Properties

Label 325.2.o.b.74.4
Level $325$
Weight $2$
Character 325.74
Analytic conductor $2.595$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(74,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.74");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 74.4
Root \(1.99426 + 1.15139i\) of defining polynomial
Character \(\chi\) \(=\) 325.74
Dual form 325.2.o.b.224.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.99426 + 1.15139i) q^{2} +(0.866025 + 0.500000i) q^{3} +(1.65139 + 2.86029i) q^{4} +(1.15139 + 1.99426i) q^{6} +(-0.866025 + 0.500000i) q^{7} +3.00000i q^{8} +(-1.00000 - 1.73205i) q^{9} +(-0.802776 + 1.39045i) q^{11} +3.30278i q^{12} +3.60555i q^{13} -2.30278 q^{14} +(-0.151388 + 0.262211i) q^{16} +(6.58660 - 3.80278i) q^{17} -4.60555i q^{18} +(-2.80278 - 4.85455i) q^{19} -1.00000 q^{21} +(-3.20189 + 1.84861i) q^{22} +(-2.59808 - 1.50000i) q^{23} +(-1.50000 + 2.59808i) q^{24} +(-4.15139 + 7.19041i) q^{26} -5.00000i q^{27} +(-2.86029 - 1.65139i) q^{28} +(-3.10555 + 5.37897i) q^{29} -4.00000 q^{31} +(4.59234 - 2.65139i) q^{32} +(-1.39045 + 0.802776i) q^{33} +17.5139 q^{34} +(3.30278 - 5.72058i) q^{36} +(-3.12250 - 1.80278i) q^{37} -12.9083i q^{38} +(-1.80278 + 3.12250i) q^{39} +(-1.50000 + 2.59808i) q^{41} +(-1.99426 - 1.15139i) q^{42} +(8.84307 - 5.10555i) q^{43} -5.30278 q^{44} +(-3.45416 - 5.98279i) q^{46} +9.21110i q^{47} +(-0.262211 + 0.151388i) q^{48} +(-3.00000 + 5.19615i) q^{49} +7.60555 q^{51} +(-10.3129 + 5.95416i) q^{52} +3.21110i q^{53} +(5.75694 - 9.97131i) q^{54} +(-1.50000 - 2.59808i) q^{56} -5.60555i q^{57} +(-12.3866 + 7.15139i) q^{58} +(-5.40833 - 9.36750i) q^{59} +(0.500000 + 0.866025i) q^{61} +(-7.97705 - 4.60555i) q^{62} +(1.73205 + 1.00000i) q^{63} +12.8167 q^{64} -3.69722 q^{66} +(6.06218 + 3.50000i) q^{67} +(21.7541 + 12.5597i) q^{68} +(-1.50000 - 2.59808i) q^{69} +(-2.40833 - 4.17134i) q^{71} +(5.19615 - 3.00000i) q^{72} +0.788897i q^{73} +(-4.15139 - 7.19041i) q^{74} +(9.25694 - 16.0335i) q^{76} -1.60555i q^{77} +(-7.19041 + 4.15139i) q^{78} -5.21110 q^{79} +(-0.500000 + 0.866025i) q^{81} +(-5.98279 + 3.45416i) q^{82} +9.21110i q^{83} +(-1.65139 - 2.86029i) q^{84} +23.5139 q^{86} +(-5.37897 + 3.10555i) q^{87} +(-4.17134 - 2.40833i) q^{88} +(-3.10555 + 5.37897i) q^{89} +(-1.80278 - 3.12250i) q^{91} -9.90833i q^{92} +(-3.46410 - 2.00000i) q^{93} +(-10.6056 + 18.3694i) q^{94} +5.30278 q^{96} +(-7.26981 + 4.19722i) q^{97} +(-11.9656 + 6.90833i) q^{98} +3.21110 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} + 2 q^{6} - 8 q^{9} + 8 q^{11} - 4 q^{14} + 6 q^{16} - 8 q^{19} - 8 q^{21} - 12 q^{24} - 26 q^{26} + 4 q^{29} - 32 q^{31} + 68 q^{34} + 12 q^{36} - 12 q^{41} - 28 q^{44} - 6 q^{46} - 24 q^{49}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.99426 + 1.15139i 1.41016 + 0.814154i 0.995403 0.0957796i \(-0.0305344\pi\)
0.414754 + 0.909934i \(0.363868\pi\)
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i 0.728714 0.684819i \(-0.240119\pi\)
−0.228714 + 0.973494i \(0.573452\pi\)
\(4\) 1.65139 + 2.86029i 0.825694 + 1.43014i
\(5\) 0 0
\(6\) 1.15139 + 1.99426i 0.470052 + 0.814154i
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i −0.654654 0.755929i \(-0.727186\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −1.00000 1.73205i −0.333333 0.577350i
\(10\) 0 0
\(11\) −0.802776 + 1.39045i −0.242046 + 0.419236i −0.961297 0.275514i \(-0.911152\pi\)
0.719251 + 0.694750i \(0.244485\pi\)
\(12\) 3.30278i 0.953429i
\(13\) 3.60555i 1.00000i
\(14\) −2.30278 −0.615443
\(15\) 0 0
\(16\) −0.151388 + 0.262211i −0.0378470 + 0.0655528i
\(17\) 6.58660 3.80278i 1.59749 0.922309i 0.605516 0.795834i \(-0.292967\pi\)
0.991970 0.126475i \(-0.0403664\pi\)
\(18\) 4.60555i 1.08554i
\(19\) −2.80278 4.85455i −0.643001 1.11371i −0.984759 0.173922i \(-0.944356\pi\)
0.341759 0.939788i \(-0.388977\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) −3.20189 + 1.84861i −0.682645 + 0.394125i
\(23\) −2.59808 1.50000i −0.541736 0.312772i 0.204046 0.978961i \(-0.434591\pi\)
−0.745782 + 0.666190i \(0.767924\pi\)
\(24\) −1.50000 + 2.59808i −0.306186 + 0.530330i
\(25\) 0 0
\(26\) −4.15139 + 7.19041i −0.814154 + 1.41016i
\(27\) 5.00000i 0.962250i
\(28\) −2.86029 1.65139i −0.540544 0.312083i
\(29\) −3.10555 + 5.37897i −0.576686 + 0.998850i 0.419170 + 0.907908i \(0.362321\pi\)
−0.995856 + 0.0909423i \(0.971012\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 4.59234 2.65139i 0.811818 0.468704i
\(33\) −1.39045 + 0.802776i −0.242046 + 0.139745i
\(34\) 17.5139 3.00361
\(35\) 0 0
\(36\) 3.30278 5.72058i 0.550463 0.953429i
\(37\) −3.12250 1.80278i −0.513336 0.296374i 0.220868 0.975304i \(-0.429111\pi\)
−0.734204 + 0.678929i \(0.762444\pi\)
\(38\) 12.9083i 2.09401i
\(39\) −1.80278 + 3.12250i −0.288675 + 0.500000i
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) −1.99426 1.15139i −0.307721 0.177663i
\(43\) 8.84307 5.10555i 1.34856 0.778589i 0.360511 0.932755i \(-0.382602\pi\)
0.988045 + 0.154166i \(0.0492689\pi\)
\(44\) −5.30278 −0.799424
\(45\) 0 0
\(46\) −3.45416 5.98279i −0.509289 0.882114i
\(47\) 9.21110i 1.34358i 0.740743 + 0.671789i \(0.234474\pi\)
−0.740743 + 0.671789i \(0.765526\pi\)
\(48\) −0.262211 + 0.151388i −0.0378470 + 0.0218509i
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0 0
\(51\) 7.60555 1.06499
\(52\) −10.3129 + 5.95416i −1.43014 + 0.825694i
\(53\) 3.21110i 0.441079i 0.975378 + 0.220539i \(0.0707818\pi\)
−0.975378 + 0.220539i \(0.929218\pi\)
\(54\) 5.75694 9.97131i 0.783420 1.35692i
\(55\) 0 0
\(56\) −1.50000 2.59808i −0.200446 0.347183i
\(57\) 5.60555i 0.742473i
\(58\) −12.3866 + 7.15139i −1.62644 + 0.939023i
\(59\) −5.40833 9.36750i −0.704104 1.21954i −0.967014 0.254724i \(-0.918015\pi\)
0.262910 0.964820i \(-0.415318\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) −7.97705 4.60555i −1.01309 0.584906i
\(63\) 1.73205 + 1.00000i 0.218218 + 0.125988i
\(64\) 12.8167 1.60208
\(65\) 0 0
\(66\) −3.69722 −0.455097
\(67\) 6.06218 + 3.50000i 0.740613 + 0.427593i 0.822292 0.569066i \(-0.192695\pi\)
−0.0816792 + 0.996659i \(0.526028\pi\)
\(68\) 21.7541 + 12.5597i 2.63807 + 1.52309i
\(69\) −1.50000 2.59808i −0.180579 0.312772i
\(70\) 0 0
\(71\) −2.40833 4.17134i −0.285816 0.495048i 0.686991 0.726666i \(-0.258931\pi\)
−0.972807 + 0.231619i \(0.925598\pi\)
\(72\) 5.19615 3.00000i 0.612372 0.353553i
