Properties

Label 845.2.m.d.316.4
Level $845$
Weight $2$
Character 845.316
Analytic conductor $6.747$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(316,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.316");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 316.4
Root \(1.99426 + 1.15139i\) of defining polynomial
Character \(\chi\) \(=\) 845.316
Dual form 845.2.m.d.361.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.99426 + 1.15139i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(1.65139 + 2.86029i) q^{4} -1.00000i q^{5} +(-1.99426 + 1.15139i) q^{6} +(0.866025 - 0.500000i) q^{7} +3.00000i q^{8} +(1.00000 + 1.73205i) q^{9} +(1.15139 - 1.99426i) q^{10} +(1.39045 + 0.802776i) q^{11} -3.30278 q^{12} +2.30278 q^{14} +(0.866025 + 0.500000i) q^{15} +(-0.151388 + 0.262211i) q^{16} +(3.80278 + 6.58660i) q^{17} +4.60555i q^{18} +(-4.85455 + 2.80278i) q^{19} +(2.86029 - 1.65139i) q^{20} +1.00000i q^{21} +(1.84861 + 3.20189i) q^{22} +(-1.50000 + 2.59808i) q^{23} +(-2.59808 - 1.50000i) q^{24} -1.00000 q^{25} -5.00000 q^{27} +(2.86029 + 1.65139i) q^{28} +(3.10555 - 5.37897i) q^{29} +(1.15139 + 1.99426i) q^{30} -4.00000i q^{31} +(4.59234 - 2.65139i) q^{32} +(-1.39045 + 0.802776i) q^{33} +17.5139i q^{34} +(-0.500000 - 0.866025i) q^{35} +(-3.30278 + 5.72058i) q^{36} +(3.12250 + 1.80278i) q^{37} -12.9083 q^{38} +3.00000 q^{40} +(-2.59808 - 1.50000i) q^{41} +(-1.15139 + 1.99426i) q^{42} +(-5.10555 - 8.84307i) q^{43} +5.30278i q^{44} +(1.73205 - 1.00000i) q^{45} +(-5.98279 + 3.45416i) q^{46} -9.21110i q^{47} +(-0.151388 - 0.262211i) q^{48} +(-3.00000 + 5.19615i) q^{49} +(-1.99426 - 1.15139i) q^{50} -7.60555 q^{51} -3.21110 q^{53} +(-9.97131 - 5.75694i) q^{54} +(0.802776 - 1.39045i) q^{55} +(1.50000 + 2.59808i) q^{56} -5.60555i q^{57} +(12.3866 - 7.15139i) q^{58} +(9.36750 - 5.40833i) q^{59} +3.30278i q^{60} +(0.500000 + 0.866025i) q^{61} +(4.60555 - 7.97705i) q^{62} +(1.73205 + 1.00000i) q^{63} +12.8167 q^{64} -3.69722 q^{66} +(6.06218 + 3.50000i) q^{67} +(-12.5597 + 21.7541i) q^{68} +(-1.50000 - 2.59808i) q^{69} -2.30278i q^{70} +(4.17134 - 2.40833i) q^{71} +(-5.19615 + 3.00000i) q^{72} +0.788897i q^{73} +(4.15139 + 7.19041i) q^{74} +(0.500000 - 0.866025i) q^{75} +(-16.0335 - 9.25694i) q^{76} +1.60555 q^{77} +5.21110 q^{79} +(0.262211 + 0.151388i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-3.45416 - 5.98279i) q^{82} -9.21110i q^{83} +(-2.86029 + 1.65139i) q^{84} +(6.58660 - 3.80278i) q^{85} -23.5139i q^{86} +(3.10555 + 5.37897i) q^{87} +(-2.40833 + 4.17134i) q^{88} +(-5.37897 - 3.10555i) q^{89} +4.60555 q^{90} -9.90833 q^{92} +(3.46410 + 2.00000i) q^{93} +(10.6056 - 18.3694i) q^{94} +(2.80278 + 4.85455i) q^{95} +5.30278i q^{96} +(-7.26981 + 4.19722i) q^{97} +(-11.9656 + 6.90833i) q^{98} +3.21110i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 6 q^{4} + 8 q^{9} + 2 q^{10} - 12 q^{12} + 4 q^{14} + 6 q^{16} + 16 q^{17} + 22 q^{22} - 12 q^{23} - 8 q^{25} - 40 q^{27} - 4 q^{29} + 2 q^{30} - 4 q^{35} - 12 q^{36} - 60 q^{38} + 24 q^{40}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.99426 + 1.15139i 1.41016 + 0.814154i 0.995403 0.0957796i \(-0.0305344\pi\)
0.414754 + 0.909934i \(0.363868\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i −0.973494 0.228714i \(-0.926548\pi\)
0.684819 + 0.728714i \(0.259881\pi\)
\(4\) 1.65139 + 2.86029i 0.825694 + 1.43014i
\(5\) 1.00000i 0.447214i
\(6\) −1.99426 + 1.15139i −0.814154 + 0.470052i
\(7\) 0.866025 0.500000i 0.327327 0.188982i −0.327327 0.944911i \(-0.606148\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 1.15139 1.99426i 0.364101 0.630641i
\(11\) 1.39045 + 0.802776i 0.419236 + 0.242046i 0.694750 0.719251i \(-0.255515\pi\)
−0.275514 + 0.961297i \(0.588848\pi\)
\(12\) −3.30278 −0.953429
\(13\) 0 0
\(14\) 2.30278 0.615443
\(15\) 0.866025 + 0.500000i 0.223607 + 0.129099i
\(16\) −0.151388 + 0.262211i −0.0378470 + 0.0655528i
\(17\) 3.80278 + 6.58660i 0.922309 + 1.59749i 0.795834 + 0.605516i \(0.207033\pi\)
0.126475 + 0.991970i \(0.459634\pi\)
\(18\) 4.60555i 1.08554i
\(19\) −4.85455 + 2.80278i −1.11371 + 0.643001i −0.939788 0.341759i \(-0.888977\pi\)
−0.173922 + 0.984759i \(0.555644\pi\)
\(20\) 2.86029 1.65139i 0.639580 0.369262i
\(21\) 1.00000i 0.218218i
\(22\) 1.84861 + 3.20189i 0.394125 + 0.682645i
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) −2.59808 1.50000i −0.530330 0.306186i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 2.86029 + 1.65139i 0.540544 + 0.312083i
\(29\) 3.10555 5.37897i 0.576686 0.998850i −0.419170 0.907908i \(-0.637679\pi\)
0.995856 0.0909423i \(-0.0289879\pi\)
\(30\) 1.15139 + 1.99426i 0.210214 + 0.364101i
\(31\) 4.00000i 0.718421i −0.933257 0.359211i \(-0.883046\pi\)
0.933257 0.359211i \(-0.116954\pi\)
\(32\) 4.59234 2.65139i 0.811818 0.468704i
\(33\) −1.39045 + 0.802776i −0.242046 + 0.139745i
\(34\) 17.5139i 3.00361i
\(35\) −0.500000 0.866025i −0.0845154 0.146385i
\(36\) −3.30278 + 5.72058i −0.550463 + 0.953429i
\(37\) 3.12250 + 1.80278i 0.513336 + 0.296374i 0.734204 0.678929i \(-0.237556\pi\)
−0.220868 + 0.975304i \(0.570889\pi\)
\(38\) −12.9083 −2.09401
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) −2.59808 1.50000i −0.405751 0.234261i 0.283211 0.959058i \(-0.408600\pi\)
−0.688963 + 0.724797i \(0.741934\pi\)
\(42\) −1.15139 + 1.99426i −0.177663 + 0.307721i
\(43\) −5.10555 8.84307i −0.778589 1.34856i −0.932755 0.360511i \(-0.882602\pi\)
0.154166 0.988045i \(-0.450731\pi\)
\(44\) 5.30278i 0.799424i
\(45\) 1.73205 1.00000i 0.258199 0.149071i
\(46\) −5.98279 + 3.45416i −0.882114 + 0.509289i
\(47\) 9.21110i 1.34358i −0.740743 0.671789i \(-0.765526\pi\)
0.740743 0.671789i \(-0.234474\pi\)
\(48\) −0.151388 0.262211i −0.0218509 0.0378470i
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) −1.99426 1.15139i −0.282031 0.162831i
\(51\) −7.60555 −1.06499
\(52\) 0 0
\(53\) −3.21110 −0.441079 −0.220539 0.975378i \(-0.570782\pi\)
−0.220539 + 0.975378i \(0.570782\pi\)
\(54\) −9.97131 5.75694i −1.35692 0.783420i
\(55\) 0.802776 1.39045i 0.108246 0.187488i
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) 5.60555i 0.742473i
\(58\) 12.3866 7.15139i 1.62644 0.939023i
\(59\) 9.36750 5.40833i 1.21954 0.704104i 0.254724 0.967014i \(-0.418015\pi\)
0.964820 + 0.262910i \(0.0846821\pi\)
\(60\) 3.30278i 0.426387i
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 4.60555 7.97705i 0.584906 1.01309i
\(63\) 1.73205 + 1.00000i 0.218218 + 0.125988i
\(64\) 12.8167 1.60208
\(65\) 0 0
\(66\) −3.69722 −0.455097
\(67\) 6.06218 + 3.50000i 0.740613 + 0.427593i 0.822292 0.569066i \(-0.192695\pi\)
−0.0816792 + 0.996659i \(0.526028\pi\)
\(68\) −12.5597 + 21.7541i −1.52309 + 2.63807i
\(69\) −1.50000 2.59808i −0.180579 0.312772i
\(70\) 2.30278i 0.275234i
\(71\) 4.17134 2.40833i 0.495048 0.285816i −0.231619 0.972807i \(-0.574402\pi\)
0.726666 + 0.686991i \(0.241069\pi\)
