Properties

Label 585.2.j.d.451.1
Level $585$
Weight $2$
Character 585.451
Analytic conductor $4.671$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(406,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(1.15139 - 1.99426i\) of defining polynomial
Character \(\chi\) \(=\) 585.451
Dual form 585.2.j.d.406.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15139 + 1.99426i) q^{2} +(-1.65139 - 2.86029i) q^{4} +1.00000 q^{5} +(0.500000 + 0.866025i) q^{7} +3.00000 q^{8} +(-1.15139 + 1.99426i) q^{10} +(0.802776 - 1.39045i) q^{11} -3.60555 q^{13} -2.30278 q^{14} +(-0.151388 + 0.262211i) q^{16} +(3.80278 + 6.58660i) q^{17} +(2.80278 + 4.85455i) q^{19} +(-1.65139 - 2.86029i) q^{20} +(1.84861 + 3.20189i) q^{22} +(-1.50000 + 2.59808i) q^{23} +1.00000 q^{25} +(4.15139 - 7.19041i) q^{26} +(1.65139 - 2.86029i) q^{28} +(-3.10555 + 5.37897i) q^{29} -4.00000 q^{31} +(2.65139 + 4.59234i) q^{32} -17.5139 q^{34} +(0.500000 + 0.866025i) q^{35} +(-1.80278 + 3.12250i) q^{37} -12.9083 q^{38} +3.00000 q^{40} +(1.50000 - 2.59808i) q^{41} +(5.10555 + 8.84307i) q^{43} -5.30278 q^{44} +(-3.45416 - 5.98279i) q^{46} -9.21110 q^{47} +(3.00000 - 5.19615i) q^{49} +(-1.15139 + 1.99426i) q^{50} +(5.95416 + 10.3129i) q^{52} +3.21110 q^{53} +(0.802776 - 1.39045i) q^{55} +(1.50000 + 2.59808i) q^{56} +(-7.15139 - 12.3866i) q^{58} +(-5.40833 - 9.36750i) q^{59} +(0.500000 + 0.866025i) q^{61} +(4.60555 - 7.97705i) q^{62} -12.8167 q^{64} -3.60555 q^{65} +(3.50000 - 6.06218i) q^{67} +(12.5597 - 21.7541i) q^{68} -2.30278 q^{70} +(2.40833 + 4.17134i) q^{71} -0.788897 q^{73} +(-4.15139 - 7.19041i) q^{74} +(9.25694 - 16.0335i) q^{76} +1.60555 q^{77} +5.21110 q^{79} +(-0.151388 + 0.262211i) q^{80} +(3.45416 + 5.98279i) q^{82} +9.21110 q^{83} +(3.80278 + 6.58660i) q^{85} -23.5139 q^{86} +(2.40833 - 4.17134i) q^{88} +(-3.10555 + 5.37897i) q^{89} +(-1.80278 - 3.12250i) q^{91} +9.90833 q^{92} +(10.6056 - 18.3694i) q^{94} +(2.80278 + 4.85455i) q^{95} +(4.19722 + 7.26981i) q^{97} +(6.90833 + 11.9656i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 3 q^{4} + 4 q^{5} + 2 q^{7} + 12 q^{8} - q^{10} - 4 q^{11} - 2 q^{14} + 3 q^{16} + 8 q^{17} + 4 q^{19} - 3 q^{20} + 11 q^{22} - 6 q^{23} + 4 q^{25} + 13 q^{26} + 3 q^{28} + 2 q^{29} - 16 q^{31}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15139 + 1.99426i −0.814154 + 1.41016i 0.0957796 + 0.995403i \(0.469466\pi\)
−0.909934 + 0.414754i \(0.863868\pi\)
\(3\) 0 0
\(4\) −1.65139 2.86029i −0.825694 1.43014i
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i 0.944911 0.327327i \(-0.106148\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) −1.15139 + 1.99426i −0.364101 + 0.630641i
\(11\) 0.802776 1.39045i 0.242046 0.419236i −0.719251 0.694750i \(-0.755515\pi\)
0.961297 + 0.275514i \(0.0888482\pi\)
\(12\) 0 0
\(13\) −3.60555 −1.00000
\(14\) −2.30278 −0.615443
\(15\) 0 0
\(16\) −0.151388 + 0.262211i −0.0378470 + 0.0655528i
\(17\) 3.80278 + 6.58660i 0.922309 + 1.59749i 0.795834 + 0.605516i \(0.207033\pi\)
0.126475 + 0.991970i \(0.459634\pi\)
\(18\) 0 0
\(19\) 2.80278 + 4.85455i 0.643001 + 1.11371i 0.984759 + 0.173922i \(0.0556442\pi\)
−0.341759 + 0.939788i \(0.611023\pi\)
\(20\) −1.65139 2.86029i −0.369262 0.639580i
\(21\) 0 0
\(22\) 1.84861 + 3.20189i 0.394125 + 0.682645i
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 4.15139 7.19041i 0.814154 1.41016i
\(27\) 0 0
\(28\) 1.65139 2.86029i 0.312083 0.540544i
\(29\) −3.10555 + 5.37897i −0.576686 + 0.998850i 0.419170 + 0.907908i \(0.362321\pi\)
−0.995856 + 0.0909423i \(0.971012\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 2.65139 + 4.59234i 0.468704 + 0.811818i
\(33\) 0 0
\(34\) −17.5139 −3.00361
\(35\) 0.500000 + 0.866025i 0.0845154 + 0.146385i
\(36\) 0 0
\(37\) −1.80278 + 3.12250i −0.296374 + 0.513336i −0.975304 0.220868i \(-0.929111\pi\)
0.678929 + 0.734204i \(0.262444\pi\)
\(38\) −12.9083 −2.09401
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 1.50000 2.59808i 0.234261 0.405751i −0.724797 0.688963i \(-0.758066\pi\)
0.959058 + 0.283211i \(0.0913998\pi\)
\(42\) 0 0
\(43\) 5.10555 + 8.84307i 0.778589 + 1.34856i 0.932755 + 0.360511i \(0.117398\pi\)
−0.154166 + 0.988045i \(0.549269\pi\)
\(44\) −5.30278 −0.799424
\(45\) 0 0
\(46\) −3.45416 5.98279i −0.509289 0.882114i
\(47\) −9.21110 −1.34358 −0.671789 0.740743i \(-0.734474\pi\)
−0.671789 + 0.740743i \(0.734474\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) −1.15139 + 1.99426i −0.162831 + 0.282031i
\(51\) 0 0
\(52\) 5.95416 + 10.3129i 0.825694 + 1.43014i
\(53\) 3.21110 0.441079 0.220539 0.975378i \(-0.429218\pi\)
0.220539 + 0.975378i \(0.429218\pi\)
\(54\) 0 0
\(55\) 0.802776 1.39045i 0.108246 0.187488i
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) 0 0
\(58\) −7.15139 12.3866i −0.939023 1.62644i
\(59\) −5.40833 9.36750i −0.704104 1.21954i −0.967014 0.254724i \(-0.918015\pi\)
0.262910 0.964820i \(-0.415318\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 4.60555 7.97705i 0.584906 1.01309i
\(63\) 0 0
\(64\) −12.8167 −1.60208
\(65\) −3.60555 −0.447214
\(66\) 0 0
\(67\) 3.50000 6.06218i 0.427593 0.740613i −0.569066 0.822292i \(-0.692695\pi\)
0.996659 + 0.0816792i \(0.0260283\pi\)
\(68\) 12.5597 21.7541i 1.52309 2.63807i
\(69\) 0 0
\(70\) −2.30278 −0.275234
\(71\) 2.40833 + 4.17134i 0.285816 + 0.495048i 0.972807 0.231619i \(-0.0744021\pi\)
−0.686991 + 0.726666i \(0.741069\pi\)
\(72\) 0 0
\(73\) −0.788897 −0.0923335 −0.0461667 0.998934i \(-0.514701\pi\)
−0.0461667 + 0.998934i \(0.514701\pi\)
\(74\) −4.15139 7.19041i −0.482589 0.835869i
\(75\) 0 0
\(76\) 9.25694 16.0335i 1.06184 1.83917i
\(77\) 1.60555 0.182970
\(78\) 0 0
\(79\) 5.21110 0.586295 0.293147 0.956067i \(-0.405297\pi\)
0.293147 + 0.956067i \(0.405297\pi\)
\(80\) −0.151388 + 0.262211i −0.0169257 + 0.0293161i
