Properties

Label 845.2.k.d.577.8
Level $845$
Weight $2$
Character 845.577
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(268,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.268");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.8
Root \(-1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 845.577
Dual form 845.2.k.d.268.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.02262 q^{2} +(-1.97063 + 1.97063i) q^{3} -0.954253 q^{4} +(1.69584 - 1.45744i) q^{5} +(-2.01520 + 2.01520i) q^{6} -0.963574i q^{7} -3.02107 q^{8} -4.76674i q^{9} +(1.73420 - 1.49040i) q^{10} +(1.17612 + 1.17612i) q^{11} +(1.88048 - 1.88048i) q^{12} -0.985368i q^{14} +(-0.469810 + 6.21394i) q^{15} -1.18090 q^{16} +(5.12686 - 5.12686i) q^{17} -4.87456i q^{18} +(1.93291 + 1.93291i) q^{19} +(-1.61826 + 1.39076i) q^{20} +(1.89884 + 1.89884i) q^{21} +(1.20272 + 1.20272i) q^{22} +(2.72480 + 2.72480i) q^{23} +(5.95341 - 5.95341i) q^{24} +(0.751762 - 4.94316i) q^{25} +(3.48159 + 3.48159i) q^{27} +0.919493i q^{28} -0.292263i q^{29} +(-0.480436 + 6.35448i) q^{30} +(0.125649 - 0.125649i) q^{31} +4.83454 q^{32} -4.63538 q^{33} +(5.24282 - 5.24282i) q^{34} +(-1.40435 - 1.63407i) q^{35} +4.54868i q^{36} +4.08121i q^{37} +(1.97663 + 1.97663i) q^{38} +(-5.12326 + 4.40302i) q^{40} +(4.89794 - 4.89794i) q^{41} +(1.94179 + 1.94179i) q^{42} +(5.62000 + 5.62000i) q^{43} +(-1.12232 - 1.12232i) q^{44} +(-6.94722 - 8.08364i) q^{45} +(2.78642 + 2.78642i) q^{46} +7.84582i q^{47} +(2.32710 - 2.32710i) q^{48} +6.07153 q^{49} +(0.768765 - 5.05497i) q^{50} +20.2063i q^{51} +(-1.99855 + 1.99855i) q^{53} +(3.56034 + 3.56034i) q^{54} +(3.70863 + 0.280394i) q^{55} +2.91103i q^{56} -7.61811 q^{57} -0.298873i q^{58} +(3.57185 - 3.57185i) q^{59} +(0.448318 - 5.92967i) q^{60} +2.08337 q^{61} +(0.128491 - 0.128491i) q^{62} -4.59311 q^{63} +7.30568 q^{64} -4.74023 q^{66} -7.29829 q^{67} +(-4.89232 + 4.89232i) q^{68} -10.7391 q^{69} +(-1.43611 - 1.67103i) q^{70} +(9.22988 - 9.22988i) q^{71} +14.4007i q^{72} -3.22747 q^{73} +4.17352i q^{74} +(8.25969 + 11.2226i) q^{75} +(-1.84449 - 1.84449i) q^{76} +(1.13328 - 1.13328i) q^{77} -13.5845i q^{79} +(-2.00261 + 1.72108i) q^{80} +0.578392 q^{81} +(5.00872 - 5.00872i) q^{82} -8.56854i q^{83} +(-1.81198 - 1.81198i) q^{84} +(1.22228 - 16.1664i) q^{85} +(5.74712 + 5.74712i) q^{86} +(0.575942 + 0.575942i) q^{87} +(-3.55314 - 3.55314i) q^{88} +(-0.366660 + 0.366660i) q^{89} +(-7.10435 - 8.26648i) q^{90} +(-2.60014 - 2.60014i) q^{92} +0.495216i q^{93} +8.02328i q^{94} +(6.09502 + 0.460819i) q^{95} +(-9.52707 + 9.52707i) q^{96} -7.51320 q^{97} +6.20885 q^{98} +(5.60626 - 5.60626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{2} + 4 q^{3} + 12 q^{4} + 6 q^{5} - 4 q^{6} - 12 q^{8} + 8 q^{10} - 8 q^{11} + 24 q^{12} + 24 q^{15} + 4 q^{16} + 14 q^{17} + 4 q^{19} + 22 q^{20} - 4 q^{21} - 32 q^{22} - 8 q^{23} - 4 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02262 0.723100 0.361550 0.932353i \(-0.382248\pi\)
0.361550 + 0.932353i \(0.382248\pi\)
\(3\) −1.97063 + 1.97063i −1.13774 + 1.13774i −0.148888 + 0.988854i \(0.547569\pi\)
−0.988854 + 0.148888i \(0.952431\pi\)
\(4\) −0.954253 −0.477126
\(5\) 1.69584 1.45744i 0.758404 0.651785i
\(6\) −2.01520 + 2.01520i −0.822701 + 0.822701i
\(7\) 0.963574i 0.364197i −0.983280 0.182098i \(-0.941711\pi\)
0.983280 0.182098i \(-0.0582889\pi\)
\(8\) −3.02107 −1.06811
\(9\) 4.76674i 1.58891i
\(10\) 1.73420 1.49040i 0.548402 0.471306i
\(11\) 1.17612 + 1.17612i 0.354613 + 0.354613i 0.861823 0.507210i \(-0.169323\pi\)