\(72\) −5.19615 + 3.00000i −0.612372 + 0.353553i
\(73\) 0.788897i 0.0923335i 0.998934 + 0.0461667i \(0.0147006\pi\)
−0.998934 + 0.0461667i \(0.985299\pi\)
\(74\) 4.15139 + 7.19041i 0.482589 + 0.835869i
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) −16.0335 9.25694i −1.83917 1.06184i
\(77\) 1.60555 0.182970
\(78\) 0 0
\(79\) 5.21110 0.586295 0.293147 0.956067i \(-0.405297\pi\)
0.293147 + 0.956067i \(0.405297\pi\)
\(80\) 0.262211 + 0.151388i 0.0293161 + 0.0169257i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −3.45416 5.98279i −0.381449 0.660688i
\(83\) 9.21110i 1.01105i −0.862812 0.505525i \(-0.831299\pi\)
0.862812 0.505525i \(-0.168701\pi\)
\(84\) −2.86029 + 1.65139i −0.312083 + 0.180181i
\(85\) 6.58660 3.80278i 0.714417 0.412469i
\(86\) 23.5139i 2.53557i
\(87\) 3.10555 + 5.37897i 0.332950 + 0.576686i
\(88\) −2.40833 + 4.17134i −0.256729 + 0.444667i
\(89\) −5.37897 3.10555i −0.570170 0.329188i 0.187047 0.982351i \(-0.440108\pi\)
−0.757217 + 0.653163i \(0.773442\pi\)
\(90\) 4.60555 0.485468
\(91\) 0 0
\(92\) −9.90833 −1.03301
\(93\) 3.46410 + 2.00000i 0.359211 + 0.207390i
\(94\) 10.6056 18.3694i 1.09388 1.89465i
\(95\) 2.80278 + 4.85455i 0.287559 + 0.498066i
\(96\) 5.30278i 0.541212i
\(97\) −7.26981 + 4.19722i −0.738137 + 0.426164i −0.821392 0.570365i \(-0.806802\pi\)
0.0832546 + 0.996528i \(0.473469\pi\)
\(98\) −11.9656 + 6.90833i −1.20871 + 0.697846i
\(99\) 3.21110i 0.322728i
\(100\) −1.65139 2.86029i −0.165139 0.286029i
\(101\) −4.50000 + 7.79423i −0.447767 + 0.775555i −0.998240 0.0592978i \(-0.981114\pi\)
0.550474 + 0.834853i \(0.314447\pi\)
\(102\) −15.1675 8.75694i −1.50180 0.867066i
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) −6.40378 3.69722i −0.621990 0.359106i
\(107\) −3.10555 + 5.37897i −0.300225 + 0.520005i −0.976187 0.216932i \(-0.930395\pi\)
0.675962 + 0.736937i \(0.263728\pi\)
\(108\) −8.25694 14.3014i −0.794524 1.37616i
\(109\) 19.2111i 1.84009i −0.391813 0.920045i \(-0.628152\pi\)
0.391813 0.920045i \(-0.371848\pi\)
\(110\) 3.20189 1.84861i 0.305288 0.176258i
\(111\) −3.12250 + 1.80278i −0.296374 + 0.171112i
\(112\) 0.302776i 0.0286096i
\(113\) 0.802776 + 1.39045i 0.0755188 + 0.130802i 0.901312 0.433171i \(-0.142605\pi\)
−0.825793 + 0.563973i \(0.809272\pi\)
\(114\) 6.45416 11.1789i 0.604488 1.04700i
\(115\) 2.59808 + 1.50000i 0.242272 + 0.139876i
\(116\) 20.5139 1.90467
\(117\) 0 0
\(118\) 24.9083 2.29300
\(119\) 6.58660 + 3.80278i 0.603793 + 0.348600i
\(120\) −1.50000 + 2.59808i −0.136931 + 0.237171i
\(121\) −4.21110 7.29384i −0.382828 0.663077i
\(122\) 2.30278i 0.208484i
\(123\) 2.59808 1.50000i 0.234261 0.135250i
\(124\) 11.4412 6.60555i 1.02745 0.593196i
\(125\) 1.00000i 0.0894427i
\(126\) 2.30278 + 3.98852i 0.205148 + 0.355326i
\(127\) −2.10555 + 3.64692i −0.186837 + 0.323612i −0.944194 0.329389i \(-0.893157\pi\)
0.757357 + 0.653001i \(0.226490\pi\)
\(128\) 16.3751 + 9.45416i 1.44737 + 0.835638i
\(129\) 10.2111 0.899037
\(130\) 0 0
\(131\) −21.2111 −1.85322 −0.926611 0.376021i \(-0.877292\pi\)
−0.926611 + 0.376021i \(0.877292\pi\)
\(132\) −4.59234 2.65139i −0.399712 0.230774i
\(133\) −2.80278 + 4.85455i −0.243031 + 0.420943i
\(134\) 8.05971 + 13.9598i 0.696253 + 1.20595i
\(135\) 5.00000i 0.430331i
\(136\) −19.7598 + 11.4083i −1.69439 + 0.978256i
\(137\) 1.39045 0.802776i 0.118794 0.0685858i −0.439426 0.898279i \(-0.644818\pi\)
0.558220 + 0.829693i \(0.311485\pi\)
\(138\) 6.90833i 0.588076i
\(139\) −3.19722 5.53776i −0.271185 0.469706i 0.697981 0.716117i \(-0.254082\pi\)
−0.969166 + 0.246410i \(0.920749\pi\)
\(140\) 1.65139 2.86029i 0.139568 0.241738i
\(141\) 7.97705 + 4.60555i 0.671789 + 0.387857i
\(142\) 11.0917 0.930793
\(143\) 0 0
\(144\) −0.605551 −0.0504626
\(145\) −5.37897 3.10555i −0.446699 0.257902i
\(146\) −0.908327 + 1.57327i −0.0751737 + 0.130205i
\(147\) −3.00000 5.19615i −0.247436 0.428571i
\(148\) 11.9083i 0.978858i
\(149\) 2.59808 1.50000i 0.212843 0.122885i −0.389789 0.920904i \(-0.627452\pi\)
0.602632 + 0.798019i \(0.294119\pi\)
\(150\) 1.99426 1.15139i 0.162831 0.0940104i
\(151\) 1.21110i 0.0985581i 0.998785 + 0.0492791i \(0.0156924\pi\)
−0.998785 + 0.0492791i \(0.984308\pi\)
\(152\) −8.40833 14.5636i −0.682005 1.18127i
\(153\) −7.60555 + 13.1732i −0.614872 + 1.06499i
\(154\) 3.20189 + 1.84861i 0.258016 + 0.148965i
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 11.2111 0.894743 0.447372 0.894348i \(-0.352360\pi\)
0.447372 + 0.894348i \(0.352360\pi\)
\(158\) 10.3923 + 6.00000i 0.826767 + 0.477334i
\(159\) 1.60555 2.78090i 0.127328 0.220539i
\(160\) −2.65139 4.59234i −0.209611 0.363056i
\(161\) 3.00000i 0.236433i
\(162\) −1.99426 + 1.15139i −0.156684 + 0.0904616i
\(163\) 3.28128 1.89445i 0.257010 0.148385i −0.365960 0.930631i \(-0.619259\pi\)
0.622970 + 0.782246i \(0.285926\pi\)
\(164\) 9.90833i 0.773710i
\(165\) 0.802776 + 1.39045i 0.0624960 + 0.108246i
\(166\) 10.6056 18.3694i 0.823150 1.42574i
\(167\) 7.79423 + 4.50000i 0.603136 + 0.348220i 0.770274 0.637713i \(-0.220119\pi\)
−0.167139 + 0.985933i \(0.553453\pi\)
\(168\) −3.00000 −0.231455
\(169\) 0 0
\(170\) 17.5139 1.34325
\(171\) −9.70910 5.60555i −0.742473 0.428667i
\(172\) 16.8625 29.2067i 1.28575 2.22699i
\(173\) 2.40833 + 4.17134i 0.183102 + 0.317141i 0.942935 0.332976i \(-0.108053\pi\)
−0.759834 + 0.650118i \(0.774720\pi\)
\(174\) 14.3028i 1.08429i
\(175\) −0.866025 + 0.500000i −0.0654654 + 0.0377964i
\(176\) −0.420994 + 0.243061i −0.0317336 + 0.0183214i
\(177\) 10.8167i 0.813029i
\(178\) −7.15139 12.3866i −0.536019 0.928412i
\(179\) 11.4083 19.7598i 0.852698 1.47692i −0.0260655 0.999660i \(-0.508298\pi\)
0.878764 0.477257i \(-0.158369\pi\)
\(180\) 5.72058 + 3.30278i 0.426387 + 0.246174i
\(181\) −17.6333 −1.31067 −0.655337 0.755337i \(-0.727473\pi\)
−0.655337 + 0.755337i \(0.727473\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) −7.79423 4.50000i −0.574598 0.331744i
\(185\) 1.80278 3.12250i 0.132543 0.229571i
\(186\) 4.60555 + 7.97705i 0.337695 + 0.584906i
\(187\) 12.2111i 0.892964i
\(188\) 26.3464 15.2111i 1.92151 1.10938i
\(189\) −4.33013 + 2.50000i −0.314970 + 0.181848i
\(190\) 12.9083i 0.936468i
\(191\) −8.40833 14.5636i −0.608405 1.05379i −0.991503 0.130081i \(-0.958476\pi\)
0.383098 0.923708i \(-0.374857\pi\)
\(192\) −6.40833 + 11.0995i −0.462481 + 0.801041i
\(193\) 13.5148 + 7.80278i 0.972817 + 0.561656i 0.900094 0.435696i \(-0.143498\pi\)
0.0727230 + 0.997352i \(0.476831\pi\)
\(194\) −19.3305 −1.38785
\(195\) 0 0
\(196\) −19.8167 −1.41548
\(197\) −1.02481 0.591673i −0.0730145 0.0421550i 0.463048 0.886333i \(-0.346756\pi\)
−0.536063 + 0.844178i \(0.680089\pi\)
\(198\) −3.69722 + 6.40378i −0.262750 + 0.455097i
\(199\) 6.40833 + 11.0995i 0.454274 + 0.786826i 0.998646 0.0520179i \(-0.0165653\pi\)
−0.544372 + 0.838844i \(0.683232\pi\)
\(200\) 3.00000i 0.212132i
\(201\) −6.06218 + 3.50000i −0.427593 + 0.246871i
