Properties

Label 585.2.cf.a.388.2
Level $585$
Weight $2$
Character 585.388
Analytic conductor $4.671$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(163,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 9, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.cf (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 388.2
Root \(1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 585.388
Dual form 585.2.cf.a.487.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.511309 - 0.885613i) q^{2} +(0.477126 - 0.826407i) q^{4} +(1.69584 + 1.45744i) q^{5} +(0.834479 + 0.481787i) q^{7} -3.02107 q^{8} +(0.423625 - 2.24706i) q^{10} +(-1.60661 - 0.430490i) q^{11} +(1.82127 - 3.11175i) q^{13} -0.985368i q^{14} +(0.590448 + 1.02269i) q^{16} +(7.00342 - 1.87656i) q^{17} +(-0.707496 - 2.64041i) q^{19} +(2.01357 - 0.706075i) q^{20} +(0.440226 + 1.64295i) q^{22} +(3.72214 + 0.997344i) q^{23} +(0.751762 + 4.94316i) q^{25} +(-3.68704 - 0.0218799i) q^{26} +(0.796304 - 0.459747i) q^{28} +(-0.253107 + 0.146132i) q^{29} +(-0.125649 - 0.125649i) q^{31} +(-2.41727 + 4.18683i) q^{32} +(-5.24282 - 5.24282i) q^{34} +(0.712972 + 2.03323i) q^{35} +(3.53443 - 2.04061i) q^{37} +(-1.97663 + 1.97663i) q^{38} +(-5.12326 - 4.40302i) q^{40} +(1.79277 - 6.69071i) q^{41} +(2.05706 + 7.67707i) q^{43} +(-1.12232 + 1.12232i) q^{44} +(-1.01990 - 3.80633i) q^{46} -7.84582i q^{47} +(-3.03576 - 5.25810i) q^{49} +(3.99335 - 3.19325i) q^{50} +(-1.70259 - 2.98981i) q^{52} +(1.99855 + 1.99855i) q^{53} +(-2.09714 - 3.07157i) q^{55} +(-2.52102 - 1.45551i) q^{56} +(0.258832 + 0.149437i) q^{58} +(-4.87924 + 1.30739i) q^{59} +(-1.04169 + 1.80425i) q^{61} +(-0.0470311 + 0.175522i) q^{62} +7.30568 q^{64} +(7.62376 - 2.62264i) q^{65} +(-3.64915 - 6.32050i) q^{67} +(1.79071 - 6.68304i) q^{68} +(1.43611 - 1.67103i) q^{70} +(-12.6082 + 3.37837i) q^{71} +3.22747 q^{73} +(-3.61437 - 2.08676i) q^{74} +(-2.51962 - 0.675130i) q^{76} +(-1.13328 - 1.13328i) q^{77} +13.5845i q^{79} +(-0.489192 + 2.59485i) q^{80} +(-6.84204 + 1.83332i) q^{82} +8.56854i q^{83} +(14.6117 + 7.02469i) q^{85} +(5.74712 - 5.74712i) q^{86} +(4.85368 + 1.30054i) q^{88} +(-0.134207 + 0.500868i) q^{89} +(3.01901 - 1.71922i) q^{91} +(2.60014 - 2.60014i) q^{92} +(-6.94836 + 4.01164i) q^{94} +(2.64843 - 5.50885i) q^{95} +(-3.75660 + 6.50662i) q^{97} +(-3.10442 + 5.37702i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 6 q^{4} + 6 q^{5} - 6 q^{7} - 12 q^{8} - 10 q^{10} + 16 q^{11} + 2 q^{13} - 2 q^{16} + 10 q^{17} + 20 q^{19} - 14 q^{20} + 16 q^{22} + 2 q^{23} - 18 q^{25} + 24 q^{26} + 6 q^{28} + 6 q^{32}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.511309 0.885613i −0.361550 0.626223i 0.626666 0.779288i \(-0.284419\pi\)
−0.988216 + 0.153065i \(0.951086\pi\)
\(3\) 0 0
\(4\) 0.477126 0.826407i 0.238563 0.413204i
\(5\) 1.69584 + 1.45744i 0.758404 + 0.651785i
\(6\) 0 0
\(7\) 0.834479 + 0.481787i 0.315404 + 0.182098i 0.649342 0.760497i \(-0.275044\pi\)
−0.333938 + 0.942595i \(0.608378\pi\)
\(8\) −3.02107 −1.06811
\(9\) 0 0
\(10\) 0.423625 2.24706i 0.133962 0.710583i
\(11\) −1.60661 0.430490i −0.484411 0.129797i 0.00834492 0.999965i \(-0.497344\pi\)
−0.492756 + 0.870168i \(0.664010\pi\)
\(12\) 0 0
\(13\) 1.82127 3.11175i 0.505130 0.863043i
\(14\) 0.985368i 0.263351i
\(15\) 0 0
\(16\) 0.590448 + 1.02269i 0.147612 + 0.255671i
\(17\) 7.00342 1.87656i 1.69858 0.455133i 0.725998 0.687697i \(-0.241378\pi\)
0.972581 + 0.232564i \(0.0747114\pi\)
\(18\) 0 0
\(19\) −0.707496 2.64041i −0.162311 0.605752i −0.998368 0.0571095i \(-0.981812\pi\)
0.836057 0.548642i \(-0.184855\pi\)
\(20\) 2.01357 0.706075i 0.450247 0.157883i
\(21\) 0 0
\(22\) 0.440226 + 1.64295i 0.0938565 + 0.350277i
\(23\) 3.72214 + 0.997344i 0.776120 + 0.207961i 0.625073 0.780566i \(-0.285069\pi\)
0.151046 + 0.988527i \(0.451736\pi\)
\(24\) 0 0
\(25\) 0.751762 + 4.94316i 0.150352 + 0.988632i
\(26\) −3.68704 0.0218799i −0.723087 0.00429099i
\(27\) 0 0
\(28\) 0.796304 0.459747i 0.150487 0.0868839i
\(29\) −0.253107 + 0.146132i −0.0470008 + 0.0271360i −0.523316 0.852139i \(-0.675305\pi\)
0.476315 + 0.879274i \(0.341972\pi\)
\(30\) 0 0
\(31\) −0.125649 0.125649i −0.0225673 0.0225673i 0.695733 0.718300i \(-0.255080\pi\)
−0.718300 + 0.695733i \(0.755080\pi\)
\(32\) −2.41727 + 4.18683i −0.427317 + 0.740134i
\(33\) 0 0
\(34\) −5.24282 5.24282i −0.899136 0.899136i
\(35\) 0.712972 + 2.03323i 0.120514 + 0.343679i
\(36\) 0 0
\(37\) 3.53443 2.04061i 0.581057 0.335474i −0.180496 0.983576i \(-0.557770\pi\)
0.761553 + 0.648102i \(0.224437\pi\)
\(38\) −1.97663 + 1.97663i −0.320652 + 0.320652i
\(39\) 0 0
\(40\) −5.12326 4.40302i −0.810059 0.696178i
\(41\) 1.79277 6.69071i 0.279984 1.04491i −0.672444 0.740148i \(-0.734755\pi\)
0.952427 0.304765i \(-0.0985780\pi\)
\(42\) 0 0
\(43\) 2.05706 + 7.67707i 0.313699 + 1.17074i 0.925194 + 0.379494i \(0.123902\pi\)
−0.611495 + 0.791248i \(0.709432\pi\)
\(44\) −1.12232 + 1.12232i −0.169195 + 0.169195i
\(45\) 0 0
\(46\) −1.01990 3.80633i −0.150376 0.561212i
\(47\) 7.84582i 1.14443i −0.820103 0.572215i \(-0.806084\pi\)
0.820103 0.572215i \(-0.193916\pi\)
\(48\) 0 0
\(49\) −3.03576 5.25810i −0.433680 0.751156i
\(50\) 3.99335 3.19325i 0.564744 0.451594i
\(51\) 0 0
\(52\) −1.70259 2.98981i −0.236107 0.414612i
\(53\) 1.99855 + 1.99855i 0.274522 + 0.274522i 0.830918 0.556395i \(-0.187816\pi\)
−0.556395 + 0.830918i \(0.687816\pi\)
\(54\) 0 0
\(55\) −2.09714 3.07157i −0.282779 0.414171i
\(56\) −2.52102 1.45551i −0.336886 0.194501i
\(57\) 0 0
\(58\) 0.258832 + 0.149437i 0.0339863 + 0.0196220i
\(59\) −4.87924 + 1.30739i −0.635223 + 0.170207i −0.562039 0.827111i \(-0.689983\pi\)
−0.0731843 + 0.997318i \(0.523316\pi\)
\(60\) 0 0
\(61\) −1.04169 + 1.80425i −0.133374 + 0.231011i −0.924975 0.380027i \(-0.875915\pi\)
0.791601 + 0.611038i \(0.209248\pi\)
\(62\) −0.0470311 + 0.175522i −0.00597296 + 0.0222914i
\(63\) 0 0
\(64\) 7.30568 0.913209
\(65\) 7.62376 2.62264i 0.945611 0.325299i
\(66\) 0 0
\(67\) −3.64915 6.32050i −0.445814 0.772173i 0.552294 0.833649i \(-0.313752\pi\)
−0.998109 + 0.0614765i \(0.980419\pi\)
\(68\) 1.79071 6.68304i 0.217156 0.810437i
\(69\) 0 0
\(70\) 1.43611 1.67103i 0.171648 0.199726i
\(71\) −12.6082 + 3.37837i −1.49632 + 0.400939i −0.911867 0.410486i \(-0.865359\pi\)
−0.584457 + 0.811425i \(0.698692\pi\)
\(72\) 0 0
\(73\) 3.22747 0.377746 0.188873 0.982001i \(-0.439517\pi\)
0.188873 + 0.982001i \(0.439517\pi\)
\(74\) −3.61437 2.08676i −0.420163 0.242581i
