2 1040.2.df.b.49.4 8
13.4 even 6 inner 585.2.bf.a.199.2 8
15.2 even 4 325.2.n.b.101.2 4
15.8 even 4 325.2.n.c.101.1 4
15.14 odd 2 65.2.l.a.49.3 yes 8
39.2 even 12 845.2.b.f.339.3 8
39.5 even 4 845.2.n.d.484.1 8
39.8 even 4 845.2.n.c.484.3 8
39.11 even 12 845.2.b.f.339.5 8
39.17 odd 6 65.2.l.a.4.3 yes 8
39.20 even 12 845.2.n.d.529.2 8
39.23 odd 6 845.2.d.c.844.3 8
39.29 odd 6 845.2.d.c.844.5 8
39.32 even 12 845.2.n.c.529.4 8
39.35 odd 6 845.2.l.c.654.2 8
39.38 odd 2 845.2.l.c.699.3 8
60.59 even 2 1040.2.df.b.49.1 8
65.4 even 6 inner 585.2.bf.a.199.3 8
156.95 even 6 1040.2.df.b.849.1 8
195.2 odd 12 4225.2.a.bj.1.3 4
195.17 even 12 325.2.n.b.251.2 4
195.29 odd 6 845.2.d.c.844.4 8
195.44 even 4 845.2.n.c.484.4 8
195.59 even 12 845.2.n.c.529.3 8
195.74 odd 6 845.2.l.c.654.3 8
195.89 even 12 845.2.b.f.339.4 8
195.119 even 12 845.2.b.f.339.6 8
195.128 odd 12 4225.2.a.bk.1.3 4
195.134 odd 6 65.2.l.a.4.2 8
195.149 even 12 845.2.n.d.529.1 8
195.158 odd 12 4225.2.a.bk.1.2 4
195.164 even 4 845.2.n.d.484.2 8
195.167 odd 12 4225.2.a.bj.1.2 4
195.173 even 12 325.2.n.c.251.1 4
195.179 odd 6 845.2.d.c.844.6 8
195.194 odd 2 845.2.l.c.699.2 8
780.719 even 6 1040.2.df.b.849.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.2 8 195.134 odd 6
65.2.l.a.4.3 yes 8 39.17 odd 6
65.2.l.a.49.2 yes 8 3.2 odd 2
65.2.l.a.49.3 yes 8 15.14 odd 2
325.2.n.b.101.2 4 15.2 even 4
325.2.n.b.251.2 4 195.17 even 12
325.2.n.c.101.1 4 15.8 even 4
325.2.n.c.251.1 4 195.173 even 12
585.2.bf.a.199.2 8 13.4 even 6 inner
585.2.bf.a.199.3 8 65.4 even 6 inner
585.2.bf.a.244.2 8 5.4 even 2 inner
585.2.bf.a.244.3 8 1.1 even 1 trivial
845.2.b.f.339.3 8 39.2 even 12
845.2.b.f.339.4 8 195.89 even 12
845.2.b.f.339.5 8 39.11 even 12
845.2.b.f.339.6 8 195.119 even 12
845.2.d.c.844.3 8 39.23 odd 6
845.2.d.c.844.4 8 195.29 odd 6
845.2.d.c.844.5 8 39.29 odd 6
845.2.d.c.844.6 8 195.179 odd 6
845.2.l.c.654.2 8 39.35 odd 6
845.2.l.c.654.3 8 195.74 odd 6
845.2.l.c.699.2 8 195.194 odd 2
845.2.l.c.699.3 8 39.38 odd 2
845.2.n.c.484.3 8 39.8 even 4
845.2.n.c.484.4 8 195.44 even 4
845.2.n.c.529.3 8 195.59 even 12
845.2.n.c.529.4 8 39.32 even 12
845.2.n.d.484.1 8 39.5 even 4
845.2.n.d.484.2 8 195.164 even 4
845.2.n.d.529.1 8 195.149 even 12
845.2.n.d.529.2 8 39.20 even 12
1040.2.df.b.49.1 8 60.59 even 2
1040.2.df.b.49.4 8 12.11 even 2
1040.2.df.b.849.1 8 156.95 even 6
1040.2.df.b.849.4 8 780.719 even 6
4225.2.a.bj.1.2 4 195.167 odd 12
4225.2.a.bj.1.3 4 195.2 odd 12
4225.2.a.bk.1.2 4 195.158 odd 12
4225.2.a.bk.1.3 4 195.128 odd 12