\(81\) 0 0
\(82\) 3.45416 + 5.98279i 0.381449 + 0.660688i
\(83\) 9.21110 1.01105 0.505525 0.862812i \(-0.331299\pi\)
0.505525 + 0.862812i \(0.331299\pi\)
\(84\) 0 0
\(85\) 3.80278 + 6.58660i 0.412469 + 0.714417i
\(86\) −23.5139 −2.53557
\(87\) 0 0
\(88\) 2.40833 4.17134i 0.256729 0.444667i
\(89\) −3.10555 + 5.37897i −0.329188 + 0.570170i −0.982351 0.187047i \(-0.940108\pi\)
0.653163 + 0.757217i \(0.273442\pi\)
\(90\) 0 0
\(91\) −1.80278 3.12250i −0.188982 0.327327i
\(92\) 9.90833 1.03301
\(93\) 0 0
\(94\) 10.6056 18.3694i 1.09388 1.89465i
\(95\) 2.80278 + 4.85455i 0.287559 + 0.498066i
\(96\) 0 0
\(97\) 4.19722 + 7.26981i 0.426164 + 0.738137i 0.996528 0.0832546i \(-0.0265315\pi\)
−0.570365 + 0.821392i \(0.693198\pi\)
\(98\) 6.90833 + 11.9656i 0.697846 + 1.20871i
\(99\) 0 0
\(100\) −1.65139 2.86029i −0.165139 0.286029i
\(101\) −4.50000 + 7.79423i −0.447767 + 0.775555i −0.998240 0.0592978i \(-0.981114\pi\)
0.550474 + 0.834853i \(0.314447\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −10.8167 −1.06066
\(105\) 0 0
\(106\) −3.69722 + 6.40378i −0.359106 + 0.621990i
\(107\) 3.10555 5.37897i 0.300225 0.520005i −0.675962 0.736937i \(-0.736272\pi\)
0.976187 + 0.216932i \(0.0696049\pi\)
\(108\) 0 0
\(109\) −19.2111 −1.84009 −0.920045 0.391813i \(-0.871848\pi\)
−0.920045 + 0.391813i \(0.871848\pi\)
\(110\) 1.84861 + 3.20189i 0.176258 + 0.305288i
\(111\) 0 0
\(112\) −0.302776 −0.0286096
\(113\) −0.802776 1.39045i −0.0755188 0.130802i 0.825793 0.563973i \(-0.190728\pi\)
−0.901312 + 0.433171i \(0.857395\pi\)
\(114\) 0 0
\(115\) −1.50000 + 2.59808i −0.139876 + 0.242272i
\(116\) 20.5139 1.90467
\(117\) 0 0
\(118\) 24.9083 2.29300
\(119\) −3.80278 + 6.58660i −0.348600 + 0.603793i
\(120\) 0 0
\(121\) 4.21110 + 7.29384i 0.382828 + 0.663077i
\(122\) −2.30278 −0.208484
\(123\) 0 0
\(124\) 6.60555 + 11.4412i 0.593196 + 1.02745i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 2.10555 3.64692i 0.186837 0.323612i −0.757357 0.653001i \(-0.773510\pi\)
0.944194 + 0.329389i \(0.106843\pi\)
\(128\) 9.45416 16.3751i 0.835638 1.44737i
\(129\) 0 0
\(130\) 4.15139 7.19041i 0.364101 0.630641i
\(131\) 21.2111 1.85322 0.926611 0.376021i \(-0.122708\pi\)
0.926611 + 0.376021i \(0.122708\pi\)
\(132\) 0 0
\(133\) −2.80278 + 4.85455i −0.243031 + 0.420943i
\(134\) 8.05971 + 13.9598i 0.696253 + 1.20595i
\(135\) 0 0
\(136\) 11.4083 + 19.7598i 0.978256 + 1.69439i
\(137\) −0.802776 1.39045i −0.0685858 0.118794i 0.829693 0.558220i \(-0.188515\pi\)
−0.898279 + 0.439426i \(0.855182\pi\)
\(138\) 0 0
\(139\) −3.19722 5.53776i −0.271185 0.469706i 0.697981 0.716117i \(-0.254082\pi\)
−0.969166 + 0.246410i \(0.920749\pi\)
\(140\) 1.65139 2.86029i 0.139568 0.241738i
\(141\) 0 0
\(142\) −11.0917 −0.930793
\(143\) −2.89445 + 5.01333i −0.242046 + 0.419236i
\(144\) 0 0
\(145\) −3.10555 + 5.37897i −0.257902 + 0.446699i
\(146\) 0.908327 1.57327i 0.0751737 0.130205i
\(147\) 0 0
\(148\) 11.9083 0.978858
\(149\) 1.50000 + 2.59808i 0.122885 + 0.212843i 0.920904 0.389789i \(-0.127452\pi\)
−0.798019 + 0.602632i \(0.794119\pi\)
\(150\) 0 0
\(151\) −1.21110 −0.0985581 −0.0492791 0.998785i \(-0.515692\pi\)
−0.0492791 + 0.998785i \(0.515692\pi\)
\(152\) 8.40833 + 14.5636i 0.682005 + 1.18127i
\(153\) 0 0
\(154\) −1.84861 + 3.20189i −0.148965 + 0.258016i
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 11.2111 0.894743 0.447372 0.894348i \(-0.352360\pi\)
0.447372 + 0.894348i \(0.352360\pi\)
\(158\) −6.00000 + 10.3923i −0.477334 + 0.826767i
\(159\) 0 0
\(160\) 2.65139 + 4.59234i 0.209611 + 0.363056i
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) 1.89445 + 3.28128i 0.148385 + 0.257010i 0.930631 0.365960i \(-0.119259\pi\)
−0.782246 + 0.622970i \(0.785926\pi\)
\(164\) −9.90833 −0.773710
\(165\) 0 0
\(166\) −10.6056 + 18.3694i −0.823150 + 1.42574i
\(167\) 4.50000 7.79423i 0.348220 0.603136i −0.637713 0.770274i \(-0.720119\pi\)
0.985933 + 0.167139i \(0.0534527\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) −17.5139 −1.34325
\(171\) 0 0
\(172\) 16.8625 29.2067i 1.28575 2.22699i
\(173\) 2.40833 + 4.17134i 0.183102 + 0.317141i 0.942935 0.332976i \(-0.108053\pi\)
−0.759834 + 0.650118i \(0.774720\pi\)
\(174\) 0 0
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) 0.243061 + 0.420994i 0.0183214 + 0.0317336i
\(177\) 0 0
\(178\) −7.15139 12.3866i −0.536019 0.928412i
\(179\) 11.4083 19.7598i 0.852698 1.47692i −0.0260655 0.999660i \(-0.508298\pi\)
0.878764 0.477257i \(-0.158369\pi\)
\(180\) 0 0
\(181\) 17.6333 1.31067 0.655337 0.755337i \(-0.272527\pi\)
0.655337 + 0.755337i \(0.272527\pi\)
\(182\) 8.30278 0.615443
\(183\) 0 0
\(184\) −4.50000 + 7.79423i −0.331744 + 0.574598i
\(185\) −1.80278 + 3.12250i −0.132543 + 0.229571i
\(186\) 0 0
\(187\) 12.2111 0.892964
\(188\) 15.2111 + 26.3464i 1.10938 + 1.92151i
\(189\) 0 0
\(190\) −12.9083 −0.936468
\(191\) 8.40833 + 14.5636i 0.608405 + 1.05379i 0.991503 + 0.130081i \(0.0415238\pi\)
−0.383098 + 0.923708i \(0.625143\pi\)
\(192\) 0 0
\(193\) −7.80278 + 13.5148i −0.561656 + 0.972817i 0.435696 + 0.900094i \(0.356502\pi\)
−0.997352 + 0.0727230i \(0.976831\pi\)
\(194\) −19.3305 −1.38785
\(195\) 0 0
\(196\) −19.8167 −1.41548
\(197\) 0.591673 1.02481i 0.0421550 0.0730145i −0.844178 0.536063i \(-0.819911\pi\)
0.886333 + 0.463048i \(0.153244\pi\)
\(198\) 0 0
\(199\) −6.40833 11.0995i −0.454274 0.786826i 0.544372 0.838844i \(-0.316768\pi\)
−0.998646 + 0.0520179i \(0.983435\pi\)
\(200\) 3.00000 0.212132
\(201\) 0 0
\(202\) −10.3625 17.9484i −0.729102 1.26284i
\(203\) −6.21110 −0.435934
\(204\) 0 0
\(205\) 1.50000 2.59808i 0.104765 0.181458i
\(206\) 4.60555 7.97705i 0.320884 0.555787i
\(207\) 0 0
\(208\) 0.545837 0.945417i 0.0378470 0.0655528i
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) 11.8028 20.4430i 0.812537 1.40735i −0.0985467 0.995132i \(-0.531419\pi\)
