Properties

Label 845.2.c.d.506.1
Level $845$
Weight $2$
Character 845.506
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(506,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.506");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 506.1
Root \(-2.30278i\) of defining polynomial
Character \(\chi\) \(=\) 845.506
Dual form 845.2.c.d.506.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30278i q^{2} +1.00000 q^{3} -3.30278 q^{4} -1.00000i q^{5} -2.30278i q^{6} +1.00000i q^{7} +3.00000i q^{8} -2.00000 q^{9} -2.30278 q^{10} -1.60555i q^{11} -3.30278 q^{12} +2.30278 q^{14} -1.00000i q^{15} +0.302776 q^{16} -7.60555 q^{17} +4.60555i q^{18} -5.60555i q^{19} +3.30278i q^{20} +1.00000i q^{21} -3.69722 q^{22} +3.00000 q^{23} +3.00000i q^{24} -1.00000 q^{25} -5.00000 q^{27} -3.30278i q^{28} -6.21110 q^{29} -2.30278 q^{30} -4.00000i q^{31} +5.30278i q^{32} -1.60555i q^{33} +17.5139i q^{34} +1.00000 q^{35} +6.60555 q^{36} -3.60555i q^{37} -12.9083 q^{38} +3.00000 q^{40} +3.00000i q^{41} +2.30278 q^{42} +10.2111 q^{43} +5.30278i q^{44} +2.00000i q^{45} -6.90833i q^{46} -9.21110i q^{47} +0.302776 q^{48} +6.00000 q^{49} +2.30278i q^{50} -7.60555 q^{51} -3.21110 q^{53} +11.5139i q^{54} -1.60555 q^{55} -3.00000 q^{56} -5.60555i q^{57} +14.3028i q^{58} +10.8167i q^{59} +3.30278i q^{60} -1.00000 q^{61} -9.21110 q^{62} -2.00000i q^{63} +12.8167 q^{64} -3.69722 q^{66} -7.00000i q^{67} +25.1194 q^{68} +3.00000 q^{69} -2.30278i q^{70} +4.81665i q^{71} -6.00000i q^{72} +0.788897i q^{73} -8.30278 q^{74} -1.00000 q^{75} +18.5139i q^{76} +1.60555 q^{77} +5.21110 q^{79} -0.302776i q^{80} +1.00000 q^{81} +6.90833 q^{82} -9.21110i q^{83} -3.30278i q^{84} +7.60555i q^{85} -23.5139i q^{86} -6.21110 q^{87} +4.81665 q^{88} +6.21110i q^{89} +4.60555 q^{90} -9.90833 q^{92} -4.00000i q^{93} -21.2111 q^{94} -5.60555 q^{95} +5.30278i q^{96} -8.39445i q^{97} -13.8167i q^{98} +3.21110i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 6 q^{4} - 8 q^{9} - 2 q^{10} - 6 q^{12} + 2 q^{14} - 6 q^{16} - 16 q^{17} - 22 q^{22} + 12 q^{23} - 4 q^{25} - 20 q^{27} + 4 q^{29} - 2 q^{30} + 4 q^{35} + 12 q^{36} - 30 q^{38} + 12 q^{40}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.30278i − 1.62831i −0.580649 0.814154i \(-0.697201\pi\)
0.580649 0.814154i \(-0.302799\pi\)
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) −3.30278 −1.65139
\(5\) − 1.00000i − 0.447214i
\(6\) − 2.30278i − 0.940104i
\(7\) 1.00000i 0.377964i 0.981981 + 0.188982i \(0.0605189\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −2.00000 −0.666667
\(10\) −2.30278 −0.728202
\(11\) − 1.60555i − 0.484092i −0.970265 0.242046i \(-0.922182\pi\)
0.970265 0.242046i \(-0.0778185\pi\)
\(12\) −3.30278 −0.953429
\(13\) 0 0
\(14\) 2.30278 0.615443
\(15\) − 1.00000i − 0.258199i
\(16\) 0.302776 0.0756939
\(17\) −7.60555 −1.84462 −0.922309 0.386454i \(-0.873700\pi\)
−0.922309 + 0.386454i \(0.873700\pi\)
\(18\) 4.60555i 1.08554i
\(19\) − 5.60555i − 1.28600i −0.765865 0.643001i \(-0.777689\pi\)
0.765865 0.643001i \(-0.222311\pi\)
\(20\) 3.30278i 0.738523i
\(21\) 1.00000i 0.218218i
\(22\) −3.69722 −0.788251
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 3.00000i 0.612372i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) − 3.30278i − 0.624166i
\(29\) −6.21110 −1.15337 −0.576686 0.816966i \(-0.695655\pi\)
−0.576686 + 0.816966i \(0.695655\pi\)
\(30\) −2.30278 −0.420427
\(31\) − 4.00000i − 0.718421i −0.933257 0.359211i \(-0.883046\pi\)
0.933257 0.359211i \(-0.116954\pi\)
\(32\) 5.30278i 0.937407i
\(33\) − 1.60555i − 0.279491i
\(34\) 17.5139i 3.00361i
\(35\) 1.00000 0.169031
\(36\) 6.60555 1.10093
\(37\) − 3.60555i − 0.592749i −0.955072 0.296374i \(-0.904222\pi\)
0.955072 0.296374i \(-0.0957776\pi\)
\(38\) −12.9083 −2.09401
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 3.00000i 0.468521i 0.972174 + 0.234261i \(0.0752669\pi\)
−0.972174 + 0.234261i \(0.924733\pi\)
\(42\) 2.30278 0.355326
\(43\) 10.2111 1.55718 0.778589 0.627534i \(-0.215936\pi\)
0.778589 + 0.627534i \(0.215936\pi\)
\(44\) 5.30278i 0.799424i
\(45\) 2.00000i 0.298142i
\(46\) − 6.90833i − 1.01858i
\(47\) − 9.21110i − 1.34358i −0.740743 0.671789i \(-0.765526\pi\)
0.740743 0.671789i \(-0.234474\pi\)
\(48\) 0.302776 0.0437019
\(49\) 6.00000 0.857143
\(50\) 2.30278i 0.325662i
\(51\) −7.60555 −1.06499
\(52\) 0 0
\(53\) −3.21110 −0.441079 −0.220539 0.975378i \(-0.570782\pi\)
−0.220539 + 0.975378i \(0.570782\pi\)
\(54\) 11.5139i 1.56684i
\(55\) −1.60555 −0.216492
\(56\) −3.00000 −0.400892
\(57\) − 5.60555i − 0.742473i
\(58\) 14.3028i 1.87805i
\(59\) 10.8167i 1.40821i 0.710097 + 0.704104i \(0.248651\pi\)
−0.710097 + 0.704104i \(0.751349\pi\)
\(60\) 3.30278i 0.426387i
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −9.21110 −1.16981
\(63\) − 2.00000i − 0.251976i
\(64\) 12.8167 1.60208
\(65\) 0 0
\(66\) −3.69722 −0.455097
\(67\) − 7.00000i − 0.855186i −0.903971 0.427593i \(-0.859362\pi\)
0.903971 0.427593i \(-0.140638\pi\)
\(68\) 25.1194 3.04618
\(69\) 3.00000 0.361158
\(70\) − 2.30278i − 0.275234i
\(71\) 4.81665i 0.571632i 0.958285 + 0.285816i \(0.0922646\pi\)
−0.958285 + 0.285816i \(0.907735\pi\)
\(72\) − 6.00000i − 0.707107i
\(73\) 0.788897i 0.0923335i 0.998934 + 0.0461667i \(0.0147006\pi\)
