Properties

Label 325.2.s.b.193.2
Level $325$
Weight $2$
Character 325.193
Analytic conductor $2.595$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(32,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.s (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.2
Root \(1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 325.193
Dual form 325.2.s.b.32.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.511309 - 0.885613i) q^{2} +(0.721300 - 2.69193i) q^{3} +(0.477126 - 0.826407i) q^{4} +(-2.75281 + 0.737614i) q^{6} +(-0.834479 - 0.481787i) q^{7} -3.02107 q^{8} +(-4.12812 - 2.38337i) q^{9} +(1.60661 + 0.430490i) q^{11} +(-1.88048 - 1.88048i) q^{12} +(-1.82127 + 3.11175i) q^{13} +0.985368i q^{14} +(0.590448 + 1.02269i) q^{16} +(7.00342 - 1.87656i) q^{17} +4.87456i q^{18} +(-0.707496 - 2.64041i) q^{19} +(-1.89884 + 1.89884i) q^{21} +(-0.440226 - 1.64295i) q^{22} +(3.72214 + 0.997344i) q^{23} +(-2.17910 + 8.13250i) q^{24} +(3.68704 + 0.0218799i) q^{26} +(-3.48159 + 3.48159i) q^{27} +(-0.796304 + 0.459747i) q^{28} +(0.253107 - 0.146132i) q^{29} +(-0.125649 - 0.125649i) q^{31} +(-2.41727 + 4.18683i) q^{32} +(2.31769 - 4.01436i) q^{33} +(-5.24282 - 5.24282i) q^{34} +(-3.93927 + 2.27434i) q^{36} +(-3.53443 + 2.04061i) q^{37} +(-1.97663 + 1.97663i) q^{38} +(7.06291 + 7.14724i) q^{39} +(-1.79277 + 6.69071i) q^{41} +(2.65254 + 0.710745i) q^{42} +(-2.05706 - 7.67707i) q^{43} +(1.12232 - 1.12232i) q^{44} +(-1.01990 - 3.80633i) q^{46} -7.84582i q^{47} +(3.17888 - 0.851780i) q^{48} +(-3.03576 - 5.25810i) q^{49} -20.2063i q^{51} +(1.70259 + 2.98981i) q^{52} +(1.99855 + 1.99855i) q^{53} +(4.86351 + 1.30317i) q^{54} +(2.52102 + 1.45551i) q^{56} -7.61811 q^{57} +(-0.258832 - 0.149437i) q^{58} +(4.87924 - 1.30739i) q^{59} +(-1.04169 + 1.80425i) q^{61} +(-0.0470311 + 0.175522i) q^{62} +(2.29655 + 3.97775i) q^{63} +7.30568 q^{64} -4.74023 q^{66} +(3.64915 + 6.32050i) q^{67} +(1.79071 - 6.68304i) q^{68} +(5.36956 - 9.30034i) q^{69} +(12.6082 - 3.37837i) q^{71} +(12.4713 + 7.20034i) q^{72} -3.22747 q^{73} +(3.61437 + 2.08676i) q^{74} +(-2.51962 - 0.675130i) q^{76} +(-1.13328 - 1.13328i) q^{77} +(2.71836 - 9.90945i) q^{78} +13.5845i q^{79} +(-0.289196 - 0.500902i) q^{81} +(6.84204 - 1.83332i) q^{82} +8.56854i q^{83} +(0.663230 + 2.47521i) q^{84} +(-5.74712 + 5.74712i) q^{86} +(-0.210809 - 0.786751i) q^{87} +(-4.85368 - 1.30054i) q^{88} +(0.134207 - 0.500868i) q^{89} +(3.01901 - 1.71922i) q^{91} +(2.60014 - 2.60014i) q^{92} +(-0.428870 + 0.247608i) q^{93} +(-6.94836 + 4.01164i) q^{94} +(9.52707 + 9.52707i) q^{96} +(3.75660 - 6.50662i) q^{97} +(-3.10442 + 5.37702i) q^{98} +(-5.60626 - 5.60626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} + 2 q^{3} - 6 q^{4} - 8 q^{6} + 6 q^{7} - 12 q^{8} - 12 q^{9} - 16 q^{11} - 24 q^{12} - 2 q^{13} - 2 q^{16} + 10 q^{17} + 20 q^{19} + 4 q^{21} - 16 q^{22} + 2 q^{23} - 32 q^{24} - 24 q^{26}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.511309 0.885613i −0.361550 0.626223i 0.626666 0.779288i \(-0.284419\pi\)
−0.988216 + 0.153065i \(0.951086\pi\)
\(3\) 0.721300 2.69193i 0.416443 1.55418i −0.365486 0.930817i \(-0.619097\pi\)
0.781929 0.623368i \(-0.214236\pi\)
\(4\) 0.477126 0.826407i 0.238563 0.413204i
\(5\) 0 0
\(6\) −2.75281 + 0.737614i −1.12383 + 0.301130i
\(7\) −0.834479 0.481787i −0.315404 0.182098i 0.333938 0.942595i \(-0.391622\pi\)
−0.649342 + 0.760497i \(0.724956\pi\)
\(8\) −3.02107 −1.06811
\(9\) −4.12812 2.38337i −1.37604 0.794457i
\(10\) 0 0
\(11\) 1.60661 + 0.430490i 0.484411 + 0.129797i 0.492756 0.870168i \(-0.335990\pi\)
−0.00834492 + 0.999965i \(0.502656\pi\)
\(12\) −1.88048 1.88048i −0.542847 0.542847i
\(13\) −1.82127 + 3.11175i −0.505130 + 0.863043i
\(14\) 0.985368i 0.263351i
\(15\) 0 0
\(16\) 0.590448 + 1.02269i 0.147612 + 0.255671i
\(17\) 7.00342 1.87656i 1.69858 0.455133i 0.725998 0.687697i \(-0.241378\pi\)
0.972581 + 0.232564i \(0.0747114\pi\)
\(18\) 4.87456i 1.14894i
\(19\) −0.707496 2.64041i −0.162311 0.605752i −0.998368 0.0571095i \(-0.981812\pi\)
0.836057 0.548642i \(-0.184855\pi\)
\(20\) 0 0
\(21\) −1.89884 + 1.89884i −0.414362 + 0.414362i
\(22\) −0.440226 1.64295i −0.0938565 0.350277i
\(23\) 3.72214 + 0.997344i 0.776120 + 0.207961i 0.625073 0.780566i \(-0.285069\pi\)
0.151046 + 0.988527i \(0.451736\pi\)
\(24\) −2.17910 + 8.13250i −0.444806 + 1.66004i
\(25\) 0 0
\(26\) 3.68704 + 0.0218799i 0.723087 + 0.00429099i
\(27\) −3.48159 + 3.48159i −0.670033 + 0.670033i
\(28\) −0.796304 + 0.459747i −0.150487 + 0.0868839i
\(29\) 0.253107 0.146132i 0.0470008 0.0271360i −0.476315 0.879274i \(-0.658028\pi\)
0.523316 + 0.852139i \(0.324695\pi\)
\(30\) 0 0
\(31\) −0.125649 0.125649i −0.0225673 0.0225673i 0.695733 0.718300i \(-0.255080\pi\)
−0.718300 + 0.695733i \(0.755080\pi\)
\(32\) −2.41727 + 4.18683i −0.427317 + 0.740134i
\(33\) 2.31769 4.01436i 0.403458 0.698811i
\(34\) −5.24282 5.24282i −0.899136 0.899136i
\(35\) 0 0
\(36\) −3.93927 + 2.27434i −0.656545 + 0.379057i
\(37\) −3.53443 + 2.04061i −0.581057 + 0.335474i −0.761553 0.648102i \(-0.775563\pi\)
0.180496 + 0.983576i \(0.442230\pi\)
\(38\) −1.97663 + 1.97663i −0.320652 + 0.320652i
\(39\) 7.06291 + 7.14724i 1.13097 + 1.14447i
\(40\) 0 0
\(41\) −1.79277 + 6.69071i −0.279984 + 1.04491i 0.672444 + 0.740148i \(0.265245\pi\)
−0.952427 + 0.304765i \(0.901422\pi\)
\(42\) 2.65254 + 0.710745i 0.409295 + 0.109670i
\(43\) −2.05706 7.67707i −0.313699 1.17074i −0.925194 0.379494i \(-0.876098\pi\)
0.611495 0.791248i \(-0.290568\pi\)
\(44\) 1.12232 1.12232i 0.169195 0.169195i
\(45\) 0 0
\(46\) −1.01990 3.80633i −0.150376 0.561212i
\(47\) 7.84582i 1.14443i −0.820103 0.572215i \(-0.806084\pi\)
0.820103 0.572215i \(-0.193916\pi\)
\(48\) 3.17888 0.851780i 0.458832 0.122944i
\(49\) −3.03576 5.25810i −0.433680 0.751156i
\(50\) 0 0
\(51\) 20.2063i 2.82944i
\(52\) 1.70259 + 2.98981i 0.236107 + 0.414612i
\(53\) 1.99855 + 1.99855i 0.274522 + 0.274522i 0.830918 0.556395i \(-0.187816\pi\)
−0.556395 + 0.830918i \(0.687816\pi\)
\(54\) 4.86351 + 1.30317i 0.661840 + 0.177339i
\(55\) 0 0
\(56\) 2.52102 + 1.45551i 0.336886 + 0.194501i
\(57\) −7.61811 −1.00904
\(58\) −0.258832 0.149437i −0.0339863 0.0196220i
\(59\) 4.87924 1.30739i 0.635223 0.170207i 0.0731843 0.997318i \(-0.476684\pi\)
0.562039 + 0.827111i \(0.310017\pi\)
\(60\) 0 0
\(61\) −1.04169 + 1.80425i −0.133374 + 0.231011i −0.924975 0.380027i \(-0.875915\pi\)
0.791601 + 0.611038i \(0.209248\pi\)
\(62\) −0.0470311 + 0.175522i −0.00597296 + 0.0222914i
\(63\) 2.29655 + 3.97775i 0.289339 + 0.501149i
\(64\) 7.30568 0.913209
\(65\) 0 0
\(66\) −4.74023 −0.583482
\(67\) 3.64915 + 6.32050i 0.445814 + 0.772173i 0.998109 0.0614765i \(-0.0195809\pi\)
−0.552294 + 0.833649i \(0.686248\pi\)
\(68\) 1.79071 6.68304i 0.217156 0.810437i
\(69\) 5.36956 9.30034i 0.646419 1.11963i
\(70\) 0 0
\(71\) 12.6082 3.37837i 1.49632 0.400939i 0.584457 0.811425i \(-0.301308\pi\)
0.911867 + 0.410486i \(0.134641\pi\)
\(72\) 12.4713 + 7.20034i 1.46976 + 0.848568i