\(73\) 0.788897i 0.0923335i 0.998934 + 0.0461667i \(0.0147006\pi\)
−0.998934 + 0.0461667i \(0.985299\pi\)
\(74\) −4.15139 7.19041i −0.482589 0.835869i
\(75\) 0 0
\(76\) 9.25694 16.0335i 1.06184 1.83917i
\(77\) 1.60555i 0.182970i
\(78\) −7.19041 + 4.15139i −0.814154 + 0.470052i
\(79\) −5.21110 −0.586295 −0.293147 0.956067i \(-0.594703\pi\)
−0.293147 + 0.956067i \(0.594703\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −5.98279 + 3.45416i −0.660688 + 0.381449i
\(83\) 9.21110i 1.01105i 0.862812 + 0.505525i \(0.168701\pi\)
−0.862812 + 0.505525i \(0.831299\pi\)
\(84\) −1.65139 2.86029i −0.180181 0.312083i
\(85\) 0 0
\(86\) 23.5139 2.53557
\(87\) −5.37897 + 3.10555i −0.576686 + 0.332950i
\(88\) −4.17134 2.40833i −0.444667 0.256729i
\(89\) −3.10555 + 5.37897i −0.329188 + 0.570170i −0.982351 0.187047i \(-0.940108\pi\)
0.653163 + 0.757217i \(0.273442\pi\)
\(90\) 0 0
\(91\) −1.80278 3.12250i −0.188982 0.327327i
\(92\) 9.90833i 1.03301i
\(93\) −3.46410 2.00000i −0.359211 0.207390i
\(94\) −10.6056 + 18.3694i −1.09388 + 1.89465i
\(95\) 0 0
\(96\) 5.30278 0.541212
\(97\) −7.26981 + 4.19722i −0.738137 + 0.426164i −0.821392 0.570365i \(-0.806802\pi\)
0.0832546 + 0.996528i \(0.473469\pi\)
\(98\) −11.9656 + 6.90833i −1.20871 + 0.697846i
\(99\) 3.21110 0.322728
\(100\) 0 0
\(101\) 4.50000 7.79423i 0.447767 0.775555i −0.550474 0.834853i \(-0.685553\pi\)
0.998240 + 0.0592978i \(0.0188862\pi\)
\(102\) 15.1675 + 8.75694i 1.50180 + 0.867066i
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) −10.8167 −1.06066
\(105\) 0 0
\(106\) −3.69722 + 6.40378i −0.359106 + 0.621990i
\(107\) −5.37897 3.10555i −0.520005 0.300225i 0.216932 0.976187i \(-0.430395\pi\)
−0.736937 + 0.675962i \(0.763728\pi\)
\(108\) 14.3014 8.25694i 1.37616 0.794524i
\(109\) 19.2111 1.84009 0.920045 0.391813i \(-0.128152\pi\)
0.920045 + 0.391813i \(0.128152\pi\)
\(110\) 0 0
\(111\) −1.80278 3.12250i −0.171112 0.296374i
\(112\) 0.302776i 0.0286096i
\(113\) 1.39045 0.802776i 0.130802 0.0755188i −0.433171 0.901312i \(-0.642605\pi\)
0.563973 + 0.825793i \(0.309272\pi\)
\(114\) 6.45416 11.1789i 0.604488 1.04700i
\(115\) 0 0
\(116\) −20.5139 −1.90467
\(117\) 6.24500 3.60555i 0.577350 0.333333i
\(118\) 24.9083i 2.29300i
\(119\) −3.80278 + 6.58660i −0.348600 + 0.603793i
\(120\) 0 0
\(121\) 4.21110 + 7.29384i 0.382828 + 0.663077i
\(122\) 2.30278i 0.208484i
\(123\) −2.59808 + 1.50000i −0.234261 + 0.135250i
\(124\) −6.60555 11.4412i −0.593196 1.02745i
\(125\) 0 0
\(126\) 2.30278 + 3.98852i 0.205148 + 0.355326i
\(127\) 3.64692 + 2.10555i 0.323612 + 0.186837i 0.653001 0.757357i \(-0.273510\pi\)
−0.329389 + 0.944194i \(0.606843\pi\)
\(128\) 16.3751 + 9.45416i 1.44737 + 0.835638i
\(129\) 10.2111 0.899037
\(130\) 0 0
\(131\) −21.2111 −1.85322 −0.926611 0.376021i \(-0.877292\pi\)
−0.926611 + 0.376021i \(0.877292\pi\)
\(132\) −4.59234 2.65139i −0.399712 0.230774i
\(133\) 4.85455 + 2.80278i 0.420943 + 0.243031i
\(134\) 8.05971 + 13.9598i 0.696253 + 1.20595i
\(135\) 0 0
\(136\) 11.4083 + 19.7598i 0.978256 + 1.69439i
\(137\) −1.39045 + 0.802776i −0.118794 + 0.0685858i −0.558220 0.829693i \(-0.688515\pi\)
0.439426 + 0.898279i \(0.355182\pi\)
\(138\) 6.90833i 0.588076i
\(139\) 3.19722 + 5.53776i 0.271185 + 0.469706i 0.969166 0.246410i \(-0.0792511\pi\)
−0.697981 + 0.716117i \(0.745918\pi\)
\(140\) 0 0
\(141\) −4.60555 + 7.97705i −0.387857 + 0.671789i
\(142\) 11.0917i 0.930793i
\(143\) −5.01333 2.89445i −0.419236 0.242046i
\(144\) 0.605551 0.0504626
\(145\) 0 0
\(146\) −0.908327 + 1.57327i −0.0751737 + 0.130205i
\(147\) −5.19615 + 3.00000i −0.428571 + 0.247436i
\(148\) 11.9083i 0.978858i
\(149\) 1.50000 + 2.59808i 0.122885 + 0.212843i 0.920904 0.389789i \(-0.127452\pi\)
−0.798019 + 0.602632i \(0.794119\pi\)
\(150\) 0 0
\(151\) −1.21110 −0.0985581 −0.0492791 0.998785i \(-0.515692\pi\)
−0.0492791 + 0.998785i \(0.515692\pi\)
\(152\) 14.5636 8.40833i 1.18127 0.682005i
\(153\) −13.1732 7.60555i −1.06499 0.614872i
\(154\) 1.84861 3.20189i 0.148965 0.258016i
\(155\) 0 0
\(156\) −11.9083 −0.953429
\(157\) 11.2111i 0.894743i 0.894348 + 0.447372i \(0.147640\pi\)
−0.894348 + 0.447372i \(0.852360\pi\)
\(158\) −10.3923 6.00000i −0.826767 0.477334i
\(159\) −1.60555 + 2.78090i −0.127328 + 0.220539i
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) −1.99426 + 1.15139i −0.156684 + 0.0904616i
\(163\) 3.28128 1.89445i 0.257010 0.148385i −0.365960 0.930631i \(-0.619259\pi\)
0.622970 + 0.782246i \(0.285926\pi\)
\(164\) −9.90833 −0.773710
\(165\) 0 0
\(166\) −10.6056 + 18.3694i −0.823150 + 1.42574i
\(167\) −7.79423 4.50000i −0.603136 0.348220i 0.167139 0.985933i \(-0.446547\pi\)
−0.770274 + 0.637713i \(0.779881\pi\)
\(168\) 3.00000i 0.231455i
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −5.60555 + 9.70910i −0.428667 + 0.742473i
\(172\) 29.2067 + 16.8625i 2.22699 + 1.28575i
\(173\) −4.17134 + 2.40833i −0.317141 + 0.183102i −0.650118 0.759834i \(-0.725280\pi\)
0.332976 + 0.942935i \(0.391947\pi\)
\(174\) −14.3028 −1.08429
\(175\) 0 0
\(176\) −0.243061 0.420994i −0.0183214 0.0317336i
\(177\) 10.8167i 0.813029i
\(178\) −12.3866 + 7.15139i −0.928412 + 0.536019i
\(179\) 11.4083 19.7598i 0.852698 1.47692i −0.0260655 0.999660i \(-0.508298\pi\)
0.878764 0.477257i \(-0.158369\pi\)
\(180\) 0 0
\(181\) 17.6333 1.31067 0.655337 0.755337i \(-0.272527\pi\)
0.655337 + 0.755337i \(0.272527\pi\)
\(182\) 8.30278i 0.615443i
\(183\) 1.00000i 0.0739221i
\(184\) 4.50000 7.79423i 0.331744 0.574598i
\(185\) 0 0
\(186\) −4.60555 7.97705i −0.337695 0.584906i
\(187\) 12.2111i 0.892964i
\(188\) −26.3464 + 15.2111i −1.92151 + 1.10938i
\(189\) 2.50000 + 4.33013i 0.181848 + 0.314970i
\(190\) 0 0
\(191\) −8.40833 14.5636i −0.608405 1.05379i −0.991503 0.130081i \(-0.958476\pi\)
0.383098 0.923708i \(-0.374857\pi\)
\(192\) 11.0995 + 6.40833i 0.801041 + 0.462481i
\(193\) 13.5148 + 7.80278i 0.972817 + 0.561656i 0.900094 0.435696i \(-0.143498\pi\)
0.0727230 + 0.997352i \(0.476831\pi\)
\(194\) −19.3305 −1.38785
\(195\) 0 0
\(196\) −19.8167 −1.41548
\(197\) −1.02481 0.591673i −0.0730145 0.0421550i 0.463048 0.886333i \(-0.346756\pi\)
−0.536063 + 0.844178i \(0.680089\pi\)
\(198\) 6.40378 + 3.69722i 0.455097 + 0.262750i
\(199\) 6.40833 + 11.0995i 0.454274 + 0.786826i 0.998646 0.0520179i \(-0.0165653\pi\)
−0.544372 + 0.838844i \(0.683232\pi\)
\(200\) 0 0
\(201\) 3.50000 + 6.06218i 0.246871 + 0.427593i