\(75\) 0 0
\(76\) −2.51962 0.675130i −0.289020 0.0774427i
\(77\) −1.13328 1.13328i −0.129149 0.129149i
\(78\) 0 0
\(79\) 13.5845i 1.52838i 0.644992 + 0.764190i \(0.276861\pi\)
−0.644992 + 0.764190i \(0.723139\pi\)
\(80\) −0.489192 + 2.59485i −0.0546934 + 0.290113i
\(81\) 0 0
\(82\) −6.84204 + 1.83332i −0.755577 + 0.202456i
\(83\) 8.56854i 0.940519i 0.882528 + 0.470260i \(0.155840\pi\)
−0.882528 + 0.470260i \(0.844160\pi\)
\(84\) 0 0
\(85\) 14.6117 + 7.02469i 1.58486 + 0.761934i
\(86\) 5.74712 5.74712i 0.619728 0.619728i
\(87\) 0 0
\(88\) 4.85368 + 1.30054i 0.517404 + 0.138638i
\(89\) −0.134207 + 0.500868i −0.0142259 + 0.0530919i −0.972674 0.232175i \(-0.925416\pi\)
0.958448 + 0.285267i \(0.0920823\pi\)
\(90\) 0 0
\(91\) 3.01901 1.71922i 0.316479 0.180223i
\(92\) 2.60014 2.60014i 0.271084 0.271084i
\(93\) 0 0
\(94\) −6.94836 + 4.01164i −0.716669 + 0.413769i
\(95\) 2.64843 5.50885i 0.271723 0.565196i
\(96\) 0 0
\(97\) −3.75660 + 6.50662i −0.381425 + 0.660648i −0.991266 0.131876i \(-0.957900\pi\)
0.609841 + 0.792524i \(0.291233\pi\)
\(98\) −3.10442 + 5.37702i −0.313594 + 0.543161i
\(99\) 0 0
\(100\) 4.44375 + 1.73725i 0.444375 + 0.173725i
\(101\) −8.44685 + 4.87679i −0.840493 + 0.485259i −0.857432 0.514598i \(-0.827941\pi\)
0.0169388 + 0.999857i \(0.494608\pi\)
\(102\) 0 0
\(103\) −2.52321 + 2.52321i −0.248619 + 0.248619i −0.820404 0.571784i \(-0.806251\pi\)
0.571784 + 0.820404i \(0.306251\pi\)
\(104\) −5.50220 + 9.40081i −0.539535 + 0.921825i
\(105\) 0 0
\(106\) 0.748066 2.79182i 0.0726586 0.271166i
\(107\) −0.429359 0.115046i −0.0415077 0.0111220i 0.238005 0.971264i \(-0.423506\pi\)
−0.279513 + 0.960142i \(0.590173\pi\)
\(108\) 0 0
\(109\) −6.42134 + 6.42134i −0.615053 + 0.615053i −0.944258 0.329206i \(-0.893219\pi\)
0.329206 + 0.944258i \(0.393219\pi\)
\(110\) −1.64793 + 3.42778i −0.157124 + 0.326826i
\(111\) 0 0
\(112\) 1.13788i 0.107520i
\(113\) 1.86865 0.500704i 0.175788 0.0471023i −0.169851 0.985470i \(-0.554329\pi\)
0.345639 + 0.938367i \(0.387662\pi\)
\(114\) 0 0
\(115\) 4.85860 + 7.11612i 0.453066 + 0.663581i
\(116\) 0.278893i 0.0258946i
\(117\) 0 0
\(118\) 3.65264 + 3.65264i 0.336253 + 0.336253i
\(119\) 6.74831 + 1.80821i 0.618617 + 0.165758i
\(120\) 0 0
\(121\) −7.13041 4.11674i −0.648219 0.374249i
\(122\) 2.13050 0.192886
\(123\) 0 0
\(124\) −0.163788 + 0.0438869i −0.0147086 + 0.00394116i
\(125\) −5.92947 + 9.47847i −0.530348 + 0.847780i
\(126\) 0 0
\(127\) −0.562967 + 2.10102i −0.0499553 + 0.186436i −0.986395 0.164393i \(-0.947433\pi\)
0.936440 + 0.350829i \(0.114100\pi\)
\(128\) 1.09908 + 1.90366i 0.0971460 + 0.168262i
\(129\) 0 0
\(130\) −6.22074 5.41072i −0.545595 0.474552i
\(131\) 0.0622493 0.00543874 0.00271937 0.999996i \(-0.499134\pi\)
0.00271937 + 0.999996i \(0.499134\pi\)
\(132\) 0 0
\(133\) 0.681725 2.54423i 0.0591130 0.220613i
\(134\) −3.73168 + 6.46346i −0.322368 + 0.558358i
\(135\) 0 0
\(136\) −21.1578 + 5.66923i −1.81427 + 0.486132i
\(137\) 3.82564 + 2.20873i 0.326846 + 0.188705i 0.654440 0.756114i \(-0.272904\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(138\) 0 0
\(139\) 11.9066 + 6.87430i 1.00991 + 0.583070i 0.911165 0.412043i \(-0.135184\pi\)
0.0987430 + 0.995113i \(0.468518\pi\)
\(140\) 2.02046 + 0.380905i 0.170760 + 0.0321923i
\(141\) 0 0
\(142\) 9.43864 + 9.43864i 0.792073 + 0.792073i
\(143\) −4.26565 + 4.21532i −0.356711 + 0.352503i
\(144\) 0 0
\(145\) −0.642207 0.121072i −0.0533324 0.0100544i
\(146\) −1.65023 2.85829i −0.136574 0.236553i
\(147\) 0 0
\(148\) 3.89451i 0.320127i
\(149\) 1.12129 + 4.18471i 0.0918596 + 0.342825i 0.996525 0.0832987i \(-0.0265456\pi\)
−0.904665 + 0.426124i \(0.859879\pi\)
\(150\) 0 0
\(151\) 4.74990 4.74990i 0.386542 0.386542i −0.486910 0.873452i \(-0.661876\pi\)
0.873452 + 0.486910i \(0.161876\pi\)
\(152\) 2.13740 + 7.97687i 0.173366 + 0.647010i
\(153\) 0 0
\(154\) −0.424190 + 1.58310i −0.0341822 + 0.127570i
\(155\) −0.0299556 0.396208i −0.00240610 0.0318242i
\(156\) 0 0
\(157\) 14.4488 14.4488i 1.15314 1.15314i 0.167218 0.985920i \(-0.446522\pi\)
0.985920 0.167218i \(-0.0534784\pi\)
\(158\) 12.0306 6.94589i 0.957106 0.552586i
\(159\) 0 0
\(160\) −10.2013 + 3.57719i −0.806487 + 0.282802i
\(161\) 2.62554 + 2.62554i 0.206922 + 0.206922i
\(162\) 0 0
\(163\) −10.6926 + 18.5201i −0.837508 + 1.45061i 0.0544633 + 0.998516i \(0.482655\pi\)
−0.891972 + 0.452091i \(0.850678\pi\)
\(164\) −4.67387 4.67387i −0.364968 0.364968i
\(165\) 0 0
\(166\) 7.58841 4.38117i 0.588975 0.340045i
\(167\) −1.48475 + 0.857220i −0.114893 + 0.0663337i −0.556345 0.830951i \(-0.687797\pi\)
0.441452 + 0.897285i \(0.354464\pi\)
\(168\) 0 0
\(169\) −6.36593 11.3347i −0.489687 0.871898i
\(170\) −1.24992 16.5321i −0.0958646 1.26795i
\(171\) 0 0
\(172\) 7.32587 + 1.96296i 0.558592 + 0.149674i
\(173\) 3.92804 + 14.6596i 0.298643 + 1.11455i 0.938281 + 0.345875i \(0.112418\pi\)
−0.639638 + 0.768677i \(0.720916\pi\)
\(174\) 0 0
\(175\) −1.75422 + 4.48716i −0.132607 + 0.339197i
\(176\) −0.508363 1.89724i −0.0383193 0.143010i
\(177\) 0 0
\(178\) 0.512196 0.137243i 0.0383907 0.0102868i
\(179\) −1.37961 2.38956i −0.103117 0.178604i 0.809850 0.586637i \(-0.199548\pi\)
−0.912967 + 0.408033i \(0.866215\pi\)
\(180\) 0 0
\(181\) 10.3568i 0.769818i 0.922954 + 0.384909i \(0.125767\pi\)
−0.922954 + 0.384909i \(0.874233\pi\)
\(182\) −3.06621 1.79462i −0.227283 0.133026i
\(183\) 0 0
\(184\) −11.2449 3.01305i −0.828981 0.222125i
\(185\) 8.96789 + 1.69066i 0.659333 + 0.124300i
\(186\) 0 0
\(187\) −12.0596 −0.881885
\(188\) −6.48384 3.74345i −0.472883 0.273019i
\(189\) 0 0
\(190\) −6.23287 + 0.471242i −0.452180 + 0.0341875i
\(191\) 9.28983 16.0905i 0.672189 1.16427i −0.305093 0.952322i \(-0.598688\pi\)
0.977282 0.211943i \(-0.0679790\pi\)
\(192\) 0 0
\(193\) −6.28576 10.8872i −0.452459 0.783681i 0.546079 0.837733i \(-0.316120\pi\)
−0.998538 + 0.0540520i \(0.982786\pi\)
\(194\) 7.68313 0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) 7.14308 + 12.3722i 0.508924 + 0.881481i 0.999947 + 0.0103349i \(0.00328975\pi\)
−0.491023 + 0.871147i \(0.663377\pi\)
\(198\) 0 0
\(199\) −7.36781 + 12.7614i −0.522291 + 0.904634i 0.477373 + 0.878701i \(0.341589\pi\)
−0.999664 + 0.0259331i \(0.991744\pi\)
\(200\) −2.27113 14.9336i −0.160593 1.05597i
\(201\) 0 0
\(202\) 8.63790 + 4.98709i 0.607760 + 0.350891i
\(203\) −0.281617 −0.0197656
\(204\) 0 0
\(205\) 12.7915 8.73354i 0.893400 0.609977i
\(206\) 3.52473 + 0.944449i 0.245580 + 0.0658029i
\(207\) 0 0