−0.507210 + 0.861823i \(0.669323\pi\)
\(12\) 1.88048 1.88048i 0.542847 0.542847i
\(13\) 0 0
\(14\) 0.985368i 0.263351i
\(15\) −0.469810 + 6.21394i −0.121305 + 1.60443i
\(16\) −1.18090 −0.295224
\(17\) 5.12686 5.12686i 1.24345 1.24345i 0.284884 0.958562i \(-0.408045\pi\)
0.958562 0.284884i \(-0.0919552\pi\)
\(18\) 4.87456i 1.14894i
\(19\) 1.93291 + 1.93291i 0.443441 + 0.443441i 0.893167 0.449726i \(-0.148478\pi\)
−0.449726 + 0.893167i \(0.648478\pi\)
\(20\) −1.61826 + 1.39076i −0.361854 + 0.310984i
\(21\) 1.89884 + 1.89884i 0.414362 + 0.414362i
\(22\) 1.20272 + 1.20272i 0.256421 + 0.256421i
\(23\) 2.72480 + 2.72480i 0.568159 + 0.568159i 0.931612 0.363453i \(-0.118402\pi\)
−0.363453 + 0.931612i \(0.618402\pi\)
\(24\) 5.95341 5.95341i 1.21523 1.21523i
\(25\) 0.751762 4.94316i 0.150352 0.988632i
\(26\) 0 0
\(27\) 3.48159 + 3.48159i 0.670033 + 0.670033i
\(28\) 0.919493i 0.173768i
\(29\) 0.292263i 0.0542719i −0.999632 0.0271360i \(-0.991361\pi\)
0.999632 0.0271360i \(-0.00863870\pi\)
\(30\) −0.480436 + 6.35448i −0.0877153 + 1.16016i
\(31\) 0.125649 0.125649i 0.0225673 0.0225673i −0.695733 0.718300i \(-0.744920\pi\)
0.718300 + 0.695733i \(0.244920\pi\)
\(32\) 4.83454 0.854634
\(33\) −4.63538 −0.806917
\(34\) 5.24282 5.24282i 0.899136 0.899136i
\(35\) −1.40435 1.63407i −0.237378 0.276208i
\(36\) 4.54868i 0.758113i
\(37\) 4.08121i 0.670947i 0.942050 + 0.335474i \(0.108896\pi\)
−0.942050 + 0.335474i \(0.891104\pi\)
\(38\) 1.97663 + 1.97663i 0.320652 + 0.320652i
\(39\) 0 0
\(40\) −5.12326 + 4.40302i −0.810059 + 0.696178i
\(41\) 4.89794 4.89794i 0.764930 0.764930i −0.212279 0.977209i \(-0.568089\pi\)
0.977209 + 0.212279i \(0.0680886\pi\)
\(42\) 1.94179 + 1.94179i 0.299625 + 0.299625i
\(43\) 5.62000 + 5.62000i 0.857043 + 0.857043i 0.990989 0.133946i \(-0.0427649\pi\)
−0.133946 + 0.990989i \(0.542765\pi\)
\(44\) −1.12232 1.12232i −0.169195 0.169195i
\(45\) −6.94722 8.08364i −1.03563 1.20504i
\(46\) 2.78642 + 2.78642i 0.410836 + 0.410836i
\(47\) 7.84582i 1.14443i 0.820103 + 0.572215i \(0.193916\pi\)
−0.820103 + 0.572215i \(0.806084\pi\)
\(48\) 2.32710 2.32710i 0.335889 0.335889i
\(49\) 6.07153 0.867361
\(50\) 0.768765 5.05497i 0.108720 0.714880i
\(51\) 20.2063i 2.82944i
\(52\) 0 0
\(53\) −1.99855 + 1.99855i −0.274522 + 0.274522i −0.830918 0.556395i \(-0.812184\pi\)
0.556395 + 0.830918i \(0.312184\pi\)
\(54\) 3.56034 + 3.56034i 0.484501 + 0.484501i
\(55\) 3.70863 + 0.280394i 0.500072 + 0.0378084i
\(56\) 2.91103i 0.389002i
\(57\) −7.61811 −1.00904
\(58\) 0.298873i 0.0392440i
\(59\) 3.57185 3.57185i 0.465015 0.465015i −0.435280 0.900295i \(-0.643351\pi\)
0.900295 + 0.435280i \(0.143351\pi\)
\(60\) 0.448318 5.92967i 0.0578776 0.765517i
\(61\) 2.08337 0.266749 0.133374 0.991066i \(-0.457419\pi\)
0.133374 + 0.991066i \(0.457419\pi\)
\(62\) 0.128491 0.128491i 0.0163184 0.0163184i
\(63\) −4.59311 −0.578677
\(64\) 7.30568 0.913209
\(65\) 0 0
\(66\) −4.74023 −0.583482
\(67\) −7.29829 −0.891628 −0.445814 0.895126i \(-0.647086\pi\)
−0.445814 + 0.895126i \(0.647086\pi\)
\(68\) −4.89232 + 4.89232i −0.593281 + 0.593281i
\(69\) −10.7391 −1.29284
\(70\) −1.43611 1.67103i −0.171648 0.199726i
\(71\) 9.22988 9.22988i 1.09538 1.09538i 0.100442 0.994943i \(-0.467974\pi\)
0.994943 0.100442i \(-0.0320257\pi\)
\(72\) 14.4007i 1.69714i
\(73\) −3.22747 −0.377746 −0.188873 0.982001i \(-0.560483\pi\)
−0.188873 + 0.982001i \(0.560483\pi\)
\(74\) 4.17352i 0.485162i
\(75\) 8.25969 + 11.2226i 0.953747 + 1.29587i