−0.998934 + 0.0461667i \(0.985299\pi\)
\(74\) −8.30278 −0.965178
\(75\) −1.00000 −0.115470
\(76\) 18.5139i 2.12369i
\(77\) 1.60555 0.182970
\(78\) 0 0
\(79\) 5.21110 0.586295 0.293147 0.956067i \(-0.405297\pi\)
0.293147 + 0.956067i \(0.405297\pi\)
\(80\) − 0.302776i − 0.0338513i
\(81\) 1.00000 0.111111
\(82\) 6.90833 0.762897
\(83\) − 9.21110i − 1.01105i −0.862812 0.505525i \(-0.831299\pi\)
0.862812 0.505525i \(-0.168701\pi\)
\(84\) − 3.30278i − 0.360362i
\(85\) 7.60555i 0.824938i
\(86\) − 23.5139i − 2.53557i
\(87\) −6.21110 −0.665900
\(88\) 4.81665 0.513457
\(89\) 6.21110i 0.658376i 0.944264 + 0.329188i \(0.106775\pi\)
−0.944264 + 0.329188i \(0.893225\pi\)
\(90\) 4.60555 0.485468
\(91\) 0 0
\(92\) −9.90833 −1.03301
\(93\) − 4.00000i − 0.414781i
\(94\) −21.2111 −2.18776
\(95\) −5.60555 −0.575117
\(96\) 5.30278i 0.541212i
\(97\) − 8.39445i − 0.852327i −0.904646 0.426164i \(-0.859865\pi\)
0.904646 0.426164i \(-0.140135\pi\)
\(98\) − 13.8167i − 1.39569i
\(99\) 3.21110i 0.322728i
\(100\) 3.30278 0.330278
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 17.5139i 1.73413i
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 7.39445i 0.718212i
\(107\) 6.21110 0.600450 0.300225 0.953868i \(-0.402938\pi\)
0.300225 + 0.953868i \(0.402938\pi\)
\(108\) 16.5139 1.58905
\(109\) − 19.2111i − 1.84009i −0.391813 0.920045i \(-0.628152\pi\)
0.391813 0.920045i \(-0.371848\pi\)
\(110\) 3.69722i 0.352517i
\(111\) − 3.60555i − 0.342224i
\(112\) 0.302776i 0.0286096i
\(113\) −1.60555 −0.151038 −0.0755188 0.997144i \(-0.524061\pi\)
−0.0755188 + 0.997144i \(0.524061\pi\)
\(114\) −12.9083 −1.20898
\(115\) − 3.00000i − 0.279751i
\(116\) 20.5139 1.90467
\(117\) 0 0
\(118\) 24.9083 2.29300
\(119\) − 7.60555i − 0.697200i
\(120\) 3.00000 0.273861
\(121\) 8.42221 0.765655
\(122\) 2.30278i 0.208484i
\(123\) 3.00000i 0.270501i
\(124\) 13.2111i 1.18639i
\(125\) 1.00000i 0.0894427i
\(126\) −4.60555 −0.410295
\(127\) 4.21110 0.373675 0.186837 0.982391i \(-0.440176\pi\)
0.186837 + 0.982391i \(0.440176\pi\)
\(128\) − 18.9083i − 1.67128i
\(129\) 10.2111 0.899037
\(130\) 0 0
\(131\) −21.2111 −1.85322 −0.926611 0.376021i \(-0.877292\pi\)
−0.926611 + 0.376021i \(0.877292\pi\)
\(132\) 5.30278i 0.461547i
\(133\) 5.60555 0.486063
\(134\) −16.1194 −1.39251
\(135\) 5.00000i 0.430331i
\(136\) − 22.8167i − 1.95651i
\(137\) 1.60555i 0.137172i 0.997645 + 0.0685858i \(0.0218487\pi\)
−0.997645 + 0.0685858i \(0.978151\pi\)
\(138\) − 6.90833i − 0.588076i
\(139\) 6.39445 0.542370 0.271185 0.962527i \(-0.412584\pi\)
0.271185 + 0.962527i \(0.412584\pi\)
\(140\) −3.30278 −0.279135
\(141\) − 9.21110i − 0.775715i
\(142\) 11.0917 0.930793
\(143\) 0 0
\(144\) −0.605551 −0.0504626
\(145\) 6.21110i 0.515804i
\(146\) 1.81665 0.150347
\(147\) 6.00000 0.494872
\(148\) 11.9083i 0.978858i
\(149\) 3.00000i 0.245770i 0.992421 + 0.122885i \(0.0392146\pi\)
−0.992421 + 0.122885i \(0.960785\pi\)
\(150\) 2.30278i 0.188021i
\(151\) 1.21110i 0.0985581i 0.998785 + 0.0492791i \(0.0156924\pi\)
−0.998785 + 0.0492791i \(0.984308\pi\)
\(152\) 16.8167 1.36401
\(153\) 15.2111 1.22974
\(154\) − 3.69722i − 0.297931i
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 11.2111 0.894743 0.447372 0.894348i \(-0.352360\pi\)
0.447372 + 0.894348i \(0.352360\pi\)
\(158\) − 12.0000i − 0.954669i
\(159\) −3.21110 −0.254657
\(160\) 5.30278 0.419221
\(161\) 3.00000i 0.236433i
\(162\) − 2.30278i − 0.180923i
\(163\) 3.78890i 0.296769i 0.988930 + 0.148385i \(0.0474074\pi\)
−0.988930 + 0.148385i \(0.952593\pi\)
\(164\) − 9.90833i − 0.773710i
\(165\) −1.60555 −0.124992
\(166\) −21.2111 −1.64630
\(167\) − 9.00000i − 0.696441i −0.937413 0.348220i \(-0.886786\pi\)
0.937413 0.348220i \(-0.113214\pi\)
\(168\) −3.00000 −0.231455
\(169\) 0 0
\(170\) 17.5139 1.34325
\(171\) 11.2111i 0.857334i
\(172\) −33.7250 −2.57151
\(173\) −4.81665 −0.366203 −0.183102 0.983094i \(-0.558614\pi\)
−0.183102 + 0.983094i \(0.558614\pi\)
\(174\) 14.3028i 1.08429i
\(175\) − 1.00000i − 0.0755929i
\(176\) − 0.486122i − 0.0366428i
\(177\) 10.8167i 0.813029i
\(178\) 14.3028 1.07204
\(179\) −22.8167 −1.70540 −0.852698 0.522404i \(-0.825035\pi\)
−0.852698 + 0.522404i \(0.825035\pi\)
\(180\) − 6.60555i − 0.492349i
\(181\) −17.6333 −1.31067 −0.655337 0.755337i \(-0.727473\pi\)
−0.655337 + 0.755337i \(0.727473\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 9.00000i 0.663489i
\(185\) −3.60555 −0.265085
\(186\) −9.21110 −0.675391
\(187\) 12.2111i 0.892964i
\(188\) 30.4222i 2.21877i
\(189\) − 5.00000i − 0.363696i
\(190\) 12.9083i 0.936468i
\(191\) 16.8167 1.21681 0.608405 0.793627i \(-0.291810\pi\)
0.608405 + 0.793627i \(0.291810\pi\)
\(192\) 12.8167 0.924962
\(193\) − 15.6056i − 1.12331i −0.827371 0.561656i \(-0.810164\pi\)
0.827371 0.561656i \(-0.189836\pi\)
\(194\) −19.3305 −1.38785
\(195\) 0 0
\(196\) −19.8167 −1.41548
\(197\) 1.18335i 0.0843099i 0.999111 + 0.0421550i \(0.0134223\pi\)
−0.999111 + 0.0421550i \(0.986578\pi\)
\(198\) 7.39445 0.525501
\(199\) −12.8167 −0.908549 −0.454274 0.890862i \(-0.650101\pi\)
−0.454274 + 0.890862i \(0.650101\pi\)
\(200\) − 3.00000i − 0.212132i
\(201\) − 7.00000i − 0.493742i
\(202\) − 20.7250i − 1.45820i
\(203\) − 6.21110i − 0.435934i
\(204\) 25.1194 1.75871