\(208\) 4.25770 + 0.0252664i 0.295219 + 0.00175191i
\(209\) 4.54668i 0.314500i
\(210\) 0 0
\(211\) 4.26604 + 7.38900i 0.293686 + 0.508680i 0.974678 0.223611i \(-0.0717845\pi\)
−0.680992 + 0.732291i \(0.738451\pi\)
\(212\) 2.60518 0.698056i 0.178925 0.0479427i
\(213\) 0 0
\(214\) 0.117649 + 0.439070i 0.00804229 + 0.0300142i
\(215\) −7.70038 + 16.0171i −0.525161 + 1.09236i
\(216\) 0 0
\(217\) −0.0443156 0.165388i −0.00300834 0.0112273i
\(218\) 8.97011 + 2.40353i 0.607532 + 0.162788i
\(219\) 0 0
\(220\) −3.53897 + 0.267567i −0.238597 + 0.0180394i
\(221\) 6.91576 25.2106i 0.465205 1.69585i
\(222\) 0 0
\(223\) 6.11483 3.53040i 0.409479 0.236413i −0.281087 0.959682i \(-0.590695\pi\)
0.690566 + 0.723269i \(0.257362\pi\)
\(224\) −4.03432 + 2.32922i −0.269555 + 0.155627i
\(225\) 0 0
\(226\) −1.39889 1.39889i −0.0930527 0.0930527i
\(227\) −8.58775 + 14.8744i −0.569989 + 0.987249i 0.426578 + 0.904451i \(0.359719\pi\)
−0.996566 + 0.0827985i \(0.973614\pi\)
\(228\) 0 0
\(229\) 8.90647 + 8.90647i 0.588556 + 0.588556i 0.937240 0.348684i \(-0.113371\pi\)
−0.348684 + 0.937240i \(0.613371\pi\)
\(230\) 3.81788 7.94137i 0.251744 0.523638i
\(231\) 0 0
\(232\) 0.764655 0.441474i 0.0502021 0.0289842i
\(233\) −17.5822 + 17.5822i −1.15185 + 1.15185i −0.165666 + 0.986182i \(0.552977\pi\)
−0.986182 + 0.165666i \(0.947023\pi\)
\(234\) 0 0
\(235\) 11.4348 13.3053i 0.745923 0.867940i
\(236\) −1.24758 + 4.65603i −0.0812105 + 0.303082i
\(237\) 0 0
\(238\) −1.84910 6.90095i −0.119860 0.447322i
\(239\) −2.23488 + 2.23488i −0.144562 + 0.144562i −0.775684 0.631122i \(-0.782595\pi\)
0.631122 + 0.775684i \(0.282595\pi\)
\(240\) 0 0
\(241\) −4.66361 17.4048i −0.300409 1.12114i −0.936825 0.349797i \(-0.886250\pi\)
0.636416 0.771346i \(-0.280416\pi\)
\(242\) 8.41971i 0.541239i
\(243\) 0 0
\(244\) 0.994033 + 1.72172i 0.0636364 + 0.110222i
\(245\) 2.51516 13.3413i 0.160688 0.852346i
\(246\) 0 0
\(247\) −9.50483 2.60736i −0.604778 0.165902i
\(248\) 0.379596 + 0.379596i 0.0241044 + 0.0241044i
\(249\) 0 0
\(250\) 11.4260 + 0.404792i 0.722647 + 0.0256013i
\(251\) −12.1009 6.98644i −0.763800 0.440980i 0.0668586 0.997762i \(-0.478702\pi\)
−0.830658 + 0.556782i \(0.812036\pi\)
\(252\) 0 0
\(253\) −5.55068 3.20468i −0.348968 0.201477i
\(254\) 2.14854 0.575700i 0.134812 0.0361227i
\(255\) 0 0
\(256\) 8.42962 14.6005i 0.526851 0.912533i
\(257\) 5.99887 22.3881i 0.374199 1.39653i −0.480312 0.877098i \(-0.659476\pi\)
0.854511 0.519433i \(-0.173857\pi\)
\(258\) 0 0
\(259\) 3.93255 0.244357
\(260\) 1.47013 7.55166i 0.0911735 0.468334i
\(261\) 0 0
\(262\) −0.0318286 0.0551288i −0.00196638 0.00340587i
\(263\) −0.336737 + 1.25672i −0.0207641 + 0.0774926i −0.975530 0.219864i \(-0.929438\pi\)
0.954766 + 0.297357i \(0.0961052\pi\)
\(264\) 0 0
\(265\) 0.476468 + 6.30199i 0.0292692 + 0.387128i
\(266\) −2.60178 + 0.697144i −0.159525 + 0.0427446i
\(267\) 0 0
\(268\) −6.96441 −0.425419
\(269\) −6.87429 3.96887i −0.419133 0.241986i 0.275574 0.961280i \(-0.411132\pi\)
−0.694706 + 0.719294i \(0.744466\pi\)
\(270\) 0 0
\(271\) −0.865041 0.231787i −0.0525475 0.0140801i 0.232450 0.972608i \(-0.425326\pi\)
−0.284997 + 0.958528i \(0.591993\pi\)
\(272\) 6.05429 + 6.05429i 0.367095 + 0.367095i
\(273\) 0 0
\(274\) 4.51738i 0.272905i
\(275\) 0.920192 8.26535i 0.0554897 0.498420i
\(276\) 0 0
\(277\) 9.22930 2.47298i 0.554535 0.148587i 0.0293404 0.999569i \(-0.490659\pi\)
0.525194 + 0.850982i \(0.323993\pi\)
\(278\) 14.0596i 0.843236i
\(279\) 0 0
\(280\) −2.15394 6.14255i −0.128723 0.367087i
\(281\) −5.58408 + 5.58408i −0.333118 + 0.333118i −0.853769 0.520651i \(-0.825689\pi\)
0.520651 + 0.853769i \(0.325689\pi\)
\(282\) 0 0
\(283\) −20.3851 5.46218i −1.21177 0.324693i −0.404314 0.914620i \(-0.632490\pi\)
−0.807457 + 0.589927i \(0.799157\pi\)
\(284\) −3.22382 + 12.0315i −0.191298 + 0.713936i
\(285\) 0 0
\(286\) 5.91420 + 1.62238i 0.349714 + 0.0959335i
\(287\) 4.71953 4.71953i 0.278585 0.278585i
\(288\) 0 0
\(289\) 30.8040 17.7847i 1.81200 1.04616i
\(290\) 0.221144 + 0.630652i 0.0129860 + 0.0370332i
\(291\) 0 0
\(292\) 1.53991 2.66720i 0.0901164 0.156086i
\(293\) 2.01079 3.48280i 0.117472 0.203467i −0.801293 0.598272i \(-0.795854\pi\)
0.918765 + 0.394805i \(0.129188\pi\)
\(294\) 0 0
\(295\) −10.1799 4.89405i −0.592694 0.284943i
\(296\) −10.6778 + 6.16482i −0.620633 + 0.358323i
\(297\) 0 0
\(298\) 3.13271 3.13271i 0.181473 0.181473i
\(299\) 9.88252 9.76592i 0.571521 0.564778i
\(300\) 0 0
\(301\) −1.98213 + 7.39742i −0.114248 + 0.426380i
\(302\) −6.63524 1.77791i −0.381815 0.102307i
\(303\) 0 0
\(304\) 2.28257 2.28257i 0.130914 0.130914i
\(305\) −4.39612 + 1.54154i −0.251721 + 0.0882683i
\(306\) 0 0
\(307\) 24.2191i 1.38226i −0.722732 0.691128i \(-0.757114\pi\)
0.722732 0.691128i \(-0.242886\pi\)
\(308\) −1.47727 + 0.395832i −0.0841750 + 0.0225546i
\(309\) 0 0
\(310\) −0.335570 + 0.229114i −0.0190591 + 0.0130128i
\(311\) 7.87243i 0.446405i 0.974772 + 0.223202i \(0.0716511\pi\)
−0.974772 + 0.223202i \(0.928349\pi\)
\(312\) 0 0
\(313\) 3.39121 + 3.39121i 0.191683 + 0.191683i 0.796423 0.604740i \(-0.206723\pi\)
−0.604740 + 0.796423i \(0.706723\pi\)
\(314\) −20.1838 5.40824i −1.13904 0.305204i
\(315\) 0 0
\(316\) 11.2264 + 6.48154i 0.631532 + 0.364615i
\(317\) −22.9255 −1.28762 −0.643812 0.765184i \(-0.722648\pi\)
−0.643812 + 0.765184i \(0.722648\pi\)
\(318\) 0 0
\(319\) 0.469553 0.125816i 0.0262899 0.00704436i
\(320\) 12.3893 + 10.6476i 0.692581 + 0.595216i
\(321\) 0 0
\(322\) 0.982751 3.66768i 0.0547666 0.204392i
\(323\) −9.90979 17.1643i −0.551395 0.955044i
\(324\) 0 0
\(325\) 16.7510 + 6.66356i 0.929180 + 0.369628i
\(326\) 21.8689 1.21120
\(327\) 0 0
\(328\) −5.41609 + 20.2131i −0.299053 + 1.11608i
\(329\) 3.78001 6.54718i 0.208399 0.360958i
\(330\) 0 0
\(331\) −32.4118 + 8.68470i −1.78151 + 0.477354i −0.990858 0.134910i \(-0.956925\pi\)
−0.790653 + 0.612264i \(0.790259\pi\)
\(332\) 7.08110 + 4.08828i 0.388626 + 0.224373i
\(333\) 0 0
\(334\) 1.51833 + 0.876609i 0.0830794 + 0.0479659i
\(335\) 3.02336 16.0370i 0.165184 0.876194i
\(336\) 0 0
\(337\) 14.5544 + 14.5544i 0.792826 + 0.792826i 0.981953 0.189126i \(-0.0605656\pi\)
−0.189126 + 0.981953i \(0.560566\pi\)
\(338\) −6.78318 + 11.4333i −0.368957 + 0.621888i
\(339\) 0 0
\(340\) 12.7769 8.72352i 0.692923 0.473099i
\(341\) 0.147779 + 0.255960i 0.00800267 + 0.0138610i
\(342\) 0 0
\(343\) 12.5954i 0.680087i
\(344\) −6.21454 23.1930i −0.335065 1.25048i
\(345\) 0 0
\(346\) 10.9743 10.9743i 0.589983 0.589983i