\(202\) −17.9484 + 10.3625i −1.26284 + 0.729102i
\(203\) 6.21110i 0.435934i
\(204\) −12.5597 21.7541i −0.879356 1.52309i
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) 7.97705 + 4.60555i 0.555787 + 0.320884i
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 1.99426 + 1.15139i 0.137617 + 0.0794533i
\(211\) 11.8028 20.4430i 0.812537 1.40735i −0.0985467 0.995132i \(-0.531419\pi\)
0.911083 0.412222i \(-0.135247\pi\)
\(212\) −5.30278 9.18468i −0.364196 0.630806i
\(213\) 4.81665i 0.330032i
\(214\) −12.3866 + 7.15139i −0.846728 + 0.488859i
\(215\) −8.84307 + 5.10555i −0.603093 + 0.348196i
\(216\) 15.0000i 1.02062i
\(217\) −2.00000 3.46410i −0.135769 0.235159i
\(218\) 22.1194 38.3120i 1.49812 2.59481i
\(219\) −0.683205 0.394449i −0.0461667 0.0266544i
\(220\) 5.30278 0.357513
\(221\) 0 0
\(222\) −8.30278 −0.557246
\(223\) 3.64692 + 2.10555i 0.244216 + 0.140998i 0.617113 0.786875i \(-0.288302\pi\)
−0.372897 + 0.927873i \(0.621636\pi\)
\(224\) 2.65139 4.59234i 0.177153 0.306839i
\(225\) −1.00000 1.73205i −0.0666667 0.115470i
\(226\) 3.69722i 0.245936i
\(227\) −23.7483 + 13.7111i −1.57623 + 0.910038i −0.580853 + 0.814008i \(0.697281\pi\)
−0.995378 + 0.0960296i \(0.969386\pi\)
\(228\) 16.0335 9.25694i 1.06184 0.613056i
\(229\) 14.0000i 0.925146i −0.886581 0.462573i \(-0.846926\pi\)
0.886581 0.462573i \(-0.153074\pi\)
\(230\) 3.45416 + 5.98279i 0.227761 + 0.394493i
\(231\) −0.802776 + 1.39045i −0.0528188 + 0.0914848i
\(232\) 16.1369 + 9.31665i 1.05944 + 0.611668i
\(233\) −15.2111 −0.996512 −0.498256 0.867030i \(-0.666026\pi\)
−0.498256 + 0.867030i \(0.666026\pi\)
\(234\) 0 0
\(235\) −9.21110 −0.600866
\(236\) 30.9387 + 17.8625i 2.01394 + 1.16275i
\(237\) −2.60555 + 4.51295i −0.169249 + 0.293147i
\(238\) 8.75694 + 15.1675i 0.567628 + 0.983161i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −0.262211 + 0.151388i −0.0169257 + 0.00977204i
\(241\) −1.54923 + 0.894449i −0.0997947 + 0.0576165i −0.549067 0.835778i \(-0.685017\pi\)
0.449272 + 0.893395i \(0.351683\pi\)
\(242\) 19.3944i 1.24672i
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) −1.65139 + 2.86029i −0.105719 + 0.183111i
\(245\) 5.19615 + 3.00000i 0.331970 + 0.191663i
\(246\) 6.90833 0.440459
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) 7.97705 + 4.60555i 0.505525 + 0.291865i
\(250\) −1.15139 + 1.99426i −0.0728202 + 0.126128i
\(251\) −3.59167 6.22096i −0.226704 0.392664i 0.730125 0.683314i \(-0.239462\pi\)
−0.956829 + 0.290650i \(0.906128\pi\)
\(252\) 6.60555i 0.416111i
\(253\) −4.17134 + 2.40833i −0.262250 + 0.151410i
\(254\) −8.39804 + 4.84861i −0.526940 + 0.304229i
\(255\) 7.60555i 0.476278i
\(256\) 8.95416 + 15.5091i 0.559635 + 0.969317i
\(257\) −8.19722 + 14.1980i −0.511329 + 0.885647i 0.488585 + 0.872516i \(0.337513\pi\)
−0.999914 + 0.0131312i \(0.995820\pi\)
\(258\) 20.3636 + 11.7569i 1.26778 + 0.731955i
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) 12.4222 0.768915
\(262\) −42.3005 24.4222i −2.61333 1.50881i
\(263\) −5.89445 + 10.2095i −0.363467 + 0.629544i −0.988529 0.151032i \(-0.951740\pi\)
0.625062 + 0.780575i \(0.285074\pi\)
\(264\) −2.40833 4.17134i −0.148222 0.256729i
\(265\) 3.21110i 0.197256i
\(266\) −11.1789 + 6.45416i −0.685425 + 0.395730i
\(267\) 5.37897 3.10555i 0.329188 0.190057i
\(268\) 23.1194i 1.41224i
\(269\) 4.50000 + 7.79423i 0.274370 + 0.475223i 0.969976 0.243201i \(-0.0781974\pi\)
−0.695606 + 0.718423i \(0.744864\pi\)
\(270\) −5.75694 + 9.97131i −0.350356 + 0.606835i
\(271\) −18.0278 10.4083i −1.09511 0.632261i −0.160176 0.987088i \(-0.551206\pi\)
−0.934932 + 0.354828i \(0.884540\pi\)
\(272\) −2.30278 −0.139626
\(273\) 0 0
\(274\) 3.69722 0.223357
\(275\) −1.39045 0.802776i −0.0838472 0.0484092i
\(276\) 4.95416 8.58086i 0.298206 0.516507i
\(277\) 13.8028 + 23.9071i 0.829328 + 1.43644i 0.898566 + 0.438839i \(0.144610\pi\)
−0.0692374 + 0.997600i \(0.522057\pi\)
\(278\) 14.7250i 0.883146i
\(279\) 6.92820 4.00000i 0.414781 0.239474i
\(280\) 2.59808 1.50000i 0.155265 0.0896421i
\(281\) 6.00000i 0.357930i 0.983855 + 0.178965i \(0.0572749\pi\)
−0.983855 + 0.178965i \(0.942725\pi\)
\(282\) 10.6056 + 18.3694i 0.631551 + 1.09388i
\(283\) 2.50000 4.33013i 0.148610 0.257399i −0.782104 0.623148i \(-0.785854\pi\)
0.930714 + 0.365748i \(0.119187\pi\)
\(284\) 13.7770 + 7.95416i 0.817515 + 0.471993i
\(285\) −5.60555 −0.332044
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) 9.18468 + 5.30278i 0.541212 + 0.312469i
\(289\) −20.4222 + 35.3723i −1.20131 + 2.08072i
\(290\) −7.15139 12.3866i −0.419944 0.727364i
\(291\) 8.39445i 0.492091i
\(292\) −2.25647 + 1.30278i −0.132050 + 0.0762392i
\(293\) −9.00186 + 5.19722i −0.525894 + 0.303625i −0.739343 0.673329i \(-0.764864\pi\)
0.213449 + 0.976954i \(0.431530\pi\)
\(294\) 13.8167i 0.805804i
\(295\) −5.40833 9.36750i −0.314885 0.545397i
\(296\) −5.40833 + 9.36750i −0.314353 + 0.544475i
\(297\) −6.95224 4.01388i −0.403410 0.232909i
\(298\) 6.90833 0.400189
\(299\) 0 0
\(300\) 3.30278 0.190686
\(301\) −8.84307 5.10555i −0.509706 0.294279i
\(302\) −1.39445 + 2.41526i −0.0802415 + 0.138982i
\(303\) −4.50000 7.79423i −0.258518 0.447767i
\(304\) 1.69722i 0.0973425i
\(305\) 0.866025 0.500000i 0.0495885 0.0286299i
\(306\) −30.3349 + 17.5139i −1.73413 + 1.00120i
\(307\) 16.0000i 0.913168i 0.889680 + 0.456584i \(0.150927\pi\)
−0.889680 + 0.456584i \(0.849073\pi\)
\(308\) 2.65139 + 4.59234i 0.151077 + 0.261673i
\(309\) −2.00000 + 3.46410i −0.113776 + 0.197066i
\(310\) −7.97705 4.60555i −0.453066 0.261578i
\(311\) 9.21110 0.522314 0.261157 0.965296i \(-0.415896\pi\)
0.261157 + 0.965296i \(0.415896\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 22.3579 + 12.9083i 1.26173 + 0.728459i
\(315\) 1.00000 1.73205i 0.0563436 0.0975900i
\(316\) 8.60555 + 14.9053i 0.484100 + 0.838486i
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 6.40378 3.69722i 0.359106 0.207330i
\(319\) 8.63622 4.98612i 0.483535 0.279169i
\(320\) 12.8167i 0.716473i
\(321\) −3.10555 5.37897i −0.173335 0.300225i
\(322\) −3.45416 + 5.98279i −0.192493 + 0.333408i
\(323\) −36.9215 21.3167i −2.05437 1.18609i
\(324\) −3.30278 −0.183488
\(325\) 0 0
\(326\) 8.72498 0.483232
\(327\) 16.6373 + 9.60555i 0.920045 + 0.531188i
\(328\) 4.50000 7.79423i 0.248471 0.430364i
\(329\) −4.60555 7.97705i −0.253912 0.439789i
\(330\) 3.69722i 0.203526i
\(331\) 8.68429 5.01388i 0.477332 0.275588i −0.241972 0.970283i \(-0.577794\pi\)
0.719304 + 0.694696i \(0.244461\pi\)
\(332\) 26.3464 15.2111i 1.44595 0.834818i
\(333\) 7.21110i 0.395166i
\(334\) 10.3625 + 17.9484i 0.567010 + 0.982091i
\(335\) 3.50000 6.06218i 0.191225 0.331212i
\(336\) −0.262211 0.151388i −0.0143048 0.00825888i
\(337\) 25.6333 1.39634 0.698168 0.715934i \(-0.253999\pi\)
0.698168 + 0.715934i \(0.253999\pi\)
\(338\) 0 0
\(339\) −1.60555 −0.0872016
\(340\) 21.7541 + 12.5597i 1.17978 + 0.681146i
\(341\) 3.21110 5.56179i 0.173891 0.301188i