\(76\) −1.84449 1.84449i −0.211577 0.211577i
\(77\) 1.13328 1.13328i 0.129149 0.129149i
\(78\) 0 0
\(79\) 13.5845i 1.52838i −0.644992 0.764190i \(-0.723139\pi\)
0.644992 0.764190i \(-0.276861\pi\)
\(80\) −2.00261 + 1.72108i −0.223899 + 0.192423i
\(81\) 0.578392 0.0642658
\(82\) 5.00872 5.00872i 0.553121 0.553121i
\(83\) 8.56854i 0.940519i −0.882528 0.470260i \(-0.844160\pi\)
0.882528 0.470260i \(-0.155840\pi\)
\(84\) −1.81198 1.81198i −0.197703 0.197703i
\(85\) 1.22228 16.1664i 0.132575 1.75349i
\(86\) 5.74712 + 5.74712i 0.619728 + 0.619728i
\(87\) 0.575942 + 0.575942i 0.0617474 + 0.0617474i
\(88\) −3.55314 3.55314i −0.378766 0.378766i
\(89\) −0.366660 + 0.366660i −0.0388659 + 0.0388659i −0.726273 0.687407i \(-0.758749\pi\)
0.687407 + 0.726273i \(0.258749\pi\)
\(90\) −7.10435 8.26648i −0.748864 0.871363i
\(91\) 0 0
\(92\) −2.60014 2.60014i −0.271084 0.271084i
\(93\) 0.495216i 0.0513516i
\(94\) 8.02328i 0.827538i
\(95\) 6.09502 + 0.460819i 0.625336 + 0.0472791i
\(96\) −9.52707 + 9.52707i −0.972353 + 0.972353i
\(97\) −7.51320 −0.762850 −0.381425 0.924400i \(-0.624567\pi\)
−0.381425 + 0.924400i \(0.624567\pi\)
\(98\) 6.20885 0.627189
\(99\) 5.60626 5.60626i 0.563450 0.563450i
\(100\) −0.717371 + 4.71703i −0.0717371 + 0.471703i
\(101\) 9.75358i 0.970518i −0.874371 0.485259i \(-0.838725\pi\)
0.874371 0.485259i \(-0.161275\pi\)
\(102\) 20.6633i 2.04597i
\(103\) −2.52321 2.52321i −0.248619 0.248619i 0.571784 0.820404i \(-0.306251\pi\)
−0.820404 + 0.571784i \(0.806251\pi\)
\(104\) 0 0
\(105\) 5.98759 + 0.452697i 0.584329 + 0.0441787i
\(106\) −2.04375 + 2.04375i −0.198507 + 0.198507i
\(107\) −0.314313 0.314313i −0.0303858 0.0303858i 0.691751 0.722136i \(-0.256840\pi\)
−0.722136 + 0.691751i \(0.756840\pi\)
\(108\) −3.32232 3.32232i −0.319690 0.319690i
\(109\) 6.42134 + 6.42134i 0.615053 + 0.615053i 0.944258 0.329206i \(-0.106781\pi\)
−0.329206 + 0.944258i \(0.606781\pi\)
\(110\) 3.79251 + 0.286736i 0.361602 + 0.0273392i
\(111\) −8.04255 8.04255i −0.763365 0.763365i
\(112\) 1.13788i 0.107520i
\(113\) 1.36795 1.36795i 0.128686 0.128686i −0.639830 0.768516i \(-0.720995\pi\)
0.768516 + 0.639830i \(0.220995\pi\)
\(114\) −7.79041 −0.729639
\(115\) 8.59204 + 0.649609i 0.801212 + 0.0605763i
\(116\) 0.278893i 0.0258946i
\(117\) 0 0
\(118\) 3.65264 3.65264i 0.336253 0.336253i
\(119\) −4.94011 4.94011i −0.452859 0.452859i
\(120\) 1.41933 18.7727i 0.129567 1.71371i
\(121\) 8.23349i 0.748499i
\(122\) 2.13050 0.192886
\(123\) 19.3040i 1.74059i
\(124\) −0.119901 + 0.119901i −0.0107675 + 0.0107675i
\(125\) −5.92947 9.47847i −0.530348 0.847780i
\(126\) −4.69699 −0.418442
\(127\) −1.53806 + 1.53806i −0.136480 + 0.136480i −0.772046 0.635566i \(-0.780767\pi\)
0.635566 + 0.772046i \(0.280767\pi\)
\(128\) −2.19816 −0.194292
\(129\) −22.1499 −1.95019
\(130\) 0 0
\(131\) −0.0622493 −0.00543874 −0.00271937 0.999996i \(-0.500866\pi\)
−0.00271937 + 0.999996i \(0.500866\pi\)
\(132\) 4.42333 0.385001
\(133\) 1.86251 1.86251i 0.161500 0.161500i
\(134\) −7.46336 −0.644736
\(135\) 10.9784 + 0.830034i 0.944872 + 0.0714380i
\(136\) −15.4886 + 15.4886i −1.32814 + 1.32814i
\(137\) 4.41747i 0.377410i 0.982034 + 0.188705i \(0.0604289\pi\)
−0.982034 + 0.188705i \(0.939571\pi\)
\(138\) −10.9820 −0.934850
\(139\) 13.7486i 1.16614i 0.812422 + 0.583070i \(0.198149\pi\)
−0.812422 + 0.583070i \(0.801851\pi\)
\(140\) 1.34010 + 1.55932i 0.113259 + 0.131786i
\(141\) −15.4612 15.4612i −1.30207 1.30207i
\(142\) 9.43864 9.43864i 0.792073 0.792073i