0.911083 0.412222i \(-0.135247\pi\)
\(212\) −5.30278 9.18468i −0.364196 0.630806i
\(213\) 0 0
\(214\) 7.15139 + 12.3866i 0.488859 + 0.846728i
\(215\) 5.10555 + 8.84307i 0.348196 + 0.603093i
\(216\) 0 0
\(217\) −2.00000 3.46410i −0.135769 0.235159i
\(218\) 22.1194 38.3120i 1.49812 2.59481i
\(219\) 0 0
\(220\) −5.30278 −0.357513
\(221\) −13.7111 23.7483i −0.922309 1.59749i
\(222\) 0 0
\(223\) 2.10555 3.64692i 0.140998 0.244216i −0.786875 0.617113i \(-0.788302\pi\)
0.927873 + 0.372897i \(0.121636\pi\)
\(224\) −2.65139 + 4.59234i −0.177153 + 0.306839i
\(225\) 0 0
\(226\) 3.69722 0.245936
\(227\) −13.7111 23.7483i −0.910038 1.57623i −0.814008 0.580853i \(-0.802719\pi\)
−0.0960296 0.995378i \(-0.530614\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) −3.45416 5.98279i −0.227761 0.394493i
\(231\) 0 0
\(232\) −9.31665 + 16.1369i −0.611668 + 1.05944i
\(233\) −15.2111 −0.996512 −0.498256 0.867030i \(-0.666026\pi\)
−0.498256 + 0.867030i \(0.666026\pi\)
\(234\) 0 0
\(235\) −9.21110 −0.600866
\(236\) −17.8625 + 30.9387i −1.16275 + 2.01394i
\(237\) 0 0
\(238\) −8.75694 15.1675i −0.567628 0.983161i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −0.894449 1.54923i −0.0576165 0.0997947i 0.835778 0.549067i \(-0.185017\pi\)
−0.893395 + 0.449272i \(0.851683\pi\)
\(242\) −19.3944 −1.24672
\(243\) 0 0
\(244\) 1.65139 2.86029i 0.105719 0.183111i
\(245\) 3.00000 5.19615i 0.191663 0.331970i
\(246\) 0 0
\(247\) −10.1056 17.5033i −0.643001 1.11371i
\(248\) −12.0000 −0.762001
\(249\) 0 0
\(250\) −1.15139 + 1.99426i −0.0728202 + 0.126128i
\(251\) −3.59167 6.22096i −0.226704 0.392664i 0.730125 0.683314i \(-0.239462\pi\)
−0.956829 + 0.290650i \(0.906128\pi\)
\(252\) 0 0
\(253\) 2.40833 + 4.17134i 0.151410 + 0.262250i
\(254\) 4.84861 + 8.39804i 0.304229 + 0.526940i
\(255\) 0 0
\(256\) 8.95416 + 15.5091i 0.559635 + 0.969317i
\(257\) −8.19722 + 14.1980i −0.511329 + 0.885647i 0.488585 + 0.872516i \(0.337513\pi\)
−0.999914 + 0.0131312i \(0.995820\pi\)
\(258\) 0 0
\(259\) −3.60555 −0.224038
\(260\) 5.95416 + 10.3129i 0.369262 + 0.639580i
\(261\) 0 0
\(262\) −24.4222 + 42.3005i −1.50881 + 2.61333i
\(263\) 5.89445 10.2095i 0.363467 0.629544i −0.625062 0.780575i \(-0.714926\pi\)
0.988529 + 0.151032i \(0.0482595\pi\)
\(264\) 0 0
\(265\) 3.21110 0.197256
\(266\) −6.45416 11.1789i −0.395730 0.685425i
\(267\) 0 0
\(268\) −23.1194 −1.41224
\(269\) −4.50000 7.79423i −0.274370 0.475223i 0.695606 0.718423i \(-0.255136\pi\)
−0.969976 + 0.243201i \(0.921803\pi\)
\(270\) 0 0
\(271\) 10.4083 18.0278i 0.632261 1.09511i −0.354828 0.934932i \(-0.615460\pi\)
0.987088 0.160176i \(-0.0512062\pi\)
\(272\) −2.30278 −0.139626
\(273\) 0 0
\(274\) 3.69722 0.223357
\(275\) 0.802776 1.39045i 0.0484092 0.0838472i
\(276\) 0 0
\(277\) −13.8028 23.9071i −0.829328 1.43644i −0.898566 0.438839i \(-0.855390\pi\)
0.0692374 0.997600i \(-0.477943\pi\)
\(278\) 14.7250 0.883146
\(279\) 0 0
\(280\) 1.50000 + 2.59808i 0.0896421 + 0.155265i
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −2.50000 + 4.33013i −0.148610 + 0.257399i −0.930714 0.365748i \(-0.880813\pi\)
0.782104 + 0.623148i \(0.214146\pi\)
\(284\) 7.95416 13.7770i 0.471993 0.817515i
\(285\) 0 0
\(286\) −6.66527 11.5446i −0.394125 0.682645i
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) −20.4222 + 35.3723i −1.20131 + 2.08072i
\(290\) −7.15139 12.3866i −0.419944 0.727364i
\(291\) 0 0
\(292\) 1.30278 + 2.25647i 0.0762392 + 0.132050i
\(293\) 5.19722 + 9.00186i 0.303625 + 0.525894i 0.976954 0.213449i \(-0.0684696\pi\)
−0.673329 + 0.739343i \(0.735136\pi\)
\(294\) 0 0
\(295\) −5.40833 9.36750i −0.314885 0.545397i
\(296\) −5.40833 + 9.36750i −0.314353 + 0.544475i
\(297\) 0 0
\(298\) −6.90833 −0.400189
\(299\) 5.40833 9.36750i 0.312772 0.541736i
\(300\) 0 0
\(301\) −5.10555 + 8.84307i −0.294279 + 0.509706i
\(302\) 1.39445 2.41526i 0.0802415 0.138982i
\(303\) 0 0
\(304\) −1.69722 −0.0973425
\(305\) 0.500000 + 0.866025i 0.0286299 + 0.0495885i
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) −2.65139 4.59234i −0.151077 0.261673i
\(309\) 0 0
\(310\) 4.60555 7.97705i 0.261578 0.453066i
\(311\) 9.21110 0.522314 0.261157 0.965296i \(-0.415896\pi\)
0.261157 + 0.965296i \(0.415896\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −12.9083 + 22.3579i −0.728459 + 1.26173i
\(315\) 0 0
\(316\) −8.60555 14.9053i −0.484100 0.838486i
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 4.98612 + 8.63622i 0.279169 + 0.483535i
\(320\) −12.8167 −0.716473
\(321\) 0 0
\(322\) 3.45416 5.98279i 0.192493 0.333408i
\(323\) −21.3167 + 36.9215i −1.18609 + 2.05437i
\(324\) 0 0
\(325\) −3.60555 −0.200000
\(326\) −8.72498 −0.483232
\(327\) 0 0
\(328\) 4.50000 7.79423i 0.248471 0.430364i
\(329\) −4.60555 7.97705i −0.253912 0.439789i
\(330\) 0 0
\(331\) −5.01388 8.68429i −0.275588 0.477332i 0.694696 0.719304i \(-0.255539\pi\)
−0.970283 + 0.241972i \(0.922206\pi\)
\(332\) −15.2111 26.3464i −0.834818 1.44595i
\(333\) 0 0
\(334\) 10.3625 + 17.9484i 0.567010 + 0.982091i
\(335\) 3.50000 6.06218i 0.191225 0.331212i
\(336\) 0 0
\(337\) −25.6333 −1.39634 −0.698168 0.715934i \(-0.746001\pi\)
−0.698168 + 0.715934i \(0.746001\pi\)
\(338\) −14.9680 + 25.9254i −0.814154 + 1.41016i
\(339\) 0 0
\(340\) 12.5597 21.7541i 0.681146 1.17978i
\(341\) −3.21110 + 5.56179i −0.173891 + 0.301188i
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 15.3167 + 26.5292i 0.825819 + 1.43036i
\(345\) 0 0
\(346\) −11.0917 −0.596292
\(347\) 2.89445 + 5.01333i 0.155382 + 0.269130i 0.933198 0.359362i \(-0.117006\pi\)
−0.777816 + 0.628492i \(0.783672\pi\)
\(348\) 0 0
\(349\) 1.89445 3.28128i 0.101408 0.175643i −0.810857 0.585244i \(-0.800999\pi\)
0.912265 + 0.409601i \(0.134332\pi\)
\(350\) −2.30278 −0.123089