\(342\) −12.9083 22.3579i −0.698002 1.20898i
\(343\) 13.0000i 0.701934i
\(344\) 26.5292 15.3167i 1.43036 0.825819i
\(345\) −2.59808 + 1.50000i −0.139876 + 0.0807573i
\(346\) 11.0917i 0.596292i
\(347\) −2.89445 5.01333i −0.155382 0.269130i 0.777816 0.628492i \(-0.216328\pi\)
−0.933198 + 0.359362i \(0.882994\pi\)
\(348\) −10.2569 + 17.7655i −0.549830 + 0.952333i
\(349\) −3.28128 1.89445i −0.175643 0.101408i 0.409601 0.912265i \(-0.365668\pi\)
−0.585244 + 0.810857i \(0.699001\pi\)
\(350\) −2.30278 −0.123089
\(351\) 0 0
\(352\) 8.51388 0.453791
\(353\) −14.5636 8.40833i −0.775145 0.447530i 0.0595620 0.998225i \(-0.481030\pi\)
−0.834707 + 0.550695i \(0.814363\pi\)
\(354\) −12.4542 + 21.5712i −0.661931 + 1.14650i
\(355\) −2.40833 4.17134i −0.127821 0.221392i
\(356\) 20.5139i 1.08723i
\(357\) −6.58660 + 3.80278i −0.348600 + 0.201264i
\(358\) 45.5024 26.2708i 2.40488 1.38846i
\(359\) 18.4222i 0.972287i −0.873879 0.486143i \(-0.838403\pi\)
0.873879 0.486143i \(-0.161597\pi\)
\(360\) 3.00000 + 5.19615i 0.158114 + 0.273861i
\(361\) 6.21110 10.7579i 0.326900 0.566208i
\(362\) −35.1654 20.3028i −1.84825 1.06709i
\(363\) 8.42221 0.442051
\(364\) 0 0
\(365\) 0.788897 0.0412928
\(366\) −1.99426 1.15139i −0.104242 0.0601840i
\(367\) −5.71110 + 9.89192i −0.298117 + 0.516354i −0.975705 0.219088i \(-0.929692\pi\)
0.677588 + 0.735442i \(0.263025\pi\)
\(368\) −0.454163 0.786634i −0.0236749 0.0410061i
\(369\) 6.00000i 0.312348i
\(370\) 7.19041 4.15139i 0.373812 0.215820i
\(371\) −2.78090 + 1.60555i −0.144377 + 0.0833561i
\(372\) 13.2111i 0.684964i
\(373\) 10.1972 + 17.6621i 0.527992 + 0.914509i 0.999467 + 0.0326301i \(0.0103883\pi\)
−0.471475 + 0.881879i \(0.656278\pi\)
\(374\) −14.0597 + 24.3521i −0.727011 + 1.25922i
\(375\) −0.866025 0.500000i −0.0447214 0.0258199i
\(376\) 27.6333 1.42508
\(377\) 0 0
\(378\) −11.5139 −0.592210
\(379\) −8.31865 4.80278i −0.427300 0.246702i 0.270895 0.962609i \(-0.412680\pi\)
−0.698196 + 0.715907i \(0.746014\pi\)
\(380\) −9.25694 + 16.0335i −0.474871 + 0.822501i
\(381\) −2.10555 3.64692i −0.107871 0.186837i
\(382\) 38.7250i 1.98134i
\(383\) −21.3331 + 12.3167i −1.09007 + 0.629352i −0.933595 0.358330i \(-0.883346\pi\)
−0.156474 + 0.987682i \(0.550013\pi\)
\(384\) −16.3751 + 9.45416i −0.835638 + 0.482456i
\(385\) 1.60555i 0.0818265i
\(386\) 17.9680 + 31.1216i 0.914549 + 1.58405i
\(387\) 10.2111 17.6861i 0.519060 0.899037i
\(388\) −24.0105 13.8625i −1.21895 0.703761i
\(389\) 15.2111 0.771234 0.385617 0.922659i \(-0.373989\pi\)
0.385617 + 0.922659i \(0.373989\pi\)
\(390\) 0 0
\(391\) −22.8167 −1.15389
\(392\) −15.5885 9.00000i −0.787336 0.454569i
\(393\) 10.6056 18.3694i 0.534979 0.926611i
\(394\) −1.36249 2.35990i −0.0686413 0.118890i
\(395\) 5.21110i 0.262199i
\(396\) −9.18468 + 5.30278i −0.461547 + 0.266475i
\(397\) −19.0766 + 11.0139i −0.957427 + 0.552771i −0.895380 0.445303i \(-0.853096\pi\)
−0.0620468 + 0.998073i \(0.519763\pi\)
\(398\) 29.5139i 1.47940i
\(399\) −2.80278 4.85455i −0.140314 0.243031i
\(400\) 0.151388 0.262211i 0.00756939 0.0131106i
\(401\) 10.5751 + 6.10555i 0.528097 + 0.304897i 0.740241 0.672342i \(-0.234711\pi\)
−0.212144 + 0.977238i \(0.568045\pi\)
\(402\) −16.1194 −0.803964
\(403\) 0 0
\(404\) −29.7250 −1.47887
\(405\) 0.866025 + 0.500000i 0.0430331 + 0.0248452i
\(406\) 7.15139 12.3866i 0.354917 0.614735i
\(407\) 2.89445 + 5.01333i 0.143472 + 0.248502i
\(408\) 22.8167i 1.12959i
\(409\) 7.11102 4.10555i 0.351617 0.203006i −0.313780 0.949496i \(-0.601595\pi\)
0.665397 + 0.746489i \(0.268262\pi\)
\(410\) −5.98279 + 3.45416i −0.295469 + 0.170589i
\(411\) 1.60555i 0.0791960i
\(412\) 6.60555 + 11.4412i 0.325432 + 0.563665i
\(413\) 5.40833 9.36750i 0.266126 0.460944i
\(414\) −11.9656 6.90833i −0.588076 0.339526i
\(415\) −9.21110 −0.452155
\(416\) 0 0
\(417\) 6.39445 0.313138
\(418\) −17.9484 10.3625i −0.877883 0.506846i
\(419\) −8.61943 + 14.9293i −0.421087 + 0.729344i −0.996046 0.0888384i \(-0.971685\pi\)
0.574959 + 0.818182i \(0.305018\pi\)
\(420\) 1.65139 + 2.86029i 0.0805795 + 0.139568i
\(421\) 32.4222i 1.58016i 0.613003 + 0.790081i \(0.289961\pi\)
−0.613003 + 0.790081i \(0.710039\pi\)
\(422\) 47.0757 27.1791i 2.29161 1.32306i
\(423\) 15.9541 9.21110i 0.775715 0.447859i
\(424\) 9.63331i 0.467835i
\(425\) −3.80278 6.58660i −0.184462 0.319497i
\(426\) −5.54584 + 9.60567i −0.268697 + 0.465396i
\(427\) 0.866025 + 0.500000i 0.0419099 + 0.0241967i
\(428\) −20.5139 −0.991576
\(429\) 0 0
\(430\) −23.5139 −1.13394
\(431\) −25.3216 14.6194i −1.21970 0.704193i −0.254845 0.966982i \(-0.582024\pi\)
−0.964853 + 0.262789i \(0.915358\pi\)
\(432\) 0.756939 1.31106i 0.0364182 0.0630783i
\(433\) 1.80278 + 3.12250i 0.0866359 + 0.150058i 0.906087 0.423091i \(-0.139055\pi\)
−0.819451 + 0.573149i \(0.805722\pi\)
\(434\) 9.21110i 0.442147i
\(435\) 5.37897 3.10555i 0.257902 0.148900i
\(436\) 54.9493 31.7250i 2.63159 1.51935i
\(437\) 16.8167i 0.804450i
\(438\) −0.908327 1.57327i −0.0434015 0.0751737i
\(439\) −13.6194 + 23.5895i −0.650020 + 1.12587i 0.333098 + 0.942892i \(0.391906\pi\)
−0.983118 + 0.182975i \(0.941427\pi\)
\(440\) 4.17134 + 2.40833i 0.198861 + 0.114812i
\(441\) −12.0000 −0.571429
\(442\) 0 0
\(443\) 6.42221 0.305128 0.152564 0.988294i \(-0.451247\pi\)
0.152564 + 0.988294i \(0.451247\pi\)
\(444\) −10.3129 5.95416i −0.489429 0.282572i
\(445\) −3.10555 + 5.37897i −0.147217 + 0.254988i
\(446\) 4.84861 + 8.39804i 0.229588 + 0.397659i
\(447\) 3.00000i 0.141895i
\(448\) 11.0995 6.40833i 0.524404 0.302765i
\(449\) −26.5292 + 15.3167i −1.25199 + 0.722838i −0.971505 0.237020i \(-0.923829\pi\)
−0.280487 + 0.959858i \(0.590496\pi\)
\(450\) 4.60555i 0.217108i
\(451\) −2.40833 4.17134i −0.113404 0.196421i
\(452\) −2.65139 + 4.59234i −0.124711 + 0.216005i
\(453\) −1.04885 0.605551i −0.0492791 0.0284513i
\(454\) −63.1472 −2.96364
\(455\) 0 0
\(456\) 16.8167 0.787512
\(457\) 23.2239 + 13.4083i 1.08637 + 0.627215i 0.932607 0.360893i \(-0.117528\pi\)
0.153761 + 0.988108i \(0.450861\pi\)
\(458\) 16.1194 27.9197i 0.753211 1.30460i
\(459\) −19.0139 32.9330i −0.887492 1.53718i
\(460\) 9.90833i 0.461978i
\(461\) 31.3597 18.1056i 1.46057 0.843260i 0.461531 0.887124i \(-0.347300\pi\)
0.999037 + 0.0438645i \(0.0139670\pi\)
\(462\) −3.20189 + 1.84861i −0.148965 + 0.0860052i
\(463\) 34.4222i 1.59974i 0.600176 + 0.799868i \(0.295097\pi\)
−0.600176 + 0.799868i \(0.704903\pi\)
\(464\) 0.940285 + 1.62862i 0.0436516 + 0.0756069i
\(465\) 2.00000 3.46410i 0.0927478 0.160644i
\(466\) −30.3349 17.5139i −1.40524 0.811315i
\(467\) −2.78890 −0.129055 −0.0645274 0.997916i \(-0.520554\pi\)
−0.0645274 + 0.997916i \(0.520554\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) −18.3694 10.6056i −0.847315 0.489198i
\(471\) −5.60555 + 9.70910i −0.258290 + 0.447372i
\(472\) 16.2250 + 28.1025i 0.746815 + 1.29352i
\(473\) 16.3944i 0.753818i
\(474\) −10.3923 + 6.00000i −0.477334 + 0.275589i