\(202\) 17.9484 10.3625i 1.26284 0.729102i
\(203\) 6.21110i 0.435934i
\(204\) 12.5597 + 21.7541i 0.879356 + 1.52309i
\(205\) 0 0
\(206\) −4.60555 + 7.97705i −0.320884 + 0.555787i
\(207\) 6.00000i 0.417029i
\(208\) −0.945417 0.545837i −0.0655528 0.0378470i
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) 11.8028 20.4430i 0.812537 1.40735i −0.0985467 0.995132i \(-0.531419\pi\)
0.911083 0.412222i \(-0.135247\pi\)
\(212\) −9.18468 + 5.30278i −0.630806 + 0.364196i
\(213\) 4.81665i 0.330032i
\(214\) −7.15139 12.3866i −0.488859 0.846728i
\(215\) 0 0
\(216\) 15.0000 1.02062
\(217\) 3.46410 2.00000i 0.235159 0.135769i
\(218\) 38.3120 + 22.1194i 2.59481 + 1.49812i
\(219\) −0.394449 + 0.683205i −0.0266544 + 0.0461667i
\(220\) 0 0
\(221\) 13.7111 + 23.7483i 0.922309 + 1.59749i
\(222\) 8.30278i 0.557246i
\(223\) −3.64692 2.10555i −0.244216 0.140998i 0.372897 0.927873i \(-0.378364\pi\)
−0.617113 + 0.786875i \(0.711698\pi\)
\(224\) −2.65139 + 4.59234i −0.177153 + 0.306839i
\(225\) 0 0
\(226\) 3.69722 0.245936
\(227\) −23.7483 + 13.7111i −1.57623 + 0.910038i −0.580853 + 0.814008i \(0.697281\pi\)
−0.995378 + 0.0960296i \(0.969386\pi\)
\(228\) 16.0335 9.25694i 1.06184 0.613056i
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0.802776 1.39045i 0.0528188 0.0914848i
\(232\) −16.1369 9.31665i −1.05944 0.611668i
\(233\) 15.2111i 0.996512i −0.867030 0.498256i \(-0.833974\pi\)
0.867030 0.498256i \(-0.166026\pi\)
\(234\) 16.6056 1.08554
\(235\) 0 0
\(236\) 17.8625 30.9387i 1.16275 2.01394i
\(237\) −4.51295 2.60555i −0.293147 0.169249i
\(238\) −15.1675 + 8.75694i −0.983161 + 0.567628i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −0.894449 1.54923i −0.0576165 0.0997947i 0.835778 0.549067i \(-0.185017\pi\)
−0.893395 + 0.449272i \(0.851683\pi\)
\(242\) 19.3944i 1.24672i
\(243\) −13.8564 + 8.00000i −0.888889 + 0.513200i
\(244\) −1.65139 + 2.86029i −0.105719 + 0.183111i
\(245\) 0 0
\(246\) −6.90833 −0.440459
\(247\) 17.5033 10.1056i 1.11371 0.643001i
\(248\) 12.0000i 0.762001i
\(249\) −4.60555 + 7.97705i −0.291865 + 0.505525i
\(250\) 0 0
\(251\) 3.59167 + 6.22096i 0.226704 + 0.392664i 0.956829 0.290650i \(-0.0938715\pi\)
−0.730125 + 0.683314i \(0.760538\pi\)
\(252\) 6.60555i 0.416111i
\(253\) 4.17134 2.40833i 0.262250 0.151410i
\(254\) 4.84861 + 8.39804i 0.304229 + 0.526940i
\(255\) 0 0
\(256\) 8.95416 + 15.5091i 0.559635 + 0.969317i
\(257\) 14.1980 + 8.19722i 0.885647 + 0.511329i 0.872516 0.488585i \(-0.162487\pi\)
0.0131312 + 0.999914i \(0.495820\pi\)
\(258\) 20.3636 + 11.7569i 1.26778 + 0.731955i
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) 12.4222 0.768915
\(262\) −42.3005 24.4222i −2.61333 1.50881i
\(263\) 10.2095 + 5.89445i 0.629544 + 0.363467i 0.780575 0.625062i \(-0.214926\pi\)
−0.151032 + 0.988529i \(0.548260\pi\)
\(264\) −2.40833 4.17134i −0.148222 0.256729i
\(265\) 0 0
\(266\) 6.45416 + 11.1789i 0.395730 + 0.685425i
\(267\) −5.37897 + 3.10555i −0.329188 + 0.190057i
\(268\) 23.1194i 1.41224i
\(269\) −4.50000 7.79423i −0.274370 0.475223i 0.695606 0.718423i \(-0.255136\pi\)
−0.969976 + 0.243201i \(0.921803\pi\)
\(270\) 0 0
\(271\) 10.4083 18.0278i 0.632261 1.09511i −0.354828 0.934932i \(-0.615460\pi\)
0.987088 0.160176i \(-0.0512062\pi\)
\(272\) 2.30278i 0.139626i
\(273\) 3.60555i 0.218218i
\(274\) −3.69722 −0.223357
\(275\) 0 0
\(276\) 4.95416 8.58086i 0.298206 0.516507i
\(277\) 23.9071 13.8028i 1.43644 0.829328i 0.438839 0.898566i \(-0.355390\pi\)
0.997600 + 0.0692374i \(0.0220566\pi\)
\(278\) 14.7250i 0.883146i
\(279\) 4.00000 + 6.92820i 0.239474 + 0.414781i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) −18.3694 + 10.6056i −1.09388 + 0.631551i
\(283\) 4.33013 + 2.50000i 0.257399 + 0.148610i 0.623148 0.782104i \(-0.285854\pi\)
−0.365748 + 0.930714i \(0.619187\pi\)
\(284\) 7.95416 13.7770i 0.471993 0.817515i
\(285\) 0 0
\(286\) −6.66527 11.5446i −0.394125 0.682645i
\(287\) 3.00000i 0.177084i
\(288\) −9.18468 5.30278i −0.541212 0.312469i
\(289\) 20.4222 35.3723i 1.20131 2.08072i
\(290\) 0 0
\(291\) −8.39445 −0.492091
\(292\) −2.25647 + 1.30278i −0.132050 + 0.0762392i
\(293\) −9.00186 + 5.19722i −0.525894 + 0.303625i −0.739343 0.673329i \(-0.764864\pi\)
0.213449 + 0.976954i \(0.431530\pi\)
\(294\) −13.8167 −0.805804
\(295\) 0 0
\(296\) 5.40833 9.36750i 0.314353 0.544475i
\(297\) 6.95224 + 4.01388i 0.403410 + 0.232909i
\(298\) 6.90833i 0.400189i
\(299\) 5.40833 9.36750i 0.312772 0.541736i
\(300\) 0 0
\(301\) −5.10555 + 8.84307i −0.294279 + 0.509706i
\(302\) −2.41526 1.39445i −0.138982 0.0802415i
\(303\) 7.79423 4.50000i 0.447767 0.258518i
\(304\) 1.69722 0.0973425
\(305\) 0 0
\(306\) −17.5139 30.3349i −1.00120 1.73413i
\(307\) 16.0000i 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) 4.59234 2.65139i 0.261673 0.151077i
\(309\) −2.00000 + 3.46410i −0.113776 + 0.197066i
\(310\) 0 0
\(311\) −9.21110 −0.522314 −0.261157 0.965296i \(-0.584104\pi\)
−0.261157 + 0.965296i \(0.584104\pi\)
\(312\) −9.36750 5.40833i −0.530330 0.306186i
\(313\) 14.0000i 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) −12.9083 + 22.3579i −0.728459 + 1.26173i
\(315\) 0 0
\(316\) −8.60555 14.9053i −0.484100 0.838486i
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) −6.40378 + 3.69722i −0.359106 + 0.207330i
\(319\) −4.98612 8.63622i −0.279169 0.483535i
\(320\) 0 0
\(321\) −3.10555 5.37897i −0.173335 0.300225i
\(322\) 5.98279 + 3.45416i 0.333408 + 0.192493i
\(323\) −36.9215 21.3167i −2.05437 1.18609i
\(324\) −3.30278 −0.183488
\(325\) 0 0
\(326\) 8.72498 0.483232
\(327\) 16.6373 + 9.60555i 0.920045 + 0.531188i
\(328\) −7.79423 4.50000i −0.430364 0.248471i
\(329\) −4.60555 7.97705i −0.253912 0.439789i
\(330\) 0 0
\(331\) −5.01388 8.68429i −0.275588 0.477332i 0.694696 0.719304i \(-0.255539\pi\)
−0.970283 + 0.241972i \(0.922206\pi\)
\(332\) −26.3464 + 15.2111i −1.44595 + 0.834818i
\(333\) 7.21110i 0.395166i
\(334\) −10.3625 17.9484i −0.567010 0.982091i
\(335\) 0 0
\(336\) 0.151388 0.262211i 0.00825888 0.0143048i
\(337\) 25.6333i 1.39634i −0.715934 0.698168i \(-0.753999\pi\)
0.715934 0.698168i \(-0.246001\pi\)
\(338\) −25.9254 14.9680i −1.41016 0.814154i
\(339\) 1.60555 0.0872016
\(340\) 0 0
\(341\) 3.21110 5.56179i 0.173891 0.301188i
\(342\) −22.3579 + 12.9083i −1.20898 + 0.698002i
\(343\) 13.0000i 0.701934i
\(344\) 15.3167 + 26.5292i 0.825819 + 1.43036i
\(345\) 0 0