\(351\) 0 0
\(352\) 8.51388 0.453791
\(353\) 8.40833 14.5636i 0.447530 0.775145i −0.550695 0.834707i \(-0.685637\pi\)
0.998225 + 0.0595620i \(0.0189704\pi\)
\(354\) 0 0
\(355\) 2.40833 + 4.17134i 0.127821 + 0.221392i
\(356\) 20.5139 1.08723
\(357\) 0 0
\(358\) 26.2708 + 45.5024i 1.38846 + 2.40488i
\(359\) −18.4222 −0.972287 −0.486143 0.873879i \(-0.661597\pi\)
−0.486143 + 0.873879i \(0.661597\pi\)
\(360\) 0 0
\(361\) −6.21110 + 10.7579i −0.326900 + 0.566208i
\(362\) −20.3028 + 35.1654i −1.06709 + 1.84825i
\(363\) 0 0
\(364\) −5.95416 + 10.3129i −0.312083 + 0.540544i
\(365\) −0.788897 −0.0412928
\(366\) 0 0
\(367\) −5.71110 + 9.89192i −0.298117 + 0.516354i −0.975705 0.219088i \(-0.929692\pi\)
0.677588 + 0.735442i \(0.263025\pi\)
\(368\) −0.454163 0.786634i −0.0236749 0.0410061i
\(369\) 0 0
\(370\) −4.15139 7.19041i −0.215820 0.373812i
\(371\) 1.60555 + 2.78090i 0.0833561 + 0.144377i
\(372\) 0 0
\(373\) 10.1972 + 17.6621i 0.527992 + 0.914509i 0.999467 + 0.0326301i \(0.0103883\pi\)
−0.471475 + 0.881879i \(0.656278\pi\)
\(374\) −14.0597 + 24.3521i −0.727011 + 1.25922i
\(375\) 0 0
\(376\) −27.6333 −1.42508
\(377\) 11.1972 19.3942i 0.576686 0.998850i
\(378\) 0 0
\(379\) −4.80278 + 8.31865i −0.246702 + 0.427300i −0.962609 0.270895i \(-0.912680\pi\)
0.715907 + 0.698196i \(0.246014\pi\)
\(380\) 9.25694 16.0335i 0.474871 0.822501i
\(381\) 0 0
\(382\) −38.7250 −1.98134
\(383\) −12.3167 21.3331i −0.629352 1.09007i −0.987682 0.156474i \(-0.949987\pi\)
0.358330 0.933595i \(-0.383346\pi\)
\(384\) 0 0
\(385\) 1.60555 0.0818265
\(386\) −17.9680 31.1216i −0.914549 1.58405i
\(387\) 0 0
\(388\) 13.8625 24.0105i 0.703761 1.21895i
\(389\) 15.2111 0.771234 0.385617 0.922659i \(-0.373989\pi\)
0.385617 + 0.922659i \(0.373989\pi\)
\(390\) 0 0
\(391\) −22.8167 −1.15389
\(392\) 9.00000 15.5885i 0.454569 0.787336i
\(393\) 0 0
\(394\) 1.36249 + 2.35990i 0.0686413 + 0.118890i
\(395\) 5.21110 0.262199
\(396\) 0 0
\(397\) −11.0139 19.0766i −0.552771 0.957427i −0.998073 0.0620468i \(-0.980237\pi\)
0.445303 0.895380i \(-0.353096\pi\)
\(398\) 29.5139 1.47940
\(399\) 0 0
\(400\) −0.151388 + 0.262211i −0.00756939 + 0.0131106i
\(401\) 6.10555 10.5751i 0.304897 0.528097i −0.672342 0.740241i \(-0.734711\pi\)
0.977238 + 0.212144i \(0.0680447\pi\)
\(402\) 0 0
\(403\) 14.4222 0.718421
\(404\) 29.7250 1.47887
\(405\) 0 0
\(406\) 7.15139 12.3866i 0.354917 0.614735i
\(407\) 2.89445 + 5.01333i 0.143472 + 0.248502i
\(408\) 0 0
\(409\) −4.10555 7.11102i −0.203006 0.351617i 0.746489 0.665397i \(-0.231738\pi\)
−0.949496 + 0.313780i \(0.898405\pi\)
\(410\) 3.45416 + 5.98279i 0.170589 + 0.295469i
\(411\) 0 0
\(412\) 6.60555 + 11.4412i 0.325432 + 0.563665i
\(413\) 5.40833 9.36750i 0.266126 0.460944i
\(414\) 0 0
\(415\) 9.21110 0.452155
\(416\) −9.55971 16.5579i −0.468704 0.811818i
\(417\) 0 0
\(418\) −10.3625 + 17.9484i −0.506846 + 0.877883i
\(419\) 8.61943 14.9293i 0.421087 0.729344i −0.574959 0.818182i \(-0.694982\pi\)
0.996046 + 0.0888384i \(0.0283155\pi\)
\(420\) 0 0
\(421\) 32.4222 1.58016 0.790081 0.613003i \(-0.210039\pi\)
0.790081 + 0.613003i \(0.210039\pi\)
\(422\) 27.1791 + 47.0757i 1.32306 + 2.29161i
\(423\) 0 0
\(424\) 9.63331 0.467835
\(425\) 3.80278 + 6.58660i 0.184462 + 0.319497i
\(426\) 0 0
\(427\) −0.500000 + 0.866025i −0.0241967 + 0.0419099i
\(428\) −20.5139 −0.991576
\(429\) 0 0
\(430\) −23.5139 −1.13394
\(431\) 14.6194 25.3216i 0.704193 1.21970i −0.262789 0.964853i \(-0.584642\pi\)
0.966982 0.254845i \(-0.0820244\pi\)
\(432\) 0 0
\(433\) −1.80278 3.12250i −0.0866359 0.150058i 0.819451 0.573149i \(-0.194278\pi\)
−0.906087 + 0.423091i \(0.860945\pi\)
\(434\) 9.21110 0.442147
\(435\) 0 0
\(436\) 31.7250 + 54.9493i 1.51935 + 2.63159i
\(437\) −16.8167 −0.804450
\(438\) 0 0
\(439\) 13.6194 23.5895i 0.650020 1.12587i −0.333098 0.942892i \(-0.608094\pi\)
0.983118 0.182975i \(-0.0585728\pi\)
\(440\) 2.40833 4.17134i 0.114812 0.198861i
\(441\) 0 0
\(442\) 63.1472 3.00361
\(443\) −6.42221 −0.305128 −0.152564 0.988294i \(-0.548753\pi\)
−0.152564 + 0.988294i \(0.548753\pi\)
\(444\) 0 0
\(445\) −3.10555 + 5.37897i −0.147217 + 0.254988i
\(446\) 4.84861 + 8.39804i 0.229588 + 0.397659i
\(447\) 0 0
\(448\) −6.40833 11.0995i −0.302765 0.524404i
\(449\) 15.3167 + 26.5292i 0.722838 + 1.25199i 0.959858 + 0.280487i \(0.0904959\pi\)
−0.237020 + 0.971505i \(0.576171\pi\)
\(450\) 0 0
\(451\) −2.40833 4.17134i −0.113404 0.196421i
\(452\) −2.65139 + 4.59234i −0.124711 + 0.216005i
\(453\) 0 0
\(454\) 63.1472 2.96364
\(455\) −1.80278 3.12250i −0.0845154 0.146385i
\(456\) 0 0
\(457\) 13.4083 23.2239i 0.627215 1.08637i −0.360893 0.932607i \(-0.617528\pi\)
0.988108 0.153761i \(-0.0491386\pi\)
\(458\) −16.1194 + 27.9197i −0.753211 + 1.30460i
\(459\) 0 0
\(460\) 9.90833 0.461978
\(461\) 18.1056 + 31.3597i 0.843260 + 1.46057i 0.887124 + 0.461531i \(0.152700\pi\)
−0.0438645 + 0.999037i \(0.513967\pi\)
\(462\) 0 0
\(463\) −34.4222 −1.59974 −0.799868 0.600176i \(-0.795097\pi\)
−0.799868 + 0.600176i \(0.795097\pi\)
\(464\) −0.940285 1.62862i −0.0436516 0.0756069i
\(465\) 0 0
\(466\) 17.5139 30.3349i 0.811315 1.40524i
\(467\) −2.78890 −0.129055 −0.0645274 0.997916i \(-0.520554\pi\)
−0.0645274 + 0.997916i \(0.520554\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 10.6056 18.3694i 0.489198 0.847315i
\(471\) 0 0
\(472\) −16.2250 28.1025i −0.746815 1.29352i
\(473\) 16.3944 0.753818
\(474\) 0 0
\(475\) 2.80278 + 4.85455i 0.128600 + 0.222742i
\(476\) 25.1194 1.15135
\(477\) 0 0
\(478\) 0 0
\(479\) −14.4083 + 24.9560i −0.658333 + 1.14027i 0.322714 + 0.946497i \(0.395405\pi\)
−0.981047 + 0.193770i \(0.937928\pi\)
\(480\) 0 0
\(481\) 6.50000 11.2583i 0.296374 0.513336i
\(482\) 4.11943 0.187635
\(483\) 0 0
\(484\) 13.9083 24.0899i 0.632197 1.09500i
\(485\) 4.19722 + 7.26981i 0.190586 + 0.330105i