\(475\) 4.85455 2.80278i 0.222742 0.128600i
\(476\) 25.1194i 1.15135i
\(477\) −3.21110 5.56179i −0.147026 0.254657i
\(478\) 0 0
\(479\) −24.9560 14.4083i −1.14027 0.658333i −0.193770 0.981047i \(-0.562072\pi\)
−0.946497 + 0.322714i \(0.895405\pi\)
\(480\) 5.30278 0.242037
\(481\) 0 0
\(482\) −4.11943 −0.187635
\(483\) −2.59808 1.50000i −0.118217 0.0682524i
\(484\) 13.9083 24.0899i 0.632197 1.09500i
\(485\) 4.19722 + 7.26981i 0.190586 + 0.330105i
\(486\) 36.8444i 1.67130i
\(487\) −0.866025 + 0.500000i −0.0392434 + 0.0226572i −0.519493 0.854475i \(-0.673879\pi\)
0.480250 + 0.877132i \(0.340546\pi\)
\(488\) −2.59808 + 1.50000i −0.117609 + 0.0679018i
\(489\) 3.78890i 0.171340i
\(490\) 6.90833 + 11.9656i 0.312086 + 0.540549i
\(491\) −8.40833 + 14.5636i −0.379462 + 0.657248i −0.990984 0.133979i \(-0.957224\pi\)
0.611522 + 0.791228i \(0.290558\pi\)
\(492\) 8.58086 + 4.95416i 0.386855 + 0.223351i
\(493\) 47.2389 2.12753
\(494\) 0 0
\(495\) 3.21110 0.144328
\(496\) 1.04885 + 0.605551i 0.0470946 + 0.0271901i
\(497\) 2.40833 4.17134i 0.108028 0.187110i
\(498\) 10.6056 + 18.3694i 0.475246 + 0.823150i
\(499\) 2.42221i 0.108433i 0.998529 + 0.0542164i \(0.0172661\pi\)
−0.998529 + 0.0542164i \(0.982734\pi\)
\(500\) −2.86029 + 1.65139i −0.127916 + 0.0738523i
\(501\) −7.79423 + 4.50000i −0.348220 + 0.201045i
\(502\) 16.5416i 0.738289i
\(503\) −1.50000 2.59808i −0.0668817 0.115842i 0.830645 0.556802i \(-0.187972\pi\)
−0.897527 + 0.440959i \(0.854638\pi\)
\(504\) −3.00000 + 5.19615i −0.133631 + 0.231455i
\(505\) 7.79423 + 4.50000i 0.346839 + 0.200247i
\(506\) −11.0917 −0.493085
\(507\) 0 0
\(508\) −13.9083 −0.617082
\(509\) −2.59808 1.50000i −0.115158 0.0664863i 0.441315 0.897352i \(-0.354512\pi\)
−0.556473 + 0.830866i \(0.687846\pi\)
\(510\) −8.75694 + 15.1675i −0.387764 + 0.671627i
\(511\) 0.394449 + 0.683205i 0.0174494 + 0.0302232i
\(512\) 3.42221i 0.151242i
\(513\) 24.2727 14.0139i 1.07167 0.618728i
\(514\) −32.6948 + 18.8764i −1.44211 + 0.832601i
\(515\) 4.00000i 0.176261i
\(516\) 16.8625 + 29.2067i 0.742330 + 1.28575i
\(517\) 7.39445 12.8076i 0.325207 0.563276i
\(518\) 7.19041 + 4.15139i 0.315929 + 0.182402i
\(519\) −4.81665 −0.211428
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 24.7731 + 14.3028i 1.08429 + 0.626015i
\(523\) 0.711103 1.23167i 0.0310943 0.0538570i −0.850059 0.526687i \(-0.823434\pi\)
0.881154 + 0.472830i \(0.156767\pi\)
\(524\) −35.0278 60.6699i −1.53019 2.65037i
\(525\) 1.00000i 0.0436436i
\(526\) −23.5102 + 13.5736i −1.02509 + 0.591837i
\(527\) 26.3464 15.2111i 1.14767 0.662606i
\(528\) 0.486122i 0.0211557i
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) −3.69722 + 6.40378i −0.160597 + 0.278162i
\(531\) 18.7350 + 10.8167i 0.813029 + 0.469403i
\(532\) −18.5139 −0.802678
\(533\) 0 0
\(534\) 14.3028 0.618942
\(535\) 5.37897 + 3.10555i 0.232553 + 0.134265i
\(536\) −10.5000 + 18.1865i −0.453531 + 0.785539i
\(537\) 11.4083 + 19.7598i 0.492306 + 0.852698i
\(538\) 20.7250i 0.893517i
\(539\) −8.34269 + 4.81665i −0.359345 + 0.207468i
\(540\) −14.3014 + 8.25694i −0.615436 + 0.355322i
\(541\) 25.6333i 1.10206i 0.834485 + 0.551031i \(0.185765\pi\)
−0.834485 + 0.551031i \(0.814235\pi\)
\(542\) −23.9680 41.5139i −1.02952 1.78317i
\(543\) 8.81665 15.2709i 0.378359 0.655337i
\(544\) 34.9273 + 20.1653i 1.49749 + 0.864579i
\(545\) −19.2111 −0.822913
\(546\) 0 0
\(547\) 32.8444 1.40433 0.702163 0.712016i \(-0.252218\pi\)
0.702163 + 0.712016i \(0.252218\pi\)
\(548\) 4.59234 + 2.65139i 0.196175 + 0.113262i
\(549\) −1.00000 + 1.73205i −0.0426790 + 0.0739221i
\(550\) −1.84861 3.20189i −0.0788251 0.136529i
\(551\) 34.8167i 1.48324i
\(552\) 7.79423 4.50000i 0.331744 0.191533i
\(553\) 4.51295 2.60555i 0.191910 0.110799i
\(554\) 63.5694i 2.70080i
\(555\) 1.80278 + 3.12250i 0.0765236 + 0.132543i
\(556\) 10.5597 18.2900i 0.447832 0.775667i
\(557\) −1.39045 0.802776i −0.0589152 0.0340147i 0.470253 0.882532i \(-0.344163\pi\)
−0.529168 + 0.848517i \(0.677496\pi\)
\(558\) 18.4222 0.779874
\(559\) 0 0
\(560\) 0.302776 0.0127946
\(561\) −10.5751 6.10555i −0.446482 0.257777i
\(562\) −6.90833 + 11.9656i −0.291410 + 0.504737i
\(563\) 4.71110 + 8.15987i 0.198549 + 0.343897i 0.948058 0.318097i \(-0.103044\pi\)
−0.749509 + 0.661994i \(0.769710\pi\)
\(564\) 30.4222i 1.28101i
\(565\) 1.39045 0.802776i 0.0584966 0.0337730i
\(566\) 9.97131 5.75694i 0.419125 0.241982i
\(567\) 1.00000i 0.0419961i
\(568\) 7.22498 + 12.5140i 0.303153 + 0.525077i
\(569\) −13.7111 + 23.7483i −0.574799 + 0.995582i 0.421264 + 0.906938i \(0.361587\pi\)
−0.996063 + 0.0886436i \(0.971747\pi\)
\(570\) −11.1789 6.45416i −0.468234 0.270335i
\(571\) −20.8444 −0.872311 −0.436156 0.899871i \(-0.643660\pi\)
−0.436156 + 0.899871i \(0.643660\pi\)
\(572\) 0 0
\(573\) 16.8167 0.702526
\(574\) −5.98279 3.45416i −0.249717 0.144174i
\(575\) 1.50000 2.59808i 0.0625543 0.108347i
\(576\) 12.8167 + 22.1991i 0.534027 + 0.924962i
\(577\) 13.6333i 0.567562i −0.958889 0.283781i \(-0.908411\pi\)
0.958889 0.283781i \(-0.0915889\pi\)
\(578\) −81.4545 + 47.0278i −3.38806 + 1.95610i
\(579\) −13.5148 + 7.80278i −0.561656 + 0.324272i
\(580\) 20.5139i 0.851792i
\(581\) −4.60555 7.97705i −0.191070 0.330944i
\(582\) 9.66527 16.7407i 0.400638 0.693926i
\(583\) −4.46487 2.57779i −0.184916 0.106761i
\(584\) −2.36669 −0.0979344
\(585\) 0 0
\(586\) −23.9361 −0.988790
\(587\) 28.9445 + 16.7111i 1.19467 + 0.689741i 0.959361 0.282181i \(-0.0910577\pi\)
0.235305 + 0.971922i \(0.424391\pi\)
\(588\) 9.90833 17.1617i 0.408613 0.707738i
\(589\) 11.2111 + 19.4182i 0.461945 + 0.800113i
\(590\) 24.9083i 1.02546i
\(591\) 1.02481 0.591673i 0.0421550 0.0243382i
\(592\) −0.945417 + 0.545837i −0.0388564 + 0.0224337i
\(593\) 20.7889i 0.853698i −0.904323 0.426849i \(-0.859624\pi\)
0.904323 0.426849i \(-0.140376\pi\)
\(594\) −9.24306 16.0095i −0.379247 0.656876i
\(595\) 3.80278 6.58660i 0.155899 0.270024i
\(596\) 8.58086 + 4.95416i 0.351486 + 0.202930i
\(597\) −12.8167 −0.524551
\(598\) 0 0
\(599\) −21.2111 −0.866662 −0.433331 0.901235i \(-0.642662\pi\)
−0.433331 + 0.901235i \(0.642662\pi\)
\(600\) 2.59808 + 1.50000i 0.106066 + 0.0612372i
\(601\) −6.89445 + 11.9415i −0.281230 + 0.487105i −0.971688 0.236267i \(-0.924076\pi\)
0.690458 + 0.723373i \(0.257409\pi\)
\(602\) −11.7569 20.3636i −0.479177 0.829959i
\(603\) 14.0000i 0.570124i
\(604\) −3.46410 + 2.00000i −0.140952 + 0.0813788i
\(605\) −7.29384 + 4.21110i −0.296537 + 0.171206i
\(606\) 20.7250i 0.841895i
\(607\) 17.1056 + 29.6277i 0.694293 + 1.20255i 0.970418 + 0.241429i \(0.0776161\pi\)
−0.276126 + 0.961122i \(0.589051\pi\)
\(608\) −14.8625 + 25.7426i −0.602754 + 1.04400i
\(609\) 5.37897 + 3.10555i 0.217967 + 0.125843i
\(610\) 2.30278 0.0932367
\(611\) 0 0
\(612\) −50.2389 −2.03079
\(613\) 4.85455 + 2.80278i 0.196073 + 0.113203i 0.594823 0.803857i \(-0.297222\pi\)
−0.398749 + 0.917060i \(0.630556\pi\)