\(346\) −11.0917 −0.596292
\(347\) 5.01333 2.89445i 0.269130 0.155382i −0.359362 0.933198i \(-0.617006\pi\)
0.628492 + 0.777816i \(0.283672\pi\)
\(348\) −17.7655 10.2569i −0.952333 0.549830i
\(349\) −1.89445 + 3.28128i −0.101408 + 0.175643i −0.912265 0.409601i \(-0.865668\pi\)
0.810857 + 0.585244i \(0.199001\pi\)
\(350\) 0 0
\(351\) 18.0278 0.962250
\(352\) 8.51388i 0.453791i
\(353\) 14.5636 + 8.40833i 0.775145 + 0.447530i 0.834707 0.550695i \(-0.185637\pi\)
−0.0595620 + 0.998225i \(0.518970\pi\)
\(354\) 12.4542 21.5712i 0.661931 1.14650i
\(355\) 0 0
\(356\) −20.5139 −1.08723
\(357\) −6.58660 + 3.80278i −0.348600 + 0.201264i
\(358\) 45.5024 26.2708i 2.40488 1.38846i
\(359\) −18.4222 −0.972287 −0.486143 0.873879i \(-0.661597\pi\)
−0.486143 + 0.873879i \(0.661597\pi\)
\(360\) 0 0
\(361\) −6.21110 + 10.7579i −0.326900 + 0.566208i
\(362\) 35.1654 + 20.3028i 1.84825 + 1.06709i
\(363\) 8.42221i 0.442051i
\(364\) 5.95416 10.3129i 0.312083 0.540544i
\(365\) 0 0
\(366\) −1.15139 + 1.99426i −0.0601840 + 0.104242i
\(367\) −9.89192 5.71110i −0.516354 0.298117i 0.219088 0.975705i \(-0.429692\pi\)
−0.735442 + 0.677588i \(0.763025\pi\)
\(368\) 0.786634 0.454163i 0.0410061 0.0236749i
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −1.60555 2.78090i −0.0833561 0.144377i
\(372\) 13.2111i 0.684964i
\(373\) 17.6621 10.1972i 0.914509 0.527992i 0.0326301 0.999467i \(-0.489612\pi\)
0.881879 + 0.471475i \(0.156278\pi\)
\(374\) −14.0597 + 24.3521i −0.727011 + 1.25922i
\(375\) 0 0
\(376\) −27.6333 −1.42508
\(377\) −19.3942 11.1972i −0.998850 0.576686i
\(378\) 11.5139i 0.592210i
\(379\) 4.80278 8.31865i 0.246702 0.427300i −0.715907 0.698196i \(-0.753986\pi\)
0.962609 + 0.270895i \(0.0873198\pi\)
\(380\) 0 0
\(381\) 2.10555 + 3.64692i 0.107871 + 0.186837i
\(382\) 38.7250i 1.98134i
\(383\) 21.3331 12.3167i 1.09007 0.629352i 0.156474 0.987682i \(-0.449987\pi\)
0.933595 + 0.358330i \(0.116654\pi\)
\(384\) 9.45416 + 16.3751i 0.482456 + 0.835638i
\(385\) 0 0
\(386\) 17.9680 + 31.1216i 0.914549 + 1.58405i
\(387\) −17.6861 10.2111i −0.899037 0.519060i
\(388\) −24.0105 13.8625i −1.21895 0.703761i
\(389\) 15.2111 0.771234 0.385617 0.922659i \(-0.373989\pi\)
0.385617 + 0.922659i \(0.373989\pi\)
\(390\) 0 0
\(391\) −22.8167 −1.15389
\(392\) −15.5885 9.00000i −0.787336 0.454569i
\(393\) −18.3694 10.6056i −0.926611 0.534979i
\(394\) −1.36249 2.35990i −0.0686413 0.118890i
\(395\) 0 0
\(396\) 5.30278 + 9.18468i 0.266475 + 0.461547i
\(397\) 19.0766 11.0139i 0.957427 0.552771i 0.0620468 0.998073i \(-0.480237\pi\)
0.895380 + 0.445303i \(0.146904\pi\)
\(398\) 29.5139i 1.47940i
\(399\) 2.80278 + 4.85455i 0.140314 + 0.243031i
\(400\) 0 0
\(401\) −6.10555 + 10.5751i −0.304897 + 0.528097i −0.977238 0.212144i \(-0.931955\pi\)
0.672342 + 0.740241i \(0.265289\pi\)
\(402\) 16.1194i 0.803964i
\(403\) 14.4222i 0.718421i
\(404\) 29.7250 1.47887
\(405\) 0 0
\(406\) 7.15139 12.3866i 0.354917 0.614735i
\(407\) 5.01333 2.89445i 0.248502 0.143472i
\(408\) 22.8167i 1.12959i
\(409\) 4.10555 + 7.11102i 0.203006 + 0.351617i 0.949496 0.313780i \(-0.101595\pi\)
−0.746489 + 0.665397i \(0.768262\pi\)
\(410\) 0 0
\(411\) −1.60555 −0.0791960
\(412\) −11.4412 + 6.60555i −0.563665 + 0.325432i
\(413\) 9.36750 + 5.40833i 0.460944 + 0.266126i
\(414\) −6.90833 + 11.9656i −0.339526 + 0.588076i
\(415\) 0 0
\(416\) 9.55971 + 16.5579i 0.468704 + 0.811818i
\(417\) 6.39445i 0.313138i
\(418\) 17.9484 + 10.3625i 0.877883 + 0.506846i
\(419\) 8.61943 14.9293i 0.421087 0.729344i −0.574959 0.818182i \(-0.694982\pi\)
0.996046 + 0.0888384i \(0.0283155\pi\)
\(420\) 0 0
\(421\) 32.4222 1.58016 0.790081 0.613003i \(-0.210039\pi\)
0.790081 + 0.613003i \(0.210039\pi\)
\(422\) 47.0757 27.1791i 2.29161 1.32306i
\(423\) 15.9541 9.21110i 0.775715 0.447859i
\(424\) −9.63331 −0.467835
\(425\) 0 0
\(426\) 5.54584 9.60567i 0.268697 0.465396i
\(427\) −0.866025 0.500000i −0.0419099 0.0241967i
\(428\) 20.5139i 0.991576i
\(429\) −2.89445 5.01333i −0.139745 0.242046i
\(430\) 0 0
\(431\) −14.6194 + 25.3216i −0.704193 + 1.21970i 0.262789 + 0.964853i \(0.415358\pi\)
−0.966982 + 0.254845i \(0.917976\pi\)
\(432\) 1.31106 + 0.756939i 0.0630783 + 0.0364182i
\(433\) −3.12250 + 1.80278i −0.150058 + 0.0866359i −0.573149 0.819451i \(-0.694278\pi\)
0.423091 + 0.906087i \(0.360945\pi\)
\(434\) 9.21110 0.442147
\(435\) 0 0
\(436\) 31.7250 + 54.9493i 1.51935 + 2.63159i
\(437\) 16.8167i 0.804450i
\(438\) −1.57327 + 0.908327i −0.0751737 + 0.0434015i
\(439\) −13.6194 + 23.5895i −0.650020 + 1.12587i 0.333098 + 0.942892i \(0.391906\pi\)
−0.983118 + 0.182975i \(0.941427\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 63.1472i 3.00361i
\(443\) 6.42221i 0.305128i −0.988294 0.152564i \(-0.951247\pi\)
0.988294 0.152564i \(-0.0487530\pi\)
\(444\) 5.95416 10.3129i 0.282572 0.489429i
\(445\) 0 0
\(446\) −4.84861 8.39804i −0.229588 0.397659i
\(447\) 3.00000i 0.141895i
\(448\) −11.0995 + 6.40833i −0.524404 + 0.302765i
\(449\) 15.3167 + 26.5292i 0.722838 + 1.25199i 0.959858 + 0.280487i \(0.0904959\pi\)
−0.237020 + 0.971505i \(0.576171\pi\)
\(450\) 0 0
\(451\) −2.40833 4.17134i −0.113404 0.196421i
\(452\) 4.59234 + 2.65139i 0.216005 + 0.124711i
\(453\) −1.04885 0.605551i −0.0492791 0.0284513i
\(454\) −63.1472 −2.96364
\(455\) 0 0
\(456\) 16.8167 0.787512
\(457\) 23.2239 + 13.4083i 1.08637 + 0.627215i 0.932607 0.360893i \(-0.117528\pi\)
0.153761 + 0.988108i \(0.450861\pi\)
\(458\) −27.9197 16.1194i −1.30460 0.753211i
\(459\) −19.0139 32.9330i −0.887492 1.53718i
\(460\) 0 0
\(461\) −18.1056 31.3597i −0.843260 1.46057i −0.887124 0.461531i \(-0.847300\pi\)
0.0438645 0.999037i \(-0.486033\pi\)
\(462\) 3.20189 1.84861i 0.148965 0.0860052i
\(463\) 34.4222i 1.59974i 0.600176 + 0.799868i \(0.295097\pi\)
−0.600176 + 0.799868i \(0.704903\pi\)
\(464\) −0.940285 1.62862i −0.0436516 0.0756069i
\(465\) 0 0
\(466\) 17.5139 30.3349i 0.811315 1.40524i
\(467\) 2.78890i 0.129055i 0.997916 + 0.0645274i \(0.0205540\pi\)
−0.997916 + 0.0645274i \(0.979446\pi\)
\(468\) 20.6258 + 11.9083i 0.953429 + 0.550463i
\(469\) −7.00000 −0.323230
\(470\) 0 0
\(471\) −5.60555 + 9.70910i −0.258290 + 0.447372i
\(472\) 28.1025 16.2250i 1.29352 0.746815i
\(473\) 16.3944i 0.753818i
\(474\) −6.00000 10.3923i −0.275589 0.477334i
\(475\) 0 0
\(476\) −25.1194 −1.15135
\(477\) 5.56179 3.21110i 0.254657 0.147026i
\(478\) 0 0