\(486\) 0 0
\(487\) 0.500000 + 0.866025i 0.0226572 + 0.0392434i 0.877132 0.480250i \(-0.159454\pi\)
−0.854475 + 0.519493i \(0.826121\pi\)
\(488\) 1.50000 + 2.59808i 0.0679018 + 0.117609i
\(489\) 0 0
\(490\) 6.90833 + 11.9656i 0.312086 + 0.540549i
\(491\) −8.40833 + 14.5636i −0.379462 + 0.657248i −0.990984 0.133979i \(-0.957224\pi\)
0.611522 + 0.791228i \(0.290558\pi\)
\(492\) 0 0
\(493\) −47.2389 −2.12753
\(494\) 46.5416 2.09401
\(495\) 0 0
\(496\) 0.605551 1.04885i 0.0271901 0.0470946i
\(497\) −2.40833 + 4.17134i −0.108028 + 0.187110i
\(498\) 0 0
\(499\) 2.42221 0.108433 0.0542164 0.998529i \(-0.482734\pi\)
0.0542164 + 0.998529i \(0.482734\pi\)
\(500\) −1.65139 2.86029i −0.0738523 0.127916i
\(501\) 0 0
\(502\) 16.5416 0.738289
\(503\) 1.50000 + 2.59808i 0.0668817 + 0.115842i 0.897527 0.440959i \(-0.145362\pi\)
−0.830645 + 0.556802i \(0.812028\pi\)
\(504\) 0 0
\(505\) −4.50000 + 7.79423i −0.200247 + 0.346839i
\(506\) −11.0917 −0.493085
\(507\) 0 0
\(508\) −13.9083 −0.617082
\(509\) 1.50000 2.59808i 0.0664863 0.115158i −0.830866 0.556473i \(-0.812154\pi\)
0.897352 + 0.441315i \(0.145488\pi\)
\(510\) 0 0
\(511\) −0.394449 0.683205i −0.0174494 0.0302232i
\(512\) −3.42221 −0.151242
\(513\) 0 0
\(514\) −18.8764 32.6948i −0.832601 1.44211i
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) −7.39445 + 12.8076i −0.325207 + 0.563276i
\(518\) 4.15139 7.19041i 0.182402 0.315929i
\(519\) 0 0
\(520\) −10.8167 −0.474342
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 0.711103 1.23167i 0.0310943 0.0538570i −0.850059 0.526687i \(-0.823434\pi\)
0.881154 + 0.472830i \(0.156767\pi\)
\(524\) −35.0278 60.6699i −1.53019 2.65037i
\(525\) 0 0
\(526\) 13.5736 + 23.5102i 0.591837 + 1.02509i
\(527\) −15.2111 26.3464i −0.662606 1.14767i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) −3.69722 + 6.40378i −0.160597 + 0.278162i
\(531\) 0 0
\(532\) 18.5139 0.802678
\(533\) −5.40833 + 9.36750i −0.234261 + 0.405751i
\(534\) 0 0
\(535\) 3.10555 5.37897i 0.134265 0.232553i
\(536\) 10.5000 18.1865i 0.453531 0.785539i
\(537\) 0 0
\(538\) 20.7250 0.893517
\(539\) −4.81665 8.34269i −0.207468 0.359345i
\(540\) 0 0
\(541\) −25.6333 −1.10206 −0.551031 0.834485i \(-0.685765\pi\)
−0.551031 + 0.834485i \(0.685765\pi\)
\(542\) 23.9680 + 41.5139i 1.02952 + 1.78317i
\(543\) 0 0
\(544\) −20.1653 + 34.9273i −0.864579 + 1.49749i
\(545\) −19.2111 −0.822913
\(546\) 0 0
\(547\) 32.8444 1.40433 0.702163 0.712016i \(-0.252218\pi\)
0.702163 + 0.712016i \(0.252218\pi\)
\(548\) −2.65139 + 4.59234i −0.113262 + 0.196175i
\(549\) 0 0
\(550\) 1.84861 + 3.20189i 0.0788251 + 0.136529i
\(551\) −34.8167 −1.48324
\(552\) 0 0
\(553\) 2.60555 + 4.51295i 0.110799 + 0.191910i
\(554\) 63.5694 2.70080
\(555\) 0 0
\(556\) −10.5597 + 18.2900i −0.447832 + 0.775667i
\(557\) −0.802776 + 1.39045i −0.0340147 + 0.0589152i −0.882532 0.470253i \(-0.844163\pi\)
0.848517 + 0.529168i \(0.177496\pi\)
\(558\) 0 0
\(559\) −18.4083 31.8842i −0.778589 1.34856i
\(560\) −0.302776 −0.0127946
\(561\) 0 0
\(562\) −6.90833 + 11.9656i −0.291410 + 0.504737i
\(563\) 4.71110 + 8.15987i 0.198549 + 0.343897i 0.948058 0.318097i \(-0.103044\pi\)
−0.749509 + 0.661994i \(0.769710\pi\)
\(564\) 0 0
\(565\) −0.802776 1.39045i −0.0337730 0.0584966i
\(566\) −5.75694 9.97131i −0.241982 0.419125i
\(567\) 0 0
\(568\) 7.22498 + 12.5140i 0.303153 + 0.525077i
\(569\) −13.7111 + 23.7483i −0.574799 + 0.995582i 0.421264 + 0.906938i \(0.361587\pi\)
−0.996063 + 0.0886436i \(0.971747\pi\)
\(570\) 0 0
\(571\) 20.8444 0.872311 0.436156 0.899871i \(-0.356340\pi\)
0.436156 + 0.899871i \(0.356340\pi\)
\(572\) 19.1194 0.799424
\(573\) 0 0
\(574\) −3.45416 + 5.98279i −0.144174 + 0.249717i
\(575\) −1.50000 + 2.59808i −0.0625543 + 0.108347i
\(576\) 0 0
\(577\) −13.6333 −0.567562 −0.283781 0.958889i \(-0.591589\pi\)
−0.283781 + 0.958889i \(0.591589\pi\)
\(578\) −47.0278 81.4545i −1.95610 3.38806i
\(579\) 0 0
\(580\) 20.5139 0.851792
\(581\) 4.60555 + 7.97705i 0.191070 + 0.330944i
\(582\) 0 0
\(583\) 2.57779 4.46487i 0.106761 0.184916i
\(584\) −2.36669 −0.0979344
\(585\) 0 0
\(586\) −23.9361 −0.988790
\(587\) −16.7111 + 28.9445i −0.689741 + 1.19467i 0.282181 + 0.959361i \(0.408942\pi\)
−0.971922 + 0.235305i \(0.924391\pi\)
\(588\) 0 0
\(589\) −11.2111 19.4182i −0.461945 0.800113i
\(590\) 24.9083 1.02546
\(591\) 0 0
\(592\) −0.545837 0.945417i −0.0224337 0.0388564i
\(593\) −20.7889 −0.853698 −0.426849 0.904323i \(-0.640376\pi\)
−0.426849 + 0.904323i \(0.640376\pi\)
\(594\) 0 0
\(595\) −3.80278 + 6.58660i −0.155899 + 0.270024i
\(596\) 4.95416 8.58086i 0.202930 0.351486i
\(597\) 0 0
\(598\) 12.4542 + 21.5712i 0.509289 + 0.882114i
\(599\) 21.2111 0.866662 0.433331 0.901235i \(-0.357338\pi\)
0.433331 + 0.901235i \(0.357338\pi\)
\(600\) 0 0
\(601\) −6.89445 + 11.9415i −0.281230 + 0.487105i −0.971688 0.236267i \(-0.924076\pi\)
0.690458 + 0.723373i \(0.257409\pi\)
\(602\) −11.7569 20.3636i −0.479177 0.829959i
\(603\) 0 0
\(604\) 2.00000 + 3.46410i 0.0813788 + 0.140952i
\(605\) 4.21110 + 7.29384i 0.171206 + 0.296537i
\(606\) 0 0
\(607\) 17.1056 + 29.6277i 0.694293 + 1.20255i 0.970418 + 0.241429i \(0.0776161\pi\)
−0.276126 + 0.961122i \(0.589051\pi\)
\(608\) −14.8625 + 25.7426i −0.602754 + 1.04400i
\(609\) 0 0
\(610\) −2.30278 −0.0932367
\(611\) 33.2111 1.34358
\(612\) 0 0
\(613\) 2.80278 4.85455i 0.113203 0.196073i −0.803857 0.594823i \(-0.797222\pi\)
0.917060 + 0.398749i \(0.130556\pi\)
\(614\) 18.4222 31.9082i 0.743460 1.28771i
\(615\) 0 0
\(616\) 4.81665 0.194069
\(617\) −19.2250 33.2986i −0.773969 1.34055i −0.935372 0.353664i \(-0.884935\pi\)
0.161404 0.986888i \(-0.448398\pi\)
\(618\) 0 0
\(619\) 14.4222 0.579677 0.289839 0.957076i \(-0.406398\pi\)
0.289839 + 0.957076i \(0.406398\pi\)