\(347\) −5.90442 22.0356i −0.316966 1.18293i −0.922145 0.386844i \(-0.873565\pi\)
0.605179 0.796089i \(-0.293101\pi\)
\(348\) 0 0
\(349\) 2.68798 10.0317i 0.143884 0.536983i −0.855918 0.517111i \(-0.827008\pi\)
0.999803 0.0198718i \(-0.00632581\pi\)
\(350\) 4.87083 0.740762i 0.260357 0.0395954i
\(351\) 0 0
\(352\) 5.68599 5.68599i 0.303064 0.303064i
\(353\) −3.72420 + 2.15017i −0.198219 + 0.114442i −0.595825 0.803115i \(-0.703175\pi\)
0.397605 + 0.917556i \(0.369841\pi\)
\(354\) 0 0
\(355\) −26.3054 12.6465i −1.39614 0.671208i
\(356\) 0.349887 + 0.349887i 0.0185440 + 0.0185440i
\(357\) 0 0
\(358\) −1.41082 + 2.44361i −0.0745640 + 0.129149i
\(359\) −10.4273 10.4273i −0.550333 0.550333i 0.376204 0.926537i \(-0.377229\pi\)
−0.926537 + 0.376204i \(0.877229\pi\)
\(360\) 0 0
\(361\) 9.98326 5.76384i 0.525435 0.303360i
\(362\) 9.17216 5.29555i 0.482078 0.278328i
\(363\) 0 0
\(364\) 0.0196734 3.31522i 0.00103117 0.173765i
\(365\) 5.47327 + 4.70382i 0.286484 + 0.246209i
\(366\) 0 0
\(367\) −11.0341 2.95657i −0.575973 0.154331i −0.0409383 0.999162i \(-0.513035\pi\)
−0.535034 + 0.844830i \(0.679701\pi\)
\(368\) 1.17776 + 4.39546i 0.0613950 + 0.229129i
\(369\) 0 0
\(370\) −3.08809 8.80653i −0.160542 0.457830i
\(371\) 0.704874 + 2.63063i 0.0365953 + 0.136575i
\(372\) 0 0
\(373\) −27.1975 + 7.28755i −1.40823 + 0.377335i −0.881294 0.472568i \(-0.843327\pi\)
−0.526939 + 0.849903i \(0.676661\pi\)
\(374\) 6.16618 + 10.6801i 0.318846 + 0.552257i
\(375\) 0 0
\(376\) 23.7028i 1.22238i
\(377\) −0.00625324 + 1.05375i −0.000322058 + 0.0542709i
\(378\) 0 0
\(379\) −16.3551 4.38232i −0.840103 0.225105i −0.186987 0.982362i \(-0.559872\pi\)
−0.653116 + 0.757258i \(0.726539\pi\)
\(380\) −3.28892 4.81710i −0.168718 0.247112i
\(381\) 0 0
\(382\) −18.9999 −0.972119
\(383\) 5.71918 + 3.30197i 0.292236 + 0.168723i 0.638950 0.769248i \(-0.279369\pi\)
−0.346714 + 0.937971i \(0.612702\pi\)
\(384\) 0 0
\(385\) −0.270181 3.57354i −0.0137697 0.182124i
\(386\) −6.42793 + 11.1335i −0.327173 + 0.566680i
\(387\) 0 0
\(388\) 3.58475 + 6.20897i 0.181988 + 0.315212i
\(389\) 33.6949 1.70840 0.854199 0.519946i \(-0.174048\pi\)
0.854199 + 0.519946i \(0.174048\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) 9.17126 + 15.8851i 0.463218 + 0.802318i
\(393\) 0 0
\(394\) 7.30464 12.6520i 0.368003 0.637399i
\(395\) −19.7986 + 23.0372i −0.996175 + 1.15913i
\(396\) 0 0
\(397\) 5.04104 + 2.91045i 0.253002 + 0.146071i 0.621138 0.783701i \(-0.286671\pi\)
−0.368136 + 0.929772i \(0.620004\pi\)
\(398\) 15.0689 0.755337
\(399\) 0 0
\(400\) −4.61142 + 3.68750i −0.230571 + 0.184375i
\(401\) −0.255004 0.0683280i −0.0127343 0.00341214i 0.252446 0.967611i \(-0.418765\pi\)
−0.265181 + 0.964199i \(0.585432\pi\)
\(402\) 0 0
\(403\) −0.619831 + 0.162147i −0.0308760 + 0.00807713i
\(404\) 9.30738i 0.463060i
\(405\) 0 0
\(406\) 0.143993 + 0.249404i 0.00714627 + 0.0123777i
\(407\) −6.55691 + 1.75692i −0.325014 + 0.0870872i
\(408\) 0 0
\(409\) 9.61872 + 35.8975i 0.475615 + 1.77502i 0.619042 + 0.785358i \(0.287521\pi\)
−0.143427 + 0.989661i \(0.545812\pi\)
\(410\) −14.2750 6.86281i −0.704990 0.338930i
\(411\) 0 0
\(412\) 0.881310 + 3.28909i 0.0434190 + 0.162042i
\(413\) −4.70151 1.25977i −0.231346 0.0619890i
\(414\) 0 0
\(415\) −12.4881 + 14.5309i −0.613016 + 0.713293i
\(416\) 8.62585 + 15.1473i 0.422917 + 0.742657i
\(417\) 0 0
\(418\) 4.02660 2.32476i 0.196947 0.113708i
\(419\) 29.3721 16.9580i 1.43492 0.828451i 0.437428 0.899253i \(-0.355889\pi\)
0.997490 + 0.0708027i \(0.0225561\pi\)
\(420\) 0 0
\(421\) −21.5599 21.5599i −1.05076 1.05076i −0.998641 0.0521230i \(-0.983401\pi\)
−0.0521230 0.998641i \(-0.516599\pi\)
\(422\) 4.36253 7.55613i 0.212365 0.367826i
\(423\) 0 0
\(424\) −6.03777 6.03777i −0.293220 0.293220i
\(425\) 14.5411 + 33.2083i 0.705345 + 1.61084i
\(426\) 0 0
\(427\) −1.73853 + 1.00374i −0.0841335 + 0.0485745i
\(428\) −0.299934 + 0.299934i −0.0144979 + 0.0144979i
\(429\) 0 0
\(430\) 18.1223 1.37015i 0.873933 0.0660745i
\(431\) −1.19014 + 4.44167i −0.0573271 + 0.213948i −0.988648 0.150253i \(-0.951991\pi\)
0.931320 + 0.364201i \(0.118658\pi\)
\(432\) 0 0
\(433\) −1.03596 3.86627i −0.0497853 0.185801i 0.936555 0.350520i \(-0.113995\pi\)
−0.986341 + 0.164719i \(0.947328\pi\)
\(434\) −0.123811 + 0.123811i −0.00594311 + 0.00594311i
\(435\) 0 0
\(436\) 2.24285 + 8.37043i 0.107413 + 0.400871i
\(437\) 10.5336i 0.503890i
\(438\) 0 0
\(439\) −11.3618 19.6793i −0.542271 0.939242i −0.998773 0.0495192i \(-0.984231\pi\)
0.456502 0.889723i \(-0.349102\pi\)
\(440\) 6.33562 + 9.27944i 0.302039 + 0.442380i
\(441\) 0 0
\(442\) −25.8629 + 6.76571i −1.23017 + 0.321812i
\(443\) −1.84874 1.84874i −0.0878361 0.0878361i 0.661824 0.749660i \(-0.269783\pi\)
−0.749660 + 0.661824i \(0.769783\pi\)
\(444\) 0 0
\(445\) −0.957576 + 0.653794i −0.0453935 + 0.0309928i
\(446\) −6.25313 3.61025i −0.296094 0.170950i
\(447\) 0 0
\(448\) 6.09644 + 3.51978i 0.288030 + 0.166294i
\(449\) 31.0770 8.32705i 1.46661 0.392978i 0.564845 0.825197i \(-0.308936\pi\)
0.901769 + 0.432219i \(0.142269\pi\)
\(450\) 0 0
\(451\) −5.76056 + 9.97759i −0.271254 + 0.469826i
\(452\) 0.477798 1.78317i 0.0224737 0.0838731i
\(453\) 0 0
\(454\) 17.5640 0.824318
\(455\) 7.62543 + 1.48449i 0.357486 + 0.0695939i
\(456\) 0 0
\(457\) 14.1837 + 24.5669i 0.663486 + 1.14919i 0.979693 + 0.200501i \(0.0642571\pi\)
−0.316208 + 0.948690i \(0.602410\pi\)
\(458\) 3.33373 12.4416i 0.155775 0.581360i
\(459\) 0 0
\(460\) 8.19898 0.619891i 0.382279 0.0289026i
\(461\) 11.1174 2.97890i 0.517790 0.138741i 0.00954570 0.999954i \(-0.496961\pi\)
0.508244 + 0.861213i \(0.330295\pi\)
\(462\) 0 0
\(463\) 29.9456 1.39169 0.695845 0.718192i \(-0.255030\pi\)
0.695845 + 0.718192i \(0.255030\pi\)
\(464\) −0.298893 0.172566i −0.0138758 0.00801118i
\(465\) 0 0
\(466\) 24.5609 + 6.58109i 1.13776 + 0.304863i
\(467\) 16.1332 + 16.1332i 0.746557 + 0.746557i 0.973831 0.227274i \(-0.0729812\pi\)
−0.227274 + 0.973831i \(0.572981\pi\)
\(468\) 0 0
\(469\) 7.03244i 0.324728i
\(470\) −17.6300 3.32368i −0.813213 0.153310i
\(471\) 0 0
\(472\) 14.7405 3.94971i 0.678488 0.181800i
\(473\) 13.2196i 0.607837i
\(474\) 0 0
\(475\) 12.5201 5.48223i 0.574462 0.251542i
\(476\) 4.71411 4.71411i 0.216071 0.216071i
\(477\) 0 0
\(478\) 3.12195 + 0.836524i 0.142795 + 0.0382617i
\(479\) −10.0493 + 37.5043i −0.459162 + 1.71362i 0.216393 + 0.976306i \(0.430571\pi\)
−0.675555 + 0.737309i \(0.736096\pi\)
\(480\) 0 0