\(73\) −3.22747 −0.377746 −0.188873 0.982001i \(-0.560483\pi\)
−0.188873 + 0.982001i \(0.560483\pi\)
\(74\) 3.61437 + 2.08676i 0.420163 + 0.242581i
\(75\) 0 0
\(76\) −2.51962 0.675130i −0.289020 0.0774427i
\(77\) −1.13328 1.13328i −0.129149 0.129149i
\(78\) 2.71836 9.90945i 0.307793 1.12202i
\(79\) 13.5845i 1.52838i 0.644992 + 0.764190i \(0.276861\pi\)
−0.644992 + 0.764190i \(0.723139\pi\)
\(80\) 0 0
\(81\) −0.289196 0.500902i −0.0321329 0.0556558i
\(82\) 6.84204 1.83332i 0.755577 0.202456i
\(83\) 8.56854i 0.940519i 0.882528 + 0.470260i \(0.155840\pi\)
−0.882528 + 0.470260i \(0.844160\pi\)
\(84\) 0.663230 + 2.47521i 0.0723643 + 0.270067i
\(85\) 0 0
\(86\) −5.74712 + 5.74712i −0.619728 + 0.619728i
\(87\) −0.210809 0.786751i −0.0226011 0.0843486i
\(88\) −4.85368 1.30054i −0.517404 0.138638i
\(89\) 0.134207 0.500868i 0.0142259 0.0530919i −0.958448 0.285267i \(-0.907918\pi\)
0.972674 + 0.232175i \(0.0745843\pi\)
\(90\) 0 0
\(91\) 3.01901 1.71922i 0.316479 0.180223i
\(92\) 2.60014 2.60014i 0.271084 0.271084i
\(93\) −0.428870 + 0.247608i −0.0444718 + 0.0256758i
\(94\) −6.94836 + 4.01164i −0.716669 + 0.413769i
\(95\) 0 0
\(96\) 9.52707 + 9.52707i 0.972353 + 0.972353i
\(97\) 3.75660 6.50662i 0.381425 0.660648i −0.609841 0.792524i \(-0.708767\pi\)
0.991266 + 0.131876i \(0.0421001\pi\)
\(98\) −3.10442 + 5.37702i −0.313594 + 0.543161i
\(99\) −5.60626 5.60626i −0.563450 0.563450i
\(100\) 0 0
\(101\) 8.44685 4.87679i 0.840493 0.485259i −0.0169388 0.999857i \(-0.505392\pi\)
0.857432 + 0.514598i \(0.172059\pi\)
\(102\) −17.8949 + 10.3316i −1.77186 + 1.02298i
\(103\) 2.52321 2.52321i 0.248619 0.248619i −0.571784 0.820404i \(-0.693749\pi\)
0.820404 + 0.571784i \(0.193749\pi\)
\(104\) 5.50220 9.40081i 0.539535 0.921825i
\(105\) 0 0
\(106\) 0.748066 2.79182i 0.0726586 0.271166i
\(107\) −0.429359 0.115046i −0.0415077 0.0111220i 0.238005 0.971264i \(-0.423506\pi\)
−0.279513 + 0.960142i \(0.590173\pi\)
\(108\) 1.21605 + 4.53837i 0.117015 + 0.436705i
\(109\) −6.42134 + 6.42134i −0.615053 + 0.615053i −0.944258 0.329206i \(-0.893219\pi\)
0.329206 + 0.944258i \(0.393219\pi\)
\(110\) 0 0
\(111\) 2.94378 + 10.9863i 0.279411 + 1.04278i
\(112\) 1.13788i 0.107520i
\(113\) 1.86865 0.500704i 0.175788 0.0471023i −0.169851 0.985470i \(-0.554329\pi\)
0.345639 + 0.938367i \(0.387662\pi\)
\(114\) 3.89521 + 6.74670i 0.364820 + 0.631886i
\(115\) 0 0
\(116\) 0.278893i 0.0258946i
\(117\) 14.9349 8.50489i 1.38073 0.786277i
\(118\) −3.65264 3.65264i −0.336253 0.336253i
\(119\) −6.74831 1.80821i −0.618617 0.165758i
\(120\) 0 0
\(121\) −7.13041 4.11674i −0.648219 0.374249i
\(122\) 2.13050 0.192886
\(123\) 16.7178 + 9.65202i 1.50739 + 0.870293i
\(124\) −0.163788 + 0.0438869i −0.0147086 + 0.00394116i
\(125\) 0 0
\(126\) 2.34850 4.06772i 0.209221 0.362381i
\(127\) 0.562967 2.10102i 0.0499553 0.186436i −0.936440 0.350829i \(-0.885900\pi\)
0.986395 + 0.164393i \(0.0525666\pi\)
\(128\) 1.09908 + 1.90366i 0.0971460 + 0.168262i
\(129\) −22.1499 −1.95019
\(130\) 0 0
\(131\) −0.0622493 −0.00543874 −0.00271937 0.999996i \(-0.500866\pi\)
−0.00271937 + 0.999996i \(0.500866\pi\)
\(132\) −2.21166 3.83072i −0.192501 0.333421i
\(133\) −0.681725 + 2.54423i −0.0591130 + 0.220613i
\(134\) 3.73168 6.46346i 0.322368 0.558358i
\(135\) 0 0
\(136\) −21.1578 + 5.66923i −1.81427 + 0.486132i
\(137\) 3.82564 + 2.20873i 0.326846 + 0.188705i 0.654440 0.756114i \(-0.272904\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(138\) −10.9820 −0.934850
\(139\) 11.9066 + 6.87430i 1.00991 + 0.583070i 0.911165 0.412043i \(-0.135184\pi\)
0.0987430 + 0.995113i \(0.468518\pi\)
\(140\) 0 0
\(141\) −21.1204 5.65919i −1.77866 0.476590i
\(142\) −9.43864 9.43864i −0.792073 0.792073i
\(143\) −4.26565 + 4.21532i −0.356711 + 0.352503i
\(144\) 5.62903i 0.469085i
\(145\) 0 0
\(146\) 1.65023 + 2.85829i 0.136574 + 0.236553i
\(147\) −16.3441 + 4.37939i −1.34804 + 0.361206i
\(148\) 3.89451i 0.320127i
\(149\) −1.12129 4.18471i −0.0918596 0.342825i 0.904665 0.426124i \(-0.140121\pi\)
−0.996525 + 0.0832987i \(0.973454\pi\)
\(150\) 0 0
\(151\) 4.74990 4.74990i 0.386542 0.386542i −0.486910 0.873452i \(-0.661876\pi\)
0.873452 + 0.486910i \(0.161876\pi\)
\(152\) 2.13740 + 7.97687i 0.173366 + 0.647010i
\(153\) −33.3835 8.94508i −2.69890 0.723167i
\(154\) −0.424190 + 1.58310i −0.0341822 + 0.127570i
\(155\) 0 0
\(156\) 9.27643 2.42670i 0.742709 0.194292i
\(157\) −14.4488 + 14.4488i −1.15314 + 1.15314i −0.167218 + 0.985920i \(0.553478\pi\)
−0.985920 + 0.167218i \(0.946522\pi\)
\(158\) 12.0306 6.94589i 0.957106 0.552586i
\(159\) 6.82151 3.93840i 0.540981 0.312336i
\(160\) 0 0
\(161\) −2.62554 2.62554i −0.206922 0.206922i
\(162\) −0.295737 + 0.512231i −0.0232353 + 0.0402447i
\(163\) 10.6926 18.5201i 0.837508 1.45061i −0.0544633 0.998516i \(-0.517345\pi\)
0.891972 0.452091i \(-0.149322\pi\)
\(164\) 4.67387 + 4.67387i 0.364968 + 0.364968i
\(165\) 0 0
\(166\) 7.58841 4.38117i 0.588975 0.340045i
\(167\) −1.48475 + 0.857220i −0.114893 + 0.0663337i −0.556345 0.830951i \(-0.687797\pi\)
0.441452 + 0.897285i \(0.354464\pi\)
\(168\) 5.73655 5.73655i 0.442584 0.442584i
\(169\) −6.36593 11.3347i −0.489687 0.871898i
\(170\) 0 0
\(171\) −3.37245 + 12.5862i −0.257898 + 0.962488i
\(172\) −7.32587 1.96296i −0.558592 0.149674i
\(173\) 3.92804 + 14.6596i 0.298643 + 1.11455i 0.938281 + 0.345875i \(0.112418\pi\)
−0.639638 + 0.768677i \(0.720916\pi\)
\(174\) −0.588968 + 0.588968i −0.0446496 + 0.0446496i
\(175\) 0 0
\(176\) 0.508363 + 1.89724i 0.0383193 + 0.143010i
\(177\) 14.0776i 1.05814i
\(178\) −0.512196 + 0.137243i −0.0383907 + 0.0102868i
\(179\) 1.37961 + 2.38956i 0.103117 + 0.178604i 0.912967 0.408033i \(-0.133785\pi\)
−0.809850 + 0.586637i \(0.800452\pi\)
\(180\) 0 0
\(181\) 10.3568i 0.769818i 0.922954 + 0.384909i \(0.125767\pi\)
−0.922954 + 0.384909i \(0.874233\pi\)
\(182\) −3.06621 1.79462i −0.227283 0.133026i
\(183\) 4.10555 + 4.10555i 0.303491 + 0.303491i
\(184\) −11.2449 3.01305i −0.828981 0.222125i
\(185\) 0 0
\(186\) 0.438570 + 0.253209i 0.0321575 + 0.0185662i
\(187\) 12.0596 0.881885
\(188\) −6.48384 3.74345i −0.472883 0.273019i
\(189\) 4.58270 1.22793i 0.333342 0.0893188i
\(190\) 0 0
\(191\) −9.28983 + 16.0905i −0.672189 + 1.16427i 0.305093 + 0.952322i \(0.401312\pi\)
−0.977282 + 0.211943i \(0.932021\pi\)
\(192\) 5.26958 19.6663i 0.380299 1.41930i
\(193\) 6.28576 + 10.8872i 0.452459 + 0.783681i 0.998538 0.0540520i \(-0.0172137\pi\)
−0.546079 + 0.837733i \(0.683880\pi\)
\(194\) −7.68313 −0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) 7.14308 + 12.3722i 0.508924 + 0.881481i 0.999947 + 0.0103349i \(0.00328975\pi\)
−0.491023 + 0.871147i \(0.663377\pi\)
\(198\) −2.09845 + 7.83150i −0.149130 + 0.556561i
\(199\) −7.36781 + 12.7614i −0.522291 + 0.904634i 0.477373 + 0.878701i \(0.341589\pi\)
−0.999664 + 0.0259331i \(0.991744\pi\)
\(200\) 0 0
\(201\) 19.6465 5.26425i 1.38575 0.371312i
\(202\) −8.63790 4.98709i −0.607760 0.350891i
\(203\) −0.281617 −0.0197656
\(204\) −16.6986 9.64094i −1.16914 0.675001i