\(143\) 0 0
\(144\) 5.62903i 0.469085i
\(145\) −0.425955 0.495632i −0.0353736 0.0411600i
\(146\) −3.30046 −0.273148
\(147\) −11.9647 + 11.9647i −0.986833 + 0.986833i
\(148\) 3.89451i 0.320127i
\(149\) 3.06342 + 3.06342i 0.250965 + 0.250965i 0.821366 0.570401i \(-0.193212\pi\)
−0.570401 + 0.821366i \(0.693212\pi\)
\(150\) 8.44650 + 11.4764i 0.689654 + 0.937044i
\(151\) −4.74990 4.74990i −0.386542 0.386542i 0.486910 0.873452i \(-0.338124\pi\)
−0.873452 + 0.486910i \(0.838124\pi\)
\(152\) −5.83947 5.83947i −0.473644 0.473644i
\(153\) −24.4384 24.4384i −1.97573 1.97573i
\(154\) 1.15891 1.15891i 0.0933876 0.0933876i
\(155\) 0.0299556 0.396208i 0.00240610 0.0318242i
\(156\) 0 0
\(157\) 14.4488 + 14.4488i 1.15314 + 1.15314i 0.985920 + 0.167218i \(0.0534784\pi\)
0.167218 + 0.985920i \(0.446522\pi\)
\(158\) 13.8918i 1.10517i
\(159\) 7.87680i 0.624671i
\(160\) 8.19861 7.04603i 0.648157 0.557037i
\(161\) 2.62554 2.62554i 0.206922 0.206922i
\(162\) 0.591474 0.0464706
\(163\) −21.3852 −1.67502 −0.837508 0.546425i \(-0.815989\pi\)
−0.837508 + 0.546425i \(0.815989\pi\)
\(164\) −4.67387 + 4.67387i −0.364968 + 0.364968i
\(165\) −7.86088 + 6.75578i −0.611969 + 0.525936i
\(166\) 8.76234i 0.680090i
\(167\) 1.71444i 0.132667i 0.997797 + 0.0663337i \(0.0211302\pi\)
−0.997797 + 0.0663337i \(0.978870\pi\)
\(168\) −5.73655 5.73655i −0.442584 0.442584i
\(169\) 0 0
\(170\) 1.24992 16.5321i 0.0958646 1.26795i
\(171\) 9.21371 9.21371i 0.704590 0.704590i
\(172\) −5.36291 5.36291i −0.408918 0.408918i
\(173\) −10.7316 10.7316i −0.815908 0.815908i 0.169604 0.985512i \(-0.445751\pi\)
−0.985512 + 0.169604i \(0.945751\pi\)
\(174\) 0.588968 + 0.588968i 0.0446496 + 0.0446496i
\(175\) −4.76310 0.724378i −0.360057 0.0547578i
\(176\) −1.38887 1.38887i −0.104690 0.104690i
\(177\) 14.0776i 1.05814i
\(178\) −0.374954 + 0.374954i −0.0281040 + 0.0281040i
\(179\) −2.75923 −0.206234 −0.103117 0.994669i \(-0.532882\pi\)
−0.103117 + 0.994669i \(0.532882\pi\)
\(180\) 6.62941 + 7.71384i 0.494127 + 0.574956i
\(181\) 10.3568i 0.769818i −0.922954 0.384909i \(-0.874233\pi\)
0.922954 0.384909i \(-0.125767\pi\)
\(182\) 0 0
\(183\) −4.10555 + 4.10555i −0.303491 + 0.303491i
\(184\) −8.23180 8.23180i −0.606856 0.606856i
\(185\) 5.94810 + 6.92109i 0.437313 + 0.508849i
\(186\) 0.506417i 0.0371323i
\(187\) 12.0596 0.881885
\(188\) 7.48690i 0.546038i
\(189\) 3.35477 3.35477i 0.244024 0.244024i
\(190\) 6.23287 + 0.471242i 0.452180 + 0.0341875i
\(191\) 18.5797 1.34438 0.672189 0.740380i \(-0.265354\pi\)
0.672189 + 0.740380i \(0.265354\pi\)
\(192\) −14.3968 + 14.3968i −1.03900 + 1.03900i
\(193\) −12.5715 −0.904917 −0.452459 0.891785i \(-0.649453\pi\)
−0.452459 + 0.891785i \(0.649453\pi\)
\(194\) −7.68313 −0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) −14.2862 −1.01785 −0.508924 0.860812i \(-0.669956\pi\)
−0.508924 + 0.860812i \(0.669956\pi\)
\(198\) 5.73306 5.73306i 0.407431 0.407431i
\(199\) 14.7356 1.04458 0.522291 0.852768i \(-0.325078\pi\)
0.522291 + 0.852768i \(0.325078\pi\)
\(200\) −2.27113 + 14.9336i −0.160593 + 1.05597i
\(201\) 14.3822 14.3822i 1.01444 1.01444i
\(202\) 9.97419i 0.701781i
\(203\) −0.281617 −0.0197656
\(204\) 19.2819i 1.35000i
\(205\) 1.16770 15.4446i 0.0815558 1.07870i
\(206\) −2.58028 2.58028i −0.179777 0.179777i
\(207\) 12.9884 12.9884i 0.902756 0.902756i
\(208\) 0 0
\(209\) 4.54668i 0.314500i
\(210\) 6.12301 + 0.462936i 0.422528 + 0.0319456i
\(211\) −8.53209 −0.587373 −0.293686 0.955902i \(-0.594882\pi\)
−0.293686 + 0.955902i \(0.594882\pi\)