\(481\) 0.0873213 14.7148i 0.00398151 0.670935i
\(482\) −13.0294 + 13.0294i −0.593473 + 0.593473i
\(483\) 0 0
\(484\) −6.80421 + 3.92841i −0.309282 + 0.178564i
\(485\) −15.8536 + 5.55920i −0.719874 + 0.252430i
\(486\) 0 0
\(487\) −14.4718 + 25.0660i −0.655782 + 1.13585i 0.325916 + 0.945399i \(0.394327\pi\)
−0.981697 + 0.190448i \(0.939006\pi\)
\(488\) 3.14701 5.45078i 0.142458 0.246745i
\(489\) 0 0
\(490\) −13.1013 + 4.59408i −0.591855 + 0.207539i
\(491\) −6.30003 + 3.63733i −0.284317 + 0.164150i −0.635376 0.772203i \(-0.719155\pi\)
0.351059 + 0.936353i \(0.385822\pi\)
\(492\) 0 0
\(493\) −1.49839 + 1.49839i −0.0674842 + 0.0674842i
\(494\) 2.55079 + 9.75077i 0.114766 + 0.438708i
\(495\) 0 0
\(496\) 0.0543104 0.202689i 0.00243861 0.00910102i
\(497\) −12.1490 3.25531i −0.544956 0.146021i
\(498\) 0 0
\(499\) −4.24201 + 4.24201i −0.189899 + 0.189899i −0.795652 0.605754i \(-0.792872\pi\)
0.605754 + 0.795652i \(0.292872\pi\)
\(500\) 5.00397 + 9.42259i 0.223784 + 0.421391i
\(501\) 0 0
\(502\) 14.2889i 0.637745i
\(503\) 3.50677 0.939636i 0.156359 0.0418963i −0.179790 0.983705i \(-0.557542\pi\)
0.336149 + 0.941809i \(0.390875\pi\)
\(504\) 0 0
\(505\) −21.4321 4.04047i −0.953717 0.179799i
\(506\) 6.55433i 0.291376i
\(507\) 0 0
\(508\) 1.46769 + 1.46769i 0.0651184 + 0.0651184i
\(509\) −22.5037 6.02986i −0.997460 0.267269i −0.277079 0.960847i \(-0.589366\pi\)
−0.720381 + 0.693578i \(0.756033\pi\)
\(510\) 0 0
\(511\) 2.69325 + 1.55495i 0.119143 + 0.0687870i
\(512\) −12.8442 −0.567640
\(513\) 0 0
\(514\) −22.8945 + 6.13455i −1.00983 + 0.270584i
\(515\) −7.95639 + 0.601550i −0.350600 + 0.0265075i
\(516\) 0 0
\(517\) −3.37754 + 12.6052i −0.148544 + 0.554375i
\(518\) −2.01075 3.48272i −0.0883472 0.153022i
\(519\) 0 0
\(520\) −23.0319 + 7.92319i −1.01002 + 0.347455i
\(521\) 13.0530 0.571862 0.285931 0.958250i \(-0.407697\pi\)
0.285931 + 0.958250i \(0.407697\pi\)
\(522\) 0 0
\(523\) 4.40520 16.4404i 0.192626 0.718890i −0.800243 0.599677i \(-0.795296\pi\)
0.992869 0.119214i \(-0.0380374\pi\)
\(524\) 0.0297008 0.0514432i 0.00129748 0.00224731i
\(525\) 0 0
\(526\) 1.28514 0.344353i 0.0560349 0.0150145i
\(527\) −1.11577 0.644187i −0.0486035 0.0280612i
\(528\) 0 0
\(529\) −7.05896 4.07549i −0.306911 0.177195i
\(530\) 5.33750 3.64423i 0.231846 0.158295i
\(531\) 0 0
\(532\) −1.77730 1.77730i −0.0770558 0.0770558i
\(533\) −17.5547 17.7643i −0.760377 0.769456i
\(534\) 0 0
\(535\) −0.560453 0.820864i −0.0242305 0.0354891i
\(536\) 11.0243 + 19.0947i 0.476178 + 0.824765i
\(537\) 0 0
\(538\) 8.11728i 0.349961i
\(539\) 2.61373 + 9.75457i 0.112581 + 0.420159i
\(540\) 0 0
\(541\) −10.9728 + 10.9728i −0.471756 + 0.471756i −0.902483 0.430727i \(-0.858257\pi\)
0.430727 + 0.902483i \(0.358257\pi\)
\(542\) 0.237029 + 0.884606i 0.0101813 + 0.0379971i
\(543\) 0 0
\(544\) −9.07231 + 33.8583i −0.388972 + 1.45166i
\(545\) −20.2483 + 1.53089i −0.867340 + 0.0655761i
\(546\) 0 0
\(547\) −20.4450 + 20.4450i −0.874167 + 0.874167i −0.992923 0.118756i \(-0.962109\pi\)
0.118756 + 0.992923i \(0.462109\pi\)
\(548\) 3.65063 2.10769i 0.155947 0.0900361i
\(549\) 0 0
\(550\) −7.79041 + 3.41121i −0.332184 + 0.145455i
\(551\) 0.564920 + 0.564920i 0.0240664 + 0.0240664i
\(552\) 0 0
\(553\) −6.54485 + 11.3360i −0.278315 + 0.482056i
\(554\) −6.90913 6.90913i −0.293541 0.293541i
\(555\) 0 0
\(556\) 11.3619 6.55982i 0.481854 0.278198i
\(557\) −11.7609 + 6.79015i −0.498324 + 0.287708i −0.728021 0.685555i \(-0.759560\pi\)
0.229697 + 0.973262i \(0.426226\pi\)
\(558\) 0 0
\(559\) 27.6356 + 7.58098i 1.16886 + 0.320641i
\(560\) −1.65839 + 1.92967i −0.0700797 + 0.0815432i
\(561\) 0 0
\(562\) 7.80052 + 2.09014i 0.329045 + 0.0881673i
\(563\) −1.25538 4.68514i −0.0529080 0.197455i 0.934413 0.356191i \(-0.115925\pi\)
−0.987321 + 0.158736i \(0.949258\pi\)
\(564\) 0 0
\(565\) 3.89868 + 1.87433i 0.164019 + 0.0788535i
\(566\) 5.58573 + 20.8462i 0.234786 + 0.876232i
\(567\) 0 0
\(568\) 38.0904 10.2063i 1.59824 0.428247i
\(569\) 0.124396 + 0.215461i 0.00521497 + 0.00903259i 0.868621 0.495477i \(-0.165007\pi\)
−0.863406 + 0.504509i \(0.831673\pi\)
\(570\) 0 0
\(571\) 7.72842i 0.323424i −0.986838 0.161712i \(-0.948298\pi\)
0.986838 0.161712i \(-0.0517016\pi\)
\(572\) 1.44832 + 5.53640i 0.0605572 + 0.231489i
\(573\) 0 0
\(574\) −6.59281 1.76654i −0.275179 0.0737339i
\(575\) −2.13187 + 19.1489i −0.0889052 + 0.798565i
\(576\) 0 0
\(577\) −12.1339 −0.505141 −0.252570 0.967578i \(-0.581276\pi\)
−0.252570 + 0.967578i \(0.581276\pi\)
\(578\) −31.5007 18.1869i −1.31026 0.756477i
\(579\) 0 0
\(580\) −0.406469 + 0.472958i −0.0168777 + 0.0196385i
\(581\) −4.12821 + 7.15027i −0.171267 + 0.296643i
\(582\) 0 0
\(583\) −2.35054 4.07125i −0.0973492 0.168614i
\(584\) −9.75040 −0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) −18.2647 31.6354i −0.753865 1.30573i −0.945937 0.324351i \(-0.894854\pi\)
0.192072 0.981381i \(-0.438479\pi\)
\(588\) 0 0
\(589\) −0.242870 + 0.420663i −0.0100073 + 0.0173331i
\(590\) 0.870813 + 11.5178i 0.0358508 + 0.474180i
\(591\) 0 0
\(592\) 4.17380 + 2.40974i 0.171542 + 0.0990398i
\(593\) 16.6936 0.685525 0.342762 0.939422i \(-0.388637\pi\)
0.342762 + 0.939422i \(0.388637\pi\)
\(594\) 0 0
\(595\) 8.80873 + 12.9017i 0.361123 + 0.528917i
\(596\) 3.99327 + 1.06999i 0.163571 + 0.0438287i
\(597\) 0 0
\(598\) −13.7018 3.75868i −0.560310 0.153704i
\(599\) 13.2549i 0.541579i −0.962639 0.270789i \(-0.912715\pi\)
0.962639 0.270789i \(-0.0872847\pi\)
\(600\) 0 0
\(601\) −0.546605 0.946748i −0.0222965 0.0386187i 0.854662 0.519185i \(-0.173764\pi\)
−0.876958 + 0.480566i \(0.840431\pi\)
\(602\) 7.56474 2.02696i 0.308316 0.0826129i
\(603\) 0 0
\(604\) −1.65905 6.19166i −0.0675058 0.251935i
\(605\) −6.09216 17.3735i −0.247682 0.706332i
\(606\) 0 0
\(607\) −10.8348 40.4361i −0.439771 1.64125i −0.729384 0.684105i \(-0.760193\pi\)
0.289612 0.957144i \(-0.406474\pi\)
\(608\) 12.7652 + 3.42042i 0.517696 + 0.138716i
\(609\) 0 0
\(610\) 3.61298 + 3.10506i 0.146285 + 0.125720i
\(611\) −24.4142 14.2894i −0.987693 0.578087i
\(612\) 0 0
\(613\) 24.1705 13.9548i 0.976235 0.563630i 0.0751039 0.997176i \(-0.476071\pi\)
0.901131 + 0.433546i \(0.142738\pi\)
\(614\) −21.4487 + 12.3834i −0.865601 + 0.499755i
\(615\) 0 0
\(616\) 3.42371 + 3.42371i 0.137945 + 0.137945i
\(617\) 2.19132 3.79548i 0.0882193 0.152800i −0.818539 0.574451i \(-0.805216\pi\)
0.906758 + 0.421650i \(0.138549\pi\)
\(618\) 0 0
\(619\) −8.67268 8.67268i −0.348584 0.348584i 0.510998 0.859582i \(-0.329276\pi\)