\(205\) 0 0
\(206\) −3.52473 0.944449i −0.245580 0.0658029i
\(207\) −12.9884 12.9884i −0.902756 0.902756i
\(208\) −4.25770 0.0252664i −0.295219 0.00175191i
\(209\) 4.54668i 0.314500i
\(210\) 0 0
\(211\) 4.26604 + 7.38900i 0.293686 + 0.508680i 0.974678 0.223611i \(-0.0717845\pi\)
−0.680992 + 0.732291i \(0.738451\pi\)
\(212\) 2.60518 0.698056i 0.178925 0.0479427i
\(213\) 36.3773i 2.49253i
\(214\) 0.117649 + 0.439070i 0.00804229 + 0.0300142i
\(215\) 0 0
\(216\) 10.5181 10.5181i 0.715669 0.715669i
\(217\) 0.0443156 + 0.165388i 0.00300834 + 0.0112273i
\(218\) 8.97011 + 2.40353i 0.607532 + 0.162788i
\(219\) −2.32797 + 8.68810i −0.157310 + 0.587087i
\(220\) 0 0
\(221\) −6.91576 + 25.2106i −0.465205 + 1.69585i
\(222\) 8.22445 8.22445i 0.551989 0.551989i
\(223\) −6.11483 + 3.53040i −0.409479 + 0.236413i −0.690566 0.723269i \(-0.742638\pi\)
0.281087 + 0.959682i \(0.409305\pi\)
\(224\) 4.03432 2.32922i 0.269555 0.155627i
\(225\) 0 0
\(226\) −1.39889 1.39889i −0.0930527 0.0930527i
\(227\) −8.58775 + 14.8744i −0.569989 + 0.987249i 0.426578 + 0.904451i \(0.359719\pi\)
−0.996566 + 0.0827985i \(0.973614\pi\)
\(228\) −3.63480 + 6.29566i −0.240721 + 0.416940i
\(229\) 8.90647 + 8.90647i 0.588556 + 0.588556i 0.937240 0.348684i \(-0.113371\pi\)
−0.348684 + 0.937240i \(0.613371\pi\)
\(230\) 0 0
\(231\) −3.86813 + 2.23327i −0.254504 + 0.146938i
\(232\) −0.764655 + 0.441474i −0.0502021 + 0.0289842i
\(233\) −17.5822 + 17.5822i −1.15185 + 1.15185i −0.165666 + 0.986182i \(0.552977\pi\)
−0.986182 + 0.165666i \(0.947023\pi\)
\(234\) −15.1684 8.87790i −0.991588 0.580366i
\(235\) 0 0
\(236\) 1.24758 4.65603i 0.0812105 0.303082i
\(237\) 36.5686 + 9.79852i 2.37538 + 0.636482i
\(238\) 1.84910 + 6.90095i 0.119860 + 0.447322i
\(239\) 2.23488 2.23488i 0.144562 0.144562i −0.631122 0.775684i \(-0.717405\pi\)
0.775684 + 0.631122i \(0.217405\pi\)
\(240\) 0 0
\(241\) −4.66361 17.4048i −0.300409 1.12114i −0.936825 0.349797i \(-0.886250\pi\)
0.636416 0.771346i \(-0.280416\pi\)
\(242\) 8.41971i 0.541239i
\(243\) −15.8248 + 4.24025i −1.01516 + 0.272012i
\(244\) 0.994033 + 1.72172i 0.0636364 + 0.110222i
\(245\) 0 0
\(246\) 19.7406i 1.25862i
\(247\) 9.50483 + 2.60736i 0.604778 + 0.165902i
\(248\) 0.379596 + 0.379596i 0.0241044 + 0.0241044i
\(249\) 23.0659 + 6.18048i 1.46174 + 0.391672i
\(250\) 0 0
\(251\) 12.1009 + 6.98644i 0.763800 + 0.440980i 0.830658 0.556782i \(-0.187964\pi\)
−0.0668586 + 0.997762i \(0.521298\pi\)
\(252\) 4.38299 0.276102
\(253\) 5.55068 + 3.20468i 0.348968 + 0.201477i
\(254\) −2.14854 + 0.575700i −0.134812 + 0.0361227i
\(255\) 0 0
\(256\) 8.42962 14.6005i 0.526851 0.912533i
\(257\) 5.99887 22.3881i 0.374199 1.39653i −0.480312 0.877098i \(-0.659476\pi\)
0.854511 0.519433i \(-0.173857\pi\)
\(258\) 11.3254 + 19.6162i 0.705090 + 1.22125i
\(259\) 3.93255 0.244357
\(260\) 0 0
\(261\) −1.39314 −0.0862334
\(262\) 0.0318286 + 0.0551288i 0.00196638 + 0.00340587i
\(263\) −0.336737 + 1.25672i −0.0207641 + 0.0774926i −0.975530 0.219864i \(-0.929438\pi\)
0.954766 + 0.297357i \(0.0961052\pi\)
\(264\) −7.00191 + 12.1277i −0.430938 + 0.746407i
\(265\) 0 0
\(266\) 2.60178 0.697144i 0.159525 0.0427446i
\(267\) −1.25150 0.722551i −0.0765903 0.0442194i
\(268\) 6.96441 0.425419
\(269\) 6.87429 + 3.96887i 0.419133 + 0.241986i 0.694706 0.719294i \(-0.255534\pi\)
−0.275574 + 0.961280i \(0.588868\pi\)
\(270\) 0 0
\(271\) −0.865041 0.231787i −0.0525475 0.0140801i 0.232450 0.972608i \(-0.425326\pi\)
−0.284997 + 0.958528i \(0.591993\pi\)
\(272\) 6.05429 + 6.05429i 0.367095 + 0.367095i
\(273\) −2.45041 9.36704i −0.148305 0.566919i
\(274\) 4.51738i 0.272905i
\(275\) 0 0
\(276\) −5.12391 8.87488i −0.308423 0.534205i
\(277\) −9.22930 + 2.47298i −0.554535 + 0.148587i −0.525194 0.850982i \(-0.676007\pi\)
−0.0293404 + 0.999569i \(0.509341\pi\)
\(278\) 14.0596i 0.843236i
\(279\) 0.219227 + 0.818165i 0.0131248 + 0.0489823i
\(280\) 0 0
\(281\) 5.58408 5.58408i 0.333118 0.333118i −0.520651 0.853769i \(-0.674311\pi\)
0.853769 + 0.520651i \(0.174311\pi\)
\(282\) 5.78719 + 21.5981i 0.344622 + 1.28615i
\(283\) 20.3851 + 5.46218i 1.21177 + 0.324693i 0.807457 0.589927i \(-0.200843\pi\)
0.404314 + 0.914620i \(0.367510\pi\)
\(284\) 3.22382 12.0315i 0.191298 0.713936i
\(285\) 0 0
\(286\) 5.91420 + 1.62238i 0.349714 + 0.0959335i
\(287\) 4.71953 4.71953i 0.278585 0.278585i
\(288\) 19.9576 11.5225i 1.17601 0.678970i
\(289\) 30.8040 17.7847i 1.81200 1.04616i
\(290\) 0 0
\(291\) −14.8057 14.8057i −0.867927 0.867927i
\(292\) −1.53991 + 2.66720i −0.0901164 + 0.156086i
\(293\) 2.01079 3.48280i 0.117472 0.203467i −0.801293 0.598272i \(-0.795854\pi\)
0.918765 + 0.394805i \(0.129188\pi\)
\(294\) 12.2353 + 12.2353i 0.713579 + 0.713579i
\(295\) 0 0
\(296\) 10.6778 6.16482i 0.620633 0.358323i
\(297\) −7.09234 + 4.09477i −0.411539 + 0.237602i
\(298\) −3.13271 + 3.13271i −0.181473 + 0.181473i
\(299\) −9.88252 + 9.76592i −0.571521 + 0.564778i
\(300\) 0 0
\(301\) −1.98213 + 7.39742i −0.114248 + 0.426380i
\(302\) −6.63524 1.77791i −0.381815 0.102307i
\(303\) −7.03525 26.2559i −0.404165 1.50836i
\(304\) 2.28257 2.28257i 0.130914 0.130914i
\(305\) 0 0
\(306\) 9.14740 + 34.1386i 0.522922 + 1.95157i
\(307\) 24.2191i 1.38226i 0.722732 + 0.691128i \(0.242886\pi\)
−0.722732 + 0.691128i \(0.757114\pi\)
\(308\) −1.47727 + 0.395832i −0.0841750 + 0.0225546i
\(309\) −4.97231 8.61229i −0.282865 0.489936i
\(310\) 0 0
\(311\) 7.87243i 0.446405i −0.974772 0.223202i \(-0.928349\pi\)
0.974772 0.223202i \(-0.0716511\pi\)
\(312\) −21.3376 21.5923i −1.20800 1.22242i
\(313\) −3.39121 3.39121i −0.191683 0.191683i 0.604740 0.796423i \(-0.293277\pi\)
−0.796423 + 0.604740i \(0.793277\pi\)
\(314\) 20.1838 + 5.40824i 1.13904 + 0.305204i
\(315\) 0 0
\(316\) 11.2264 + 6.48154i 0.631532 + 0.364615i
\(317\) −22.9255 −1.28762 −0.643812 0.765184i \(-0.722648\pi\)
−0.643812 + 0.765184i \(0.722648\pi\)
\(318\) −6.97580 4.02748i −0.391183 0.225850i
\(319\) 0.469553 0.125816i 0.0262899 0.00704436i
\(320\) 0 0
\(321\) −0.619393 + 1.07282i −0.0345712 + 0.0598790i
\(322\) −0.982751 + 3.66768i −0.0547666 + 0.204392i
\(323\) −9.90979 17.1643i −0.551395 0.955044i
\(324\) −0.551932 −0.0306629
\(325\) 0 0
\(326\) −21.8689 −1.21120
\(327\) 12.6541 + 21.9175i 0.699771 + 1.21204i
\(328\) 5.41609 20.2131i 0.299053 1.11608i
\(329\) −3.78001 + 6.54718i −0.208399 + 0.360958i
\(330\) 0 0
\(331\) −32.4118 + 8.68470i −1.78151 + 0.477354i −0.990858 0.134910i \(-0.956925\pi\)
−0.790653 + 0.612264i \(0.790259\pi\)
\(332\) 7.08110 + 4.08828i 0.388626 + 0.224373i
\(333\) 19.4541 1.06608
\(334\) 1.51833 + 0.876609i 0.0830794 + 0.0479659i
\(335\) 0 0
\(336\) −3.06309 0.820752i −0.167105 0.0447757i
\(337\) −14.5544 14.5544i −0.792826 0.792826i 0.189126 0.981953i \(-0.439434\pi\)
−0.981953 + 0.189126i \(0.939434\pi\)
\(338\) −6.78318 + 11.4333i −0.368957 + 0.621888i
\(339\) 5.39143i 0.292822i
\(340\) 0 0
\(341\) −0.147779 0.255960i −0.00800267 0.0138610i
\(342\) 12.8708 3.44873i 0.695975 0.186486i