\(614\) −18.4222 + 31.9082i −0.743460 + 1.28771i
\(615\) −1.50000 2.59808i −0.0604858 0.104765i
\(616\) 4.81665i 0.194069i
\(617\) −33.2986 + 19.2250i −1.34055 + 0.773969i −0.986888 0.161404i \(-0.948398\pi\)
−0.353664 + 0.935372i \(0.615065\pi\)
\(618\) −7.97705 + 4.60555i −0.320884 + 0.185262i
\(619\) 14.4222i 0.579677i −0.957076 0.289839i \(-0.906398\pi\)
0.957076 0.289839i \(-0.0936017\pi\)
\(620\) −6.60555 11.4412i −0.265285 0.459488i
\(621\) 7.50000 12.9904i 0.300965 0.521286i
\(622\) 18.3694 + 10.6056i 0.736544 + 0.425244i
\(623\) −6.21110 −0.248843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 27.9197 + 16.1194i 1.11589 + 0.644262i
\(627\) 4.50000 7.79423i 0.179713 0.311272i
\(628\) 18.5139 + 32.0670i 0.738784 + 1.27961i
\(629\) 27.4222i 1.09339i
\(630\) 3.98852 2.30278i 0.158907 0.0917448i
\(631\) 31.2010 18.0139i 1.24209 0.717121i 0.272571 0.962136i \(-0.412126\pi\)
0.969519 + 0.245015i \(0.0787927\pi\)
\(632\) 15.6333i 0.621860i
\(633\) 11.8028 + 20.4430i 0.469118 + 0.812537i
\(634\) −6.90833 + 11.9656i −0.274365 + 0.475214i
\(635\) 3.64692 + 2.10555i 0.144724 + 0.0835563i
\(636\) 10.6056 0.420537
\(637\) 0 0
\(638\) 22.9638 0.909147
\(639\) 8.34269 + 4.81665i 0.330032 + 0.190544i
\(640\) 9.45416 16.3751i 0.373709 0.647282i
\(641\) 4.71110 + 8.15987i 0.186077 + 0.322295i 0.943939 0.330120i \(-0.107089\pi\)
−0.757862 + 0.652415i \(0.773756\pi\)
\(642\) 14.3028i 0.564486i
\(643\) 2.28051 1.31665i 0.0899346 0.0519238i −0.454358 0.890819i \(-0.650131\pi\)
0.544293 + 0.838895i \(0.316798\pi\)
\(644\) −8.58086 + 4.95416i −0.338133 + 0.195221i
\(645\) 10.2111i 0.402062i
\(646\) −49.0875 85.0220i −1.93132 3.34515i
\(647\) 19.7111 34.1406i 0.774923 1.34221i −0.159914 0.987131i \(-0.551122\pi\)
0.934838 0.355076i \(-0.115545\pi\)
\(648\) −2.59808 1.50000i −0.102062 0.0589256i
\(649\) 17.3667 0.681702
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 10.8373 + 6.25694i 0.424423 + 0.245041i
\(653\) 3.59167 6.22096i 0.140553 0.243445i −0.787152 0.616759i \(-0.788445\pi\)
0.927705 + 0.373314i \(0.121779\pi\)
\(654\) 22.1194 + 38.3120i 0.864938 + 1.49812i
\(655\) 21.2111i 0.828786i
\(656\) 0.786634 0.454163i 0.0307129 0.0177321i
\(657\) −1.36641 + 0.788897i −0.0533087 + 0.0307778i
\(658\) 21.2111i 0.826895i
\(659\) 17.4083 + 30.1521i 0.678132 + 1.17456i 0.975543 + 0.219810i \(0.0705436\pi\)
−0.297411 + 0.954750i \(0.596123\pi\)
\(660\) −2.65139 + 4.59234i −0.103205 + 0.178757i
\(661\) −4.01256 2.31665i −0.156071 0.0901074i 0.419931 0.907556i \(-0.362054\pi\)
−0.576001 + 0.817449i \(0.695388\pi\)
\(662\) 23.0917 0.897483
\(663\) 0 0
\(664\) 27.6333 1.07238
\(665\) 4.85455 + 2.80278i 0.188251 + 0.108687i
\(666\) −8.30278 + 14.3808i −0.321726 + 0.557246i
\(667\) 9.31665 + 16.1369i 0.360742 + 0.624824i
\(668\) 29.7250i 1.15009i
\(669\) −3.64692 + 2.10555i −0.140998 + 0.0814053i
\(670\) 13.9598 8.05971i 0.539315 0.311374i
\(671\) 1.60555i 0.0619816i
\(672\) 2.65139 + 4.59234i 0.102280 + 0.177153i
\(673\) −8.80278 + 15.2469i −0.339322 + 0.587723i −0.984305 0.176474i \(-0.943531\pi\)
0.644983 + 0.764197i \(0.276864\pi\)
\(674\) 51.1195 + 29.5139i 1.96905 + 1.13683i
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) −9.63331 −0.370238 −0.185119 0.982716i \(-0.559267\pi\)
−0.185119 + 0.982716i \(0.559267\pi\)
\(678\) −3.20189 1.84861i −0.122968 0.0709955i
\(679\) −4.19722 + 7.26981i −0.161075 + 0.278990i
\(680\) 11.4083 + 19.7598i 0.437489 + 0.757754i
\(681\) 27.4222i 1.05082i
\(682\) 12.8076 7.39445i 0.490427 0.283148i
\(683\) −31.3597 + 18.1056i −1.19995 + 0.692790i −0.960543 0.278130i \(-0.910285\pi\)
−0.239404 + 0.970920i \(0.576952\pi\)
\(684\) 37.0278i 1.41579i
\(685\) −0.802776 1.39045i −0.0306725 0.0531263i
\(686\) −14.9680 + 25.9254i −0.571482 + 0.989837i
\(687\) 12.1244 + 7.00000i 0.462573 + 0.267067i
\(688\) 3.09167 0.117869
\(689\) 0 0
\(690\) −6.90833 −0.262996
\(691\) 26.0048 + 15.0139i 0.989269 + 0.571155i 0.905056 0.425293i \(-0.139829\pi\)
0.0842134 + 0.996448i \(0.473162\pi\)
\(692\) −7.95416 + 13.7770i −0.302372 + 0.523724i
\(693\) 1.60555 + 2.78090i 0.0609898 + 0.105638i
\(694\) 13.3305i 0.506020i
\(695\) −5.53776 + 3.19722i −0.210059 + 0.121278i
\(696\) −16.1369 + 9.31665i −0.611668 + 0.353147i
\(697\) 22.8167i 0.864242i
\(698\) −4.36249 7.55605i −0.165123 0.286001i
\(699\) 7.60555 13.1732i 0.287668 0.498256i
\(700\) −2.86029 1.65139i −0.108109 0.0624166i
\(701\) 36.4222 1.37565 0.687824 0.725878i \(-0.258566\pi\)
0.687824 + 0.725878i \(0.258566\pi\)
\(702\) 0 0
\(703\) −20.2111 −0.762276
\(704\) 17.8209 + 10.2889i 0.671650 + 0.387777i
\(705\) 4.60555 7.97705i 0.173455 0.300433i
\(706\) −19.3625 33.5368i −0.728717 1.26217i
\(707\) 9.00000i 0.338480i
\(708\) −30.9387 + 17.8625i −1.16275 + 0.671313i
\(709\) 11.9896 6.92221i 0.450279 0.259969i −0.257669 0.966233i \(-0.582954\pi\)
0.707948 + 0.706264i \(0.249621\pi\)
\(710\) 11.0917i 0.416263i
\(711\) 5.21110 + 9.02589i 0.195432 + 0.338497i
\(712\) 9.31665 16.1369i 0.349156 0.604757i
\(713\) 10.3923 + 6.00000i 0.389195 + 0.224702i
\(714\) −17.5139 −0.655440
\(715\) 0 0
\(716\) 75.3583 2.81627
\(717\) 0 0
\(718\) 21.2111 36.7387i 0.791591 1.37108i
\(719\) −12.8028 22.1751i −0.477463 0.826990i 0.522203 0.852821i \(-0.325110\pi\)
−0.999666 + 0.0258309i \(0.991777\pi\)
\(720\) 0.605551i 0.0225676i
\(721\) 3.46410 2.00000i 0.129010 0.0744839i
\(722\) 24.7731 14.3028i 0.921961 0.532294i
\(723\) 1.78890i 0.0665298i
\(724\) −29.1194 50.4363i −1.08222 1.87445i
\(725\) −3.10555 + 5.37897i −0.115337 + 0.199770i
\(726\) 16.7961 + 9.69722i 0.623361 + 0.359898i
\(727\) −13.5778 −0.503573 −0.251786 0.967783i \(-0.581018\pi\)
−0.251786 + 0.967783i \(0.581018\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 1.57327 + 0.908327i 0.0582293 + 0.0336187i
\(731\) 38.8305 67.2565i 1.43620 2.48757i
\(732\) −1.65139 2.86029i −0.0610371 0.105719i
\(733\) 46.8444i 1.73024i −0.501567 0.865119i \(-0.667243\pi\)
0.501567 0.865119i \(-0.332757\pi\)
\(734\) −22.7789 + 13.1514i −0.840784 + 0.485427i
\(735\) −5.19615 + 3.00000i −0.191663 + 0.110657i
\(736\) 15.9083i 0.586389i
\(737\) 5.61943 + 9.73314i 0.206994 + 0.358525i
\(738\) 6.90833 11.9656i 0.254299 0.440459i
\(739\) −30.8353 17.8028i −1.13430 0.654886i −0.189284 0.981922i \(-0.560617\pi\)
−0.945012 + 0.327037i \(0.893950\pi\)
\(740\) 11.9083 0.437759
\(741\) 0 0
\(742\) −7.39445 −0.271459
\(743\) −31.7254 18.3167i −1.16389 0.671973i −0.211658 0.977344i \(-0.567886\pi\)
−0.952233 + 0.305371i \(0.901220\pi\)
\(744\) −6.00000 + 10.3923i −0.219971 + 0.381000i
\(745\) −1.50000 2.59808i −0.0549557 0.0951861i
\(746\) 46.9638i 1.71947i
\(747\) 15.9541 9.21110i 0.583730 0.337017i
\(748\) −34.9273 + 20.1653i −1.27707 + 0.737315i
\(749\) 6.21110i 0.226949i
\(750\) −1.15139 1.99426i −0.0420427 0.0728202i
\(751\) 23.2250 40.2268i 0.847492 1.46790i −0.0359481 0.999354i \(-0.511445\pi\)