\(205\) 3.00000 0.209529
\(206\) − 9.21110i − 0.641768i
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) − 2.30278i − 0.158907i
\(211\) −23.6056 −1.62507 −0.812537 0.582910i \(-0.801914\pi\)
−0.812537 + 0.582910i \(0.801914\pi\)
\(212\) 10.6056 0.728392
\(213\) 4.81665i 0.330032i
\(214\) − 14.3028i − 0.977718i
\(215\) − 10.2111i − 0.696391i
\(216\) − 15.0000i − 1.02062i
\(217\) 4.00000 0.271538
\(218\) −44.2389 −2.99623
\(219\) 0.788897i 0.0533087i
\(220\) 5.30278 0.357513
\(221\) 0 0
\(222\) −8.30278 −0.557246
\(223\) − 4.21110i − 0.281996i −0.990010 0.140998i \(-0.954969\pi\)
0.990010 0.140998i \(-0.0450312\pi\)
\(224\) −5.30278 −0.354307
\(225\) 2.00000 0.133333
\(226\) 3.69722i 0.245936i
\(227\) − 27.4222i − 1.82008i −0.414525 0.910038i \(-0.636052\pi\)
0.414525 0.910038i \(-0.363948\pi\)
\(228\) 18.5139i 1.22611i
\(229\) − 14.0000i − 0.925146i −0.886581 0.462573i \(-0.846926\pi\)
0.886581 0.462573i \(-0.153074\pi\)
\(230\) −6.90833 −0.455522
\(231\) 1.60555 0.105638
\(232\) − 18.6333i − 1.22334i
\(233\) −15.2111 −0.996512 −0.498256 0.867030i \(-0.666026\pi\)
−0.498256 + 0.867030i \(0.666026\pi\)
\(234\) 0 0
\(235\) −9.21110 −0.600866
\(236\) − 35.7250i − 2.32550i
\(237\) 5.21110 0.338497
\(238\) −17.5139 −1.13526
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) − 0.302776i − 0.0195441i
\(241\) − 1.78890i − 0.115233i −0.998339 0.0576165i \(-0.981650\pi\)
0.998339 0.0576165i \(-0.0183501\pi\)
\(242\) − 19.3944i − 1.24672i
\(243\) 16.0000 1.02640
\(244\) 3.30278 0.211439
\(245\) − 6.00000i − 0.383326i
\(246\) 6.90833 0.440459
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) − 9.21110i − 0.583730i
\(250\) 2.30278 0.145640
\(251\) 7.18335 0.453409 0.226704 0.973964i \(-0.427205\pi\)
0.226704 + 0.973964i \(0.427205\pi\)
\(252\) 6.60555i 0.416111i
\(253\) − 4.81665i − 0.302820i
\(254\) − 9.69722i − 0.608458i
\(255\) 7.60555i 0.476278i
\(256\) −17.9083 −1.11927
\(257\) 16.3944 1.02266 0.511329 0.859385i \(-0.329153\pi\)
0.511329 + 0.859385i \(0.329153\pi\)
\(258\) − 23.5139i − 1.46391i
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) 12.4222 0.768915
\(262\) 48.8444i 3.01762i
\(263\) 11.7889 0.726935 0.363467 0.931607i \(-0.381593\pi\)
0.363467 + 0.931607i \(0.381593\pi\)
\(264\) 4.81665 0.296445
\(265\) 3.21110i 0.197256i
\(266\) − 12.9083i − 0.791460i
\(267\) 6.21110i 0.380113i
\(268\) 23.1194i 1.41224i
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 11.5139 0.700712
\(271\) 20.8167i 1.26452i 0.774756 + 0.632261i \(0.217873\pi\)
−0.774756 + 0.632261i \(0.782127\pi\)
\(272\) −2.30278 −0.139626
\(273\) 0 0
\(274\) 3.69722 0.223357
\(275\) 1.60555i 0.0968184i
\(276\) −9.90833 −0.596411
\(277\) −27.6056 −1.65866 −0.829328 0.558761i \(-0.811277\pi\)
−0.829328 + 0.558761i \(0.811277\pi\)
\(278\) − 14.7250i − 0.883146i
\(279\) 8.00000i 0.478947i
\(280\) 3.00000i 0.179284i
\(281\) 6.00000i 0.357930i 0.983855 + 0.178965i \(0.0572749\pi\)
−0.983855 + 0.178965i \(0.942725\pi\)
\(282\) −21.2111 −1.26310
\(283\) −5.00000 −0.297219 −0.148610 0.988896i \(-0.547480\pi\)
−0.148610 + 0.988896i \(0.547480\pi\)
\(284\) − 15.9083i − 0.943986i
\(285\) −5.60555 −0.332044
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) − 10.6056i − 0.624938i
\(289\) 40.8444 2.40261
\(290\) 14.3028 0.839888
\(291\) − 8.39445i − 0.492091i
\(292\) − 2.60555i − 0.152478i
\(293\) − 10.3944i − 0.607250i −0.952792 0.303625i \(-0.901803\pi\)
0.952792 0.303625i \(-0.0981970\pi\)
\(294\) − 13.8167i − 0.805804i
\(295\) 10.8167 0.629770
\(296\) 10.8167 0.628705
\(297\) 8.02776i 0.465818i
\(298\) 6.90833 0.400189
\(299\) 0 0
\(300\) 3.30278 0.190686
\(301\) 10.2111i 0.588558i
\(302\) 2.78890 0.160483
\(303\) 9.00000 0.517036
\(304\) − 1.69722i − 0.0973425i
\(305\) 1.00000i 0.0572598i
\(306\) − 35.0278i − 2.00240i
\(307\) 16.0000i 0.913168i 0.889680 + 0.456584i \(0.150927\pi\)
−0.889680 + 0.456584i \(0.849073\pi\)
\(308\) −5.30278 −0.302154
\(309\) 4.00000 0.227552
\(310\) 9.21110i 0.523155i
\(311\) 9.21110 0.522314 0.261157 0.965296i \(-0.415896\pi\)
0.261157 + 0.965296i \(0.415896\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) − 25.8167i − 1.45692i
\(315\) −2.00000 −0.112687
\(316\) −17.2111 −0.968200
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 7.39445i 0.414660i
\(319\) 9.97224i 0.558338i
\(320\) − 12.8167i − 0.716473i
\(321\) 6.21110 0.346670
\(322\) 6.90833 0.384986
\(323\) 42.6333i 2.37218i
\(324\) −3.30278 −0.183488
\(325\) 0 0
\(326\) 8.72498 0.483232
\(327\) − 19.2111i − 1.06238i
\(328\) −9.00000 −0.496942
\(329\) 9.21110 0.507825
\(330\) 3.69722i 0.203526i
\(331\) 10.0278i 0.551175i 0.961276 + 0.275588i \(0.0888724\pi\)
−0.961276 + 0.275588i \(0.911128\pi\)
\(332\) 30.4222i 1.66964i
\(333\) 7.21110i 0.395166i
\(334\) −20.7250 −1.13402
\(335\) −7.00000 −0.382451
\(336\) 0.302776i 0.0165178i
\(337\) 25.6333 1.39634 0.698168 0.715934i \(-0.253999\pi\)
0.698168 + 0.715934i \(0.253999\pi\)
\(338\) 0 0
\(339\) −1.60555 −0.0872016
\(340\) − 25.1194i − 1.36229i
\(341\) −6.42221 −0.347782
\(342\) 25.8167 1.39600
\(343\) 13.0000i 0.701934i
\(344\) 30.6333i 1.65164i
\(345\) − 3.00000i − 0.161515i
\(346\) 11.0917i 0.596292i
\(347\) 5.78890 0.310764 0.155382 0.987854i \(-0.450339\pi\)