\(620\) 6.60555 + 11.4412i 0.265285 + 0.459488i
\(621\) 0 0
\(622\) −10.6056 + 18.3694i −0.425244 + 0.736544i
\(623\) −6.21110 −0.248843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −16.1194 + 27.9197i −0.644262 + 1.11589i
\(627\) 0 0
\(628\) −18.5139 32.0670i −0.738784 1.27961i
\(629\) −27.4222 −1.09339
\(630\) 0 0
\(631\) 18.0139 + 31.2010i 0.717121 + 1.24209i 0.962136 + 0.272571i \(0.0878739\pi\)
−0.245015 + 0.969519i \(0.578793\pi\)
\(632\) 15.6333 0.621860
\(633\) 0 0
\(634\) 6.90833 11.9656i 0.274365 0.475214i
\(635\) 2.10555 3.64692i 0.0835563 0.144724i
\(636\) 0 0
\(637\) −10.8167 + 18.7350i −0.428571 + 0.742307i
\(638\) −22.9638 −0.909147
\(639\) 0 0
\(640\) 9.45416 16.3751i 0.373709 0.647282i
\(641\) 4.71110 + 8.15987i 0.186077 + 0.322295i 0.943939 0.330120i \(-0.107089\pi\)
−0.757862 + 0.652415i \(0.773756\pi\)
\(642\) 0 0
\(643\) −1.31665 2.28051i −0.0519238 0.0899346i 0.838895 0.544293i \(-0.183202\pi\)
−0.890819 + 0.454358i \(0.849869\pi\)
\(644\) 4.95416 + 8.58086i 0.195221 + 0.338133i
\(645\) 0 0
\(646\) −49.0875 85.0220i −1.93132 3.34515i
\(647\) 19.7111 34.1406i 0.774923 1.34221i −0.159914 0.987131i \(-0.551122\pi\)
0.934838 0.355076i \(-0.115545\pi\)
\(648\) 0 0
\(649\) −17.3667 −0.681702
\(650\) 4.15139 7.19041i 0.162831 0.282031i
\(651\) 0 0
\(652\) 6.25694 10.8373i 0.245041 0.424423i
\(653\) −3.59167 + 6.22096i −0.140553 + 0.243445i −0.927705 0.373314i \(-0.878221\pi\)
0.787152 + 0.616759i \(0.211555\pi\)
\(654\) 0 0
\(655\) 21.2111 0.828786
\(656\) 0.454163 + 0.786634i 0.0177321 + 0.0307129i
\(657\) 0 0
\(658\) 21.2111 0.826895
\(659\) −17.4083 30.1521i −0.678132 1.17456i −0.975543 0.219810i \(-0.929456\pi\)
0.297411 0.954750i \(-0.403877\pi\)
\(660\) 0 0
\(661\) 2.31665 4.01256i 0.0901074 0.156071i −0.817449 0.576001i \(-0.804612\pi\)
0.907556 + 0.419931i \(0.137946\pi\)
\(662\) 23.0917 0.897483
\(663\) 0 0
\(664\) 27.6333 1.07238
\(665\) −2.80278 + 4.85455i −0.108687 + 0.188251i
\(666\) 0 0
\(667\) −9.31665 16.1369i −0.360742 0.624824i
\(668\) −29.7250 −1.15009
\(669\) 0 0
\(670\) 8.05971 + 13.9598i 0.311374 + 0.539315i
\(671\) 1.60555 0.0619816
\(672\) 0 0
\(673\) 8.80278 15.2469i 0.339322 0.587723i −0.644983 0.764197i \(-0.723136\pi\)
0.984305 + 0.176474i \(0.0564690\pi\)
\(674\) 29.5139 51.1195i 1.13683 1.96905i
\(675\) 0 0
\(676\) −21.4680 37.1837i −0.825694 1.43014i
\(677\) 9.63331 0.370238 0.185119 0.982716i \(-0.440733\pi\)
0.185119 + 0.982716i \(0.440733\pi\)
\(678\) 0 0
\(679\) −4.19722 + 7.26981i −0.161075 + 0.278990i
\(680\) 11.4083 + 19.7598i 0.437489 + 0.757754i
\(681\) 0 0
\(682\) −7.39445 12.8076i −0.283148 0.490427i
\(683\) 18.1056 + 31.3597i 0.692790 + 1.19995i 0.970920 + 0.239404i \(0.0769519\pi\)
−0.278130 + 0.960543i \(0.589715\pi\)
\(684\) 0 0
\(685\) −0.802776 1.39045i −0.0306725 0.0531263i
\(686\) −14.9680 + 25.9254i −0.571482 + 0.989837i
\(687\) 0 0
\(688\) −3.09167 −0.117869
\(689\) −11.5778 −0.441079
\(690\) 0 0
\(691\) 15.0139 26.0048i 0.571155 0.989269i −0.425293 0.905056i \(-0.639829\pi\)
0.996448 0.0842134i \(-0.0268378\pi\)
\(692\) 7.95416 13.7770i 0.302372 0.523724i
\(693\) 0 0
\(694\) −13.3305 −0.506020
\(695\) −3.19722 5.53776i −0.121278 0.210059i
\(696\) 0 0
\(697\) 22.8167 0.864242
\(698\) 4.36249 + 7.55605i 0.165123 + 0.286001i
\(699\) 0 0
\(700\) 1.65139 2.86029i 0.0624166 0.108109i
\(701\) 36.4222 1.37565 0.687824 0.725878i \(-0.258566\pi\)
0.687824 + 0.725878i \(0.258566\pi\)
\(702\) 0 0
\(703\) −20.2111 −0.762276
\(704\) −10.2889 + 17.8209i −0.387777 + 0.671650i
\(705\) 0 0
\(706\) 19.3625 + 33.5368i 0.728717 + 1.26217i
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) 6.92221 + 11.9896i 0.259969 + 0.450279i 0.966233 0.257669i \(-0.0829544\pi\)
−0.706264 + 0.707948i \(0.749621\pi\)
\(710\) −11.0917 −0.416263
\(711\) 0 0
\(712\) −9.31665 + 16.1369i −0.349156 + 0.604757i
\(713\) 6.00000 10.3923i 0.224702 0.389195i
\(714\) 0 0
\(715\) −2.89445 + 5.01333i −0.108246 + 0.187488i
\(716\) −75.3583 −2.81627
\(717\) 0 0
\(718\) 21.2111 36.7387i 0.791591 1.37108i
\(719\) −12.8028 22.1751i −0.477463 0.826990i 0.522203 0.852821i \(-0.325110\pi\)
−0.999666 + 0.0258309i \(0.991777\pi\)
\(720\) 0 0
\(721\) −2.00000 3.46410i −0.0744839 0.129010i
\(722\) −14.3028 24.7731i −0.532294 0.921961i
\(723\) 0 0
\(724\) −29.1194 50.4363i −1.08222 1.87445i
\(725\) −3.10555 + 5.37897i −0.115337 + 0.199770i
\(726\) 0 0
\(727\) 13.5778 0.503573 0.251786 0.967783i \(-0.418982\pi\)
0.251786 + 0.967783i \(0.418982\pi\)
\(728\) −5.40833 9.36750i −0.200446 0.347183i
\(729\) 0 0
\(730\) 0.908327 1.57327i 0.0336187 0.0582293i
\(731\) −38.8305 + 67.2565i −1.43620 + 2.48757i
\(732\) 0 0
\(733\) −46.8444 −1.73024 −0.865119 0.501567i \(-0.832757\pi\)
−0.865119 + 0.501567i \(0.832757\pi\)
\(734\) −13.1514 22.7789i −0.485427 0.840784i
\(735\) 0 0
\(736\) −15.9083 −0.586389
\(737\) −5.61943 9.73314i −0.206994 0.358525i
\(738\) 0 0
\(739\) 17.8028 30.8353i 0.654886 1.13430i −0.327037 0.945012i \(-0.606050\pi\)
0.981922 0.189284i \(-0.0606166\pi\)
\(740\) 11.9083 0.437759
\(741\) 0 0
\(742\) −7.39445 −0.271459
\(743\) 18.3167 31.7254i 0.671973 1.16389i −0.305371 0.952233i \(-0.598780\pi\)
0.977344 0.211658i \(-0.0678862\pi\)
\(744\) 0 0
\(745\) 1.50000 + 2.59808i 0.0549557 + 0.0951861i
\(746\) −46.9638 −1.71947
\(747\) 0 0
\(748\) −20.1653 34.9273i −0.737315 1.27707i
\(749\) 6.21110 0.226949
\(750\) 0 0
\(751\) −23.2250 + 40.2268i −0.847492 + 1.46790i 0.0359481 + 0.999354i \(0.488555\pi\)
−0.883440 + 0.468545i \(0.844778\pi\)
\(752\) 1.39445 2.41526i 0.0508503 0.0880753i
\(753\) 0 0
\(754\) 25.7847 + 44.6604i 0.939023 + 1.62644i
\(755\) −1.21110 −0.0440765
\(756\) 0 0
\(757\) −0.408327 + 0.707243i −0.0148409 + 0.0257052i −0.873350 0.487092i \(-0.838058\pi\)
0.858510 + 0.512798i \(0.171391\pi\)