\(343\) 12.5954i 0.680087i
\(344\) 6.21454 + 23.1930i 0.335065 + 1.25048i
\(345\) 0 0
\(346\) 10.9743 10.9743i 0.589983 0.589983i
\(347\) −5.90442 22.0356i −0.316966 1.18293i −0.922145 0.386844i \(-0.873565\pi\)
0.605179 0.796089i \(-0.293101\pi\)
\(348\) −0.750759 0.201165i −0.0402449 0.0107836i
\(349\) 2.68798 10.0317i 0.143884 0.536983i −0.855918 0.517111i \(-0.827008\pi\)
0.999803 0.0198718i \(-0.00632581\pi\)
\(350\) 0 0
\(351\) −4.49290 17.1748i −0.239813 0.916721i
\(352\) −5.68599 + 5.68599i −0.303064 + 0.303064i
\(353\) −3.72420 + 2.15017i −0.198219 + 0.114442i −0.595825 0.803115i \(-0.703175\pi\)
0.397605 + 0.917556i \(0.369841\pi\)
\(354\) −12.4673 + 7.19799i −0.662629 + 0.382569i
\(355\) 0 0
\(356\) −0.349887 0.349887i −0.0185440 0.0185440i
\(357\) −9.73511 + 16.8617i −0.515237 + 0.892416i
\(358\) 1.41082 2.44361i 0.0745640 0.129149i
\(359\) 10.4273 + 10.4273i 0.550333 + 0.550333i 0.926537 0.376204i \(-0.122771\pi\)
−0.376204 + 0.926537i \(0.622771\pi\)
\(360\) 0 0
\(361\) 9.98326 5.76384i 0.525435 0.303360i
\(362\) 9.17216 5.29555i 0.482078 0.278328i
\(363\) −16.2251 + 16.2251i −0.851599 + 0.851599i
\(364\) 0.0196734 3.31522i 0.00103117 0.173765i
\(365\) 0 0
\(366\) 1.53673 5.73514i 0.0803259 0.299780i
\(367\) 11.0341 + 2.95657i 0.575973 + 0.154331i 0.535034 0.844830i \(-0.320299\pi\)
0.0409383 + 0.999162i \(0.486965\pi\)
\(368\) 1.17776 + 4.39546i 0.0613950 + 0.229129i
\(369\) 23.3472 23.3472i 1.21541 1.21541i
\(370\) 0 0
\(371\) −0.704874 2.63063i −0.0365953 0.136575i
\(372\) 0.472562i 0.0245012i
\(373\) 27.1975 7.28755i 1.40823 0.377335i 0.526939 0.849903i \(-0.323339\pi\)
0.881294 + 0.472568i \(0.156673\pi\)
\(374\) −6.16618 10.6801i −0.318846 0.552257i
\(375\) 0 0
\(376\) 23.7028i 1.22238i
\(377\) −0.00625324 + 1.05375i −0.000322058 + 0.0542709i
\(378\) −3.43065 3.43065i −0.176453 0.176453i
\(379\) −16.3551 4.38232i −0.840103 0.225105i −0.186987 0.982362i \(-0.559872\pi\)
−0.653116 + 0.757258i \(0.726539\pi\)
\(380\) 0 0
\(381\) −5.24973 3.03093i −0.268952 0.155279i
\(382\) 18.9999 0.972119
\(383\) 5.71918 + 3.30197i 0.292236 + 0.168723i 0.638950 0.769248i \(-0.279369\pi\)
−0.346714 + 0.937971i \(0.612702\pi\)
\(384\) 5.91729 1.58553i 0.301966 0.0809114i
\(385\) 0 0
\(386\) 6.42793 11.1335i 0.327173 0.566680i
\(387\) −9.80550 + 36.5946i −0.498441 + 1.86021i
\(388\) −3.58475 6.20897i −0.181988 0.315212i
\(389\) −33.6949 −1.70840 −0.854199 0.519946i \(-0.825952\pi\)
−0.854199 + 0.519946i \(0.825952\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) 9.17126 + 15.8851i 0.463218 + 0.802318i
\(393\) −0.0449004 + 0.167570i −0.00226492 + 0.00845281i
\(394\) 7.30464 12.6520i 0.368003 0.637399i
\(395\) 0 0
\(396\) −7.30795 + 1.95816i −0.367238 + 0.0984012i
\(397\) −5.04104 2.91045i −0.253002 0.146071i 0.368136 0.929772i \(-0.379996\pi\)
−0.621138 + 0.783701i \(0.713329\pi\)
\(398\) 15.0689 0.755337
\(399\) 6.35716 + 3.67031i 0.318256 + 0.183745i
\(400\) 0 0
\(401\) 0.255004 + 0.0683280i 0.0127343 + 0.00341214i 0.265181 0.964199i \(-0.414568\pi\)
−0.252446 + 0.967611i \(0.581235\pi\)
\(402\) −14.7075 14.7075i −0.733544 0.733544i
\(403\) 0.619831 0.162147i 0.0308760 0.00807713i
\(404\) 9.30738i 0.463060i
\(405\) 0 0
\(406\) 0.143993 + 0.249404i 0.00714627 + 0.0123777i
\(407\) −6.55691 + 1.75692i −0.325014 + 0.0870872i
\(408\) 61.0446i 3.02216i
\(409\) 9.61872 + 35.8975i 0.475615 + 1.77502i 0.619042 + 0.785358i \(0.287521\pi\)
−0.143427 + 0.989661i \(0.545812\pi\)
\(410\) 0 0
\(411\) 8.70518 8.70518i 0.429395 0.429395i
\(412\) −0.881310 3.28909i −0.0434190 0.162042i
\(413\) −4.70151 1.25977i −0.231346 0.0619890i
\(414\) −4.86161 + 18.1438i −0.238935 + 0.891718i
\(415\) 0 0
\(416\) −8.62585 15.1473i −0.422917 0.742657i
\(417\) 27.0934 27.0934i 1.32677 1.32677i
\(418\) −4.02660 + 2.32476i −0.196947 + 0.113708i
\(419\) −29.3721 + 16.9580i −1.43492 + 0.828451i −0.997490 0.0708027i \(-0.977444\pi\)
−0.437428 + 0.899253i \(0.644111\pi\)
\(420\) 0 0
\(421\) −21.5599 21.5599i −1.05076 1.05076i −0.998641 0.0521230i \(-0.983401\pi\)
−0.0521230 0.998641i \(-0.516599\pi\)
\(422\) 4.36253 7.55613i 0.212365 0.367826i
\(423\) −18.6995 + 32.3885i −0.909201 + 1.57478i
\(424\) −6.03777 6.03777i −0.293220 0.293220i
\(425\) 0 0
\(426\) −32.2162 + 18.6000i −1.56088 + 0.901175i
\(427\) 1.73853 1.00374i 0.0841335 0.0485745i
\(428\) −0.299934 + 0.299934i −0.0144979 + 0.0144979i
\(429\) 8.27052 + 14.5233i 0.399305 + 0.701192i
\(430\) 0 0
\(431\) 1.19014 4.44167i 0.0573271 0.213948i −0.931320 0.364201i \(-0.881342\pi\)
0.988648 + 0.150253i \(0.0480089\pi\)
\(432\) −5.61627 1.50488i −0.270213 0.0724033i
\(433\) 1.03596 + 3.86627i 0.0497853 + 0.185801i 0.986341 0.164719i \(-0.0526716\pi\)
−0.936555 + 0.350520i \(0.886005\pi\)
\(434\) 0.123811 0.123811i 0.00594311 0.00594311i
\(435\) 0 0
\(436\) 2.24285 + 8.37043i 0.107413 + 0.400871i
\(437\) 10.5336i 0.503890i
\(438\) 8.88461 2.38062i 0.424523 0.113751i
\(439\) −11.3618 19.6793i −0.542271 0.939242i −0.998773 0.0495192i \(-0.984231\pi\)
0.456502 0.889723i \(-0.349102\pi\)
\(440\) 0 0
\(441\) 28.9414i 1.37816i
\(442\) 25.8629 6.76571i 1.23017 0.321812i
\(443\) −1.84874 1.84874i −0.0878361 0.0878361i 0.661824 0.749660i \(-0.269783\pi\)
−0.749660 + 0.661824i \(0.769783\pi\)
\(444\) 10.4837 + 2.80911i 0.497536 + 0.133314i
\(445\) 0 0
\(446\) 6.25313 + 3.61025i 0.296094 + 0.170950i
\(447\) −12.0737 −0.571067
\(448\) −6.09644 3.51978i −0.288030 0.166294i
\(449\) −31.0770 + 8.32705i −1.46661 + 0.392978i −0.901769 0.432219i \(-0.857731\pi\)
−0.564845 + 0.825197i \(0.691064\pi\)
\(450\) 0 0
\(451\) −5.76056 + 9.97759i −0.271254 + 0.469826i
\(452\) 0.477798 1.78317i 0.0224737 0.0838731i
\(453\) −9.36029 16.2125i −0.439785 0.761729i
\(454\) 17.5640 0.824318
\(455\) 0 0
\(456\) 23.0149 1.07777
\(457\) −14.1837 24.5669i −0.663486 1.14919i −0.979693 0.200501i \(-0.935743\pi\)
0.316208 0.948690i \(-0.397590\pi\)
\(458\) 3.33373 12.4416i 0.155775 0.581360i
\(459\) −17.8496 + 30.9165i −0.833149 + 1.44306i
\(460\) 0 0
\(461\) −11.1174 + 2.97890i −0.517790 + 0.138741i −0.508244 0.861213i \(-0.669705\pi\)
−0.00954570 + 0.999954i \(0.503039\pi\)
\(462\) 3.95562 + 2.28378i 0.184032 + 0.106251i
\(463\) −29.9456 −1.39169 −0.695845 0.718192i \(-0.744970\pi\)
−0.695845 + 0.718192i \(0.744970\pi\)
\(464\) 0.298893 + 0.172566i 0.0138758 + 0.00801118i
\(465\) 0 0
\(466\) 24.5609 + 6.58109i 1.13776 + 0.304863i
\(467\) 16.1332 + 16.1332i 0.746557 + 0.746557i 0.973831 0.227274i \(-0.0729812\pi\)
−0.227274 + 0.973831i \(0.572981\pi\)
\(468\) 0.0973232 16.4002i 0.00449877 0.758100i
\(469\) 7.03244i 0.324728i
\(470\) 0 0
\(471\) 28.4732 + 49.3170i 1.31197 + 2.27241i
\(472\) −14.7405 + 3.94971i −0.678488 + 0.181800i
\(473\) 13.2196i 0.607837i
\(474\) −10.0201 37.3957i −0.460240 1.71764i
\(475\) 0 0
\(476\) −4.71411 + 4.71411i −0.216071 + 0.216071i
\(477\) −3.48697 13.0136i −0.159657 0.595850i
\(478\) −3.12195 0.836524i −0.142795 0.0382617i
\(479\) 10.0493 37.5043i 0.459162 1.71362i −0.216393 0.976306i \(-0.569429\pi\)