\(212\) 1.90712 1.90712i 0.130982 0.130982i
\(213\) 36.3773i 2.49253i
\(214\) −0.321422 0.321422i −0.0219719 0.0219719i
\(215\) 17.7214 + 1.33985i 1.20859 + 0.0913767i
\(216\) −10.5181 10.5181i −0.715669 0.715669i
\(217\) −0.121073 0.121073i −0.00821894 0.00821894i
\(218\) 6.56657 + 6.56657i 0.444745 + 0.444745i
\(219\) 6.36013 6.36013i 0.429778 0.429778i
\(220\) −3.53897 0.267567i −0.238597 0.0180394i
\(221\) 0 0
\(222\) −8.22445 8.22445i −0.551989 0.551989i
\(223\) 7.06079i 0.472826i 0.971653 + 0.236413i \(0.0759718\pi\)
−0.971653 + 0.236413i \(0.924028\pi\)
\(224\) 4.65843i 0.311255i
\(225\) −23.5628 3.58346i −1.57085 0.238897i
\(226\) 1.39889 1.39889i 0.0930527 0.0930527i
\(227\) 17.1755 1.13998 0.569989 0.821652i \(-0.306948\pi\)
0.569989 + 0.821652i \(0.306948\pi\)
\(228\) 7.26960 0.481441
\(229\) −8.90647 + 8.90647i −0.588556 + 0.588556i −0.937240 0.348684i \(-0.886629\pi\)
0.348684 + 0.937240i \(0.386629\pi\)
\(230\) 8.78637 + 0.664302i 0.579356 + 0.0438028i
\(231\) 4.46654i 0.293876i
\(232\) 0.882948i 0.0579684i
\(233\) 17.5822 + 17.5822i 1.15185 + 1.15185i 0.986182 + 0.165666i \(0.0529773\pi\)
0.165666 + 0.986182i \(0.447023\pi\)
\(234\) 0 0
\(235\) 11.4348 + 13.3053i 0.745923 + 0.867940i
\(236\) −3.40845 + 3.40845i −0.221871 + 0.221871i
\(237\) 26.7700 + 26.7700i 1.73890 + 1.73890i
\(238\) −5.05184 5.05184i −0.327462 0.327462i
\(239\) −2.23488 2.23488i −0.144562 0.144562i 0.631122 0.775684i \(-0.282595\pi\)
−0.775684 + 0.631122i \(0.782595\pi\)
\(240\) 0.554797 7.33801i 0.0358120 0.473666i
\(241\) 12.7412 + 12.7412i 0.820734 + 0.820734i 0.986213 0.165479i \(-0.0529171\pi\)
−0.165479 + 0.986213i \(0.552917\pi\)
\(242\) 8.41971i 0.541239i
\(243\) −11.5846 + 11.5846i −0.743150 + 0.743150i
\(244\) −1.98807 −0.127273
\(245\) 10.2963 8.84886i 0.657810 0.565333i
\(246\) 19.7406i 1.25862i
\(247\) 0 0
\(248\) −0.379596 + 0.379596i −0.0241044 + 0.0241044i
\(249\) 16.8854 + 16.8854i 1.07007 + 1.07007i
\(250\) −6.06358 9.69285i −0.383495 0.613030i
\(251\) 13.9729i 0.881960i 0.897517 + 0.440980i \(0.145369\pi\)
−0.897517 + 0.440980i \(0.854631\pi\)
\(252\) 4.38299 0.276102
\(253\) 6.40937i 0.402954i
\(254\) −1.57284 + 1.57284i −0.0986889 + 0.0986889i
\(255\) 29.4493 + 34.2666i 1.84419 + 2.14586i
\(256\) −16.8592 −1.05370
\(257\) −16.3892 + 16.3892i −1.02233 + 1.02233i −0.0225869 + 0.999745i \(0.507190\pi\)
−0.999745 + 0.0225869i \(0.992810\pi\)
\(258\) −22.6508 −1.41018
\(259\) 3.93255 0.244357
\(260\) 0 0
\(261\) −1.39314 −0.0862334
\(262\) −0.0636572 −0.00393276
\(263\) 0.919982 0.919982i 0.0567285 0.0567285i −0.678173 0.734902i \(-0.737228\pi\)
0.734902 + 0.678173i \(0.237228\pi\)
\(264\) 14.0038 0.861876
\(265\) −0.476468 + 6.30199i −0.0292692 + 0.387128i
\(266\) 1.90463 1.90463i 0.116780 0.116780i
\(267\) 1.44510i 0.0884388i
\(268\) 6.96441 0.425419
\(269\) 7.93774i 0.483973i 0.970280 + 0.241986i \(0.0777989\pi\)
−0.970280 + 0.241986i \(0.922201\pi\)
\(270\) 11.2267 + 0.848808i 0.683237 + 0.0516568i
\(271\) −0.633254 0.633254i −0.0384674 0.0384674i 0.687611 0.726079i \(-0.258659\pi\)
−0.726079 + 0.687611i \(0.758659\pi\)
\(272\) −6.05429 + 6.05429i −0.367095 + 0.367095i
\(273\) 0 0
\(274\) 4.51738i 0.272905i
\(275\) 6.69791 4.92959i 0.403899 0.297265i
\(276\) 10.2478 0.616847
\(277\) −6.75631 + 6.75631i −0.405948 + 0.405948i −0.880323 0.474375i \(-0.842674\pi\)
0.474375 + 0.880323i \(0.342674\pi\)
\(278\) 14.0596i 0.843236i
\(279\) −0.598939 0.598939i −0.0358575 0.0358575i