−0.859582 + 0.510998i \(0.829276\pi\)
\(620\) −0.341722 0.164286i −0.0137239 0.00659787i
\(621\) 0 0
\(622\) 6.97193 4.02525i 0.279549 0.161398i
\(623\) −0.353304 + 0.353304i −0.0141548 + 0.0141548i
\(624\) 0 0
\(625\) −23.8697 + 7.43216i −0.954788 + 0.297287i
\(626\) 1.26934 4.73726i 0.0507332 0.189339i
\(627\) 0 0
\(628\) −5.04668 18.8345i −0.201385 0.751577i
\(629\) 20.9238 20.9238i 0.834287 0.834287i
\(630\) 0 0
\(631\) −6.55800 24.4748i −0.261070 0.974326i −0.964612 0.263673i \(-0.915066\pi\)
0.703542 0.710653i \(-0.251601\pi\)
\(632\) 41.0398i 1.63248i
\(633\) 0 0
\(634\) 11.7220 + 20.3031i 0.465540 + 0.806340i
\(635\) −4.01681 + 2.74251i −0.159402 + 0.108833i
\(636\) 0 0
\(637\) −21.8908 0.129906i −0.867345 0.00514706i
\(638\) −0.351511 0.351511i −0.0139164 0.0139164i
\(639\) 0 0
\(640\) −0.910600 + 4.83016i −0.0359946 + 0.190929i
\(641\) 1.41675 + 0.817961i 0.0559582 + 0.0323075i 0.527718 0.849420i \(-0.323048\pi\)
−0.471760 + 0.881727i \(0.656381\pi\)
\(642\) 0 0
\(643\) 34.3541 + 19.8344i 1.35479 + 0.782191i 0.988917 0.148472i \(-0.0474354\pi\)
0.365878 + 0.930663i \(0.380769\pi\)
\(644\) 3.42248 0.917051i 0.134865 0.0361369i
\(645\) 0 0
\(646\) −10.1339 + 17.5525i −0.398714 + 0.690593i
\(647\) 3.84742 14.3588i 0.151258 0.564501i −0.848139 0.529773i \(-0.822277\pi\)
0.999397 0.0347277i \(-0.0110564\pi\)
\(648\) 0 0
\(649\) 8.40185 0.329801
\(650\) −2.66362 18.2421i −0.104476 0.715513i
\(651\) 0 0
\(652\) 10.2034 + 17.6729i 0.399597 + 0.692123i
\(653\) −3.32718 + 12.4172i −0.130203 + 0.485922i −0.999972 0.00753655i \(-0.997601\pi\)
0.869769 + 0.493459i \(0.164268\pi\)
\(654\) 0 0
\(655\) 0.105565 + 0.0907243i 0.00412476 + 0.00354489i
\(656\) 7.90103 2.11708i 0.308483 0.0826579i
\(657\) 0 0
\(658\) −7.73102 −0.301387
\(659\) 20.8742 + 12.0517i 0.813144 + 0.469469i 0.848047 0.529922i \(-0.177779\pi\)
−0.0349025 + 0.999391i \(0.511112\pi\)
\(660\) 0 0
\(661\) 37.8150 + 10.1325i 1.47083 + 0.394108i 0.903217 0.429185i \(-0.141199\pi\)
0.567616 + 0.823293i \(0.307866\pi\)
\(662\) 24.2637 + 24.2637i 0.943036 + 0.943036i
\(663\) 0 0
\(664\) 25.8862i 1.00458i
\(665\) 4.86415 3.32104i 0.188624 0.128785i
\(666\) 0 0
\(667\) −1.08784 + 0.291487i −0.0421215 + 0.0112864i
\(668\) 1.63601i 0.0632991i
\(669\) 0 0
\(670\) −15.7484 + 5.52232i −0.608415 + 0.213346i
\(671\) 2.45030 2.45030i 0.0945926 0.0945926i
\(672\) 0 0
\(673\) −9.87723 2.64660i −0.380739 0.102019i 0.0633730 0.997990i \(-0.479814\pi\)
−0.444112 + 0.895971i \(0.646481\pi\)
\(674\) 5.44776 20.3313i 0.209840 0.783132i
\(675\) 0 0
\(676\) −12.4044 0.147227i −0.477093 0.00566259i
\(677\) −29.8933 + 29.8933i −1.14889 + 1.14889i −0.162121 + 0.986771i \(0.551833\pi\)
−0.986771 + 0.162121i \(0.948167\pi\)
\(678\) 0 0
\(679\) −6.26961 + 3.61976i −0.240606 + 0.138914i
\(680\) −44.1429 21.2221i −1.69280 0.813829i
\(681\) 0 0
\(682\) 0.151121 0.261750i 0.00578673 0.0100229i
\(683\) 10.0103 17.3384i 0.383035 0.663436i −0.608459 0.793585i \(-0.708212\pi\)
0.991494 + 0.130149i \(0.0415455\pi\)
\(684\) 0 0
\(685\) 3.26859 + 9.32129i 0.124886 + 0.356148i
\(686\) −11.1546 + 6.44013i −0.425886 + 0.245885i
\(687\) 0 0
\(688\) −6.63664 + 6.63664i −0.253019 + 0.253019i
\(689\) 9.85890 2.57908i 0.375594 0.0982550i
\(690\) 0 0
\(691\) −9.15886 + 34.1813i −0.348420 + 1.30032i 0.540147 + 0.841571i \(0.318369\pi\)
−0.888566 + 0.458749i \(0.848298\pi\)
\(692\) 13.9890 + 3.74834i 0.531782 + 0.142491i
\(693\) 0 0
\(694\) −16.4960 + 16.4960i −0.626181 + 0.626181i
\(695\) 10.1729 + 29.0109i 0.385881 + 1.10045i
\(696\) 0 0
\(697\) 50.2221i 1.90230i
\(698\) −10.2586 + 2.74877i −0.388292 + 0.104043i
\(699\) 0 0
\(700\) 2.87123 + 3.59064i 0.108522 + 0.135714i
\(701\) 37.1781i 1.40420i −0.712080 0.702098i \(-0.752247\pi\)
0.712080 0.702098i \(-0.247753\pi\)
\(702\) 0 0
\(703\) −7.88864 7.88864i −0.297526 0.297526i
\(704\) −11.7374 3.14502i −0.442368 0.118532i
\(705\) 0 0
\(706\) 3.80843 + 2.19880i 0.143332 + 0.0827529i
\(707\) −9.39830 −0.353459
\(708\) 0 0
\(709\) 46.5506 12.4732i 1.74824 0.468440i 0.763994 0.645224i \(-0.223236\pi\)
0.984250 + 0.176783i \(0.0565692\pi\)
\(710\) 2.25023 + 29.7626i 0.0844497 + 1.11697i
\(711\) 0 0
\(712\) 0.405449 1.51316i 0.0151948 0.0567079i
\(713\) −0.342369 0.593001i −0.0128218 0.0222080i
\(714\) 0 0
\(715\) −13.3774 + 0.931609i −0.500287 + 0.0348402i
\(716\) −2.63300 −0.0983998
\(717\) 0 0
\(718\) −3.90299 + 14.5662i −0.145658 + 0.543604i
\(719\) −16.6992 + 28.9239i −0.622777 + 1.07868i 0.366190 + 0.930540i \(0.380662\pi\)
−0.988966 + 0.148141i \(0.952671\pi\)
\(720\) 0 0
\(721\) −3.32122 + 0.889918i −0.123689 + 0.0331423i
\(722\) −10.2091 5.89421i −0.379942 0.219360i
\(723\) 0 0
\(724\) 8.55897 + 4.94153i 0.318092 + 0.183650i
\(725\) −0.912629 1.14129i −0.0338942 0.0423866i
\(726\) 0 0
\(727\) −23.6487 23.6487i −0.877083 0.877083i 0.116149 0.993232i \(-0.462945\pi\)
−0.993232 + 0.116149i \(0.962945\pi\)
\(728\) −9.12066 + 5.19389i −0.338034 + 0.192499i
\(729\) 0 0
\(730\) 1.36723 7.25231i 0.0506036 0.268420i
\(731\) 28.8130 + 49.9055i 1.06569 + 1.84582i
\(732\) 0 0
\(733\) 14.7049i 0.543138i −0.962419 0.271569i \(-0.912458\pi\)
0.962419 0.271569i \(-0.0875424\pi\)
\(734\) 3.02344 + 11.2836i 0.111597 + 0.416486i
\(735\) 0 0
\(736\) −13.1731 + 13.1731i −0.485568 + 0.485568i
\(737\) 3.14184 + 11.7255i 0.115731 + 0.431914i
\(738\) 0 0
\(739\) 5.32432 19.8706i 0.195858 0.730953i −0.796185 0.605054i \(-0.793152\pi\)
0.992043 0.125900i \(-0.0401817\pi\)
\(740\) 5.67600 6.60447i 0.208654 0.242785i
\(741\) 0 0
\(742\) 1.96931 1.96931i 0.0722956 0.0722956i
\(743\) 38.6601 22.3204i 1.41830 0.818856i 0.422151 0.906526i \(-0.361275\pi\)
0.996150 + 0.0876692i \(0.0279419\pi\)
\(744\) 0 0
\(745\) −4.19742 + 8.73082i −0.153781 + 0.319872i
\(746\) 20.3603 + 20.3603i 0.745443 + 0.745443i
\(747\) 0 0
\(748\) −5.75395 + 9.96614i −0.210385 + 0.364398i
\(749\) −0.302864 0.302864i −0.0110664 0.0110664i
\(750\) 0 0
\(751\) 15.2247 8.78996i 0.555555 0.320750i −0.195804 0.980643i \(-0.562732\pi\)
0.751360 + 0.659893i \(0.229398\pi\)
\(752\) 8.02381 4.63255i 0.292598 0.168932i
\(753\) 0 0
\(754\) 0.936413 0.533254i 0.0341022 0.0194200i
\(755\) 14.9778 1.13241i 0.545097 0.0412125i
\(756\) 0 0
\(757\) 33.9933 + 9.10848i 1.23551 + 0.331053i 0.816722 0.577032i \(-0.195789\pi\)
0.418786 + 0.908085i \(0.362456\pi\)
\(758\) 4.48144 + 16.7250i 0.162773 + 0.607478i
\(759\) 0 0
\(760\) −8.00109 + 16.6426i −0.290230 + 0.603692i