\(758\) −11.0597 19.1560i −0.401707 0.695777i
\(759\) 0 0
\(760\) 8.40833 + 14.5636i 0.305002 + 0.528279i
\(761\) 9.31665 + 16.1369i 0.337728 + 0.584963i 0.984005 0.178140i \(-0.0570081\pi\)
−0.646277 + 0.763103i \(0.723675\pi\)
\(762\) 0 0
\(763\) −9.60555 16.6373i −0.347744 0.602311i
\(764\) 27.7708 48.1005i 1.00471 1.74021i
\(765\) 0 0
\(766\) 56.7250 2.04956
\(767\) 19.5000 + 33.7750i 0.704104 + 1.21954i
\(768\) 0 0
\(769\) −5.50000 + 9.52628i −0.198335 + 0.343526i −0.947989 0.318304i \(-0.896887\pi\)
0.749654 + 0.661830i \(0.230220\pi\)
\(770\) −1.84861 + 3.20189i −0.0666194 + 0.115388i
\(771\) 0 0
\(772\) 51.5416 1.85502
\(773\) 11.1972 + 19.3942i 0.402736 + 0.697560i 0.994055 0.108878i \(-0.0347259\pi\)
−0.591319 + 0.806438i \(0.701393\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 12.5917 + 21.8094i 0.452015 + 0.782912i
\(777\) 0 0
\(778\) −17.5139 + 30.3349i −0.627903 + 1.08756i
\(779\) 16.8167 0.602519
\(780\) 0 0
\(781\) 7.73338 0.276722
\(782\) 26.2708 45.5024i 0.939443 1.62716i
\(783\) 0 0
\(784\) 0.908327 + 1.57327i 0.0324402 + 0.0561882i
\(785\) 11.2111 0.400141
\(786\) 0 0
\(787\) −7.31665 12.6728i −0.260811 0.451737i 0.705647 0.708564i \(-0.250656\pi\)
−0.966458 + 0.256826i \(0.917323\pi\)
\(788\) −3.90833 −0.139228
\(789\) 0 0
\(790\) −6.00000 + 10.3923i −0.213470 + 0.369742i
\(791\) 0.802776 1.39045i 0.0285434 0.0494386i
\(792\) 0 0
\(793\) −1.80278 3.12250i −0.0640184 0.110883i
\(794\) 50.7250 1.80016
\(795\) 0 0
\(796\) −21.1653 + 36.6593i −0.750183 + 1.29936i
\(797\) −7.22498 12.5140i −0.255922 0.443270i 0.709224 0.704984i \(-0.249046\pi\)
−0.965146 + 0.261714i \(0.915712\pi\)
\(798\) 0 0
\(799\) −35.0278 60.6699i −1.23919 2.14635i
\(800\) 2.65139 + 4.59234i 0.0937407 + 0.162364i
\(801\) 0 0
\(802\) 14.0597 + 24.3521i 0.496466 + 0.859904i
\(803\) −0.633308 + 1.09692i −0.0223489 + 0.0387095i
\(804\) 0 0
\(805\) −3.00000 −0.105736
\(806\) −16.6056 + 28.7617i −0.584906 + 1.01309i
\(807\) 0 0
\(808\) −13.5000 + 23.3827i −0.474928 + 0.822600i
\(809\) −27.5278 + 47.6795i −0.967824 + 1.67632i −0.265997 + 0.963974i \(0.585701\pi\)
−0.701827 + 0.712347i \(0.747632\pi\)
\(810\) 0 0
\(811\) −46.4222 −1.63010 −0.815052 0.579388i \(-0.803292\pi\)
−0.815052 + 0.579388i \(0.803292\pi\)
\(812\) 10.2569 + 17.7655i 0.359948 + 0.623448i
\(813\) 0 0
\(814\) −13.3305 −0.467235
\(815\) 1.89445 + 3.28128i 0.0663596 + 0.114938i
\(816\) 0 0
\(817\) −28.6194 + 49.5703i −1.00127 + 1.73425i
\(818\) 18.9083 0.661114
\(819\) 0 0
\(820\) −9.90833 −0.346014
\(821\) 10.7111 18.5522i 0.373820 0.647475i −0.616330 0.787488i \(-0.711381\pi\)
0.990150 + 0.140013i \(0.0447144\pi\)
\(822\) 0 0
\(823\) 8.31665 + 14.4049i 0.289900 + 0.502122i 0.973786 0.227467i \(-0.0730445\pi\)
−0.683885 + 0.729589i \(0.739711\pi\)
\(824\) −12.0000 −0.418040
\(825\) 0 0
\(826\) 12.4542 + 21.5712i 0.433336 + 0.750560i
\(827\) 42.4222 1.47516 0.737582 0.675257i \(-0.235967\pi\)
0.737582 + 0.675257i \(0.235967\pi\)
\(828\) 0 0
\(829\) −14.7111 + 25.4804i −0.510938 + 0.884970i 0.488982 + 0.872294i \(0.337368\pi\)
−0.999920 + 0.0126762i \(0.995965\pi\)
\(830\) −10.6056 + 18.3694i −0.368124 + 0.637610i
\(831\) 0 0
\(832\) 46.2111 1.60208
\(833\) 45.6333 1.58110
\(834\) 0 0
\(835\) 4.50000 7.79423i 0.155729 0.269730i
\(836\) −14.8625 25.7426i −0.514030 0.890326i
\(837\) 0 0
\(838\) 19.8486 + 34.3788i 0.685659 + 1.18760i
\(839\) −10.0139 17.3445i −0.345717 0.598800i 0.639766 0.768569i \(-0.279031\pi\)
−0.985484 + 0.169769i \(0.945698\pi\)
\(840\) 0 0
\(841\) −4.78890 8.29461i −0.165134 0.286021i
\(842\) −37.3305 + 64.6584i −1.28650 + 2.22827i
\(843\) 0 0
\(844\) −77.9638 −2.68363
\(845\) 13.0000 0.447214
\(846\) 0 0
\(847\) −4.21110 + 7.29384i −0.144695 + 0.250619i
\(848\) −0.486122 + 0.841988i −0.0166935 + 0.0289140i
\(849\) 0 0
\(850\) −17.5139 −0.600721
\(851\) −5.40833 9.36750i −0.185395 0.321114i
\(852\) 0 0
\(853\) 47.2111 1.61648 0.808239 0.588855i \(-0.200421\pi\)
0.808239 + 0.588855i \(0.200421\pi\)
\(854\) −1.15139 1.99426i −0.0393997 0.0682422i
\(855\) 0 0
\(856\) 9.31665 16.1369i 0.318437 0.551548i
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 10.7889 0.368112 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(860\) 16.8625 29.2067i 0.575006 0.995940i
\(861\) 0 0
\(862\) 33.6653 + 58.3100i 1.14664 + 1.98604i
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 2.40833 + 4.17134i 0.0818856 + 0.141830i
\(866\) 8.30278 0.282140
\(867\) 0 0
\(868\) −6.60555 + 11.4412i −0.224207 + 0.388338i
\(869\) 4.18335 7.24577i 0.141910 0.245796i
\(870\) 0 0
\(871\) −12.6194 + 21.8575i −0.427593 + 0.740613i
\(872\) −57.6333 −1.95171
\(873\) 0 0
\(874\) 19.3625 33.5368i 0.654946 1.13440i
\(875\) 0.500000 + 0.866025i 0.0169031 + 0.0292770i
\(876\) 0 0
\(877\) 0.986122 + 1.70801i 0.0332990 + 0.0576755i 0.882195 0.470885i \(-0.156065\pi\)
−0.848896 + 0.528560i \(0.822732\pi\)
\(878\) 31.3625 + 54.3214i 1.05843 + 1.83326i
\(879\) 0 0
\(880\) 0.243061 + 0.420994i 0.00819358 + 0.0141917i
\(881\) −10.9222 + 18.9178i −0.367978 + 0.637357i −0.989249 0.146238i \(-0.953283\pi\)
0.621271 + 0.783596i \(0.286617\pi\)
\(882\) 0 0
\(883\) 11.6333 0.391492 0.195746 0.980655i \(-0.437287\pi\)
0.195746 + 0.980655i \(0.437287\pi\)
\(884\) −45.2847 + 78.4354i −1.52309 + 2.63807i
\(885\) 0 0
\(886\) 7.39445 12.8076i 0.248421 0.430278i
\(887\) −18.5278 + 32.0910i −0.622101 + 1.07751i 0.366993 + 0.930224i \(0.380387\pi\)
−0.989094 + 0.147287i \(0.952946\pi\)
\(888\) 0 0
\(889\) 4.21110 0.141236
\(890\) −7.15139 12.3866i −0.239715 0.415199i
\(891\) 0 0
\(892\) −13.9083 −0.465685
\(893\) −25.8167 44.7158i −0.863921 1.49636i
\(894\) 0 0
\(895\) 11.4083 19.7598i 0.381338 0.660497i
\(896\) 18.9083 0.631683
\(897\) 0 0
\(898\) −70.5416 −2.35400