0.675555 0.737309i \(-0.263904\pi\)
\(480\) 0 0
\(481\) 0.0873213 14.7148i 0.00398151 0.670935i
\(482\) −13.0294 + 13.0294i −0.593473 + 0.593473i
\(483\) −8.96157 + 5.17396i −0.407765 + 0.235424i
\(484\) −6.80421 + 3.92841i −0.309282 + 0.178564i
\(485\) 0 0
\(486\) 11.8466 + 11.8466i 0.537372 + 0.537372i
\(487\) 14.4718 25.0660i 0.655782 1.13585i −0.325916 0.945399i \(-0.605673\pi\)
0.981697 0.190448i \(-0.0609941\pi\)
\(488\) 3.14701 5.45078i 0.142458 0.246745i
\(489\) −42.1422 42.1422i −1.90574 1.90574i
\(490\) 0 0
\(491\) 6.30003 3.63733i 0.284317 0.164150i −0.351059 0.936353i \(-0.614178\pi\)
0.635376 + 0.772203i \(0.280845\pi\)
\(492\) 15.9530 9.21046i 0.719216 0.415240i
\(493\) 1.49839 1.49839i 0.0674842 0.0674842i
\(494\) −2.55079 9.75077i −0.114766 0.438708i
\(495\) 0 0
\(496\) 0.0543104 0.202689i 0.00243861 0.00910102i
\(497\) −12.1490 3.25531i −0.544956 0.146021i
\(498\) −6.32027 23.5876i −0.283218 1.05698i
\(499\) −4.24201 + 4.24201i −0.189899 + 0.189899i −0.795652 0.605754i \(-0.792872\pi\)
0.605754 + 0.795652i \(0.292872\pi\)
\(500\) 0 0
\(501\) 1.23663 + 4.61515i 0.0552483 + 0.206190i
\(502\) 14.2889i 0.637745i
\(503\) 3.50677 0.939636i 0.156359 0.0418963i −0.179790 0.983705i \(-0.557542\pi\)
0.336149 + 0.941809i \(0.390875\pi\)
\(504\) −6.93805 12.0171i −0.309046 0.535283i
\(505\) 0 0
\(506\) 6.55433i 0.291376i
\(507\) −35.1039 + 8.96091i −1.55902 + 0.397968i
\(508\) −1.46769 1.46769i −0.0651184 0.0651184i
\(509\) 22.5037 + 6.02986i 0.997460 + 0.267269i 0.720381 0.693578i \(-0.243967\pi\)
0.277079 + 0.960847i \(0.410634\pi\)
\(510\) 0 0
\(511\) 2.69325 + 1.55495i 0.119143 + 0.0687870i
\(512\) −12.8442 −0.567640
\(513\) 11.6560 + 6.72962i 0.514627 + 0.297120i
\(514\) −22.8945 + 6.13455i −1.00983 + 0.270584i
\(515\) 0 0
\(516\) −10.5683 + 18.3048i −0.465243 + 0.805824i
\(517\) 3.37754 12.6052i 0.148544 0.554375i
\(518\) −2.01075 3.48272i −0.0883472 0.153022i
\(519\) 42.2960 1.85659
\(520\) 0 0
\(521\) −13.0530 −0.571862 −0.285931 0.958250i \(-0.592303\pi\)
−0.285931 + 0.958250i \(0.592303\pi\)
\(522\) 0.712327 + 1.23379i 0.0311777 + 0.0540013i
\(523\) −4.40520 + 16.4404i −0.192626 + 0.718890i 0.800243 + 0.599677i \(0.204704\pi\)
−0.992869 + 0.119214i \(0.961963\pi\)
\(524\) −0.0297008 + 0.0514432i −0.00129748 + 0.00224731i
\(525\) 0 0
\(526\) 1.28514 0.344353i 0.0560349 0.0150145i
\(527\) −1.11577 0.644187i −0.0486035 0.0280612i
\(528\) 5.47391 0.238221
\(529\) −7.05896 4.07549i −0.306911 0.177195i
\(530\) 0 0
\(531\) −23.2581 6.23198i −1.00931 0.270445i
\(532\) 1.77730 + 1.77730i 0.0770558 + 0.0770558i
\(533\) −17.5547 17.7643i −0.760377 0.769456i
\(534\) 1.47779i 0.0639501i
\(535\) 0 0
\(536\) −11.0243 19.0947i −0.476178 0.824765i
\(537\) 7.42764 1.99023i 0.320526 0.0858847i
\(538\) 8.11728i 0.349961i
\(539\) −2.61373 9.75457i −0.112581 0.420159i
\(540\) 0 0
\(541\) −10.9728 + 10.9728i −0.471756 + 0.471756i −0.902483 0.430727i \(-0.858257\pi\)
0.430727 + 0.902483i \(0.358257\pi\)
\(542\) 0.237029 + 0.884606i 0.0101813 + 0.0379971i
\(543\) 27.8799 + 7.47039i 1.19644 + 0.320585i
\(544\) −9.07231 + 33.8583i −0.388972 + 1.45166i
\(545\) 0 0
\(546\) −7.04266 + 6.95956i −0.301398 + 0.297842i
\(547\) 20.4450 20.4450i 0.874167 0.874167i −0.118756 0.992923i \(-0.537891\pi\)
0.992923 + 0.118756i \(0.0378908\pi\)
\(548\) 3.65063 2.10769i 0.155947 0.0900361i
\(549\) 8.60042 4.96545i 0.367057 0.211920i
\(550\) 0 0
\(551\) −0.564920 0.564920i −0.0240664 0.0240664i
\(552\) −16.2218 + 28.0970i −0.690446 + 1.19589i
\(553\) 6.54485 11.3360i 0.278315 0.482056i
\(554\) 6.90913 + 6.90913i 0.293541 + 0.293541i
\(555\) 0 0
\(556\) 11.3619 6.55982i 0.481854 0.278198i
\(557\) −11.7609 + 6.79015i −0.498324 + 0.287708i −0.728021 0.685555i \(-0.759560\pi\)
0.229697 + 0.973262i \(0.426226\pi\)
\(558\) 0.612485 0.612485i 0.0259286 0.0259286i
\(559\) 27.6356 + 7.58098i 1.16886 + 0.320641i
\(560\) 0 0
\(561\) 8.69858 32.4636i 0.367254 1.37061i
\(562\) −7.80052 2.09014i −0.329045 0.0881673i
\(563\) −1.25538 4.68514i −0.0529080 0.197455i 0.934413 0.356191i \(-0.115925\pi\)
−0.987321 + 0.158736i \(0.949258\pi\)
\(564\) −14.7539 + 14.7539i −0.621251 + 0.621251i
\(565\) 0 0
\(566\) −5.58573 20.8462i −0.234786 0.876232i
\(567\) 0.557323i 0.0234054i
\(568\) −38.0904 + 10.2063i −1.59824 + 0.428247i
\(569\) −0.124396 0.215461i −0.00521497 0.00903259i 0.863406 0.504509i \(-0.168327\pi\)
−0.868621 + 0.495477i \(0.834993\pi\)
\(570\) 0 0
\(571\) 7.72842i 0.323424i −0.986838 0.161712i \(-0.948298\pi\)
0.986838 0.161712i \(-0.0517016\pi\)
\(572\) 1.44832 + 5.53640i 0.0605572 + 0.231489i
\(573\) 36.6136 + 36.6136i 1.52955 + 1.52955i
\(574\) −6.59281 1.76654i −0.275179 0.0737339i
\(575\) 0 0
\(576\) −30.1587 17.4121i −1.25661 0.725506i
\(577\) 12.1339 0.505141 0.252570 0.967578i \(-0.418724\pi\)
0.252570 + 0.967578i \(0.418724\pi\)
\(578\) −31.5007 18.1869i −1.31026 0.756477i
\(579\) 33.8416 9.06783i 1.40641 0.376846i
\(580\) 0 0
\(581\) 4.12821 7.15027i 0.171267 0.296643i
\(582\) −5.54184 + 20.6824i −0.229717 + 0.857315i
\(583\) 2.35054 + 4.07125i 0.0973492 + 0.168614i
\(584\) 9.75040 0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) −18.2647 31.6354i −0.753865 1.30573i −0.945937 0.324351i \(-0.894854\pi\)
0.192072 0.981381i \(-0.438479\pi\)
\(588\) −4.17904 + 15.5964i −0.172341 + 0.643185i
\(589\) −0.242870 + 0.420663i −0.0100073 + 0.0173331i
\(590\) 0 0
\(591\) 38.4573 10.3046i 1.58192 0.423875i
\(592\) −4.17380 2.40974i −0.171542 0.0990398i
\(593\) 16.6936 0.685525 0.342762 0.939422i \(-0.388637\pi\)
0.342762 + 0.939422i \(0.388637\pi\)
\(594\) 7.25276 + 4.18738i 0.297584 + 0.171810i
\(595\) 0 0
\(596\) −3.99327 1.06999i −0.163571 0.0438287i
\(597\) 29.0384 + 29.0384i 1.18846 + 1.18846i
\(598\) 13.7018 + 3.75868i 0.560310 + 0.153704i
\(599\) 13.2549i 0.541579i 0.962639 + 0.270789i \(0.0872847\pi\)
−0.962639 + 0.270789i \(0.912715\pi\)
\(600\) 0 0
\(601\) −0.546605 0.946748i −0.0222965 0.0386187i 0.854662 0.519185i \(-0.173764\pi\)
−0.876958 + 0.480566i \(0.840431\pi\)
\(602\) 7.56474 2.02696i 0.308316 0.0826129i
\(603\) 34.7891i 1.41672i
\(604\) −1.65905 6.19166i −0.0675058 0.251935i
\(605\) 0 0
\(606\) −19.6554 + 19.6554i −0.798446 + 0.798446i
\(607\) 10.8348 + 40.4361i 0.439771 + 1.64125i 0.729384 + 0.684105i \(0.239807\pi\)
−0.289612 + 0.957144i \(0.593526\pi\)
\(608\) 12.7652 + 3.42042i 0.517696 + 0.138716i
\(609\) −0.203130 + 0.758093i −0.00823126 + 0.0307195i
\(610\) 0 0
\(611\) 24.4142 + 14.2894i 0.987693 + 0.578087i
\(612\) −23.3204 + 23.3204i −0.942673 + 0.942673i
\(613\) −24.1705 + 13.9548i −0.976235 + 0.563630i −0.901131 0.433546i \(-0.857262\pi\)
−0.0751039 + 0.997176i \(0.523929\pi\)
\(614\) 21.4487 12.3834i 0.865601 0.499755i
\(615\) 0 0
\(616\) 3.42371 + 3.42371i 0.137945 + 0.137945i
\(617\) 2.19132 3.79548i 0.0882193 0.152800i −0.818539 0.574451i \(-0.805216\pi\)
0.906758 + 0.421650i \(0.138549\pi\)
\(618\) −5.08477 + 8.80708i −0.204540 + 0.354273i