0.155382 + 0.987854i \(0.450339\pi\)
\(348\) 20.5139 1.09966
\(349\) 3.78890i 0.202815i 0.994845 + 0.101408i \(0.0323346\pi\)
−0.994845 + 0.101408i \(0.967665\pi\)
\(350\) −2.30278 −0.123089
\(351\) 0 0
\(352\) 8.51388 0.453791
\(353\) 16.8167i 0.895060i 0.894269 + 0.447530i \(0.147696\pi\)
−0.894269 + 0.447530i \(0.852304\pi\)
\(354\) 24.9083 1.32386
\(355\) 4.81665 0.255641
\(356\) − 20.5139i − 1.08723i
\(357\) − 7.60555i − 0.402528i
\(358\) 52.5416i 2.77691i
\(359\) − 18.4222i − 0.972287i −0.873879 0.486143i \(-0.838403\pi\)
0.873879 0.486143i \(-0.161597\pi\)
\(360\) −6.00000 −0.316228
\(361\) −12.4222 −0.653800
\(362\) 40.6056i 2.13418i
\(363\) 8.42221 0.442051
\(364\) 0 0
\(365\) 0.788897 0.0412928
\(366\) 2.30278i 0.120368i
\(367\) 11.4222 0.596234 0.298117 0.954529i \(-0.403641\pi\)
0.298117 + 0.954529i \(0.403641\pi\)
\(368\) 0.908327 0.0473498
\(369\) − 6.00000i − 0.312348i
\(370\) 8.30278i 0.431641i
\(371\) − 3.21110i − 0.166712i
\(372\) 13.2111i 0.684964i
\(373\) −20.3944 −1.05598 −0.527992 0.849249i \(-0.677055\pi\)
−0.527992 + 0.849249i \(0.677055\pi\)
\(374\) 28.1194 1.45402
\(375\) 1.00000i 0.0516398i
\(376\) 27.6333 1.42508
\(377\) 0 0
\(378\) −11.5139 −0.592210
\(379\) 9.60555i 0.493404i 0.969091 + 0.246702i \(0.0793469\pi\)
−0.969091 + 0.246702i \(0.920653\pi\)
\(380\) 18.5139 0.949742
\(381\) 4.21110 0.215741
\(382\) − 38.7250i − 1.98134i
\(383\) − 24.6333i − 1.25870i −0.777121 0.629352i \(-0.783321\pi\)
0.777121 0.629352i \(-0.216679\pi\)
\(384\) − 18.9083i − 0.964912i
\(385\) − 1.60555i − 0.0818265i
\(386\) −35.9361 −1.82910
\(387\) −20.4222 −1.03812
\(388\) 27.7250i 1.40752i
\(389\) 15.2111 0.771234 0.385617 0.922659i \(-0.373989\pi\)
0.385617 + 0.922659i \(0.373989\pi\)
\(390\) 0 0
\(391\) −22.8167 −1.15389
\(392\) 18.0000i 0.909137i
\(393\) −21.2111 −1.06996
\(394\) 2.72498 0.137283
\(395\) − 5.21110i − 0.262199i
\(396\) − 10.6056i − 0.532949i
\(397\) − 22.0278i − 1.10554i −0.833333 0.552771i \(-0.813571\pi\)
0.833333 0.552771i \(-0.186429\pi\)
\(398\) 29.5139i 1.47940i
\(399\) 5.60555 0.280629
\(400\) −0.302776 −0.0151388
\(401\) − 12.2111i − 0.609793i −0.952385 0.304897i \(-0.901378\pi\)
0.952385 0.304897i \(-0.0986219\pi\)
\(402\) −16.1194 −0.803964
\(403\) 0 0
\(404\) −29.7250 −1.47887
\(405\) − 1.00000i − 0.0496904i
\(406\) −14.3028 −0.709835
\(407\) −5.78890 −0.286945
\(408\) − 22.8167i − 1.12959i
\(409\) 8.21110i 0.406013i 0.979177 + 0.203006i \(0.0650712\pi\)
−0.979177 + 0.203006i \(0.934929\pi\)
\(410\) − 6.90833i − 0.341178i
\(411\) 1.60555i 0.0791960i
\(412\) −13.2111 −0.650864
\(413\) −10.8167 −0.532253
\(414\) 13.8167i 0.679051i
\(415\) −9.21110 −0.452155
\(416\) 0 0
\(417\) 6.39445 0.313138
\(418\) 20.7250i 1.01369i
\(419\) 17.2389 0.842173 0.421087 0.907020i \(-0.361649\pi\)
0.421087 + 0.907020i \(0.361649\pi\)
\(420\) −3.30278 −0.161159
\(421\) 32.4222i 1.58016i 0.613003 + 0.790081i \(0.289961\pi\)
−0.613003 + 0.790081i \(0.710039\pi\)
\(422\) 54.3583i 2.64612i
\(423\) 18.4222i 0.895718i
\(424\) − 9.63331i − 0.467835i
\(425\) 7.60555 0.368923
\(426\) 11.0917 0.537393
\(427\) − 1.00000i − 0.0483934i
\(428\) −20.5139 −0.991576
\(429\) 0 0
\(430\) −23.5139 −1.13394
\(431\) 29.2389i 1.40839i 0.710008 + 0.704193i \(0.248691\pi\)
−0.710008 + 0.704193i \(0.751309\pi\)
\(432\) −1.51388 −0.0728365
\(433\) −3.60555 −0.173272 −0.0866359 0.996240i \(-0.527612\pi\)
−0.0866359 + 0.996240i \(0.527612\pi\)
\(434\) − 9.21110i − 0.442147i
\(435\) 6.21110i 0.297800i
\(436\) 63.4500i 3.03870i
\(437\) − 16.8167i − 0.804450i
\(438\) 1.81665 0.0868031
\(439\) 27.2389 1.30004 0.650020 0.759917i \(-0.274761\pi\)
0.650020 + 0.759917i \(0.274761\pi\)
\(440\) − 4.81665i − 0.229625i
\(441\) −12.0000 −0.571429
\(442\) 0 0
\(443\) 6.42221 0.305128 0.152564 0.988294i \(-0.451247\pi\)
0.152564 + 0.988294i \(0.451247\pi\)
\(444\) 11.9083i 0.565144i
\(445\) 6.21110 0.294434
\(446\) −9.69722 −0.459177
\(447\) 3.00000i 0.141895i
\(448\) 12.8167i 0.605530i
\(449\) − 30.6333i − 1.44568i −0.691018 0.722838i \(-0.742837\pi\)
0.691018 0.722838i \(-0.257163\pi\)
\(450\) − 4.60555i − 0.217108i
\(451\) 4.81665 0.226807
\(452\) 5.30278 0.249422
\(453\) 1.21110i 0.0569026i
\(454\) −63.1472 −2.96364
\(455\) 0 0
\(456\) 16.8167 0.787512
\(457\) − 26.8167i − 1.25443i −0.778846 0.627215i \(-0.784195\pi\)
0.778846 0.627215i \(-0.215805\pi\)
\(458\) −32.2389 −1.50642
\(459\) 38.0278 1.77498
\(460\) 9.90833i 0.461978i
\(461\) 36.2111i 1.68652i 0.537507 + 0.843260i \(0.319366\pi\)
−0.537507 + 0.843260i \(0.680634\pi\)
\(462\) − 3.69722i − 0.172010i
\(463\) 34.4222i 1.59974i 0.600176 + 0.799868i \(0.295097\pi\)
−0.600176 + 0.799868i \(0.704903\pi\)
\(464\) −1.88057 −0.0873033
\(465\) −4.00000 −0.185496
\(466\) 35.0278i 1.62263i
\(467\) −2.78890 −0.129055 −0.0645274 0.997916i \(-0.520554\pi\)
−0.0645274 + 0.997916i \(0.520554\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 21.2111i 0.978395i
\(471\) 11.2111 0.516580
\(472\) −32.4500 −1.49363
\(473\) − 16.3944i − 0.753818i
\(474\) − 12.0000i − 0.551178i
\(475\) 5.60555i 0.257200i
\(476\) 25.1194i 1.15135i
\(477\) 6.42221 0.294053
\(478\) 0 0
\(479\) 28.8167i 1.31667i 0.752727 + 0.658333i \(0.228738\pi\)
−0.752727 + 0.658333i \(0.771262\pi\)