0.883440 0.468545i \(-0.155222\pi\)
\(752\) 2.41526 + 1.39445i 0.0880753 + 0.0508503i
\(753\) 7.18335 0.261776
\(754\) 0 0
\(755\) 1.21110 0.0440765
\(756\) −14.3014 8.25694i −0.520138 0.300302i
\(757\) −0.408327 + 0.707243i −0.0148409 + 0.0257052i −0.873350 0.487092i \(-0.838058\pi\)
0.858510 + 0.512798i \(0.171391\pi\)
\(758\) −11.0597 19.1560i −0.401707 0.695777i
\(759\) 4.81665i 0.174833i
\(760\) −14.5636 + 8.40833i −0.528279 + 0.305002i
\(761\) −16.1369 + 9.31665i −0.584963 + 0.337728i −0.763103 0.646277i \(-0.776325\pi\)
0.178140 + 0.984005i \(0.442992\pi\)
\(762\) 9.69722i 0.351293i
\(763\) −9.60555 16.6373i −0.347744 0.602311i
\(764\) 27.7708 48.1005i 1.00471 1.74021i
\(765\) 13.1732 + 7.60555i 0.476278 + 0.274979i
\(766\) −56.7250 −2.04956
\(767\) 0 0
\(768\) −17.9083 −0.646211
\(769\) −9.52628 5.50000i −0.343526 0.198335i 0.318304 0.947989i \(-0.396887\pi\)
−0.661830 + 0.749654i \(0.730220\pi\)
\(770\) 1.84861 3.20189i 0.0666194 0.115388i
\(771\) −8.19722 14.1980i −0.295216 0.511329i
\(772\) 51.5416i 1.85502i
\(773\) 19.3942 11.1972i 0.697560 0.402736i −0.108878 0.994055i \(-0.534726\pi\)
0.806438 + 0.591319i \(0.201393\pi\)
\(774\) 40.7272 23.5139i 1.46391 0.845189i
\(775\) 4.00000i 0.143684i
\(776\) −12.5917 21.8094i −0.452015 0.782912i
\(777\) −1.80278 + 3.12250i −0.0646742 + 0.112019i
\(778\) 30.3349 + 17.5139i 1.08756 + 0.627903i
\(779\) 16.8167 0.602519
\(780\) 0 0
\(781\) 7.73338 0.276722
\(782\) −45.5024 26.2708i −1.62716 0.939443i
\(783\) −15.5278 + 26.8949i −0.554917 + 0.961144i
\(784\) −0.908327 1.57327i −0.0324402 0.0561882i
\(785\) 11.2111i 0.400141i
\(786\) 42.3005 24.4222i 1.50881 0.871111i
\(787\) −12.6728 + 7.31665i −0.451737 + 0.260811i −0.708564 0.705647i \(-0.750656\pi\)
0.256826 + 0.966458i \(0.417323\pi\)
\(788\) 3.90833i 0.139228i
\(789\) −5.89445 10.2095i −0.209848 0.363467i
\(790\) 6.00000 10.3923i 0.213470 0.369742i
\(791\) 1.39045 + 0.802776i 0.0494386 + 0.0285434i
\(792\) −9.63331 −0.342305
\(793\) 0 0
\(794\) −50.7250 −1.80016
\(795\) −2.78090 1.60555i −0.0986282 0.0569430i
\(796\) −21.1653 + 36.6593i −0.750183 + 1.29936i
\(797\) −7.22498 12.5140i −0.255922 0.443270i 0.709224 0.704984i \(-0.249046\pi\)
−0.965146 + 0.261714i \(0.915712\pi\)
\(798\) 12.9083i 0.456950i
\(799\) 60.6699 35.0278i 2.14635 1.23919i
\(800\) −4.59234 + 2.65139i −0.162364 + 0.0937407i
\(801\) 12.4222i 0.438917i
\(802\) 14.0597 + 24.3521i 0.496466 + 0.859904i
\(803\) −0.633308 + 1.09692i −0.0223489 + 0.0387095i
\(804\) −20.0220 11.5597i −0.706122 0.407680i
\(805\) 3.00000 0.105736
\(806\) 0 0
\(807\) −9.00000 −0.316815
\(808\) −23.3827 13.5000i −0.822600 0.474928i
\(809\) 27.5278 47.6795i 0.967824 1.67632i 0.265997 0.963974i \(-0.414299\pi\)
0.701827 0.712347i \(-0.252368\pi\)
\(810\) 1.15139 + 1.99426i 0.0404556 + 0.0700712i
\(811\) 46.4222i 1.63010i −0.579388 0.815052i \(-0.696708\pi\)
0.579388 0.815052i \(-0.303292\pi\)
\(812\) 17.7655 10.2569i 0.623448 0.359948i
\(813\) 18.0278 10.4083i 0.632261 0.365036i
\(814\) 13.3305i 0.467235i
\(815\) −1.89445 3.28128i −0.0663596 0.114938i
\(816\) 1.15139 1.99426i 0.0403066 0.0698131i
\(817\) 49.5703 + 28.6194i 1.73425 + 1.00127i
\(818\) 18.9083 0.661114
\(819\) 0 0
\(820\) −9.90833 −0.346014
\(821\) −18.5522 10.7111i −0.647475 0.373820i 0.140013 0.990150i \(-0.455286\pi\)
−0.787488 + 0.616330i \(0.788619\pi\)
\(822\) −1.84861 + 3.20189i −0.0644778 + 0.111679i
\(823\) −8.31665 14.4049i −0.289900 0.502122i 0.683885 0.729589i \(-0.260289\pi\)
−0.973786 + 0.227467i \(0.926955\pi\)
\(824\) 12.0000i 0.418040i
\(825\) 1.39045 0.802776i 0.0484092 0.0279491i
\(826\) 21.5712 12.4542i 0.750560 0.433336i
\(827\) 42.4222i 1.47516i 0.675257 + 0.737582i \(0.264033\pi\)
−0.675257 + 0.737582i \(0.735967\pi\)
\(828\) −9.90833 17.1617i −0.344338 0.596411i
\(829\) 14.7111 25.4804i 0.510938 0.884970i −0.488982 0.872294i \(-0.662632\pi\)
0.999920 0.0126762i \(-0.00403506\pi\)
\(830\) −18.3694 10.6056i −0.637610 0.368124i
\(831\) −27.6056 −0.957626
\(832\) 0 0
\(833\) −45.6333 −1.58110
\(834\) 12.7522 + 7.36249i 0.441573 + 0.254942i
\(835\) 4.50000 7.79423i 0.155729 0.269730i
\(836\) −14.8625 25.7426i −0.514030 0.890326i
\(837\) 20.0000i 0.691301i
\(838\) −34.3788 + 19.8486i −1.18760 + 0.685659i
\(839\) 17.3445 10.0139i 0.598800 0.345717i −0.169769 0.985484i \(-0.554302\pi\)
0.768569 + 0.639766i \(0.220969\pi\)
\(840\) 3.00000i 0.103510i
\(841\) −4.78890 8.29461i −0.165134 0.286021i
\(842\) −37.3305 + 64.6584i −1.28650 + 2.22827i
\(843\) −5.19615 3.00000i −0.178965 0.103325i
\(844\) 77.9638 2.68363
\(845\) 0 0
\(846\) 42.4222 1.45851
\(847\) −7.29384 4.21110i −0.250619 0.144695i
\(848\) 0.486122 0.841988i 0.0166935 0.0289140i
\(849\) 2.50000 + 4.33013i 0.0857998 + 0.148610i
\(850\) 17.5139i 0.600721i
\(851\) −9.36750 + 5.40833i −0.321114 + 0.185395i
\(852\) −13.7770 + 7.95416i −0.471993 + 0.272505i
\(853\) 47.2111i 1.61648i −0.588855 0.808239i \(-0.700421\pi\)
0.588855 0.808239i \(-0.299579\pi\)
\(854\) 1.15139 + 1.99426i 0.0393997 + 0.0682422i
\(855\) −5.60555 + 9.70910i −0.191706 + 0.332044i
\(856\) −16.1369 9.31665i −0.551548 0.318437i
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 10.7889 0.368112 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(860\) −29.2067 16.8625i −0.995940 0.575006i
\(861\) 1.50000 2.59808i 0.0511199 0.0885422i
\(862\) −33.6653 58.3100i −1.14664 1.98604i
\(863\) 36.0000i 1.22545i 0.790295 + 0.612727i \(0.209928\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) −22.9617 + 13.2569i −0.781173 + 0.451010i
\(865\) 4.17134 2.40833i 0.141830 0.0818856i
\(866\) 8.30278i 0.282140i
\(867\) −20.4222 35.3723i −0.693574 1.20131i
\(868\) 6.60555 11.4412i 0.224207 0.388338i
\(869\) 7.24577 + 4.18335i 0.245796 + 0.141910i
\(870\) 14.3028 0.484910
\(871\) 0 0
\(872\) 57.6333 1.95171
\(873\) −14.5396 8.39445i −0.492091 0.284109i
\(874\) 19.3625 33.5368i 0.654946 1.13440i
\(875\) 0.500000 + 0.866025i 0.0169031 + 0.0292770i
\(876\) 2.60555i 0.0880334i
\(877\) −1.70801 + 0.986122i −0.0576755 + 0.0332990i −0.528560 0.848896i \(-0.677268\pi\)
0.470885 + 0.882195i \(0.343935\pi\)
\(878\) −54.3214 + 31.3625i −1.83326 + 1.05843i
\(879\) 10.3944i 0.350596i
\(880\) 0.243061 + 0.420994i 0.00819358 + 0.0141917i
\(881\) −10.9222 + 18.9178i −0.367978 + 0.637357i −0.989249 0.146238i \(-0.953283\pi\)
0.621271 + 0.783596i \(0.286617\pi\)
\(882\) −23.9311 13.8167i −0.805804 0.465231i
\(883\) −11.6333 −0.391492 −0.195746 0.980655i \(-0.562713\pi\)
−0.195746 + 0.980655i \(0.562713\pi\)
\(884\) 0 0
\(885\) 10.8167 0.363598
\(886\) 12.8076 + 7.39445i 0.430278 + 0.248421i
\(887\) 18.5278 32.0910i 0.622101 1.07751i −0.366993 0.930224i \(-0.619613\pi\)
0.989094 0.147287i \(-0.0470541\pi\)
\(888\) −5.40833 9.36750i −0.181492 0.314353i
\(889\) 4.21110i 0.141236i
\(890\) −12.3866 + 7.15139i −0.415199 + 0.239715i