\(619\) −8.67268 8.67268i −0.348584 0.348584i 0.510998 0.859582i \(-0.329276\pi\)
−0.859582 + 0.510998i \(0.829276\pi\)
\(620\) 0 0
\(621\) −16.4313 + 9.48662i −0.659366 + 0.380685i
\(622\) −6.97193 + 4.02525i −0.279549 + 0.161398i
\(623\) −0.353304 + 0.353304i −0.0141548 + 0.0141548i
\(624\) −3.13910 + 11.4432i −0.125664 + 0.458095i
\(625\) 0 0
\(626\) −1.26934 + 4.73726i −0.0507332 + 0.189339i
\(627\) −12.2393 3.27952i −0.488791 0.130971i
\(628\) 5.04668 + 18.8345i 0.201385 + 0.751577i
\(629\) −20.9238 + 20.9238i −0.834287 + 0.834287i
\(630\) 0 0
\(631\) −6.55800 24.4748i −0.261070 0.974326i −0.964612 0.263673i \(-0.915066\pi\)
0.703542 0.710653i \(-0.251601\pi\)
\(632\) 41.0398i 1.63248i
\(633\) 22.9677 6.15419i 0.912886 0.244607i
\(634\) 11.7220 + 20.3031i 0.465540 + 0.806340i
\(635\) 0 0
\(636\) 7.51646i 0.298047i
\(637\) 21.8908 + 0.129906i 0.867345 + 0.00514706i
\(638\) −0.351511 0.351511i −0.0139164 0.0139164i
\(639\) −60.1003 16.1038i −2.37753 0.637057i
\(640\) 0 0
\(641\) −1.41675 0.817961i −0.0559582 0.0323075i 0.471760 0.881727i \(-0.343619\pi\)
−0.527718 + 0.849420i \(0.676952\pi\)
\(642\) 1.26681 0.0499968
\(643\) −34.3541 19.8344i −1.35479 0.782191i −0.365878 0.930663i \(-0.619231\pi\)
−0.988917 + 0.148472i \(0.952565\pi\)
\(644\) −3.42248 + 0.917051i −0.134865 + 0.0361369i
\(645\) 0 0
\(646\) −10.1339 + 17.5525i −0.398714 + 0.690593i
\(647\) 3.84742 14.3588i 0.151258 0.564501i −0.848139 0.529773i \(-0.822277\pi\)
0.999397 0.0347277i \(-0.0110564\pi\)
\(648\) 0.873682 + 1.51326i 0.0343215 + 0.0594465i
\(649\) 8.40185 0.329801
\(650\) 0 0
\(651\) 0.477178 0.0187021
\(652\) −10.2034 17.6729i −0.399597 0.692123i
\(653\) −3.32718 + 12.4172i −0.130203 + 0.485922i −0.999972 0.00753655i \(-0.997601\pi\)
0.869769 + 0.493459i \(0.164268\pi\)
\(654\) 12.9403 22.4132i 0.506005 0.876426i
\(655\) 0 0
\(656\) −7.90103 + 2.11708i −0.308483 + 0.0826579i
\(657\) 13.3234 + 7.69225i 0.519794 + 0.300103i
\(658\) 7.73102 0.301387
\(659\) −20.8742 12.0517i −0.813144 0.469469i 0.0349025 0.999391i \(-0.488888\pi\)
−0.848047 + 0.529922i \(0.822221\pi\)
\(660\) 0 0
\(661\) 37.8150 + 10.1325i 1.47083 + 0.394108i 0.903217 0.429185i \(-0.141199\pi\)
0.567616 + 0.823293i \(0.307866\pi\)
\(662\) 24.2637 + 24.2637i 0.943036 + 0.943036i
\(663\) 62.8768 + 36.8011i 2.44193 + 1.42924i
\(664\) 25.8862i 1.00458i
\(665\) 0 0
\(666\) −9.94705 17.2288i −0.385440 0.667602i
\(667\) 1.08784 0.291487i 0.0421215 0.0112864i
\(668\) 1.63601i 0.0632991i
\(669\) 5.09295 + 19.0071i 0.196905 + 0.734858i
\(670\) 0 0
\(671\) −2.45030 + 2.45030i −0.0945926 + 0.0945926i
\(672\) −3.36013 12.5402i −0.129620 0.483747i
\(673\) 9.87723 + 2.64660i 0.380739 + 0.102019i 0.444112 0.895971i \(-0.353519\pi\)
−0.0633730 + 0.997990i \(0.520186\pi\)
\(674\) −5.44776 + 20.3313i −0.209840 + 0.783132i
\(675\) 0 0
\(676\) −12.4044 0.147227i −0.477093 0.00566259i
\(677\) −29.8933 + 29.8933i −1.14889 + 1.14889i −0.162121 + 0.986771i \(0.551833\pi\)
−0.986771 + 0.162121i \(0.948167\pi\)
\(678\) −4.77472 + 2.75669i −0.183372 + 0.105870i
\(679\) −6.26961 + 3.61976i −0.240606 + 0.138914i
\(680\) 0 0
\(681\) 33.8465 + 33.8465i 1.29700 + 1.29700i
\(682\) −0.151121 + 0.261750i −0.00578673 + 0.0100229i
\(683\) 10.0103 17.3384i 0.383035 0.663436i −0.608459 0.793585i \(-0.708212\pi\)
0.991494 + 0.130149i \(0.0415455\pi\)
\(684\) 8.79221 + 8.79221i 0.336178 + 0.336178i
\(685\) 0 0
\(686\) 11.1546 6.44013i 0.425886 0.245885i
\(687\) 30.3998 17.5513i 1.15983 0.669625i
\(688\) 6.63664 6.63664i 0.253019 0.253019i
\(689\) −9.85890 + 2.57908i −0.375594 + 0.0982550i
\(690\) 0 0
\(691\) −9.15886 + 34.1813i −0.348420 + 1.30032i 0.540147 + 0.841571i \(0.318369\pi\)
−0.888566 + 0.458749i \(0.848298\pi\)
\(692\) 13.9890 + 3.74834i 0.531782 + 0.142491i
\(693\) 1.97729 + 7.37933i 0.0751109 + 0.280318i
\(694\) −16.4960 + 16.4960i −0.626181 + 0.626181i
\(695\) 0 0
\(696\) 0.636870 + 2.37683i 0.0241405 + 0.0900935i
\(697\) 50.2221i 1.90230i
\(698\) −10.2586 + 2.74877i −0.388292 + 0.104043i
\(699\) 34.6479 + 60.0120i 1.31051 + 2.26986i
\(700\) 0 0
\(701\) 37.1781i 1.40420i 0.712080 + 0.702098i \(0.247753\pi\)
−0.712080 + 0.702098i \(0.752247\pi\)
\(702\) −12.9129 + 12.7606i −0.487367 + 0.481617i
\(703\) 7.88864 + 7.88864i 0.297526 + 0.297526i
\(704\) 11.7374 + 3.14502i 0.442368 + 0.118532i
\(705\) 0 0
\(706\) 3.80843 + 2.19880i 0.143332 + 0.0827529i
\(707\) −9.39830 −0.353459
\(708\) −11.6338 6.71678i −0.437225 0.252432i
\(709\) 46.5506 12.4732i 1.74824 0.468440i 0.763994 0.645224i \(-0.223236\pi\)
0.984250 + 0.176783i \(0.0565692\pi\)
\(710\) 0 0
\(711\) 32.3770 56.0786i 1.21423 2.10311i
\(712\) −0.405449 + 1.51316i −0.0151948 + 0.0567079i
\(713\) −0.342369 0.593001i −0.0128218 0.0222080i
\(714\) 19.9106 0.745135
\(715\) 0 0
\(716\) 2.63300 0.0983998
\(717\) −4.40411 7.62814i −0.164474 0.284878i
\(718\) 3.90299 14.5662i 0.145658 0.543604i
\(719\) 16.6992 28.9239i 0.622777 1.07868i −0.366190 0.930540i \(-0.619338\pi\)
0.988966 0.148141i \(-0.0473288\pi\)
\(720\) 0 0
\(721\) −3.32122 + 0.889918i −0.123689 + 0.0331423i
\(722\) −10.2091 5.89421i −0.379942 0.219360i
\(723\) −50.2164 −1.86757
\(724\) 8.55897 + 4.94153i 0.318092 + 0.183650i
\(725\) 0 0
\(726\) 22.6652 + 6.07313i 0.841186 + 0.225395i
\(727\) 23.6487 + 23.6487i 0.877083 + 0.877083i 0.993232 0.116149i \(-0.0370549\pi\)
−0.116149 + 0.993232i \(0.537055\pi\)
\(728\) −9.12066 + 5.19389i −0.338034 + 0.192499i
\(729\) 43.9226i 1.62676i
\(730\) 0 0
\(731\) −28.8130 49.9055i −1.06569 1.84582i
\(732\) 5.35173 1.43399i 0.197806 0.0530018i
\(733\) 14.7049i 0.543138i 0.962419 + 0.271569i \(0.0875424\pi\)
−0.962419 + 0.271569i \(0.912458\pi\)
\(734\) −3.02344 11.2836i −0.111597 0.416486i
\(735\) 0 0
\(736\) −13.1731 + 13.1731i −0.485568 + 0.485568i
\(737\) 3.14184 + 11.7255i 0.115731 + 0.431914i
\(738\) −32.6142 8.73896i −1.20055 0.321686i
\(739\) 5.32432 19.8706i 0.195858 0.730953i −0.796185 0.605054i \(-0.793152\pi\)
0.992043 0.125900i \(-0.0401817\pi\)
\(740\) 0 0
\(741\) 13.8747 23.7056i 0.509698 0.870848i
\(742\) −1.96931 + 1.96931i −0.0722956 + 0.0722956i
\(743\) 38.6601 22.3204i 1.41830 0.818856i 0.422151 0.906526i \(-0.361275\pi\)
0.996150 + 0.0876692i \(0.0279419\pi\)
\(744\) 1.29565 0.748042i 0.0475007 0.0274246i
\(745\) 0 0
\(746\) −20.3603 20.3603i −0.745443 0.745443i
\(747\) 20.4220 35.3720i 0.747202 1.29419i
\(748\) 5.75395 9.96614i 0.210385 0.364398i
\(749\) 0.302864 + 0.302864i 0.0110664 + 0.0110664i
\(750\) 0 0
\(751\) 15.2247 8.78996i 0.555555 0.320750i −0.195804 0.980643i \(-0.562732\pi\)
0.751360 + 0.659893i \(0.229398\pi\)
\(752\) 8.02381 4.63255i 0.292598 0.168932i
\(753\) 27.5353 27.5353i 1.00344 1.00344i
\(754\) 0.936413 0.533254i 0.0341022 0.0194200i
\(755\) 0 0
\(756\) 1.17176 4.37306i 0.0426164 0.159047i
\(757\) −33.9933 9.10848i −1.23551 0.331053i −0.418786 0.908085i \(-0.637544\pi\)
−0.816722 + 0.577032i \(0.804211\pi\)
\(758\) 4.48144 + 16.7250i 0.162773 + 0.607478i