\(479\) −14.4083 + 24.9560i −0.658333 + 1.14027i 0.322714 + 0.946497i \(0.395405\pi\)
−0.981047 + 0.193770i \(0.937928\pi\)
\(480\) 0 0
\(481\) 6.50000 11.2583i 0.296374 0.513336i
\(482\) 4.11943i 0.187635i
\(483\) 2.59808 + 1.50000i 0.118217 + 0.0682524i
\(484\) −13.9083 + 24.0899i −0.632197 + 1.09500i
\(485\) 0 0
\(486\) −36.8444 −1.67130
\(487\) −0.866025 + 0.500000i −0.0392434 + 0.0226572i −0.519493 0.854475i \(-0.673879\pi\)
0.480250 + 0.877132i \(0.340546\pi\)
\(488\) −2.59808 + 1.50000i −0.117609 + 0.0679018i
\(489\) 3.78890 0.171340
\(490\) 0 0
\(491\) 8.40833 14.5636i 0.379462 0.657248i −0.611522 0.791228i \(-0.709442\pi\)
0.990984 + 0.133979i \(0.0427756\pi\)
\(492\) −8.58086 4.95416i −0.386855 0.223351i
\(493\) 47.2389i 2.12753i
\(494\) 46.5416 2.09401
\(495\) 0 0
\(496\) 0.605551 1.04885i 0.0271901 0.0470946i
\(497\) 4.17134 + 2.40833i 0.187110 + 0.108028i
\(498\) −18.3694 + 10.6056i −0.823150 + 0.475246i
\(499\) −2.42221 −0.108433 −0.0542164 0.998529i \(-0.517266\pi\)
−0.0542164 + 0.998529i \(0.517266\pi\)
\(500\) 0 0
\(501\) −4.50000 7.79423i −0.201045 0.348220i
\(502\) 16.5416i 0.738289i
\(503\) −2.59808 + 1.50000i −0.115842 + 0.0668817i −0.556802 0.830645i \(-0.687972\pi\)
0.440959 + 0.897527i \(0.354638\pi\)
\(504\) −3.00000 + 5.19615i −0.133631 + 0.231455i
\(505\) 0 0
\(506\) 11.0917 0.493085
\(507\) −11.2583 6.50000i −0.500000 0.288675i
\(508\) 13.9083i 0.617082i
\(509\) 1.50000 2.59808i 0.0664863 0.115158i −0.830866 0.556473i \(-0.812154\pi\)
0.897352 + 0.441315i \(0.145488\pi\)
\(510\) 0 0
\(511\) −0.394449 0.683205i −0.0174494 0.0302232i
\(512\) 3.42221i 0.151242i
\(513\) −24.2727 + 14.0139i −1.07167 + 0.618728i
\(514\) 18.8764 + 32.6948i 0.832601 + 1.44211i
\(515\) 0 0
\(516\) 16.8625 + 29.2067i 0.742330 + 1.28575i
\(517\) −12.8076 7.39445i −0.563276 0.325207i
\(518\) 7.19041 + 4.15139i 0.315929 + 0.182402i
\(519\) −4.81665 −0.211428
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 24.7731 + 14.3028i 1.08429 + 0.626015i
\(523\) −1.23167 0.711103i −0.0538570 0.0310943i 0.472830 0.881154i \(-0.343233\pi\)
−0.526687 + 0.850059i \(0.676566\pi\)
\(524\) −35.0278 60.6699i −1.53019 2.65037i
\(525\) 0 0
\(526\) 13.5736 + 23.5102i 0.591837 + 1.02509i
\(527\) −26.3464 + 15.2111i −1.14767 + 0.662606i
\(528\) 0.486122i 0.0211557i
\(529\) −7.00000 12.1244i −0.304348 0.527146i
\(530\) 0 0
\(531\) −10.8167 + 18.7350i −0.469403 + 0.813029i
\(532\) 18.5139i 0.802678i
\(533\) −9.36750 5.40833i −0.405751 0.234261i
\(534\) −14.3028 −0.618942
\(535\) 0 0
\(536\) −10.5000 + 18.1865i −0.453531 + 0.785539i
\(537\) 19.7598 11.4083i 0.852698 0.492306i
\(538\) 20.7250i 0.893517i
\(539\) −4.81665 8.34269i −0.207468 0.359345i
\(540\) 0 0
\(541\) −25.6333 −1.10206 −0.551031 0.834485i \(-0.685765\pi\)
−0.551031 + 0.834485i \(0.685765\pi\)
\(542\) 41.5139 23.9680i 1.78317 1.02952i
\(543\) 15.2709 + 8.81665i 0.655337 + 0.378359i
\(544\) 20.1653 34.9273i 0.864579 1.49749i
\(545\) 0 0
\(546\) 4.15139 7.19041i 0.177663 0.307721i
\(547\) 32.8444i 1.40433i 0.712016 + 0.702163i \(0.247782\pi\)
−0.712016 + 0.702163i \(0.752218\pi\)
\(548\) −4.59234 2.65139i −0.196175 0.113262i
\(549\) 1.00000 1.73205i 0.0426790 0.0739221i
\(550\) 0 0
\(551\) 34.8167 1.48324
\(552\) 7.79423 4.50000i 0.331744 0.191533i
\(553\) 4.51295 2.60555i 0.191910 0.110799i
\(554\) 63.5694 2.70080
\(555\) 0 0
\(556\) −10.5597 + 18.2900i −0.447832 + 0.775667i
\(557\) 1.39045 + 0.802776i 0.0589152 + 0.0340147i 0.529168 0.848517i \(-0.322504\pi\)
−0.470253 + 0.882532i \(0.655837\pi\)
\(558\) 18.4222i 0.779874i
\(559\) 18.4083 + 31.8842i 0.778589 + 1.34856i
\(560\) 0 0
\(561\) −6.10555 + 10.5751i −0.257777 + 0.446482i
\(562\) −11.9656 6.90833i −0.504737 0.291410i
\(563\) −8.15987 + 4.71110i −0.343897 + 0.198549i −0.661994 0.749509i \(-0.730290\pi\)
0.318097 + 0.948058i \(0.396956\pi\)
\(564\) −30.4222 −1.28101
\(565\) 0 0
\(566\) 5.75694 + 9.97131i 0.241982 + 0.419125i
\(567\) 1.00000i 0.0419961i
\(568\) 12.5140 7.22498i 0.525077 0.303153i
\(569\) −13.7111 + 23.7483i −0.574799 + 0.995582i 0.421264 + 0.906938i \(0.361587\pi\)
−0.996063 + 0.0886436i \(0.971747\pi\)
\(570\) 0 0
\(571\) 20.8444 0.872311 0.436156 0.899871i \(-0.356340\pi\)
0.436156 + 0.899871i \(0.356340\pi\)
\(572\) 19.1194i 0.799424i
\(573\) 16.8167i 0.702526i
\(574\) 3.45416 5.98279i 0.144174 0.249717i
\(575\) 0 0
\(576\) −12.8167 22.1991i −0.534027 0.924962i
\(577\) 13.6333i 0.567562i −0.958889 0.283781i \(-0.908411\pi\)
0.958889 0.283781i \(-0.0915889\pi\)
\(578\) 81.4545 47.0278i 3.38806 1.95610i
\(579\) 7.80278 + 13.5148i 0.324272 + 0.561656i
\(580\) 0 0
\(581\) −4.60555 7.97705i −0.191070 0.330944i
\(582\) −16.7407 9.66527i −0.693926 0.400638i
\(583\) −4.46487 2.57779i −0.184916 0.106761i
\(584\) −2.36669 −0.0979344
\(585\) 0 0
\(586\) −23.9361 −0.988790
\(587\) 28.9445 + 16.7111i 1.19467 + 0.689741i 0.959361 0.282181i \(-0.0910577\pi\)
0.235305 + 0.971922i \(0.424391\pi\)
\(588\) −17.1617 9.90833i −0.707738 0.408613i
\(589\) 11.2111 + 19.4182i 0.461945 + 0.800113i
\(590\) 0 0
\(591\) −0.591673 1.02481i −0.0243382 0.0421550i
\(592\) 0.945417 0.545837i 0.0388564 0.0224337i
\(593\) 20.7889i 0.853698i −0.904323 0.426849i \(-0.859624\pi\)
0.904323 0.426849i \(-0.140376\pi\)
\(594\) 9.24306 + 16.0095i 0.379247 + 0.656876i
\(595\) 0 0
\(596\) −4.95416 + 8.58086i −0.202930 + 0.351486i
\(597\) 12.8167i 0.524551i
\(598\) 21.5712 12.4542i 0.882114 0.509289i
\(599\) 21.2111 0.866662 0.433331 0.901235i \(-0.357338\pi\)
0.433331 + 0.901235i \(0.357338\pi\)
\(600\) 0 0
\(601\) −6.89445 + 11.9415i −0.281230 + 0.487105i −0.971688 0.236267i \(-0.924076\pi\)
0.690458 + 0.723373i \(0.257409\pi\)
\(602\) −20.3636 + 11.7569i −0.829959 + 0.479177i
\(603\) 14.0000i 0.570124i
\(604\) −2.00000 3.46410i −0.0813788 0.140952i
\(605\) 0 0
\(606\) 20.7250 0.841895
\(607\) −29.6277 + 17.1056i −1.20255 + 0.694293i −0.961122 0.276126i \(-0.910949\pi\)
−0.241429 + 0.970418i \(0.577616\pi\)
\(608\) −25.7426 14.8625i −1.04400 0.602754i
\(609\) 3.10555 5.37897i 0.125843 0.217967i
\(610\) 0 0
\(611\) −33.2111 −1.34358
\(612\) 50.2389i 2.03079i
\(613\) −4.85455 2.80278i −0.196073 0.113203i 0.398749 0.917060i \(-0.369444\pi\)
−0.594823 + 0.803857i \(0.702778\pi\)
\(614\) 18.4222 31.9082i 0.743460 1.28771i
\(615\) 0 0
\(616\) 4.81665 0.194069
\(617\) −33.2986 + 19.2250i −1.34055 + 0.773969i −0.986888 0.161404i \(-0.948398\pi\)