\(480\) 5.30278 0.242037
\(481\) 0 0
\(482\) −4.11943 −0.187635
\(483\) 3.00000i 0.136505i
\(484\) −27.8167 −1.26439
\(485\) −8.39445 −0.381172
\(486\) − 36.8444i − 1.67130i
\(487\) − 1.00000i − 0.0453143i −0.999743 0.0226572i \(-0.992787\pi\)
0.999743 0.0226572i \(-0.00721262\pi\)
\(488\) − 3.00000i − 0.135804i
\(489\) 3.78890i 0.171340i
\(490\) −13.8167 −0.624173
\(491\) 16.8167 0.758925 0.379462 0.925207i \(-0.376109\pi\)
0.379462 + 0.925207i \(0.376109\pi\)
\(492\) − 9.90833i − 0.446702i
\(493\) 47.2389 2.12753
\(494\) 0 0
\(495\) 3.21110 0.144328
\(496\) − 1.21110i − 0.0543801i
\(497\) −4.81665 −0.216056
\(498\) −21.2111 −0.950492
\(499\) 2.42221i 0.108433i 0.998529 + 0.0542164i \(0.0172661\pi\)
−0.998529 + 0.0542164i \(0.982734\pi\)
\(500\) − 3.30278i − 0.147705i
\(501\) − 9.00000i − 0.402090i
\(502\) − 16.5416i − 0.738289i
\(503\) 3.00000 0.133763 0.0668817 0.997761i \(-0.478695\pi\)
0.0668817 + 0.997761i \(0.478695\pi\)
\(504\) 6.00000 0.267261
\(505\) − 9.00000i − 0.400495i
\(506\) −11.0917 −0.493085
\(507\) 0 0
\(508\) −13.9083 −0.617082
\(509\) 3.00000i 0.132973i 0.997787 + 0.0664863i \(0.0211789\pi\)
−0.997787 + 0.0664863i \(0.978821\pi\)
\(510\) 17.5139 0.775528
\(511\) −0.788897 −0.0348988
\(512\) 3.42221i 0.151242i
\(513\) 28.0278i 1.23746i
\(514\) − 37.7527i − 1.66520i
\(515\) − 4.00000i − 0.176261i
\(516\) −33.7250 −1.48466
\(517\) −14.7889 −0.650415
\(518\) − 8.30278i − 0.364803i
\(519\) −4.81665 −0.211428
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) − 28.6056i − 1.25203i
\(523\) −1.42221 −0.0621887 −0.0310943 0.999516i \(-0.509899\pi\)
−0.0310943 + 0.999516i \(0.509899\pi\)
\(524\) 70.0555 3.06039
\(525\) − 1.00000i − 0.0436436i
\(526\) − 27.1472i − 1.18367i
\(527\) 30.4222i 1.32521i
\(528\) − 0.486122i − 0.0211557i
\(529\) −14.0000 −0.608696
\(530\) 7.39445 0.321194
\(531\) − 21.6333i − 0.938806i
\(532\) −18.5139 −0.802678
\(533\) 0 0
\(534\) 14.3028 0.618942
\(535\) − 6.21110i − 0.268529i
\(536\) 21.0000 0.907062
\(537\) −22.8167 −0.984611
\(538\) 20.7250i 0.893517i
\(539\) − 9.63331i − 0.414936i
\(540\) − 16.5139i − 0.710644i
\(541\) 25.6333i 1.10206i 0.834485 + 0.551031i \(0.185765\pi\)
−0.834485 + 0.551031i \(0.814235\pi\)
\(542\) 47.9361 2.05903
\(543\) −17.6333 −0.756718
\(544\) − 40.3305i − 1.72916i
\(545\) −19.2111 −0.822913
\(546\) 0 0
\(547\) 32.8444 1.40433 0.702163 0.712016i \(-0.252218\pi\)
0.702163 + 0.712016i \(0.252218\pi\)
\(548\) − 5.30278i − 0.226523i
\(549\) 2.00000 0.0853579
\(550\) 3.69722 0.157650
\(551\) 34.8167i 1.48324i
\(552\) 9.00000i 0.383065i
\(553\) 5.21110i 0.221599i
\(554\) 63.5694i 2.70080i
\(555\) −3.60555 −0.153047
\(556\) −21.1194 −0.895663
\(557\) 1.60555i 0.0680294i 0.999421 + 0.0340147i \(0.0108293\pi\)
−0.999421 + 0.0340147i \(0.989171\pi\)
\(558\) 18.4222 0.779874
\(559\) 0 0
\(560\) 0.302776 0.0127946
\(561\) 12.2111i 0.515553i
\(562\) 13.8167 0.582820
\(563\) −9.42221 −0.397099 −0.198549 0.980091i \(-0.563623\pi\)
−0.198549 + 0.980091i \(0.563623\pi\)
\(564\) 30.4222i 1.28101i
\(565\) 1.60555i 0.0675460i
\(566\) 11.5139i 0.483964i
\(567\) 1.00000i 0.0419961i
\(568\) −14.4500 −0.606307
\(569\) 27.4222 1.14960 0.574799 0.818294i \(-0.305080\pi\)
0.574799 + 0.818294i \(0.305080\pi\)
\(570\) 12.9083i 0.540670i
\(571\) −20.8444 −0.872311 −0.436156 0.899871i \(-0.643660\pi\)
−0.436156 + 0.899871i \(0.643660\pi\)
\(572\) 0 0
\(573\) 16.8167 0.702526
\(574\) 6.90833i 0.288348i
\(575\) −3.00000 −0.125109
\(576\) −25.6333 −1.06805
\(577\) − 13.6333i − 0.567562i −0.958889 0.283781i \(-0.908411\pi\)
0.958889 0.283781i \(-0.0915889\pi\)
\(578\) − 94.0555i − 3.91219i
\(579\) − 15.6056i − 0.648545i
\(580\) − 20.5139i − 0.851792i
\(581\) 9.21110 0.382141
\(582\) −19.3305 −0.801276
\(583\) 5.15559i 0.213523i
\(584\) −2.36669 −0.0979344
\(585\) 0 0
\(586\) −23.9361 −0.988790
\(587\) − 33.4222i − 1.37948i −0.724056 0.689741i \(-0.757724\pi\)
0.724056 0.689741i \(-0.242276\pi\)
\(588\) −19.8167 −0.817225
\(589\) −22.4222 −0.923891
\(590\) − 24.9083i − 1.02546i
\(591\) 1.18335i 0.0486764i
\(592\) − 1.09167i − 0.0448675i
\(593\) − 20.7889i − 0.853698i −0.904323 0.426849i \(-0.859624\pi\)
0.904323 0.426849i \(-0.140376\pi\)
\(594\) 18.4861 0.758495
\(595\) −7.60555 −0.311797
\(596\) − 9.90833i − 0.405861i
\(597\) −12.8167 −0.524551
\(598\) 0 0
\(599\) −21.2111 −0.866662 −0.433331 0.901235i \(-0.642662\pi\)
−0.433331 + 0.901235i \(0.642662\pi\)
\(600\) − 3.00000i − 0.122474i
\(601\) 13.7889 0.562461 0.281230 0.959640i \(-0.409257\pi\)
0.281230 + 0.959640i \(0.409257\pi\)
\(602\) 23.5139 0.958354
\(603\) 14.0000i 0.570124i
\(604\) − 4.00000i − 0.162758i
\(605\) − 8.42221i − 0.342411i
\(606\) − 20.7250i − 0.841895i
\(607\) −34.2111 −1.38859 −0.694293 0.719693i \(-0.744283\pi\)
−0.694293 + 0.719693i \(0.744283\pi\)
\(608\) 29.7250 1.20551
\(609\) − 6.21110i − 0.251687i
\(610\) 2.30278 0.0932367
\(611\) 0 0
\(612\) −50.2389 −2.03079
\(613\) − 5.60555i − 0.226406i −0.993572 0.113203i \(-0.963889\pi\)
0.993572 0.113203i \(-0.0361111\pi\)
\(614\) 36.8444 1.48692
\(615\) 3.00000 0.120972
\(616\) 4.81665i 0.194069i
\(617\) − 38.4500i − 1.54794i −0.633224 0.773969i \(-0.718269\pi\)
0.633224 0.773969i \(-0.281731\pi\)
\(618\) − 9.21110i − 0.370525i