\(761\) 3.03122 + 11.3127i 0.109882 + 0.410084i 0.998853 0.0478787i \(-0.0152461\pi\)
−0.888972 + 0.457962i \(0.848579\pi\)
\(762\) 0 0
\(763\) −8.45219 + 2.26476i −0.305990 + 0.0819897i
\(764\) −8.86485 15.3544i −0.320719 0.555502i
\(765\) 0 0
\(766\) 6.75331i 0.244007i
\(767\) −4.81817 + 17.5641i −0.173974 + 0.634202i
\(768\) 0 0
\(769\) −18.3227 4.90954i −0.660732 0.177043i −0.0871555 0.996195i \(-0.527778\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(770\) −3.02663 + 2.06646i −0.109072 + 0.0744700i
\(771\) 0 0
\(772\) −11.9964 −0.431760
\(773\) 14.2114 + 8.20497i 0.511149 + 0.295112i 0.733306 0.679899i \(-0.237976\pi\)
−0.222157 + 0.975011i \(0.571310\pi\)
\(774\) 0 0
\(775\) 0.526647 0.715564i 0.0189177 0.0257038i
\(776\) 11.3490 19.6570i 0.407404 0.705644i
\(777\) 0 0
\(778\) −17.2285 29.8406i −0.617671 1.06984i
\(779\) −18.9346 −0.678403
\(780\) 0 0
\(781\) 21.7109 0.776876
\(782\) −14.2856 24.7434i −0.510852 0.884822i
\(783\) 0 0
\(784\) 3.58492 6.20926i 0.128033 0.221759i
\(785\) 45.5610 3.44468i 1.62614 0.122946i
\(786\) 0 0
\(787\) −11.7781 6.80008i −0.419844 0.242397i 0.275167 0.961396i \(-0.411267\pi\)
−0.695010 + 0.719000i \(0.744600\pi\)
\(788\) 13.6326 0.485642
\(789\) 0 0
\(790\) 30.5253 + 5.75474i 1.08604 + 0.204745i
\(791\) 1.80058 + 0.482465i 0.0640214 + 0.0171545i
\(792\) 0 0
\(793\) 3.71719 + 6.52751i 0.132001 + 0.231799i
\(794\) 5.95255i 0.211248i
\(795\) 0 0
\(796\) 7.03076 + 12.1776i 0.249199 + 0.431625i
\(797\) 28.9148 7.74769i 1.02421 0.274437i 0.292657 0.956218i \(-0.405461\pi\)
0.731557 + 0.681780i \(0.238794\pi\)
\(798\) 0 0
\(799\) −14.7232 54.9476i −0.520868 1.94391i
\(800\) −22.5134 8.80145i −0.795969 0.311178i
\(801\) 0 0
\(802\) 0.0698734 + 0.260771i 0.00246732 + 0.00920815i
\(803\) −5.18527 1.38939i −0.182984 0.0490305i
\(804\) 0 0
\(805\) 0.625946 + 8.27906i 0.0220617 + 0.291799i
\(806\) 0.460525 + 0.466023i 0.0162213 + 0.0164150i
\(807\) 0 0
\(808\) 25.5185 14.7331i 0.897739 0.518310i
\(809\) −2.54661 + 1.47029i −0.0895342 + 0.0516926i −0.544099 0.839021i \(-0.683128\pi\)
0.454564 + 0.890714i \(0.349795\pi\)
\(810\) 0 0
\(811\) 16.3366 + 16.3366i 0.573657 + 0.573657i 0.933148 0.359492i \(-0.117050\pi\)
−0.359492 + 0.933148i \(0.617050\pi\)
\(812\) −0.134367 + 0.232730i −0.00471536 + 0.00816724i
\(813\) 0 0
\(814\) 4.90856 + 4.90856i 0.172045 + 0.172045i
\(815\) −45.1248 + 15.8234i −1.58065 + 0.554270i
\(816\) 0 0
\(817\) 18.8153 10.8630i 0.658262 0.380048i
\(818\) 26.8732 26.8732i 0.939599 0.939599i
\(819\) 0 0
\(820\) −1.11428 14.7380i −0.0389124 0.514674i
\(821\) −11.8735 + 44.3125i −0.414388 + 1.54652i 0.371672 + 0.928364i \(0.378785\pi\)
−0.786059 + 0.618151i \(0.787882\pi\)
\(822\) 0 0
\(823\) −4.58752 17.1209i −0.159911 0.596796i −0.998635 0.0522385i \(-0.983364\pi\)
0.838724 0.544557i \(-0.183302\pi\)
\(824\) 7.62280 7.62280i 0.265553 0.265553i
\(825\) 0 0
\(826\) 1.28826 + 4.80785i 0.0448242 + 0.167286i
\(827\) 5.79276i 0.201434i 0.994915 + 0.100717i \(0.0321137\pi\)
−0.994915 + 0.100717i \(0.967886\pi\)
\(828\) 0 0
\(829\) −16.8799 29.2368i −0.586262 1.01544i −0.994717 0.102657i \(-0.967265\pi\)
0.408454 0.912779i \(-0.366068\pi\)
\(830\) 19.2540 + 3.62985i 0.668317 + 0.125994i
\(831\) 0 0
\(832\) 13.3056 22.7334i 0.461290 0.788139i
\(833\) −31.1279 31.1279i −1.07852 1.07852i
\(834\) 0 0
\(835\) −3.76724 0.710216i −0.130371 0.0245780i
\(836\) 3.75741 + 2.16934i 0.129953 + 0.0750282i
\(837\) 0 0
\(838\) −30.0364 17.3415i −1.03759 0.599053i
\(839\) 37.8626 10.1452i 1.30716 0.350253i 0.463008 0.886354i \(-0.346770\pi\)
0.844154 + 0.536101i \(0.180103\pi\)
\(840\) 0 0
\(841\) −14.4573 + 25.0408i −0.498527 + 0.863475i
\(842\) −8.06995 + 30.1175i −0.278109 + 1.03792i
\(843\) 0 0
\(844\) 8.14177 0.280251
\(845\) 5.72396 28.4998i 0.196910 0.980422i
\(846\) 0 0
\(847\) −3.96679 6.87068i −0.136300 0.236079i
\(848\) −0.863850 + 3.22393i −0.0296647 + 0.110710i
\(849\) 0 0
\(850\) 21.9748 29.8575i 0.753728 1.02410i
\(851\) 15.1908 4.07037i 0.520735 0.139531i
\(852\) 0 0
\(853\) 40.6417 1.39154 0.695772 0.718262i \(-0.255062\pi\)
0.695772 + 0.718262i \(0.255062\pi\)
\(854\) 1.77785 + 1.02644i 0.0608369 + 0.0351242i
\(855\) 0 0
\(856\) 1.29713 + 0.347564i 0.0443348 + 0.0118795i
\(857\) −27.2327 27.2327i −0.930252 0.930252i 0.0674695 0.997721i \(-0.478507\pi\)
−0.997721 + 0.0674695i \(0.978507\pi\)
\(858\) 0 0
\(859\) 44.5502i 1.52003i 0.649904 + 0.760016i \(0.274809\pi\)
−0.649904 + 0.760016i \(0.725191\pi\)
\(860\) 9.56262 + 14.0058i 0.326083 + 0.477595i
\(861\) 0 0
\(862\) 4.54213 1.21706i 0.154706 0.0414532i
\(863\) 55.4497i 1.88753i −0.330615 0.943766i \(-0.607256\pi\)
0.330615 0.943766i \(-0.392744\pi\)
\(864\) 0 0
\(865\) −14.7041 + 30.5853i −0.499956 + 1.03993i
\(866\) −2.89432 + 2.89432i −0.0983531 + 0.0983531i
\(867\) 0 0
\(868\) −0.157822 0.0422883i −0.00535683 0.00143536i
\(869\) 5.84800 21.8250i 0.198380 0.740363i
\(870\) 0 0
\(871\) −26.3139 0.156154i −0.891612 0.00529107i
\(872\) 19.3993 19.3993i 0.656944 0.656944i
\(873\) 0 0
\(874\) −9.32869 + 5.38592i −0.315548 + 0.182181i
\(875\) −9.51462 + 5.05285i −0.321653 + 0.170817i
\(876\) 0 0
\(877\) −2.68849 + 4.65661i −0.0907839 + 0.157242i −0.907841 0.419314i \(-0.862271\pi\)
0.817057 + 0.576557i \(0.195604\pi\)
\(878\) −11.6188 + 20.1244i −0.392116 + 0.679166i
\(879\) 0 0
\(880\) 1.90300 3.95832i 0.0641500 0.133435i
\(881\) 37.0890 21.4133i 1.24956 0.721434i 0.278538 0.960425i \(-0.410150\pi\)
0.971022 + 0.238992i \(0.0768169\pi\)
\(882\) 0 0
\(883\) −32.9568 + 32.9568i −1.10908 + 1.10908i −0.115813 + 0.993271i \(0.536947\pi\)
−0.993271 + 0.115813i \(0.963053\pi\)
\(884\) −17.5345 17.7439i −0.589750 0.596791i
\(885\) 0 0
\(886\) −0.691990 + 2.58254i −0.0232478 + 0.0867622i
\(887\) −20.4194 5.47136i −0.685616 0.183710i −0.100837 0.994903i \(-0.532152\pi\)
−0.584779 + 0.811193i \(0.698819\pi\)
\(888\) 0 0
\(889\) −1.48203 + 1.48203i −0.0497057 + 0.0497057i
\(890\) 1.06863 + 0.513751i 0.0358204 + 0.0172210i
\(891\) 0 0
\(892\) 6.73778i 0.225598i
\(893\) −20.7162 + 5.55089i −0.693241 + 0.185753i
\(894\) 0 0
\(895\) 1.14302 6.06302i 0.0382071 0.202664i
\(896\) 2.11809i 0.0707605i
\(897\) 0 0
\(898\) −23.2645 23.2645i −0.776346 0.776346i
\(899\) 0.0501642 + 0.0134414i 0.00167307 + 0.000448297i
\(900\) 0 0
\(901\) 17.7471 + 10.2463i 0.591242 + 0.341354i
\(902\) 11.7817 0.392288
\(903\) 0 0
\(904\) −5.64533 + 1.51266i −0.187761 + 0.0503104i
\(905\) −15.0944 + 17.5636i −0.501756 + 0.583833i