\(280\) 4.24263 + 4.93664i 0.253546 + 0.295021i
\(281\) −5.58408 5.58408i −0.333118 0.333118i 0.520651 0.853769i \(-0.325689\pi\)
−0.853769 + 0.520651i \(0.825689\pi\)
\(282\) −15.8109 15.8109i −0.941525 0.941525i
\(283\) 14.9230 + 14.9230i 0.887078 + 0.887078i 0.994241 0.107163i \(-0.0341768\pi\)
−0.107163 + 0.994241i \(0.534177\pi\)
\(284\) −8.80764 + 8.80764i −0.522637 + 0.522637i
\(285\) −12.9191 + 11.1029i −0.765262 + 0.657679i
\(286\) 0 0
\(287\) −4.71953 4.71953i −0.278585 0.278585i
\(288\) 23.0450i 1.35794i
\(289\) 35.5694i 2.09232i
\(290\) −0.435589 0.506842i −0.0255787 0.0297628i
\(291\) 14.8057 14.8057i 0.867927 0.867927i
\(292\) 3.07982 0.180233
\(293\) −4.02159 −0.234944 −0.117472 0.993076i \(-0.537479\pi\)
−0.117472 + 0.993076i \(0.537479\pi\)
\(294\) −12.2353 + 12.2353i −0.713579 + 0.713579i
\(295\) 0.851553 11.2630i 0.0495793 0.655760i
\(296\) 12.3296i 0.716645i
\(297\) 8.18953i 0.475205i
\(298\) 3.13271 + 3.13271i 0.181473 + 0.181473i
\(299\) 0 0
\(300\) −7.88183 10.7092i −0.455058 0.618294i
\(301\) 5.41529 5.41529i 0.312132 0.312132i
\(302\) −4.85734 4.85734i −0.279508 0.279508i
\(303\) 19.2207 + 19.2207i 1.10420 + 1.10420i
\(304\) −2.28257 2.28257i −0.130914 0.130914i
\(305\) 3.53307 3.03638i 0.202303 0.173863i
\(306\) −24.9912 24.9912i −1.42865 1.42865i
\(307\) 24.2191i 1.38226i −0.722732 0.691128i \(-0.757114\pi\)
0.722732 0.691128i \(-0.242886\pi\)
\(308\) −1.08143 + 1.08143i −0.0616204 + 0.0616204i
\(309\) 9.94462 0.565730
\(310\) 0.0306332 0.405169i 0.00173985 0.0230121i
\(311\) 7.87243i 0.446405i 0.974772 + 0.223202i \(0.0716511\pi\)
−0.974772 + 0.223202i \(0.928349\pi\)
\(312\) 0 0
\(313\) 3.39121 3.39121i 0.191683 0.191683i −0.604740 0.796423i \(-0.706723\pi\)
0.796423 + 0.604740i \(0.206723\pi\)
\(314\) 14.7756 + 14.7756i 0.833834 + 0.833834i
\(315\) −7.78919 + 6.69416i −0.438871 + 0.377173i
\(316\) 12.9631i 0.729230i
\(317\) −22.9255 −1.28762 −0.643812 0.765184i \(-0.722648\pi\)
−0.643812 + 0.765184i \(0.722648\pi\)
\(318\) 8.05496i 0.451700i
\(319\) 0.343736 0.343736i 0.0192455 0.0192455i
\(320\) 12.3893 10.6476i 0.692581 0.595216i
\(321\) 1.23879 0.0691423
\(322\) 2.68493 2.68493i 0.149625 0.149625i
\(323\) 19.8196 1.10279
\(324\) −0.551932 −0.0306629
\(325\) 0 0
\(326\) −21.8689 −1.21120
\(327\) −25.3081 −1.39954
\(328\) −14.7970 + 14.7970i −0.817029 + 0.817029i
\(329\) 7.56003 0.416798
\(330\) −8.03868 + 6.90858i −0.442515 + 0.380305i
\(331\) −23.7270 + 23.7270i −1.30416 + 1.30416i −0.378594 + 0.925563i \(0.623592\pi\)
−0.925563 + 0.378594i \(0.876408\pi\)
\(332\) 8.17655i 0.448747i
\(333\) 19.4541 1.06608
\(334\) 1.75322i 0.0959318i
\(335\) −12.3767 + 10.6368i −0.676214 + 0.581150i
\(336\) −2.24234 2.24234i −0.122330 0.122330i
\(337\) 14.5544 14.5544i 0.792826 0.792826i −0.189126 0.981953i \(-0.560566\pi\)
0.981953 + 0.189126i \(0.0605656\pi\)
\(338\) 0 0
\(339\) 5.39143i 0.292822i
\(340\) −1.16636 + 15.4268i −0.0632548 + 0.836638i
\(341\) 0.295557 0.0160053
\(342\) 9.42210 9.42210i 0.509489 0.509489i
\(343\) 12.5954i 0.680087i
\(344\) −16.9784 16.9784i −0.915416 0.915416i
\(345\) −18.2118 + 15.6516i −0.980492 + 0.842652i
\(346\) −10.9743 10.9743i −0.589983 0.589983i
\(347\) 16.1312 + 16.1312i 0.865967 + 0.865967i 0.992023 0.126056i \(-0.0402319\pi\)
−0.126056 + 0.992023i \(0.540232\pi\)
\(348\) −0.549594 0.549594i −0.0294613 0.0294613i
\(349\) −7.34369 + 7.34369i −0.393099 + 0.393099i −0.875790 0.482692i \(-0.839659\pi\)
0.482692 + 0.875790i \(0.339659\pi\)