\(759\) 12.6305 12.6305i 0.458457 0.458457i
\(760\) 0 0
\(761\) −3.03122 11.3127i −0.109882 0.410084i 0.888972 0.457962i \(-0.151421\pi\)
−0.998853 + 0.0478787i \(0.984754\pi\)
\(762\) 6.19897i 0.224565i
\(763\) 8.45219 2.26476i 0.305990 0.0819897i
\(764\) 8.86485 + 15.3544i 0.320719 + 0.555502i
\(765\) 0 0
\(766\) 6.75331i 0.244007i
\(767\) −4.81817 + 17.5641i −0.173974 + 0.634202i
\(768\) −33.2233 33.2233i −1.19884 1.19884i
\(769\) −18.3227 4.90954i −0.660732 0.177043i −0.0871555 0.996195i \(-0.527778\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(770\) 0 0
\(771\) −55.9401 32.2971i −2.01463 1.16315i
\(772\) 11.9964 0.431760
\(773\) 14.2114 + 8.20497i 0.511149 + 0.295112i 0.733306 0.679899i \(-0.237976\pi\)
−0.222157 + 0.975011i \(0.571310\pi\)
\(774\) 37.4223 10.0273i 1.34512 0.360423i
\(775\) 0 0
\(776\) −11.3490 + 19.6570i −0.407404 + 0.705644i
\(777\) 2.83655 10.5861i 0.101761 0.379775i
\(778\) 17.2285 + 29.8406i 0.617671 + 1.06984i
\(779\) 18.9346 0.678403
\(780\) 0 0
\(781\) 21.7109 0.776876
\(782\) −14.2856 24.7434i −0.510852 0.884822i
\(783\) −0.372446 + 1.38999i −0.0133101 + 0.0496741i
\(784\) 3.58492 6.20926i 0.128033 0.221759i
\(785\) 0 0
\(786\) 0.171361 0.0459159i 0.00611223 0.00163777i
\(787\) 11.7781 + 6.80008i 0.419844 + 0.242397i 0.695010 0.719000i \(-0.255400\pi\)
−0.275167 + 0.961396i \(0.588733\pi\)
\(788\) 13.6326 0.485642
\(789\) 3.14011 + 1.81294i 0.111791 + 0.0645424i
\(790\) 0 0
\(791\) −1.80058 0.482465i −0.0640214 0.0171545i
\(792\) 16.9369 + 16.9369i 0.601827 + 0.601827i
\(793\) −3.71719 6.52751i −0.132001 0.231799i
\(794\) 5.95255i 0.211248i
\(795\) 0 0
\(796\) 7.03076 + 12.1776i 0.249199 + 0.431625i
\(797\) 28.9148 7.74769i 1.02421 0.274437i 0.292657 0.956218i \(-0.405461\pi\)
0.731557 + 0.681780i \(0.238794\pi\)
\(798\) 7.50664i 0.265732i
\(799\) −14.7232 54.9476i −0.520868 1.94391i
\(800\) 0 0
\(801\) −1.74778 + 1.74778i −0.0617546 + 0.0617546i
\(802\) −0.0698734 0.260771i −0.00246732 0.00920815i
\(803\) −5.18527 1.38939i −0.182984 0.0490305i
\(804\) 5.02343 18.7477i 0.177163 0.661180i
\(805\) 0 0
\(806\) −0.460525 0.466023i −0.0162213 0.0164150i
\(807\) 15.6423 15.6423i 0.550636 0.550636i
\(808\) −25.5185 + 14.7331i −0.897739 + 0.518310i
\(809\) 2.54661 1.47029i 0.0895342 0.0516926i −0.454564 0.890714i \(-0.650205\pi\)
0.544099 + 0.839021i \(0.316872\pi\)
\(810\) 0 0
\(811\) 16.3366 + 16.3366i 0.573657 + 0.573657i 0.933148 0.359492i \(-0.117050\pi\)
−0.359492 + 0.933148i \(0.617050\pi\)
\(812\) −0.134367 + 0.232730i −0.00471536 + 0.00816724i
\(813\) −1.24791 + 2.16144i −0.0437660 + 0.0758050i
\(814\) 4.90856 + 4.90856i 0.172045 + 0.172045i
\(815\) 0 0
\(816\) 20.6647 11.9307i 0.723408 0.417660i
\(817\) −18.8153 + 10.8630i −0.658262 + 0.380048i
\(818\) 26.8732 26.8732i 0.939599 0.939599i
\(819\) −16.5604 0.0982738i −0.578667 0.00343397i
\(820\) 0 0
\(821\) 11.8735 44.3125i 0.414388 1.54652i −0.371672 0.928364i \(-0.621215\pi\)
0.786059 0.618151i \(-0.212118\pi\)
\(822\) −12.1605 3.25838i −0.424145 0.113649i
\(823\) 4.58752 + 17.1209i 0.159911 + 0.596796i 0.998635 + 0.0522385i \(0.0166356\pi\)
−0.838724 + 0.544557i \(0.816698\pi\)
\(824\) −7.62280 + 7.62280i −0.265553 + 0.265553i
\(825\) 0 0
\(826\) 1.28826 + 4.80785i 0.0448242 + 0.167286i
\(827\) 5.79276i 0.201434i 0.994915 + 0.100717i \(0.0321137\pi\)
−0.994915 + 0.100717i \(0.967886\pi\)
\(828\) −16.9308 + 4.53660i −0.588387 + 0.157658i
\(829\) −16.8799 29.2368i −0.586262 1.01544i −0.994717 0.102657i \(-0.967265\pi\)
0.408454 0.912779i \(-0.366068\pi\)
\(830\) 0 0
\(831\) 26.6284i 0.923727i
\(832\) −13.3056 + 22.7334i −0.461290 + 0.788139i
\(833\) −31.1279 31.1279i −1.07852 1.07852i
\(834\) −37.8473 10.1412i −1.31055 0.351160i
\(835\) 0 0
\(836\) −3.75741 2.16934i −0.129953 0.0750282i
\(837\) 0.874920 0.0302417
\(838\) 30.0364 + 17.3415i 1.03759 + 0.599053i
\(839\) −37.8626 + 10.1452i −1.30716 + 0.350253i −0.844154 0.536101i \(-0.819897\pi\)
−0.463008 + 0.886354i \(0.653230\pi\)
\(840\) 0 0
\(841\) −14.4573 + 25.0408i −0.498527 + 0.863475i
\(842\) −8.06995 + 30.1175i −0.278109 + 1.03792i
\(843\) −11.0041 19.0597i −0.379002 0.656451i
\(844\) 8.14177 0.280251
\(845\) 0 0
\(846\) 38.2449 1.31489
\(847\) 3.96679 + 6.87068i 0.136300 + 0.236079i
\(848\) −0.863850 + 3.22393i −0.0296647 + 0.110710i
\(849\) 29.4076 50.9354i 1.00927 1.74810i
\(850\) 0 0
\(851\) −15.1908 + 4.07037i −0.520735 + 0.139531i
\(852\) −30.0625 17.3566i −1.02992 0.594626i
\(853\) −40.6417 −1.39154 −0.695772 0.718262i \(-0.744938\pi\)
−0.695772 + 0.718262i \(0.744938\pi\)
\(854\) −1.77785 1.02644i −0.0608369 0.0351242i
\(855\) 0 0
\(856\) 1.29713 + 0.347564i 0.0443348 + 0.0118795i
\(857\) −27.2327 27.2327i −0.930252 0.930252i 0.0674695 0.997721i \(-0.478507\pi\)
−0.997721 + 0.0674695i \(0.978507\pi\)
\(858\) 8.63325 14.7504i 0.294734 0.503570i
\(859\) 44.5502i 1.52003i 0.649904 + 0.760016i \(0.274809\pi\)
−0.649904 + 0.760016i \(0.725191\pi\)
\(860\) 0 0
\(861\) −9.30043 16.1088i −0.316958 0.548987i
\(862\) −4.54213 + 1.21706i −0.154706 + 0.0414532i
\(863\) 55.4497i 1.88753i −0.330615 0.943766i \(-0.607256\pi\)
0.330615 0.943766i \(-0.392744\pi\)
\(864\) −6.16090 22.9928i −0.209598 0.782230i
\(865\) 0 0
\(866\) 2.89432 2.89432i 0.0983531 0.0983531i
\(867\) −25.6562 95.7502i −0.871330 3.25185i
\(868\) 0.157822 + 0.0422883i 0.00535683 + 0.00143536i
\(869\) −5.84800 + 21.8250i −0.198380 + 0.740363i
\(870\) 0 0
\(871\) −26.3139 0.156154i −0.891612 0.00529107i
\(872\) 19.3993 19.3993i 0.656944 0.656944i
\(873\) −31.0154 + 17.9068i −1.04971 + 0.606052i
\(874\) −9.32869 + 5.38592i −0.315548 + 0.182181i
\(875\) 0 0
\(876\) 6.06917 + 6.06917i 0.205058 + 0.205058i
\(877\) 2.68849 4.65661i 0.0907839 0.157242i −0.817057 0.576557i \(-0.804396\pi\)
0.907841 + 0.419314i \(0.137729\pi\)
\(878\) −11.6188 + 20.1244i −0.392116 + 0.679166i
\(879\) −7.92505 7.92505i −0.267305 0.267305i
\(880\) 0 0
\(881\) −37.0890 + 21.4133i −1.24956 + 0.721434i −0.971022 0.238992i \(-0.923183\pi\)
−0.278538 + 0.960425i \(0.589850\pi\)
\(882\) 25.6309 14.7980i 0.863037 0.498274i
\(883\) 32.9568 32.9568i 1.10908 1.10908i 0.115813 0.993271i \(-0.463053\pi\)
0.993271 0.115813i \(-0.0369473\pi\)
\(884\) 17.5345 + 17.7439i 0.589750 + 0.596791i
\(885\) 0 0
\(886\) −0.691990 + 2.58254i −0.0232478 + 0.0867622i
\(887\) −20.4194 5.47136i −0.685616 0.183710i −0.100837 0.994903i \(-0.532152\pi\)
−0.584779 + 0.811193i \(0.698819\pi\)
\(888\) −8.89336 33.1905i −0.298442 1.11380i
\(889\) −1.48203 + 1.48203i −0.0497057 + 0.0497057i
\(890\) 0 0
\(891\) −0.248992 0.929249i −0.00834153 0.0311310i
\(892\) 6.73778i 0.225598i
\(893\) −20.7162 + 5.55089i −0.693241 + 0.185753i
\(894\) 6.17340 + 10.6926i 0.206469 + 0.357616i
\(895\) 0 0
\(896\) 2.11809i 0.0707605i
\(897\) 19.1609 + 33.6472i 0.639763 + 1.12345i
\(898\) 23.2645 + 23.2645i 0.776346 + 0.776346i
\(899\) −0.0501642 0.0134414i −0.00167307 0.000448297i
\(900\) 0 0
\(901\) 17.7471 + 10.2463i 0.591242 + 0.341354i