\(906\) 0 0
\(907\) 2.86355 10.6869i 0.0950825 0.354853i −0.901949 0.431842i \(-0.857864\pi\)
0.997032 + 0.0769889i \(0.0245306\pi\)
\(908\) 8.19488 + 14.1940i 0.271957 + 0.471043i
\(909\) 0 0
\(910\) −2.58427 7.51221i −0.0856676 0.249027i
\(911\) 15.0479 0.498560 0.249280 0.968431i \(-0.419806\pi\)
0.249280 + 0.968431i \(0.419806\pi\)
\(912\) 0 0
\(913\) 3.68867 13.7663i 0.122077 0.455598i
\(914\) 14.5045 25.1226i 0.479767 0.830980i
\(915\) 0 0
\(916\) 11.6099 3.11086i 0.383602 0.102786i
\(917\) 0.0519457 + 0.0299909i 0.00171540 + 0.000990386i
\(918\) 0 0
\(919\) 10.8342 + 6.25513i 0.357388 + 0.206338i 0.667934 0.744220i \(-0.267179\pi\)
−0.310547 + 0.950558i \(0.600512\pi\)
\(920\) −14.6782 21.4983i −0.483925 0.708778i
\(921\) 0 0
\(922\) −8.32259 8.32259i −0.274090 0.274090i
\(923\) −12.4504 + 45.3866i −0.409811 + 1.49392i
\(924\) 0 0
\(925\) 12.7441 + 15.9372i 0.419023 + 0.524013i
\(926\) −15.3114 26.5202i −0.503165 0.871508i
\(927\) 0 0
\(928\) 1.41296i 0.0463826i
\(929\) −12.6170 47.0874i −0.413952 1.54489i −0.786926 0.617047i \(-0.788329\pi\)
0.372975 0.927841i \(-0.378338\pi\)
\(930\) 0 0
\(931\) −11.7357 + 11.7357i −0.384623 + 0.384623i
\(932\) 6.14112 + 22.9190i 0.201159 + 0.750736i
\(933\) 0 0
\(934\) 6.03874 22.5369i 0.197594 0.737429i
\(935\) −20.4512 17.5761i −0.668825 0.574800i
\(936\) 0 0
\(937\) 7.38027 7.38027i 0.241103 0.241103i −0.576203 0.817306i \(-0.695466\pi\)
0.817306 + 0.576203i \(0.195466\pi\)
\(938\) −6.22802 + 3.59575i −0.203352 + 0.117405i
\(939\) 0 0
\(940\) −5.53974 15.7981i −0.180686 0.515277i
\(941\) 1.54410 + 1.54410i 0.0503363 + 0.0503363i 0.731827 0.681491i \(-0.238668\pi\)
−0.681491 + 0.731827i \(0.738668\pi\)
\(942\) 0 0
\(943\) 13.3459 23.1158i 0.434602 0.752753i
\(944\) −4.21798 4.21798i −0.137284 0.137284i
\(945\) 0 0
\(946\) −11.7074 + 6.75929i −0.380642 + 0.219764i
\(947\) −5.81670 + 3.35827i −0.189017 + 0.109129i −0.591522 0.806289i \(-0.701473\pi\)
0.402505 + 0.915418i \(0.368140\pi\)
\(948\) 0 0
\(949\) 5.87810 10.0431i 0.190811 0.326011i
\(950\) −11.2568 8.28486i −0.365218 0.268796i
\(951\) 0 0
\(952\) −20.3871 5.46272i −0.660751 0.177048i
\(953\) 4.67309 + 17.4402i 0.151376 + 0.564944i 0.999388 + 0.0349673i \(0.0111327\pi\)
−0.848012 + 0.529977i \(0.822201\pi\)
\(954\) 0 0
\(955\) 39.2049 13.7476i 1.26864 0.444860i
\(956\) 0.780600 + 2.91324i 0.0252464 + 0.0942208i
\(957\) 0 0
\(958\) 38.3526 10.2765i 1.23912 0.332020i
\(959\) 2.12828 + 3.68629i 0.0687257 + 0.119036i
\(960\) 0 0
\(961\) 30.9684i 0.998981i
\(962\) −13.0762 + 7.44646i −0.421595 + 0.240083i
\(963\) 0 0
\(964\) −16.6086 4.45026i −0.534927 0.143333i
\(965\) 5.20782 27.6241i 0.167646 0.889253i
\(966\) 0 0
\(967\) 60.0570 1.93130 0.965651 0.259841i \(-0.0836701\pi\)
0.965651 + 0.259841i \(0.0836701\pi\)
\(968\) 21.5415 + 12.4370i 0.692369 + 0.399740i
\(969\) 0 0
\(970\) 13.0294 + 11.1977i 0.418348 + 0.359536i
\(971\) −20.4589 + 35.4359i −0.656558 + 1.13719i 0.324942 + 0.945734i \(0.394655\pi\)
−0.981501 + 0.191459i \(0.938678\pi\)
\(972\) 0 0
\(973\) 6.62390 + 11.4729i 0.212352 + 0.367805i
\(974\) 29.5983 0.948391
\(975\) 0 0
\(976\) −2.46025 −0.0787506
\(977\) 18.7479 + 32.4724i 0.599800 + 1.03888i 0.992850 + 0.119367i \(0.0380865\pi\)
−0.393050 + 0.919517i \(0.628580\pi\)
\(978\) 0 0
\(979\) 0.431236 0.746923i 0.0137824 0.0238718i
\(980\) −9.82532 8.44405i −0.313858 0.269735i
\(981\) 0 0
\(982\) 6.44253 + 3.71959i 0.205589 + 0.118697i
\(983\) 46.1176 1.47092 0.735461 0.677567i \(-0.236966\pi\)
0.735461 + 0.677567i \(0.236966\pi\)
\(984\) 0 0
\(985\) −5.91812 + 31.3919i −0.188567 + 1.00023i
\(986\) 2.09314 + 0.560854i 0.0666591 + 0.0178612i
\(987\) 0 0
\(988\) −6.68975 + 6.61082i −0.212829 + 0.210318i
\(989\) 30.6267i 0.973873i
\(990\) 0 0
\(991\) −0.401099 0.694724i −0.0127413 0.0220686i 0.859584 0.510994i \(-0.170722\pi\)
−0.872326 + 0.488925i \(0.837389\pi\)
\(992\) 0.829802 0.222345i 0.0263462 0.00705945i
\(993\) 0 0
\(994\) 3.32894 + 12.4238i 0.105587 + 0.394058i
\(995\) −31.0936 + 10.9033i −0.985734 + 0.345656i
\(996\) 0 0
\(997\) 4.04012 + 15.0779i 0.127952 + 0.477522i 0.999928 0.0120264i \(-0.00382820\pi\)
−0.871976 + 0.489549i \(0.837162\pi\)
\(998\) 5.92576 + 1.58780i 0.187577 + 0.0502610i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.cf.a.388.2 20
3.2 odd 2 65.2.o.a.63.4 yes 20
5.2 odd 4 585.2.dp.a.37.4 20
13.6 odd 12 585.2.dp.a.253.4 20
15.2 even 4 65.2.t.a.37.2 yes 20
15.8 even 4 325.2.x.b.232.4 20
15.14 odd 2 325.2.s.b.193.2 20
39.2 even 12 845.2.f.e.408.8 20
39.5 even 4 845.2.t.f.418.4 20
39.8 even 4 845.2.t.e.418.2 20
39.11 even 12 845.2.f.d.408.3 20
39.17 odd 6 845.2.o.f.488.2 20
39.20 even 12 845.2.t.g.188.4 20
39.23 odd 6 845.2.k.d.268.8 20
39.29 odd 6 845.2.k.e.268.3 20
39.32 even 12 65.2.t.a.58.2 yes 20
39.35 odd 6 845.2.o.e.488.4 20
39.38 odd 2 845.2.o.g.258.2 20
65.32 even 12 inner 585.2.cf.a.487.2 20
195.2 odd 12 845.2.k.e.577.3 20
195.17 even 12 845.2.t.e.657.2 20
195.32 odd 12 65.2.o.a.32.4 20
195.47 odd 4 845.2.o.f.587.2 20
195.62 even 12 845.2.f.d.437.8 20
195.77 even 4 845.2.t.g.427.4 20
195.107 even 12 845.2.f.e.437.3 20
195.122 odd 4 845.2.o.e.587.4 20
195.137 odd 12 845.2.o.g.357.2 20
195.149 even 12 325.2.x.b.318.4 20
195.152 even 12 845.2.t.f.657.4 20
195.167 odd 12 845.2.k.d.577.8 20
195.188 odd 12 325.2.s.b.32.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.4 20 195.32 odd 12
65.2.o.a.63.4 yes 20 3.2 odd 2
65.2.t.a.37.2 yes 20 15.2 even 4
65.2.t.a.58.2 yes 20 39.32 even 12
325.2.s.b.32.2 20 195.188 odd 12
325.2.s.b.193.2 20 15.14 odd 2
325.2.x.b.232.4 20 15.8 even 4
325.2.x.b.318.4 20 195.149 even 12
585.2.cf.a.388.2 20 1.1 even 1 trivial
585.2.cf.a.487.2 20 65.32 even 12 inner
585.2.dp.a.37.4 20 5.2 odd 4
585.2.dp.a.253.4 20 13.6 odd 12
845.2.f.d.408.3 20 39.11 even 12
845.2.f.d.437.8 20 195.62 even 12
845.2.f.e.408.8 20 39.2 even 12
845.2.f.e.437.3 20 195.107 even 12
845.2.k.d.268.8 20 39.23 odd 6
845.2.k.d.577.8 20 195.167 odd 12
845.2.k.e.268.3 20 39.29 odd 6
845.2.k.e.577.3 20 195.2 odd 12
845.2.o.e.488.4 20 39.35 odd 6
845.2.o.e.587.4 20 195.122 odd 4
845.2.o.f.488.2 20 39.17 odd 6
845.2.o.f.587.2 20 195.47 odd 4
845.2.o.g.258.2 20 39.38 odd 2
845.2.o.g.357.2 20 195.137 odd 12
845.2.t.e.418.2 20 39.8 even 4
845.2.t.e.657.2 20 195.17 even 12
845.2.t.f.418.4 20 39.5 even 4
845.2.t.f.657.4 20 195.152 even 12
845.2.t.g.188.4 20 39.20 even 12
845.2.t.g.427.4 20 195.77 even 4