\(350\) −4.87083 0.740762i −0.260357 0.0395954i
\(351\) 0 0
\(352\) 5.68599 + 5.68599i 0.303064 + 0.303064i
\(353\) 4.30033i 0.228884i 0.993430 + 0.114442i \(0.0365080\pi\)
−0.993430 + 0.114442i \(0.963492\pi\)
\(354\) 14.3960i 0.765138i
\(355\) 2.20046 29.1044i 0.116788 1.54470i
\(356\) 0.349887 0.349887i 0.0185440 0.0185440i
\(357\) 19.4702 1.03047
\(358\) −2.82163 −0.149128
\(359\) −10.4273 + 10.4273i −0.550333 + 0.550333i −0.926537 0.376204i \(-0.877229\pi\)
0.376204 + 0.926537i \(0.377229\pi\)
\(360\) 20.9881 + 24.4213i 1.10617 + 1.28711i
\(361\) 11.5277i 0.606720i
\(362\) 10.5911i 0.556656i
\(363\) 16.2251 + 16.2251i 0.851599 + 0.851599i
\(364\) 0 0
\(365\) −5.47327 + 4.70382i −0.286484 + 0.246209i
\(366\) −4.19841 + 4.19841i −0.219454 + 0.219454i
\(367\) 8.07749 + 8.07749i 0.421641 + 0.421641i 0.885769 0.464127i \(-0.153632\pi\)
−0.464127 + 0.885769i \(0.653632\pi\)
\(368\) −3.21770 3.21770i −0.167734 0.167734i
\(369\) −23.3472 23.3472i −1.21541 1.21541i
\(370\) 6.08264 + 7.07763i 0.316221 + 0.367949i
\(371\) 1.92575 + 1.92575i 0.0999801 + 0.0999801i
\(372\) 0.472562i 0.0245012i
\(373\) 19.9100 19.9100i 1.03090 1.03090i 0.0313915 0.999507i \(-0.490006\pi\)
0.999507 0.0313915i \(-0.00999387\pi\)
\(374\) 12.3324 0.637691
\(375\) 30.3633 + 6.99375i 1.56795 + 0.361156i
\(376\) 23.7028i 1.22238i
\(377\) 0 0
\(378\) 3.43065 3.43065i 0.176453 0.176453i
\(379\) −11.9727 11.9727i −0.614998 0.614998i 0.329246 0.944244i \(-0.393205\pi\)
−0.944244 + 0.329246i \(0.893205\pi\)
\(380\) −5.81619 0.439738i −0.298364 0.0225581i
\(381\) 6.06187i 0.310559i
\(382\) 18.9999 0.972119
\(383\) 6.60394i 0.337446i 0.985664 + 0.168723i \(0.0539643\pi\)
−0.985664 + 0.168723i \(0.946036\pi\)
\(384\) 4.33176 4.33176i 0.221054 0.221054i
\(385\) 0.270181 3.57354i 0.0137697 0.182124i
\(386\) −12.8559 −0.654346
\(387\) 26.7891 26.7891i 1.36177 1.36177i
\(388\) 7.16950 0.363976
\(389\) −33.6949 −1.70840 −0.854199 0.519946i \(-0.825952\pi\)
−0.854199 + 0.519946i \(0.825952\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) −18.3425 −0.926437
\(393\) 0.122670 0.122670i 0.00618789 0.00618789i
\(394\) −14.6093 −0.736005
\(395\) −19.7986 23.0372i −0.996175 1.15913i
\(396\) −5.34979 + 5.34979i −0.268837 + 0.268837i
\(397\) 5.82089i 0.292142i −0.989274 0.146071i \(-0.953337\pi\)
0.989274 0.146071i \(-0.0466628\pi\)
\(398\) 15.0689 0.755337
\(399\) 7.34061i 0.367490i
\(400\) −0.887752 + 5.83736i −0.0443876 + 0.291868i
\(401\) 0.186676 + 0.186676i 0.00932213 + 0.00932213i 0.711752 0.702430i \(-0.247902\pi\)
−0.702430 + 0.711752i \(0.747902\pi\)
\(402\) 14.7075 14.7075i 0.733544 0.733544i
\(403\) 0 0
\(404\) 9.30738i 0.463060i
\(405\) 0.980861 0.842969i 0.0487394 0.0418875i
\(406\) −0.287987 −0.0142925
\(407\) −4.79999 + 4.79999i −0.237927 + 0.237927i
\(408\) 61.0446i 3.02216i
\(409\) −26.2788 26.2788i −1.29940 1.29940i −0.928785 0.370619i \(-0.879145\pi\)
−0.370619 0.928785i \(-0.620855\pi\)
\(410\) 1.19411 15.7939i 0.0589730 0.780005i
\(411\) −8.70518 8.70518i −0.429395 0.429395i
\(412\) 2.40778 + 2.40778i 0.118623 + 0.118623i
\(413\) −3.44174 3.44174i −0.169357 0.169357i
\(414\) 13.2822 13.2822i 0.652783 0.652783i
\(415\) −12.4881 14.5309i −0.613016 0.713293i
\(416\) 0 0
\(417\) −27.0934 27.0934i −1.32677 1.32677i
\(418\) 4.64951i 0.227415i
\(419\) 33.9159i 1.65690i 0.560062 + 0.828451i \(0.310777\pi\)
−0.560062 + 0.828451i \(0.689223\pi\)
\(420\) −5.71367 0.431987i −0.278799 0.0210788i
\(421\) 21.5599 21.5599i 1.05076 1.05076i 0.0521230 0.998641i \(-0.483401\pi\)