\(619\) − 14.4222i − 0.579677i −0.957076 0.289839i \(-0.906398\pi\)
0.957076 0.289839i \(-0.0936017\pi\)
\(620\) 13.2111 0.530571
\(621\) −15.0000 −0.601929
\(622\) − 21.2111i − 0.850488i
\(623\) −6.21110 −0.248843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) − 32.2389i − 1.28852i
\(627\) −9.00000 −0.359425
\(628\) −37.0278 −1.47757
\(629\) 27.4222i 1.09339i
\(630\) 4.60555i 0.183490i
\(631\) 36.0278i 1.43424i 0.696949 + 0.717121i \(0.254541\pi\)
−0.696949 + 0.717121i \(0.745459\pi\)
\(632\) 15.6333i 0.621860i
\(633\) −23.6056 −0.938236
\(634\) 13.8167 0.548729
\(635\) − 4.21110i − 0.167113i
\(636\) 10.6056 0.420537
\(637\) 0 0
\(638\) 22.9638 0.909147
\(639\) − 9.63331i − 0.381088i
\(640\) −18.9083 −0.747417
\(641\) −9.42221 −0.372155 −0.186077 0.982535i \(-0.559578\pi\)
−0.186077 + 0.982535i \(0.559578\pi\)
\(642\) − 14.3028i − 0.564486i
\(643\) 2.63331i 0.103848i 0.998651 + 0.0519238i \(0.0165353\pi\)
−0.998651 + 0.0519238i \(0.983465\pi\)
\(644\) − 9.90833i − 0.390443i
\(645\) − 10.2111i − 0.402062i
\(646\) 98.1749 3.86264
\(647\) −39.4222 −1.54985 −0.774923 0.632055i \(-0.782212\pi\)
−0.774923 + 0.632055i \(0.782212\pi\)
\(648\) 3.00000i 0.117851i
\(649\) 17.3667 0.681702
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) − 12.5139i − 0.490081i
\(653\) −7.18335 −0.281106 −0.140553 0.990073i \(-0.544888\pi\)
−0.140553 + 0.990073i \(0.544888\pi\)
\(654\) −44.2389 −1.72988
\(655\) 21.2111i 0.828786i
\(656\) 0.908327i 0.0354642i
\(657\) − 1.57779i − 0.0615556i
\(658\) − 21.2111i − 0.826895i
\(659\) −34.8167 −1.35626 −0.678132 0.734940i \(-0.737210\pi\)
−0.678132 + 0.734940i \(0.737210\pi\)
\(660\) 5.30278 0.206410
\(661\) 4.63331i 0.180215i 0.995932 + 0.0901074i \(0.0287210\pi\)
−0.995932 + 0.0901074i \(0.971279\pi\)
\(662\) 23.0917 0.897483
\(663\) 0 0
\(664\) 27.6333 1.07238
\(665\) − 5.60555i − 0.217374i
\(666\) 16.6056 0.643452
\(667\) −18.6333 −0.721485
\(668\) 29.7250i 1.15009i
\(669\) − 4.21110i − 0.162811i
\(670\) 16.1194i 0.622748i
\(671\) 1.60555i 0.0619816i
\(672\) −5.30278 −0.204559
\(673\) 17.6056 0.678644 0.339322 0.940670i \(-0.389802\pi\)
0.339322 + 0.940670i \(0.389802\pi\)
\(674\) − 59.0278i − 2.27366i
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) −9.63331 −0.370238 −0.185119 0.982716i \(-0.559267\pi\)
−0.185119 + 0.982716i \(0.559267\pi\)
\(678\) 3.69722i 0.141991i
\(679\) 8.39445 0.322149
\(680\) −22.8167 −0.874979
\(681\) − 27.4222i − 1.05082i
\(682\) 14.7889i 0.566296i
\(683\) − 36.2111i − 1.38558i −0.721140 0.692790i \(-0.756381\pi\)
0.721140 0.692790i \(-0.243619\pi\)
\(684\) − 37.0278i − 1.41579i
\(685\) 1.60555 0.0613450
\(686\) 29.9361 1.14296
\(687\) − 14.0000i − 0.534133i
\(688\) 3.09167 0.117869
\(689\) 0 0
\(690\) −6.90833 −0.262996
\(691\) − 30.0278i − 1.14231i −0.820842 0.571155i \(-0.806496\pi\)
0.820842 0.571155i \(-0.193504\pi\)
\(692\) 15.9083 0.604744
\(693\) −3.21110 −0.121980
\(694\) − 13.3305i − 0.506020i
\(695\) − 6.39445i − 0.242555i
\(696\) − 18.6333i − 0.706294i
\(697\) − 22.8167i − 0.864242i
\(698\) 8.72498 0.330245
\(699\) −15.2111 −0.575337
\(700\) 3.30278i 0.124833i
\(701\) 36.4222 1.37565 0.687824 0.725878i \(-0.258566\pi\)
0.687824 + 0.725878i \(0.258566\pi\)
\(702\) 0 0
\(703\) −20.2111 −0.762276
\(704\) − 20.5778i − 0.775555i
\(705\) −9.21110 −0.346910
\(706\) 38.7250 1.45743
\(707\) 9.00000i 0.338480i
\(708\) − 35.7250i − 1.34263i
\(709\) 13.8444i 0.519938i 0.965617 + 0.259969i \(0.0837123\pi\)
−0.965617 + 0.259969i \(0.916288\pi\)
\(710\) − 11.0917i − 0.416263i
\(711\) −10.4222 −0.390863
\(712\) −18.6333 −0.698313
\(713\) − 12.0000i − 0.449404i
\(714\) −17.5139 −0.655440
\(715\) 0 0
\(716\) 75.3583 2.81627
\(717\) 0 0
\(718\) −42.4222 −1.58318
\(719\) 25.6056 0.954926 0.477463 0.878652i \(-0.341556\pi\)
0.477463 + 0.878652i \(0.341556\pi\)
\(720\) 0.605551i 0.0225676i
\(721\) 4.00000i 0.148968i
\(722\) 28.6056i 1.06459i
\(723\) − 1.78890i − 0.0665298i
\(724\) 58.2389 2.16443
\(725\) 6.21110 0.230675
\(726\) − 19.3944i − 0.719796i
\(727\) −13.5778 −0.503573 −0.251786 0.967783i \(-0.581018\pi\)
−0.251786 + 0.967783i \(0.581018\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) − 1.81665i − 0.0672374i
\(731\) −77.6611 −2.87240
\(732\) 3.30278 0.122074
\(733\) − 46.8444i − 1.73024i −0.501567 0.865119i \(-0.667243\pi\)
0.501567 0.865119i \(-0.332757\pi\)
\(734\) − 26.3028i − 0.970853i
\(735\) − 6.00000i − 0.221313i
\(736\) 15.9083i 0.586389i
\(737\) −11.2389 −0.413989
\(738\) −13.8167 −0.508598
\(739\) 35.6056i 1.30977i 0.755728 + 0.654886i \(0.227283\pi\)
−0.755728 + 0.654886i \(0.772717\pi\)
\(740\) 11.9083 0.437759
\(741\) 0 0
\(742\) −7.39445 −0.271459
\(743\) 36.6333i 1.34395i 0.740576 + 0.671973i \(0.234553\pi\)
−0.740576 + 0.671973i \(0.765447\pi\)
\(744\) 12.0000 0.439941
\(745\) 3.00000 0.109911
\(746\) 46.9638i 1.71947i
\(747\) 18.4222i 0.674033i
\(748\) − 40.3305i − 1.47463i
\(749\) 6.21110i 0.226949i
\(750\) 2.30278 0.0840855
\(751\) −46.4500 −1.69498 −0.847492 0.530809i \(-0.821888\pi\)
−0.847492 + 0.530809i \(0.821888\pi\)
\(752\) − 2.78890i − 0.101701i
\(753\) 7.18335 0.261776
\(754\) 0 0
\(755\) 1.21110 0.0440765
\(756\) 16.5139i 0.600604i
\(757\) 0.816654 0.0296818 0.0148409 0.999890i \(-0.495276\pi\)