\(891\) −1.39045 + 0.802776i −0.0465818 + 0.0268940i
\(892\) 13.9083i 0.465685i
\(893\) 25.8167 + 44.7158i 0.863921 + 1.49636i
\(894\) −3.45416 + 5.98279i −0.115525 + 0.200094i
\(895\) −19.7598 11.4083i −0.660497 0.381338i
\(896\) 18.9083 0.631683
\(897\) 0 0
\(898\) −70.5416 −2.35400
\(899\) −21.5159 12.4222i −0.717595 0.414304i
\(900\) 3.30278 5.72058i 0.110093 0.190686i
\(901\) −12.2111 21.1503i −0.406811 0.704617i
\(902\) 11.0917i 0.369312i
\(903\) 8.84307 5.10555i 0.294279 0.169902i
\(904\) −4.17134 + 2.40833i −0.138737 + 0.0800998i
\(905\) 17.6333i 0.586151i
\(906\) −1.39445 2.41526i −0.0463275 0.0802415i
\(907\) −19.1333 + 33.1399i −0.635311 + 1.10039i 0.351138 + 0.936324i \(0.385795\pi\)
−0.986449 + 0.164067i \(0.947539\pi\)
\(908\) −78.4354 45.2847i −2.60297 1.50283i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) 1.46984 + 0.848612i 0.0486712 + 0.0281004i
\(913\) 7.39445 12.8076i 0.244721 0.423868i
\(914\) 30.8764 + 53.4794i 1.02130 + 1.76894i
\(915\) 1.00000i 0.0330590i
\(916\) 40.0440 23.1194i 1.32309 0.763887i
\(917\) −18.3694 + 10.6056i −0.606610 + 0.350226i
\(918\) 87.5694i 2.89022i
\(919\) 19.4083 + 33.6162i 0.640222 + 1.10890i 0.985383 + 0.170353i \(0.0544908\pi\)
−0.345161 + 0.938543i \(0.612176\pi\)
\(920\) −4.50000 + 7.79423i −0.148361 + 0.256968i
\(921\) −13.8564 8.00000i −0.456584 0.263609i
\(922\) 83.3860 2.74617
\(923\) 0 0
\(924\) −5.30278 −0.174449
\(925\) −3.12250 1.80278i −0.102667 0.0592749i
\(926\) −39.6333 + 68.6469i −1.30243 + 2.25588i
\(927\) 4.00000 + 6.92820i 0.131377 + 0.227552i
\(928\) 32.9361i 1.08118i
\(929\) −13.3560 + 7.71110i −0.438197 + 0.252993i −0.702832 0.711355i \(-0.748082\pi\)
0.264636 + 0.964348i \(0.414748\pi\)
\(930\) 7.97705 4.60555i 0.261578 0.151022i
\(931\) 33.6333i 1.10229i
\(932\) −25.1194 43.5081i −0.822814 1.42516i
\(933\) −4.60555 + 7.97705i −0.150779 + 0.261157i
\(934\) −5.56179 3.21110i −0.181987 0.105070i
\(935\) 12.2111 0.399346
\(936\) 0 0
\(937\) 54.4777 1.77971 0.889855 0.456244i \(-0.150806\pi\)
0.889855 + 0.456244i \(0.150806\pi\)
\(938\) 13.9598 + 8.05971i 0.455805 + 0.263159i
\(939\) −7.00000 + 12.1244i −0.228436 + 0.395663i
\(940\) −15.2111 26.3464i −0.496131 0.859325i
\(941\) 9.63331i 0.314037i −0.987596 0.157018i \(-0.949812\pi\)
0.987596 0.157018i \(-0.0501882\pi\)
\(942\) −22.3579 + 12.9083i −0.728459 + 0.420576i
\(943\) 7.79423 4.50000i 0.253815 0.146540i
\(944\) 3.27502i 0.106593i
\(945\) 2.50000 + 4.33013i 0.0813250 + 0.140859i
\(946\) 18.8764 32.6948i 0.613724 1.06300i
\(947\) −16.1369 9.31665i −0.524379 0.302751i 0.214345 0.976758i \(-0.431238\pi\)
−0.738725 + 0.674007i \(0.764572\pi\)
\(948\) −17.2111 −0.558991
\(949\) 0 0
\(950\) 12.9083 0.418801
\(951\) −5.19615 3.00000i −0.168497 0.0972817i
\(952\) −11.4083 + 19.7598i −0.369746 + 0.640419i
\(953\) −7.22498 12.5140i −0.234040 0.405369i 0.724953 0.688798i \(-0.241861\pi\)
−0.958993 + 0.283429i \(0.908528\pi\)
\(954\) 14.7889i 0.478808i
\(955\) −14.5636 + 8.40833i −0.471269 + 0.272087i
\(956\) 0 0
\(957\) 9.97224i 0.322357i
\(958\) −33.1791 57.4680i −1.07197 1.85671i
\(959\) 0.802776 1.39045i 0.0259230 0.0448999i
\(960\) 11.0995 + 6.40833i 0.358236 + 0.206828i
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) −12.4222 −0.400300
\(964\) −5.11676 2.95416i −0.164800 0.0951472i
\(965\) 7.80278 13.5148i 0.251180 0.435057i
\(966\) −3.45416 5.98279i −0.111136 0.192493i
\(967\) 44.4777i 1.43031i −0.698967 0.715153i \(-0.746357\pi\)
0.698967 0.715153i \(-0.253643\pi\)
\(968\) 21.8815 12.6333i 0.703299 0.406050i
\(969\) 36.9215 21.3167i 1.18609 0.684790i
\(970\) 19.3305i 0.620666i
\(971\) 22.0139 + 38.1292i 0.706459 + 1.22362i 0.966162 + 0.257934i \(0.0830418\pi\)
−0.259703 + 0.965688i \(0.583625\pi\)
\(972\) 26.4222 45.7646i 0.847493 1.46790i
\(973\) −5.53776 3.19722i −0.177532 0.102498i
\(974\) −2.30278 −0.0737857
\(975\) 0 0
\(976\) −0.302776 −0.00969161
\(977\) −24.9560 14.4083i −0.798412 0.460963i 0.0445038 0.999009i \(-0.485829\pi\)
−0.842915 + 0.538046i \(0.819163\pi\)
\(978\) −4.36249 + 7.55605i −0.139497 + 0.241616i
\(979\) −4.98612 8.63622i −0.159357 0.276015i
\(980\) 19.8167i 0.633020i
\(981\) 33.2746 19.2111i 1.06238 0.613363i
\(982\) −33.5368 + 19.3625i −1.07020 + 0.617882i
\(983\) 18.4222i 0.587577i −0.955870 0.293789i \(-0.905084\pi\)
0.955870 0.293789i \(-0.0949162\pi\)
\(984\) 4.50000 + 7.79423i 0.143455 + 0.248471i
\(985\) −0.591673 + 1.02481i −0.0188523 + 0.0326531i
\(986\) 94.2067 + 54.3902i 3.00015 + 1.73214i
\(987\) 9.21110 0.293193
\(988\) 0 0
\(989\) 30.6333 0.974083
\(990\) 6.40378 + 3.69722i 0.203526 + 0.117506i
\(991\) −20.0139 + 34.6651i −0.635762 + 1.10117i 0.350591 + 0.936529i \(0.385981\pi\)
−0.986353 + 0.164643i \(0.947353\pi\)
\(992\) −10.6056 18.3694i −0.336727 0.583228i
\(993\) 10.0278i 0.318221i
\(994\) 9.60567 5.54584i 0.304673 0.175903i
\(995\) 11.0995 6.40833i 0.351879 0.203158i
\(996\) 30.4222i 0.963964i
\(997\) 9.22498 + 15.9781i 0.292158 + 0.506033i 0.974320 0.225169i \(-0.0722933\pi\)
−0.682162 + 0.731201i \(0.738960\pi\)
\(998\) −2.78890 + 4.83051i −0.0882810 + 0.152907i
\(999\) −15.6125 9.01388i −0.493957 0.285186i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.m.d.316.4 8
13.2 odd 12 65.2.e.b.16.2 4
13.3 even 3 inner 845.2.m.d.361.1 8
13.4 even 6 845.2.c.d.506.4 4
13.5 odd 4 65.2.e.b.61.2 yes 4
13.6 odd 12 845.2.a.c.1.1 2
13.7 odd 12 845.2.a.f.1.2 2
13.8 odd 4 845.2.e.d.191.1 4
13.9 even 3 845.2.c.d.506.1 4
13.10 even 6 inner 845.2.m.d.361.4 8
13.11 odd 12 845.2.e.d.146.1 4
13.12 even 2 inner 845.2.m.d.316.1 8
39.2 even 12 585.2.j.d.406.1 4
39.5 even 4 585.2.j.d.451.1 4
39.20 even 12 7605.2.a.bb.1.1 2
39.32 even 12 7605.2.a.bg.1.2 2
52.15 even 12 1040.2.q.o.81.2 4
52.31 even 4 1040.2.q.o.321.2 4
65.2 even 12 325.2.o.b.224.1 8
65.18 even 4 325.2.o.b.74.1 8
65.19 odd 12 4225.2.a.x.1.2 2
65.28 even 12 325.2.o.b.224.4 8
65.44 odd 4 325.2.e.a.126.1 4
65.54 odd 12 325.2.e.a.276.1 4
65.57 even 4 325.2.o.b.74.4 8
65.59 odd 12 4225.2.a.t.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.2 4 13.2 odd 12
65.2.e.b.61.2 yes 4 13.5 odd 4
325.2.e.a.126.1 4 65.44 odd 4
325.2.e.a.276.1 4 65.54 odd 12
325.2.o.b.74.1 8 65.18 even 4
325.2.o.b.74.4 8 65.57 even 4
325.2.o.b.224.1 8 65.2 even 12
325.2.o.b.224.4 8 65.28 even 12
585.2.j.d.406.1 4 39.2 even 12
585.2.j.d.451.1 4 39.5 even 4
845.2.a.c.1.1 2 13.6 odd 12
845.2.a.f.1.2 2 13.7 odd 12
845.2.c.d.506.1 4 13.9 even 3
845.2.c.d.506.4 4 13.4 even 6
845.2.e.d.146.1 4 13.11 odd 12
845.2.e.d.191.1 4 13.8 odd 4
845.2.m.d.316.1 8 13.12 even 2 inner
845.2.m.d.316.4 8 1.1 even 1 trivial
845.2.m.d.361.1 8 13.3 even 3 inner
845.2.m.d.361.4 8 13.10 even 6 inner
1040.2.q.o.81.2 4 52.15 even 12
1040.2.q.o.321.2 4 52.31 even 4
4225.2.a.t.1.1 2 65.59 odd 12
4225.2.a.x.1.2 2 65.19 odd 12
7605.2.a.bb.1.1 2 39.20 even 12
7605.2.a.bg.1.2 2 39.32 even 12