\(899\) 12.4222 21.5159i 0.414304 0.717595i
\(900\) 0 0
\(901\) 12.2111 + 21.1503i 0.406811 + 0.704617i
\(902\) 11.0917 0.369312
\(903\) 0 0
\(904\) −2.40833 4.17134i −0.0800998 0.138737i
\(905\) 17.6333 0.586151
\(906\) 0 0
\(907\) 19.1333 33.1399i 0.635311 1.10039i −0.351138 0.936324i \(-0.614205\pi\)
0.986449 0.164067i \(-0.0524614\pi\)
\(908\) −45.2847 + 78.4354i −1.50283 + 2.60297i
\(909\) 0 0
\(910\) 8.30278 0.275234
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 7.39445 12.8076i 0.244721 0.423868i
\(914\) 30.8764 + 53.4794i 1.02130 + 1.76894i
\(915\) 0 0
\(916\) −23.1194 40.0440i −0.763887 1.32309i
\(917\) 10.6056 + 18.3694i 0.350226 + 0.606610i
\(918\) 0 0
\(919\) 19.4083 + 33.6162i 0.640222 + 1.10890i 0.985383 + 0.170353i \(0.0544908\pi\)
−0.345161 + 0.938543i \(0.612176\pi\)
\(920\) −4.50000 + 7.79423i −0.148361 + 0.256968i
\(921\) 0 0
\(922\) −83.3860 −2.74617
\(923\) −8.68335 15.0400i −0.285816 0.495048i
\(924\) 0 0
\(925\) −1.80278 + 3.12250i −0.0592749 + 0.102667i
\(926\) 39.6333 68.6469i 1.30243 2.25588i
\(927\) 0 0
\(928\) −32.9361 −1.08118
\(929\) −7.71110 13.3560i −0.252993 0.438197i 0.711355 0.702832i \(-0.248082\pi\)
−0.964348 + 0.264636i \(0.914748\pi\)
\(930\) 0 0
\(931\) 33.6333 1.10229
\(932\) 25.1194 + 43.5081i 0.822814 + 1.42516i
\(933\) 0 0
\(934\) 3.21110 5.56179i 0.105070 0.181987i
\(935\) 12.2111 0.399346
\(936\) 0 0
\(937\) 54.4777 1.77971 0.889855 0.456244i \(-0.150806\pi\)
0.889855 + 0.456244i \(0.150806\pi\)
\(938\) −8.05971 + 13.9598i −0.263159 + 0.455805i
\(939\) 0 0
\(940\) 15.2111 + 26.3464i 0.496131 + 0.859325i
\(941\) 9.63331 0.314037 0.157018 0.987596i \(-0.449812\pi\)
0.157018 + 0.987596i \(0.449812\pi\)
\(942\) 0 0
\(943\) 4.50000 + 7.79423i 0.146540 + 0.253815i
\(944\) 3.27502 0.106593
\(945\) 0 0
\(946\) −18.8764 + 32.6948i −0.613724 + 1.06300i
\(947\) −9.31665 + 16.1369i −0.302751 + 0.524379i −0.976758 0.214345i \(-0.931238\pi\)
0.674007 + 0.738725i \(0.264572\pi\)
\(948\) 0 0
\(949\) 2.84441 0.0923335
\(950\) −12.9083 −0.418801
\(951\) 0 0
\(952\) −11.4083 + 19.7598i −0.369746 + 0.640419i
\(953\) −7.22498 12.5140i −0.234040 0.405369i 0.724953 0.688798i \(-0.241861\pi\)
−0.958993 + 0.283429i \(0.908528\pi\)
\(954\) 0 0
\(955\) 8.40833 + 14.5636i 0.272087 + 0.471269i
\(956\) 0 0
\(957\) 0 0
\(958\) −33.1791 57.4680i −1.07197 1.85671i
\(959\) 0.802776 1.39045i 0.0259230 0.0448999i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 14.9680 + 25.9254i 0.482589 + 0.835869i
\(963\) 0 0
\(964\) −2.95416 + 5.11676i −0.0951472 + 0.164800i
\(965\) −7.80278 + 13.5148i −0.251180 + 0.435057i
\(966\) 0 0
\(967\) −44.4777 −1.43031 −0.715153 0.698967i \(-0.753643\pi\)
−0.715153 + 0.698967i \(0.753643\pi\)
\(968\) 12.6333 + 21.8815i 0.406050 + 0.703299i
\(969\) 0 0
\(970\) −19.3305 −0.620666
\(971\) −22.0139 38.1292i −0.706459 1.22362i −0.966162 0.257934i \(-0.916958\pi\)
0.259703 0.965688i \(-0.416375\pi\)
\(972\) 0 0
\(973\) 3.19722 5.53776i 0.102498 0.177532i
\(974\) −2.30278 −0.0737857
\(975\) 0 0
\(976\) −0.302776 −0.00969161
\(977\) 14.4083 24.9560i 0.460963 0.798412i −0.538046 0.842915i \(-0.680837\pi\)
0.999009 + 0.0445038i \(0.0141707\pi\)
\(978\) 0 0
\(979\) 4.98612 + 8.63622i 0.159357 + 0.276015i
\(980\) −19.8167 −0.633020
\(981\) 0 0
\(982\) −19.3625 33.5368i −0.617882 1.07020i
\(983\) −18.4222 −0.587577 −0.293789 0.955870i \(-0.594916\pi\)
−0.293789 + 0.955870i \(0.594916\pi\)
\(984\) 0 0
\(985\) 0.591673 1.02481i 0.0188523 0.0326531i
\(986\) 54.3902 94.2067i 1.73214 3.00015i
\(987\) 0 0
\(988\) −33.3764 + 57.8096i −1.06184 + 1.83917i
\(989\) −30.6333 −0.974083
\(990\) 0 0
\(991\) −20.0139 + 34.6651i −0.635762 + 1.10117i 0.350591 + 0.936529i \(0.385981\pi\)
−0.986353 + 0.164643i \(0.947353\pi\)
\(992\) −10.6056 18.3694i −0.336727 0.583228i
\(993\) 0 0
\(994\) −5.54584 9.60567i −0.175903 0.304673i
\(995\) −6.40833 11.0995i −0.203158 0.351879i
\(996\) 0 0
\(997\) 9.22498 + 15.9781i 0.292158 + 0.506033i 0.974320 0.225169i \(-0.0722933\pi\)
−0.682162 + 0.731201i \(0.738960\pi\)
\(998\) −2.78890 + 4.83051i −0.0882810 + 0.152907i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.j.d.451.1 4
3.2 odd 2 65.2.e.b.61.2 yes 4
12.11 even 2 1040.2.q.o.321.2 4
13.3 even 3 inner 585.2.j.d.406.1 4
13.4 even 6 7605.2.a.bb.1.1 2
13.9 even 3 7605.2.a.bg.1.2 2
15.2 even 4 325.2.o.b.74.4 8
15.8 even 4 325.2.o.b.74.1 8
15.14 odd 2 325.2.e.a.126.1 4
39.2 even 12 845.2.m.d.361.4 8
39.5 even 4 845.2.m.d.316.1 8
39.8 even 4 845.2.m.d.316.4 8
39.11 even 12 845.2.m.d.361.1 8
39.17 odd 6 845.2.a.f.1.2 2
39.20 even 12 845.2.c.d.506.1 4
39.23 odd 6 845.2.e.d.146.1 4
39.29 odd 6 65.2.e.b.16.2 4
39.32 even 12 845.2.c.d.506.4 4
39.35 odd 6 845.2.a.c.1.1 2
39.38 odd 2 845.2.e.d.191.1 4
156.107 even 6 1040.2.q.o.81.2 4
195.29 odd 6 325.2.e.a.276.1 4
195.68 even 12 325.2.o.b.224.4 8
195.74 odd 6 4225.2.a.x.1.2 2
195.107 even 12 325.2.o.b.224.1 8
195.134 odd 6 4225.2.a.t.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.2 4 39.29 odd 6
65.2.e.b.61.2 yes 4 3.2 odd 2
325.2.e.a.126.1 4 15.14 odd 2
325.2.e.a.276.1 4 195.29 odd 6
325.2.o.b.74.1 8 15.8 even 4
325.2.o.b.74.4 8 15.2 even 4
325.2.o.b.224.1 8 195.107 even 12
325.2.o.b.224.4 8 195.68 even 12
585.2.j.d.406.1 4 13.3 even 3 inner
585.2.j.d.451.1 4 1.1 even 1 trivial
845.2.a.c.1.1 2 39.35 odd 6
845.2.a.f.1.2 2 39.17 odd 6
845.2.c.d.506.1 4 39.20 even 12
845.2.c.d.506.4 4 39.32 even 12
845.2.e.d.146.1 4 39.23 odd 6
845.2.e.d.191.1 4 39.38 odd 2
845.2.m.d.316.1 8 39.5 even 4
845.2.m.d.316.4 8 39.8 even 4
845.2.m.d.361.1 8 39.11 even 12
845.2.m.d.361.4 8 39.2 even 12
1040.2.q.o.81.2 4 156.107 even 6
1040.2.q.o.321.2 4 12.11 even 2
4225.2.a.t.1.1 2 195.134 odd 6
4225.2.a.x.1.2 2 195.74 odd 6
7605.2.a.bb.1.1 2 13.4 even 6
7605.2.a.bg.1.2 2 13.9 even 3