−0.353664 + 0.935372i \(0.615065\pi\)
\(618\) −7.97705 + 4.60555i −0.320884 + 0.185262i
\(619\) −14.4222 −0.579677 −0.289839 0.957076i \(-0.593602\pi\)
−0.289839 + 0.957076i \(0.593602\pi\)
\(620\) 0 0
\(621\) −7.50000 + 12.9904i −0.300965 + 0.521286i
\(622\) −18.3694 10.6056i −0.736544 0.425244i
\(623\) 6.21110i 0.248843i
\(624\) −0.545837 0.945417i −0.0218509 0.0378470i
\(625\) 0 0
\(626\) 16.1194 27.9197i 0.644262 1.11589i
\(627\) 7.79423 + 4.50000i 0.311272 + 0.179713i
\(628\) −32.0670 + 18.5139i −1.27961 + 0.738784i
\(629\) −27.4222 −1.09339
\(630\) 0 0
\(631\) 18.0139 + 31.2010i 0.717121 + 1.24209i 0.962136 + 0.272571i \(0.0878739\pi\)
−0.245015 + 0.969519i \(0.578793\pi\)
\(632\) 15.6333i 0.621860i
\(633\) 20.4430 11.8028i 0.812537 0.469118i
\(634\) −6.90833 + 11.9656i −0.274365 + 0.475214i
\(635\) 0 0
\(636\) −10.6056 −0.420537
\(637\) −18.7350 10.8167i −0.742307 0.428571i
\(638\) 22.9638i 0.909147i
\(639\) −4.81665 + 8.34269i −0.190544 + 0.330032i
\(640\) 0 0
\(641\) −4.71110 8.15987i −0.186077 0.322295i 0.757862 0.652415i \(-0.226244\pi\)
−0.943939 + 0.330120i \(0.892911\pi\)
\(642\) 14.3028i 0.564486i
\(643\) −2.28051 + 1.31665i −0.0899346 + 0.0519238i −0.544293 0.838895i \(-0.683202\pi\)
0.454358 + 0.890819i \(0.349869\pi\)
\(644\) 4.95416 + 8.58086i 0.195221 + 0.338133i
\(645\) 0 0
\(646\) −49.0875 85.0220i −1.93132 3.34515i
\(647\) −34.1406 19.7111i −1.34221 0.774923i −0.355076 0.934838i \(-0.615545\pi\)
−0.987131 + 0.159914i \(0.948878\pi\)
\(648\) −2.59808 1.50000i −0.102062 0.0589256i
\(649\) 17.3667 0.681702
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 10.8373 + 6.25694i 0.424423 + 0.245041i
\(653\) −6.22096 3.59167i −0.243445 0.140553i 0.373314 0.927705i \(-0.378221\pi\)
−0.616759 + 0.787152i \(0.711555\pi\)
\(654\) 22.1194 + 38.3120i 0.864938 + 1.49812i
\(655\) 0 0
\(656\) −0.454163 0.786634i −0.0177321 0.0307129i
\(657\) 1.36641 0.788897i 0.0533087 0.0307778i
\(658\) 21.2111i 0.826895i
\(659\) −17.4083 30.1521i −0.678132 1.17456i −0.975543 0.219810i \(-0.929456\pi\)
0.297411 0.954750i \(-0.403877\pi\)
\(660\) 0 0
\(661\) 2.31665 4.01256i 0.0901074 0.156071i −0.817449 0.576001i \(-0.804612\pi\)
0.907556 + 0.419931i \(0.137946\pi\)
\(662\) 23.0917i 0.897483i
\(663\) 27.4222i 1.06499i
\(664\) −27.6333 −1.07238
\(665\) 0 0
\(666\) −8.30278 + 14.3808i −0.321726 + 0.557246i
\(667\) 16.1369 9.31665i 0.624824 0.360742i
\(668\) 29.7250i 1.15009i
\(669\) −2.10555 3.64692i −0.0814053 0.140998i
\(670\) 0 0
\(671\) −1.60555 −0.0619816
\(672\) −4.59234 + 2.65139i −0.177153 + 0.102280i
\(673\) −15.2469 8.80278i −0.587723 0.339322i 0.176474 0.984305i \(-0.443531\pi\)
−0.764197 + 0.644983i \(0.776864\pi\)
\(674\) 29.5139 51.1195i 1.13683 1.96905i
\(675\) 0 0
\(676\) −21.4680 37.1837i −0.825694 1.43014i
\(677\) 9.63331i 0.370238i −0.982716 0.185119i \(-0.940733\pi\)
0.982716 0.185119i \(-0.0592671\pi\)
\(678\) 3.20189 + 1.84861i 0.122968 + 0.0709955i
\(679\) 4.19722 7.26981i 0.161075 0.278990i
\(680\) 0 0
\(681\) −27.4222 −1.05082
\(682\) 12.8076 7.39445i 0.490427 0.283148i
\(683\) −31.3597 + 18.1056i −1.19995 + 0.692790i −0.960543 0.278130i \(-0.910285\pi\)
−0.239404 + 0.970920i \(0.576952\pi\)
\(684\) −37.0278 −1.41579
\(685\) 0 0
\(686\) 14.9680 25.9254i 0.571482 0.989837i
\(687\) −12.1244 7.00000i −0.462573 0.267067i
\(688\) 3.09167i 0.117869i
\(689\) −11.5778 −0.441079
\(690\) 0 0
\(691\) 15.0139 26.0048i 0.571155 0.989269i −0.425293 0.905056i \(-0.639829\pi\)
0.996448 0.0842134i \(-0.0268378\pi\)
\(692\) −13.7770 7.95416i −0.523724 0.302372i
\(693\) −2.78090 + 1.60555i −0.105638 + 0.0609898i
\(694\) 13.3305 0.506020
\(695\) 0 0
\(696\) −9.31665 16.1369i −0.353147 0.611668i
\(697\) 22.8167i 0.864242i
\(698\) −7.55605 + 4.36249i −0.286001 + 0.165123i
\(699\) 7.60555 13.1732i 0.287668 0.498256i
\(700\) 0 0
\(701\) −36.4222 −1.37565 −0.687824 0.725878i \(-0.741434\pi\)
−0.687824 + 0.725878i \(0.741434\pi\)
\(702\) 35.9521 + 20.7569i 1.35692 + 0.783420i
\(703\) 20.2111i 0.762276i
\(704\) −10.2889 + 17.8209i −0.387777 + 0.671650i
\(705\) 0 0
\(706\) 19.3625 + 33.5368i 0.728717 + 1.26217i
\(707\) 9.00000i 0.338480i
\(708\) 30.9387 17.8625i 1.16275 0.671313i
\(709\) −6.92221 11.9896i −0.259969 0.450279i 0.706264 0.707948i \(-0.250379\pi\)
−0.966233 + 0.257669i \(0.917046\pi\)
\(710\) 0 0
\(711\) 5.21110 + 9.02589i 0.195432 + 0.338497i
\(712\) −16.1369 9.31665i −0.604757 0.349156i
\(713\) 10.3923 + 6.00000i 0.389195 + 0.224702i
\(714\) −17.5139 −0.655440
\(715\) 0 0
\(716\) 75.3583 2.81627
\(717\) 0 0
\(718\) −36.7387 21.2111i −1.37108 0.791591i
\(719\) −12.8028 22.1751i −0.477463 0.826990i 0.522203 0.852821i \(-0.325110\pi\)
−0.999666 + 0.0258309i \(0.991777\pi\)
\(720\) 0 0
\(721\) −2.00000 3.46410i −0.0744839 0.129010i
\(722\) −24.7731 + 14.3028i −0.921961 + 0.532294i
\(723\) 1.78890i 0.0665298i
\(724\) 29.1194 + 50.4363i 1.08222 + 1.87445i
\(725\) 0 0
\(726\) −9.69722 + 16.7961i −0.359898 + 0.623361i
\(727\) 13.5778i 0.503573i 0.967783 + 0.251786i \(0.0810180\pi\)
−0.967783 + 0.251786i \(0.918982\pi\)
\(728\) 9.36750 5.40833i 0.347183 0.200446i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 38.8305 67.2565i 1.43620 2.48757i
\(732\) −2.86029 + 1.65139i −0.105719 + 0.0610371i
\(733\) 46.8444i 1.73024i 0.501567 + 0.865119i \(0.332757\pi\)
−0.501567 + 0.865119i \(0.667243\pi\)
\(734\) −13.1514 22.7789i −0.485427 0.840784i
\(735\) 0 0
\(736\) −15.9083 −0.586389
\(737\) −9.73314 + 5.61943i −0.358525 + 0.206994i
\(738\) 11.9656 + 6.90833i 0.440459 + 0.254299i
\(739\) −17.8028 + 30.8353i −0.654886 + 1.13430i 0.327037 + 0.945012i \(0.393950\pi\)
−0.981922 + 0.189284i \(0.939383\pi\)
\(740\) 0 0
\(741\) 20.2111 0.742473
\(742\) 7.39445i 0.271459i
\(743\) 31.7254 + 18.3167i 1.16389 + 0.671973i 0.952233 0.305371i \(-0.0987805\pi\)
0.211658 + 0.977344i \(0.432114\pi\)
\(744\) 6.00000 10.3923i 0.219971 0.381000i
\(745\) 0 0
\(746\) 46.9638 1.71947
\(747\) 15.9541 9.21110i 0.583730 0.337017i
\(748\) −34.9273 + 20.1653i −1.27707 + 0.737315i
\(749\) 6.21110 0.226949
\(750\) 0 0
\(751\) −23.2250 + 40.2268i −0.847492 + 1.46790i 0.0359481 + 0.999354i \(0.488555\pi\)
−0.883440 + 0.468545i \(0.844778\pi\)
\(752\) −2.41526 1.39445i −0.0880753 0.0508503i
\(753\) 7.18335i 0.261776i
\(754\) −25.7847 44.6604i −0.939023 1.62644i
\(755\) 0 0