\(902\) 11.7817 0.392288
\(903\) 18.4836 + 10.6715i 0.615096 + 0.355126i
\(904\) −5.64533 + 1.51266i −0.187761 + 0.0503104i
\(905\) 0 0
\(906\) −9.57200 + 16.5792i −0.318008 + 0.550807i
\(907\) −2.86355 + 10.6869i −0.0950825 + 0.354853i −0.997032 0.0769889i \(-0.975469\pi\)
0.901949 + 0.431842i \(0.142136\pi\)
\(908\) 8.19488 + 14.1940i 0.271957 + 0.471043i
\(909\) −46.4928 −1.54207
\(910\) 0 0
\(911\) −15.0479 −0.498560 −0.249280 0.968431i \(-0.580194\pi\)
−0.249280 + 0.968431i \(0.580194\pi\)
\(912\) −4.49810 7.79093i −0.148947 0.257983i
\(913\) −3.68867 + 13.7663i −0.122077 + 0.455598i
\(914\) −14.5045 + 25.1226i −0.479767 + 0.830980i
\(915\) 0 0
\(916\) 11.6099 3.11086i 0.383602 0.102786i
\(917\) 0.0519457 + 0.0299909i 0.00171540 + 0.000990386i
\(918\) 36.5067 1.20490
\(919\) 10.8342 + 6.25513i 0.357388 + 0.206338i 0.667934 0.744220i \(-0.267179\pi\)
−0.310547 + 0.950558i \(0.600512\pi\)
\(920\) 0 0
\(921\) 65.1960 + 17.4692i 2.14828 + 0.575630i
\(922\) 8.32259 + 8.32259i 0.274090 + 0.274090i
\(923\) −12.4504 + 45.3866i −0.409811 + 1.49392i
\(924\) 4.26220i 0.140216i
\(925\) 0 0
\(926\) 15.3114 + 26.5202i 0.503165 + 0.871508i
\(927\) −16.4299 + 4.40237i −0.539628 + 0.144593i
\(928\) 1.41296i 0.0463826i
\(929\) 12.6170 + 47.0874i 0.413952 + 1.54489i 0.786926 + 0.617047i \(0.211671\pi\)
−0.372975 + 0.927841i \(0.621662\pi\)
\(930\) 0 0
\(931\) −11.7357 + 11.7357i −0.384623 + 0.384623i
\(932\) 6.14112 + 22.9190i 0.201159 + 0.750736i
\(933\) −21.1920 5.67838i −0.693795 0.185902i
\(934\) 6.03874 22.5369i 0.197594 0.737429i
\(935\) 0 0
\(936\) −45.1193 + 25.6939i −1.47477 + 0.839831i
\(937\) −7.38027 + 7.38027i −0.241103 + 0.241103i −0.817306 0.576203i \(-0.804534\pi\)
0.576203 + 0.817306i \(0.304534\pi\)
\(938\) −6.22802 + 3.59575i −0.203352 + 0.117405i
\(939\) −11.5750 + 6.68281i −0.377735 + 0.218085i
\(940\) 0 0
\(941\) −1.54410 1.54410i −0.0503363 0.0503363i 0.681491 0.731827i \(-0.261332\pi\)
−0.731827 + 0.681491i \(0.761332\pi\)
\(942\) 29.1172 50.4324i 0.948688 1.64318i
\(943\) −13.3459 + 23.1158i −0.434602 + 0.752753i
\(944\) 4.21798 + 4.21798i 0.137284 + 0.137284i
\(945\) 0 0
\(946\) −11.7074 + 6.75929i −0.380642 + 0.219764i
\(947\) −5.81670 + 3.35827i −0.189017 + 0.109129i −0.591522 0.806289i \(-0.701473\pi\)
0.402505 + 0.915418i \(0.368140\pi\)
\(948\) 25.5454 25.5454i 0.829676 0.829676i
\(949\) 5.87810 10.0431i 0.190811 0.326011i
\(950\) 0 0
\(951\) −16.5361 + 61.7137i −0.536221 + 2.00121i
\(952\) 20.3871 + 5.46272i 0.660751 + 0.177048i
\(953\) 4.67309 + 17.4402i 0.151376 + 0.564944i 0.999388 + 0.0349673i \(0.0111327\pi\)
−0.848012 + 0.529977i \(0.822201\pi\)
\(954\) −9.74205 + 9.74205i −0.315411 + 0.315411i
\(955\) 0 0
\(956\) −0.780600 2.91324i −0.0252464 0.0942208i
\(957\) 1.35475i 0.0437929i
\(958\) −38.3526 + 10.2765i −1.23912 + 0.332020i
\(959\) −2.12828 3.68629i −0.0687257 0.119036i
\(960\) 0 0
\(961\) 30.9684i 0.998981i
\(962\) −13.0762 + 7.44646i −0.421595 + 0.240083i
\(963\) 1.49825 + 1.49825i 0.0482804 + 0.0482804i
\(964\) −16.6086 4.45026i −0.534927 0.143333i
\(965\) 0 0
\(966\) 9.16426 + 5.29099i 0.294855 + 0.170235i
\(967\) −60.0570 −1.93130 −0.965651 0.259841i \(-0.916330\pi\)
−0.965651 + 0.259841i \(0.916330\pi\)
\(968\) 21.5415 + 12.4370i 0.692369 + 0.399740i
\(969\) −53.3528 + 14.2958i −1.71394 + 0.459249i
\(970\) 0 0
\(971\) 20.4589 35.4359i 0.656558 1.13719i −0.324942 0.945734i \(-0.605345\pi\)
0.981501 0.191459i \(-0.0613218\pi\)
\(972\) −4.04627 + 15.1009i −0.129784 + 0.484361i
\(973\) −6.62390 11.4729i −0.212352 0.367805i
\(974\) −29.5983 −0.948391
\(975\) 0 0
\(976\) −2.46025 −0.0787506
\(977\) 18.7479 + 32.4724i 0.599800 + 1.03888i 0.992850 + 0.119367i \(0.0380865\pi\)
−0.393050 + 0.919517i \(0.628580\pi\)
\(978\) −15.7740 + 58.8694i −0.504397 + 1.88244i
\(979\) 0.431236 0.746923i 0.0137824 0.0238718i
\(980\) 0 0
\(981\) 41.8125 11.2036i 1.33497 0.357704i
\(982\) −6.44253 3.71959i −0.205589 0.118697i
\(983\) 46.1176 1.47092 0.735461 0.677567i \(-0.236966\pi\)
0.735461 + 0.677567i \(0.236966\pi\)
\(984\) −50.5056 29.1594i −1.61006 0.929569i
\(985\) 0 0
\(986\) −2.09314 0.560854i −0.0666591 0.0178612i
\(987\) 14.8980 + 14.8980i 0.474208 + 0.474208i
\(988\) 6.68975 6.61082i 0.212829 0.210318i
\(989\) 30.6267i 0.973873i
\(990\) 0 0
\(991\) −0.401099 0.694724i −0.0127413 0.0220686i 0.859584 0.510994i \(-0.170722\pi\)
−0.872326 + 0.488925i \(0.837389\pi\)
\(992\) 0.829802 0.222345i 0.0263462 0.00705945i
\(993\) 93.5143i 2.96759i
\(994\) 3.32894 + 12.4238i 0.105587 + 0.394058i
\(995\) 0 0
\(996\) 16.1129 16.1129i 0.510558 0.510558i
\(997\) −4.04012 15.0779i −0.127952 0.477522i 0.871976 0.489549i \(-0.162838\pi\)
−0.999928 + 0.0120264i \(0.996172\pi\)
\(998\) 5.92576 + 1.58780i 0.187577 + 0.0502610i
\(999\) 5.20090 19.4100i 0.164549 0.614106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.s.b.193.2 20
5.2 odd 4 325.2.x.b.232.4 20
5.3 odd 4 65.2.t.a.37.2 yes 20
5.4 even 2 65.2.o.a.63.4 yes 20
13.6 odd 12 325.2.x.b.318.4 20
15.8 even 4 585.2.dp.a.37.4 20
15.14 odd 2 585.2.cf.a.388.2 20
65.3 odd 12 845.2.f.e.437.3 20
65.4 even 6 845.2.o.f.488.2 20
65.8 even 4 845.2.o.f.587.2 20
65.9 even 6 845.2.o.e.488.4 20
65.18 even 4 845.2.o.e.587.4 20
65.19 odd 12 65.2.t.a.58.2 yes 20
65.23 odd 12 845.2.f.d.437.8 20
65.24 odd 12 845.2.f.d.408.3 20
65.28 even 12 845.2.k.e.577.3 20
65.29 even 6 845.2.k.e.268.3 20
65.32 even 12 inner 325.2.s.b.32.2 20
65.33 even 12 845.2.o.g.357.2 20
65.34 odd 4 845.2.t.e.418.2 20
65.38 odd 4 845.2.t.g.427.4 20
65.43 odd 12 845.2.t.e.657.2 20
65.44 odd 4 845.2.t.f.418.4 20
65.48 odd 12 845.2.t.f.657.4 20
65.49 even 6 845.2.k.d.268.8 20
65.54 odd 12 845.2.f.e.408.8 20
65.58 even 12 65.2.o.a.32.4 20
65.59 odd 12 845.2.t.g.188.4 20
65.63 even 12 845.2.k.d.577.8 20
65.64 even 2 845.2.o.g.258.2 20
195.149 even 12 585.2.dp.a.253.4 20
195.188 odd 12 585.2.cf.a.487.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.4 20 65.58 even 12
65.2.o.a.63.4 yes 20 5.4 even 2
65.2.t.a.37.2 yes 20 5.3 odd 4
65.2.t.a.58.2 yes 20 65.19 odd 12
325.2.s.b.32.2 20 65.32 even 12 inner
325.2.s.b.193.2 20 1.1 even 1 trivial
325.2.x.b.232.4 20 5.2 odd 4
325.2.x.b.318.4 20 13.6 odd 12
585.2.cf.a.388.2 20 15.14 odd 2
585.2.cf.a.487.2 20 195.188 odd 12
585.2.dp.a.37.4 20 15.8 even 4
585.2.dp.a.253.4 20 195.149 even 12
845.2.f.d.408.3 20 65.24 odd 12
845.2.f.d.437.8 20 65.23 odd 12
845.2.f.e.408.8 20 65.54 odd 12
845.2.f.e.437.3 20 65.3 odd 12
845.2.k.d.268.8 20 65.49 even 6
845.2.k.d.577.8 20 65.63 even 12
845.2.k.e.268.3 20 65.29 even 6
845.2.k.e.577.3 20 65.28 even 12
845.2.o.e.488.4 20 65.9 even 6
845.2.o.e.587.4 20 65.18 even 4
845.2.o.f.488.2 20 65.4 even 6
845.2.o.f.587.2 20 65.8 even 4
845.2.o.g.258.2 20 65.64 even 2
845.2.o.g.357.2 20 65.33 even 12
845.2.t.e.418.2 20 65.34 odd 4
845.2.t.e.657.2 20 65.43 odd 12
845.2.t.f.418.4 20 65.44 odd 4
845.2.t.f.657.4 20 65.48 odd 12
845.2.t.g.188.4 20 65.59 odd 12
845.2.t.g.427.4 20 65.38 odd 4