0.0148409 + 0.999890i \(0.495276\pi\)
\(758\) 22.1194 0.803414
\(759\) − 4.81665i − 0.174833i
\(760\) − 16.8167i − 0.610004i
\(761\) − 18.6333i − 0.675457i −0.941244 0.337728i \(-0.890341\pi\)
0.941244 0.337728i \(-0.109659\pi\)
\(762\) − 9.69722i − 0.351293i
\(763\) 19.2111 0.695489
\(764\) −55.5416 −2.00943
\(765\) − 15.2111i − 0.549959i
\(766\) −56.7250 −2.04956
\(767\) 0 0
\(768\) −17.9083 −0.646211
\(769\) 11.0000i 0.396670i 0.980134 + 0.198335i \(0.0635534\pi\)
−0.980134 + 0.198335i \(0.936447\pi\)
\(770\) −3.69722 −0.133239
\(771\) 16.3944 0.590432
\(772\) 51.5416i 1.85502i
\(773\) 22.3944i 0.805472i 0.915316 + 0.402736i \(0.131941\pi\)
−0.915316 + 0.402736i \(0.868059\pi\)
\(774\) 47.0278i 1.69038i
\(775\) 4.00000i 0.143684i
\(776\) 25.1833 0.904029
\(777\) 3.60555 0.129348
\(778\) − 35.0278i − 1.25581i
\(779\) 16.8167 0.602519
\(780\) 0 0
\(781\) 7.73338 0.276722
\(782\) 52.5416i 1.87889i
\(783\) 31.0555 1.10983
\(784\) 1.81665 0.0648805
\(785\) − 11.2111i − 0.400141i
\(786\) 48.8444i 1.74222i
\(787\) − 14.6333i − 0.521621i −0.965390 0.260811i \(-0.916010\pi\)
0.965390 0.260811i \(-0.0839898\pi\)
\(788\) − 3.90833i − 0.139228i
\(789\) 11.7889 0.419696
\(790\) −12.0000 −0.426941
\(791\) − 1.60555i − 0.0570868i
\(792\) −9.63331 −0.342305
\(793\) 0 0
\(794\) −50.7250 −1.80016
\(795\) 3.21110i 0.113886i
\(796\) 42.3305 1.50037
\(797\) 14.4500 0.511844 0.255922 0.966697i \(-0.417621\pi\)
0.255922 + 0.966697i \(0.417621\pi\)
\(798\) − 12.9083i − 0.456950i
\(799\) 70.0555i 2.47839i
\(800\) − 5.30278i − 0.187481i
\(801\) − 12.4222i − 0.438917i
\(802\) −28.1194 −0.992932
\(803\) 1.26662 0.0446979
\(804\) 23.1194i 0.815359i
\(805\) 3.00000 0.105736
\(806\) 0 0
\(807\) −9.00000 −0.316815
\(808\) 27.0000i 0.949857i
\(809\) −55.0555 −1.93565 −0.967824 0.251627i \(-0.919034\pi\)
−0.967824 + 0.251627i \(0.919034\pi\)
\(810\) −2.30278 −0.0809113
\(811\) − 46.4222i − 1.63010i −0.579388 0.815052i \(-0.696708\pi\)
0.579388 0.815052i \(-0.303292\pi\)
\(812\) 20.5139i 0.719896i
\(813\) 20.8167i 0.730072i
\(814\) 13.3305i 0.467235i
\(815\) 3.78890 0.132719
\(816\) −2.30278 −0.0806133
\(817\) − 57.2389i − 2.00253i
\(818\) 18.9083 0.661114
\(819\) 0 0
\(820\) −9.90833 −0.346014
\(821\) 21.4222i 0.747640i 0.927501 + 0.373820i \(0.121952\pi\)
−0.927501 + 0.373820i \(0.878048\pi\)
\(822\) 3.69722 0.128956
\(823\) 16.6333 0.579801 0.289900 0.957057i \(-0.406378\pi\)
0.289900 + 0.957057i \(0.406378\pi\)
\(824\) 12.0000i 0.418040i
\(825\) 1.60555i 0.0558981i
\(826\) 24.9083i 0.866672i
\(827\) 42.4222i 1.47516i 0.675257 + 0.737582i \(0.264033\pi\)
−0.675257 + 0.737582i \(0.735967\pi\)
\(828\) 19.8167 0.688676
\(829\) −29.4222 −1.02188 −0.510938 0.859618i \(-0.670702\pi\)
−0.510938 + 0.859618i \(0.670702\pi\)
\(830\) 21.2111i 0.736248i
\(831\) −27.6056 −0.957626
\(832\) 0 0
\(833\) −45.6333 −1.58110
\(834\) − 14.7250i − 0.509884i
\(835\) −9.00000 −0.311458
\(836\) 29.7250 1.02806
\(837\) 20.0000i 0.691301i
\(838\) − 39.6972i − 1.37132i
\(839\) 20.0278i 0.691435i 0.938339 + 0.345717i \(0.112364\pi\)
−0.938339 + 0.345717i \(0.887636\pi\)
\(840\) 3.00000i 0.103510i
\(841\) 9.57779 0.330269
\(842\) 74.6611 2.57299
\(843\) 6.00000i 0.206651i
\(844\) 77.9638 2.68363
\(845\) 0 0
\(846\) 42.4222 1.45851
\(847\) 8.42221i 0.289390i
\(848\) −0.972244 −0.0333870
\(849\) −5.00000 −0.171600
\(850\) − 17.5139i − 0.600721i
\(851\) − 10.8167i − 0.370790i
\(852\) − 15.9083i − 0.545010i
\(853\) − 47.2111i − 1.61648i −0.588855 0.808239i \(-0.700421\pi\)
0.588855 0.808239i \(-0.299579\pi\)
\(854\) −2.30278 −0.0787994
\(855\) 11.2111 0.383412
\(856\) 18.6333i 0.636873i
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 10.7889 0.368112 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(860\) 33.7250i 1.15001i
\(861\) −3.00000 −0.102240
\(862\) 67.3305 2.29329
\(863\) 36.0000i 1.22545i 0.790295 + 0.612727i \(0.209928\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) − 26.5139i − 0.902020i
\(865\) 4.81665i 0.163771i
\(866\) 8.30278i 0.282140i
\(867\) 40.8444 1.38715
\(868\) −13.2111 −0.448414
\(869\) − 8.36669i − 0.283821i
\(870\) 14.3028 0.484910
\(871\) 0 0
\(872\) 57.6333 1.95171
\(873\) 16.7889i 0.568218i
\(874\) −38.7250 −1.30989
\(875\) −1.00000 −0.0338062
\(876\) − 2.60555i − 0.0880334i
\(877\) − 1.97224i − 0.0665979i −0.999445 0.0332990i \(-0.989399\pi\)
0.999445 0.0332990i \(-0.0106014\pi\)
\(878\) − 62.7250i − 2.11687i
\(879\) − 10.3944i − 0.350596i
\(880\) −0.486122 −0.0163872
\(881\) 21.8444 0.735957 0.367978 0.929834i \(-0.380050\pi\)
0.367978 + 0.929834i \(0.380050\pi\)
\(882\) 27.6333i 0.930462i
\(883\) −11.6333 −0.391492 −0.195746 0.980655i \(-0.562713\pi\)
−0.195746 + 0.980655i \(0.562713\pi\)
\(884\) 0 0
\(885\) 10.8167 0.363598
\(886\) − 14.7889i − 0.496843i
\(887\) −37.0555 −1.24420 −0.622101 0.782937i \(-0.713721\pi\)
−0.622101 + 0.782937i \(0.713721\pi\)
\(888\) 10.8167 0.362983
\(889\) 4.21110i 0.141236i
\(890\) − 14.3028i − 0.479430i
\(891\) − 1.60555i − 0.0537880i
\(892\) 13.9083i 0.465685i
\(893\) −51.6333 −1.72784
\(894\) 6.90833 0.231049
\(895\) 22.8167i 0.762677i
\(896\) 18.9083 0.631683
\(897\) 0 0
\(898\) −70.5416 −2.35400
\(899\) 24.8444i 0.828607i
\(900\) −6.60555 −0.220185