\(756\) −8.25694 + 14.3014i −0.300302 + 0.520138i
\(757\) −0.707243 0.408327i −0.0257052 0.0148409i 0.487092 0.873350i \(-0.338058\pi\)
−0.512798 + 0.858510i \(0.671391\pi\)
\(758\) 19.1560 11.0597i 0.695777 0.401707i
\(759\) 4.81665 0.174833
\(760\) 0 0
\(761\) −9.31665 16.1369i −0.337728 0.584963i 0.646277 0.763103i \(-0.276325\pi\)
−0.984005 + 0.178140i \(0.942992\pi\)
\(762\) 9.69722i 0.351293i
\(763\) −16.6373 + 9.60555i −0.602311 + 0.347744i
\(764\) 27.7708 48.1005i 1.00471 1.74021i
\(765\) 0 0
\(766\) 56.7250 2.04956
\(767\) 33.7750 19.5000i 1.21954 0.704104i
\(768\) 17.9083i 0.646211i
\(769\) 5.50000 9.52628i 0.198335 0.343526i −0.749654 0.661830i \(-0.769780\pi\)
0.947989 + 0.318304i \(0.103113\pi\)
\(770\) 0 0
\(771\) 8.19722 + 14.1980i 0.295216 + 0.511329i
\(772\) 51.5416i 1.85502i
\(773\) −19.3942 + 11.1972i −0.697560 + 0.402736i −0.806438 0.591319i \(-0.798607\pi\)
0.108878 + 0.994055i \(0.465274\pi\)
\(774\) −23.5139 40.7272i −0.845189 1.46391i
\(775\) 0 0
\(776\) −12.5917 21.8094i −0.452015 0.782912i
\(777\) 3.12250 + 1.80278i 0.112019 + 0.0646742i
\(778\) 30.3349 + 17.5139i 1.08756 + 0.627903i
\(779\) 16.8167 0.602519
\(780\) 0 0
\(781\) 7.73338 0.276722
\(782\) −45.5024 26.2708i −1.62716 0.939443i
\(783\) 26.8949 + 15.5278i 0.961144 + 0.554917i
\(784\) −0.908327 1.57327i −0.0324402 0.0561882i
\(785\) 0 0
\(786\) −24.4222 42.3005i −0.871111 1.50881i
\(787\) 12.6728 7.31665i 0.451737 0.260811i −0.256826 0.966458i \(-0.582677\pi\)
0.708564 + 0.705647i \(0.249344\pi\)
\(788\) 3.90833i 0.139228i
\(789\) 5.89445 + 10.2095i 0.209848 + 0.363467i
\(790\) 0 0
\(791\) −0.802776 + 1.39045i −0.0285434 + 0.0494386i
\(792\) 9.63331i 0.342305i
\(793\) −3.12250 + 1.80278i −0.110883 + 0.0640184i
\(794\) 50.7250 1.80016
\(795\) 0 0
\(796\) −21.1653 + 36.6593i −0.750183 + 1.29936i
\(797\) −12.5140 + 7.22498i −0.443270 + 0.255922i −0.704984 0.709224i \(-0.749046\pi\)
0.261714 + 0.965146i \(0.415712\pi\)
\(798\) 12.9083i 0.456950i
\(799\) 35.0278 + 60.6699i 1.23919 + 2.14635i
\(800\) 0 0
\(801\) 12.4222 0.438917
\(802\) −24.3521 + 14.0597i −0.859904 + 0.496466i
\(803\) −1.09692 0.633308i −0.0387095 0.0223489i
\(804\) −11.5597 + 20.0220i −0.407680 + 0.706122i
\(805\) 0 0
\(806\) 16.6056 28.7617i 0.584906 1.01309i
\(807\) 9.00000i 0.316815i
\(808\) 23.3827 + 13.5000i 0.822600 + 0.474928i
\(809\) −27.5278 + 47.6795i −0.967824 + 1.67632i −0.265997 + 0.963974i \(0.585701\pi\)
−0.701827 + 0.712347i \(0.747632\pi\)
\(810\) 0 0
\(811\) −46.4222 −1.63010 −0.815052 0.579388i \(-0.803292\pi\)
−0.815052 + 0.579388i \(0.803292\pi\)
\(812\) 17.7655 10.2569i 0.623448 0.359948i
\(813\) 18.0278 10.4083i 0.632261 0.365036i
\(814\) 13.3305 0.467235
\(815\) 0 0
\(816\) −1.15139 + 1.99426i −0.0403066 + 0.0698131i
\(817\) −49.5703 28.6194i −1.73425 1.00127i
\(818\) 18.9083i 0.661114i
\(819\) −3.60555 + 6.24500i −0.125988 + 0.218218i
\(820\) 0 0
\(821\) −10.7111 + 18.5522i −0.373820 + 0.647475i −0.990150 0.140013i \(-0.955286\pi\)
0.616330 + 0.787488i \(0.288619\pi\)
\(822\) −3.20189 1.84861i −0.111679 0.0644778i
\(823\) 14.4049 8.31665i 0.502122 0.289900i −0.227467 0.973786i \(-0.573045\pi\)
0.729589 + 0.683885i \(0.239711\pi\)
\(824\) −12.0000 −0.418040
\(825\) 0 0
\(826\) 12.4542 + 21.5712i 0.433336 + 0.750560i
\(827\) 42.4222i 1.47516i −0.675257 0.737582i \(-0.735967\pi\)
0.675257 0.737582i \(-0.264033\pi\)
\(828\) −17.1617 + 9.90833i −0.596411 + 0.344338i
\(829\) 14.7111 25.4804i 0.510938 0.884970i −0.488982 0.872294i \(-0.662632\pi\)
0.999920 0.0126762i \(-0.00403506\pi\)
\(830\) 0 0
\(831\) 27.6056 0.957626
\(832\) 46.2111i 1.60208i
\(833\) 45.6333i 1.58110i
\(834\) −7.36249 + 12.7522i −0.254942 + 0.441573i
\(835\) 0 0
\(836\) 14.8625 + 25.7426i 0.514030 + 0.890326i
\(837\) 20.0000i 0.691301i
\(838\) 34.3788 19.8486i 1.18760 0.685659i
\(839\) −10.0139 17.3445i −0.345717 0.598800i 0.639766 0.768569i \(-0.279031\pi\)
−0.985484 + 0.169769i \(0.945698\pi\)
\(840\) 0 0
\(841\) −4.78890 8.29461i −0.165134 0.286021i
\(842\) 64.6584 + 37.3305i 2.22827 + 1.28650i
\(843\) −5.19615 3.00000i −0.178965 0.103325i
\(844\) 77.9638 2.68363
\(845\) 0 0
\(846\) 42.4222 1.45851
\(847\) −7.29384 4.21110i −0.250619 0.144695i
\(848\) −0.841988 0.486122i −0.0289140 0.0166935i
\(849\) 2.50000 + 4.33013i 0.0857998 + 0.148610i
\(850\) 0 0
\(851\) 5.40833 + 9.36750i 0.185395 + 0.321114i
\(852\) 13.7770 7.95416i 0.471993 0.272505i
\(853\) 47.2111i 1.61648i −0.588855 0.808239i \(-0.700421\pi\)
0.588855 0.808239i \(-0.299579\pi\)
\(854\) −1.15139 1.99426i −0.0393997 0.0682422i
\(855\) 0 0
\(856\) 9.31665 16.1369i 0.318437 0.551548i
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 13.3305i 0.455097i
\(859\) −10.7889 −0.368112 −0.184056 0.982916i \(-0.558923\pi\)
−0.184056 + 0.982916i \(0.558923\pi\)
\(860\) 0 0
\(861\) 1.50000 2.59808i 0.0511199 0.0885422i
\(862\) −58.3100 + 33.6653i −1.98604 + 1.14664i
\(863\) 36.0000i 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) −13.2569 22.9617i −0.451010 0.781173i
\(865\) 0 0
\(866\) −8.30278 −0.282140
\(867\) 35.3723 20.4222i 1.20131 0.693574i
\(868\) 11.4412 + 6.60555i 0.388338 + 0.224207i
\(869\) 4.18335 7.24577i 0.141910 0.245796i
\(870\) 0 0
\(871\) −12.6194 + 21.8575i −0.427593 + 0.740613i
\(872\) 57.6333i 1.95171i
\(873\) 14.5396 + 8.39445i 0.492091 + 0.284109i
\(874\) −19.3625 + 33.5368i −0.654946 + 1.13440i
\(875\) 0 0
\(876\) −2.60555 −0.0880334
\(877\) −1.70801 + 0.986122i −0.0576755 + 0.0332990i −0.528560 0.848896i \(-0.677268\pi\)
0.470885 + 0.882195i \(0.343935\pi\)
\(878\) −54.3214 + 31.3625i −1.83326 + 1.05843i
\(879\) −10.3944 −0.350596
\(880\) 0 0
\(881\) 10.9222 18.9178i 0.367978 0.637357i −0.621271 0.783596i \(-0.713383\pi\)
0.989249 + 0.146238i \(0.0467167\pi\)
\(882\) 23.9311 + 13.8167i 0.805804 + 0.465231i
\(883\) 11.6333i 0.391492i −0.980655 0.195746i \(-0.937287\pi\)
0.980655 0.195746i \(-0.0627128\pi\)
\(884\) −45.2847 + 78.4354i −1.52309 + 2.63807i
\(885\) 0 0
\(886\) 7.39445 12.8076i 0.248421 0.430278i
\(887\) 32.0910 + 18.5278i 1.07751 + 0.622101i 0.930224 0.366993i \(-0.119613\pi\)
0.147287 + 0.989094i \(0.452946\pi\)
\(888\) 9.36750 5.40833i 0.314353 0.181492i
\(889\) −4.21110 −0.141236
\(890\) 0 0
\(891\) −0.802776 1.39045i −0.0268940 0.0465818i
\(892\) 13.9083i 0.465685i
\(893\) 44.7158 25.8167i 1.49636 0.863921i
\(894\) −3.45416 + 5.98279i −0.115525 + 0.200094i
\(895\) 0 0
\(896\) −18.9083 −0.631683
\(897\) 9.36750 5.40833i 0.312772 0.180579i
\(898\) 70.5416i 2.35400i
\(899\) 12.4222 21.5159i 0.414304 0.717595i
\(900\) 0 0
\(901\) 12.2111 + 21.1503i 0.406811 + 0.704617i
\(902\) 11.0917i 0.369312i
\(903\) −8.84307 + 5.10555i −0.294279 + 0.169902i
\(904\) 2.40833 + 4.17134i 0.0800998 + 0.138737i
\(905\) 0 0
\(906\) −1.39445 2.41526i −0.0463275 0.0802415i
\(907\) 33.1399 + 19.1333i 1.10039 + 0.635311i 0.936324 0.351138i \(-0.114205\pi\)
0.164067 + 0.986449i \(0.447539\pi\)
\(908\) −78.4354 45.2847i −2.60297 1.50283i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) 1.46984 + 0.848612i 0.0486712 + 0.0281004i
\(913\) −12.8076 7.39445i −0.423868 0.244721i
\(914\) 30.8764 + 53.4794i 1.02130 + 1.76894i
\(915\) 0 0
\(916\) −23.1194 40.0440i −0.763887 1.32309i
\(917\) 18.3694 10.6056i 0.606610 0.350226i
\(918\) 87.5694i 2.89022i
\(919\) −19.4083 33.6162i −0.640222 1.10890i −0.985383 0.170353i \(-0.945509\pi\)
0.345161 0.938543i \(-0.387824\pi\)
\(920\) 0 0
\(921\) 8.00000 13.8564i 0.263609 0.456584i
\(922\) 83.3860i 2.74617i
\(923\) 15.0400 8.68335i 0.495048 0.285816i
\(924\) 5.30278 0.174449
\(925\) 0 0
\(926\) −39.6333 + 68.6469i −1.30243 + 2.25588i
\(927\) 6.92820 4.00000i 0.227552 0.131377i
\(928\) 32.9361i 1.08118i
\(929\) −7.71110 13.3560i −0.252993 0.438197i 0.711355 0.702832i \(-0.248082\pi\)
−0.964348 + 0.264636i \(0.914748\pi\)
\(930\) 0 0
\(931\) 33.6333 1.10229
\(932\) 43.5081 25.1194i 1.42516 0.822814i
\(933\) −7.97705 4.60555i −0.261157 0.150779i
\(934\) −3.21110 + 5.56179i −0.105070 + 0.181987i
\(935\) 0 0
\(936\) 10.8167 + 18.7350i 0.353553 + 0.612372i
\(937\) 54.4777i 1.77971i 0.456244 + 0.889855i \(0.349194\pi\)
−0.456244 + 0.889855i \(0.650806\pi\)
\(938\) −13.9598 8.05971i −0.455805 0.263159i
\(939\) 7.00000 12.1244i 0.228436 0.395663i
\(940\) 0 0
\(941\) −9.63331 −0.314037 −0.157018 0.987596i \(-0.550188\pi\)
−0.157018 + 0.987596i \(0.550188\pi\)
\(942\) −22.3579 + 12.9083i −0.728459 + 0.420576i
\(943\) 7.79423 4.50000i 0.253815 0.146540i
\(944\) 3.27502 0.106593
\(945\) 0 0
\(946\) −18.8764 + 32.6948i −0.613724 + 1.06300i
\(947\) 16.1369 + 9.31665i 0.524379 + 0.302751i 0.738725 0.674007i \(-0.235428\pi\)
−0.214345 + 0.976758i \(0.568762\pi\)
\(948\) 17.2111i 0.558991i
\(949\) −2.84441 −0.0923335
\(950\) 0 0
\(951\) −3.00000 + 5.19615i −0.0972817 + 0.168497i
\(952\) −19.7598 11.4083i −0.640419 0.369746i
\(953\) 12.5140 7.22498i 0.405369 0.234040i −0.283429 0.958993i \(-0.591472\pi\)
0.688798 + 0.724953i \(0.258139\pi\)
\(954\) 14.7889 0.478808
\(955\) 0 0
\(956\) 0 0
\(957\) 9.97224i 0.322357i
\(958\) −57.4680 + 33.1791i −1.85671 + 1.07197i
\(959\) 0.802776 1.39045i 0.0259230 0.0448999i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 25.9254 14.9680i 0.835869 0.482589i
\(963\) 12.4222i 0.400300i
\(964\) 2.95416 5.11676i 0.0951472 0.164800i
\(965\) 0 0
\(966\) 3.45416 + 5.98279i 0.111136 + 0.192493i
\(967\) 44.4777i 1.43031i −0.698967 0.715153i \(-0.746357\pi\)
0.698967 0.715153i \(-0.253643\pi\)
\(968\) −21.8815 + 12.6333i −0.703299 + 0.406050i
\(969\) −21.3167 36.9215i −0.684790 1.18609i
\(970\) 0 0
\(971\) 22.0139 + 38.1292i 0.706459 + 1.22362i 0.966162 + 0.257934i \(0.0830418\pi\)
−0.259703 + 0.965688i \(0.583625\pi\)
\(972\) −45.7646 26.4222i −1.46790 0.847493i
\(973\) −5.53776 3.19722i −0.177532 0.102498i
\(974\) −2.30278 −0.0737857
\(975\) 0 0
\(976\) −0.302776 −0.00969161
\(977\) −24.9560 14.4083i −0.798412 0.460963i 0.0445038 0.999009i \(-0.485829\pi\)
−0.842915 + 0.538046i \(0.819163\pi\)
\(978\) 7.55605 + 4.36249i 0.241616 + 0.139497i
\(979\) −4.98612 8.63622i −0.159357 0.276015i
\(980\) 0 0
\(981\) −19.2111 33.2746i −0.613363 1.06238i
\(982\) 33.5368 19.3625i 1.07020 0.617882i
\(983\) 18.4222i 0.587577i −0.955870 0.293789i \(-0.905084\pi\)
0.955870 0.293789i \(-0.0949162\pi\)
\(984\) −4.50000 7.79423i −0.143455 0.248471i
\(985\) 0 0
\(986\) −54.3902 + 94.2067i −1.73214 + 3.00015i
\(987\) 9.21110i 0.293193i
\(988\) 57.8096 + 33.3764i 1.83917 + 1.06184i
\(989\) −30.6333 −0.974083
\(990\) 0 0
\(991\) −20.0139 + 34.6651i −0.635762 + 1.10117i 0.350591 + 0.936529i \(0.385981\pi\)
−0.986353 + 0.164643i \(0.947353\pi\)
\(992\) −18.3694 + 10.6056i −0.583228 + 0.336727i
\(993\) 10.0278i 0.318221i
\(994\) 5.54584 + 9.60567i 0.175903 + 0.304673i
\(995\) 0 0
\(996\) −30.4222 −0.963964
\(997\) −15.9781 + 9.22498i −0.506033 + 0.292158i −0.731201 0.682162i \(-0.761040\pi\)
0.225169 + 0.974320i \(0.427707\pi\)
\(998\) −4.83051 2.78890i −0.152907 0.0882810i
\(999\) −9.01388 + 15.6125i −0.285186 + 0.493957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.o.b.74.4 8
5.2 odd 4 325.2.e.a.126.1 4
5.3 odd 4 65.2.e.b.61.2 yes 4
5.4 even 2 inner 325.2.o.b.74.1 8
13.3 even 3 inner 325.2.o.b.224.1 8
15.8 even 4 585.2.j.d.451.1 4
20.3 even 4 1040.2.q.o.321.2 4
65.3 odd 12 65.2.e.b.16.2 4
65.8 even 4 845.2.m.d.316.4 8
65.17 odd 12 4225.2.a.t.1.1 2
65.18 even 4 845.2.m.d.316.1 8
65.22 odd 12 4225.2.a.x.1.2 2
65.23 odd 12 845.2.e.d.146.1 4
65.28 even 12 845.2.m.d.361.4 8
65.29 even 6 inner 325.2.o.b.224.4 8
65.33 even 12 845.2.c.d.506.1 4
65.38 odd 4 845.2.e.d.191.1 4
65.42 odd 12 325.2.e.a.276.1 4
65.43 odd 12 845.2.a.f.1.2 2
65.48 odd 12 845.2.a.c.1.1 2
65.58 even 12 845.2.c.d.506.4 4
65.63 even 12 845.2.m.d.361.1 8
195.68 even 12 585.2.j.d.406.1 4
195.113 even 12 7605.2.a.bg.1.2 2
195.173 even 12 7605.2.a.bb.1.1 2
260.3 even 12 1040.2.q.o.81.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.2 4 65.3 odd 12
65.2.e.b.61.2 yes 4 5.3 odd 4
325.2.e.a.126.1 4 5.2 odd 4
325.2.e.a.276.1 4 65.42 odd 12
325.2.o.b.74.1 8 5.4 even 2 inner
325.2.o.b.74.4 8 1.1 even 1 trivial
325.2.o.b.224.1 8 13.3 even 3 inner
325.2.o.b.224.4 8 65.29 even 6 inner
585.2.j.d.406.1 4 195.68 even 12
585.2.j.d.451.1 4 15.8 even 4
845.2.a.c.1.1 2 65.48 odd 12
845.2.a.f.1.2 2 65.43 odd 12
845.2.c.d.506.1 4 65.33 even 12
845.2.c.d.506.4 4 65.58 even 12
845.2.e.d.146.1 4 65.23 odd 12
845.2.e.d.191.1 4 65.38 odd 4
845.2.m.d.316.1 8 65.18 even 4
845.2.m.d.316.4 8 65.8 even 4
845.2.m.d.361.1 8 65.63 even 12
845.2.m.d.361.4 8 65.28 even 12
1040.2.q.o.81.2 4 260.3 even 12
1040.2.q.o.321.2 4 20.3 even 4
4225.2.a.t.1.1 2 65.17 odd 12
4225.2.a.x.1.2 2 65.22 odd 12
7605.2.a.bb.1.1 2 195.173 even 12
7605.2.a.bg.1.2 2 195.113 even 12