\(901\) 24.4222 0.813622
\(902\) − 11.0917i − 0.369312i
\(903\) 10.2111i 0.339804i
\(904\) − 4.81665i − 0.160200i
\(905\) 17.6333i 0.586151i
\(906\) 2.78890 0.0926549
\(907\) 38.2666 1.27062 0.635311 0.772256i \(-0.280872\pi\)
0.635311 + 0.772256i \(0.280872\pi\)
\(908\) 90.5694i 3.00565i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) − 1.69722i − 0.0562007i
\(913\) −14.7889 −0.489441
\(914\) −61.7527 −2.04260
\(915\) 1.00000i 0.0330590i
\(916\) 46.2389i 1.52777i
\(917\) − 21.2111i − 0.700452i
\(918\) − 87.5694i − 2.89022i
\(919\) −38.8167 −1.28044 −0.640222 0.768190i \(-0.721157\pi\)
−0.640222 + 0.768190i \(0.721157\pi\)
\(920\) 9.00000 0.296721
\(921\) 16.0000i 0.527218i
\(922\) 83.3860 2.74617
\(923\) 0 0
\(924\) −5.30278 −0.174449
\(925\) 3.60555i 0.118550i
\(926\) 79.2666 2.60486
\(927\) −8.00000 −0.262754
\(928\) − 32.9361i − 1.08118i
\(929\) − 15.4222i − 0.505986i −0.967468 0.252993i \(-0.918585\pi\)
0.967468 0.252993i \(-0.0814150\pi\)
\(930\) 9.21110i 0.302044i
\(931\) − 33.6333i − 1.10229i
\(932\) 50.2389 1.64563
\(933\) 9.21110 0.301558
\(934\) 6.42221i 0.210141i
\(935\) 12.2111 0.399346
\(936\) 0 0
\(937\) 54.4777 1.77971 0.889855 0.456244i \(-0.150806\pi\)
0.889855 + 0.456244i \(0.150806\pi\)
\(938\) − 16.1194i − 0.526318i
\(939\) 14.0000 0.456873
\(940\) 30.4222 0.992263
\(941\) − 9.63331i − 0.314037i −0.987596 0.157018i \(-0.949812\pi\)
0.987596 0.157018i \(-0.0501882\pi\)
\(942\) − 25.8167i − 0.841152i
\(943\) 9.00000i 0.293080i
\(944\) 3.27502i 0.106593i
\(945\) −5.00000 −0.162650
\(946\) −37.7527 −1.22745
\(947\) 18.6333i 0.605501i 0.953070 + 0.302751i \(0.0979049\pi\)
−0.953070 + 0.302751i \(0.902095\pi\)
\(948\) −17.2111 −0.558991
\(949\) 0 0
\(950\) 12.9083 0.418801
\(951\) 6.00000i 0.194563i
\(952\) 22.8167 0.739492
\(953\) 14.4500 0.468080 0.234040 0.972227i \(-0.424805\pi\)
0.234040 + 0.972227i \(0.424805\pi\)
\(954\) − 14.7889i − 0.478808i
\(955\) − 16.8167i − 0.544174i
\(956\) 0 0
\(957\) 9.97224i 0.322357i
\(958\) 66.3583 2.14394
\(959\) −1.60555 −0.0518460
\(960\) − 12.8167i − 0.413656i
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) −12.4222 −0.400300
\(964\) 5.90833i 0.190294i
\(965\) −15.6056 −0.502360
\(966\) 6.90833 0.222272
\(967\) − 44.4777i − 1.43031i −0.698967 0.715153i \(-0.746357\pi\)
0.698967 0.715153i \(-0.253643\pi\)
\(968\) 25.2666i 0.812100i
\(969\) 42.6333i 1.36958i
\(970\) 19.3305i 0.620666i
\(971\) −44.0278 −1.41292 −0.706459 0.707754i \(-0.749709\pi\)
−0.706459 + 0.707754i \(0.749709\pi\)
\(972\) −52.8444 −1.69499
\(973\) 6.39445i 0.204997i
\(974\) −2.30278 −0.0737857
\(975\) 0 0
\(976\) −0.302776 −0.00969161
\(977\) 28.8167i 0.921926i 0.887419 + 0.460963i \(0.152496\pi\)
−0.887419 + 0.460963i \(0.847504\pi\)
\(978\) 8.72498 0.278994
\(979\) 9.97224 0.318714
\(980\) 19.8167i 0.633020i
\(981\) 38.4222i 1.22673i
\(982\) − 38.7250i − 1.23576i
\(983\) − 18.4222i − 0.587577i −0.955870 0.293789i \(-0.905084\pi\)
0.955870 0.293789i \(-0.0949162\pi\)
\(984\) −9.00000 −0.286910
\(985\) 1.18335 0.0377045
\(986\) − 108.780i − 3.46428i
\(987\) 9.21110 0.293193
\(988\) 0 0
\(989\) 30.6333 0.974083
\(990\) − 7.39445i − 0.235011i
\(991\) 40.0278 1.27152 0.635762 0.771885i \(-0.280686\pi\)
0.635762 + 0.771885i \(0.280686\pi\)
\(992\) 21.2111 0.673453
\(993\) 10.0278i 0.318221i
\(994\) 11.0917i 0.351807i
\(995\) 12.8167i 0.406315i
\(996\) 30.4222i 0.963964i
\(997\) −18.4500 −0.584316 −0.292158 0.956370i \(-0.594373\pi\)
−0.292158 + 0.956370i \(0.594373\pi\)
\(998\) 5.57779 0.176562
\(999\) 18.0278i 0.570373i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.c.d.506.1 4
13.2 odd 12 65.2.e.b.61.2 yes 4
13.3 even 3 845.2.m.d.316.4 8
13.4 even 6 845.2.m.d.361.4 8
13.5 odd 4 845.2.a.c.1.1 2
13.6 odd 12 65.2.e.b.16.2 4
13.7 odd 12 845.2.e.d.146.1 4
13.8 odd 4 845.2.a.f.1.2 2
13.9 even 3 845.2.m.d.361.1 8
13.10 even 6 845.2.m.d.316.1 8
13.11 odd 12 845.2.e.d.191.1 4
13.12 even 2 inner 845.2.c.d.506.4 4
39.2 even 12 585.2.j.d.451.1 4
39.5 even 4 7605.2.a.bg.1.2 2
39.8 even 4 7605.2.a.bb.1.1 2
39.32 even 12 585.2.j.d.406.1 4
52.15 even 12 1040.2.q.o.321.2 4
52.19 even 12 1040.2.q.o.81.2 4
65.2 even 12 325.2.o.b.74.4 8
65.19 odd 12 325.2.e.a.276.1 4
65.28 even 12 325.2.o.b.74.1 8
65.32 even 12 325.2.o.b.224.1 8
65.34 odd 4 4225.2.a.t.1.1 2
65.44 odd 4 4225.2.a.x.1.2 2
65.54 odd 12 325.2.e.a.126.1 4
65.58 even 12 325.2.o.b.224.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.2 4 13.6 odd 12
65.2.e.b.61.2 yes 4 13.2 odd 12
325.2.e.a.126.1 4 65.54 odd 12
325.2.e.a.276.1 4 65.19 odd 12
325.2.o.b.74.1 8 65.28 even 12
325.2.o.b.74.4 8 65.2 even 12
325.2.o.b.224.1 8 65.32 even 12
325.2.o.b.224.4 8 65.58 even 12
585.2.j.d.406.1 4 39.32 even 12
585.2.j.d.451.1 4 39.2 even 12
845.2.a.c.1.1 2 13.5 odd 4
845.2.a.f.1.2 2 13.8 odd 4
845.2.c.d.506.1 4 1.1 even 1 trivial
845.2.c.d.506.4 4 13.12 even 2 inner
845.2.e.d.146.1 4 13.7 odd 12
845.2.e.d.191.1 4 13.11 odd 12
845.2.m.d.316.1 8 13.10 even 6
845.2.m.d.316.4 8 13.3 even 3
845.2.m.d.361.1 8 13.9 even 3
845.2.m.d.361.4 8 13.4 even 6
1040.2.q.o.81.2 4 52.19 even 12
1040.2.q.o.321.2 4 52.15 even 12
4225.2.a.t.1.1 2 65.34 odd 4
4225.2.a.x.1.2 2 65.44 odd 4
7605.2.a.bb.1.1 2 39.8 even 4
7605.2.a.bg.1.2 2 39.5 even 4