0.998641 0.0521230i \(-0.0165988\pi\)
\(422\) −8.72506 −0.424729
\(423\) 37.3990 1.81840
\(424\) 6.03777 6.03777i 0.293220 0.293220i
\(425\) −21.4887 29.1971i −1.04236 1.41627i
\(426\) 37.2001i 1.80235i
\(427\) 2.00748i 0.0971490i
\(428\) 0.299934 + 0.299934i 0.0144979 + 0.0144979i
\(429\) 0 0
\(430\) 18.1223 + 1.37015i 0.873933 + 0.0660745i
\(431\) −3.25153 + 3.25153i −0.156621 + 0.156621i −0.781067 0.624447i \(-0.785324\pi\)
0.624447 + 0.781067i \(0.285324\pi\)
\(432\) −4.11140 4.11140i −0.197810 0.197810i
\(433\) −2.83031 2.83031i −0.136016 0.136016i 0.635821 0.771837i \(-0.280662\pi\)
−0.771837 + 0.635821i \(0.780662\pi\)
\(434\) −0.123811 0.123811i −0.00594311 0.00594311i
\(435\) 1.81610 + 0.137308i 0.0870755 + 0.00658343i
\(436\) −6.12758 6.12758i −0.293458 0.293458i
\(437\) 10.5336i 0.503890i
\(438\) 6.50398 6.50398i 0.310772 0.310772i
\(439\) 22.7237 1.08454 0.542271 0.840203i \(-0.317564\pi\)
0.542271 + 0.840203i \(0.317564\pi\)
\(440\) −11.2040 0.847092i −0.534132 0.0403835i
\(441\) 28.9414i 1.37816i
\(442\) 0 0
\(443\) 1.84874 1.84874i 0.0878361 0.0878361i −0.661824 0.749660i \(-0.730217\pi\)
0.749660 + 0.661824i \(0.230217\pi\)
\(444\) 7.67462 + 7.67462i 0.364222 + 0.364222i
\(445\) −0.0874142 + 1.15618i −0.00414383 + 0.0548083i
\(446\) 7.22049i 0.341900i
\(447\) −12.0737 −0.571067
\(448\) 7.03956i 0.332588i
\(449\) −22.7499 + 22.7499i −1.07364 + 1.07364i −0.0765713 + 0.997064i \(0.524397\pi\)
−0.997064 + 0.0765713i \(0.975603\pi\)
\(450\) −24.0957 3.66451i −1.13588 0.172746i
\(451\) 11.5211 0.542509
\(452\) −1.30537 + 1.30537i −0.0613994 + 0.0613994i
\(453\) 18.7206 0.879569
\(454\) 17.5640 0.824318
\(455\) 0 0
\(456\) 23.0149 1.07777
\(457\) 28.3674 1.32697 0.663486 0.748189i \(-0.269076\pi\)
0.663486 + 0.748189i \(0.269076\pi\)
\(458\) −9.10792 + 9.10792i −0.425585 + 0.425585i
\(459\) 35.6993 1.66630
\(460\) −8.19898 0.619891i −0.382279 0.0289026i
\(461\) −8.13851 + 8.13851i −0.379048 + 0.379048i −0.870759 0.491710i \(-0.836372\pi\)
0.491710 + 0.870759i \(0.336372\pi\)
\(462\) 4.56756i 0.212502i
\(463\) −29.9456 −1.39169 −0.695845 0.718192i \(-0.744970\pi\)
−0.695845 + 0.718192i \(0.744970\pi\)
\(464\) 0.345132i 0.0160224i
\(465\) 0.721746 + 0.839809i 0.0334702 + 0.0389452i
\(466\) 17.9799 + 17.9799i 0.832901 + 0.832901i
\(467\) −16.1332 + 16.1332i −0.746557 + 0.746557i −0.973831 0.227274i \(-0.927019\pi\)
0.227274 + 0.973831i \(0.427019\pi\)
\(468\) 0 0
\(469\) 7.03244i 0.324728i
\(470\) 11.6934 + 13.6062i 0.539377 + 0.627608i
\(471\) −56.9463 −2.62395
\(472\) −10.7908 + 10.7908i −0.496688 + 0.496688i
\(473\) 13.2196i 0.607837i
\(474\) 27.3755 + 27.3755i 1.25740 + 1.25740i
\(475\) 11.0078 8.10162i 0.505073 0.371728i
\(476\) 4.71411 + 4.71411i 0.216071 + 0.216071i
\(477\) 9.52658 + 9.52658i 0.436192 + 0.436192i
\(478\) −2.28542 2.28542i −0.104533 0.104533i
\(479\) −27.4551 + 27.4551i −1.25445 + 1.25445i −0.300751 + 0.953703i \(0.597237\pi\)
−0.953703 + 0.300751i \(0.902763\pi\)
\(480\) −2.27132 + 30.0415i −0.103671 + 1.37120i
\(481\) 0 0
\(482\) 13.0294 + 13.0294i 0.593473 + 0.593473i
\(483\) 10.3479i 0.470847i
\(484\) 7.85683i 0.357129i
\(485\) −12.7412 + 10.9500i −0.578548 + 0.497214i
\(486\) −11.8466 + 11.8466i −0.537372 + 0.537372i
\(487\) −28.9437 −1.31156 −0.655782 0.754951i \(-0.727661\pi\)
−0.655782 + 0.754951i \(0.727661\pi\)
\(488\) −6.29402 −0.284917
\(489\) 42.1422 42.1422i 1.90574 1.90574i
\(490\) 10.5292 9.04900i 0.475662 0.408792i
\(491\) 7.27465i 0.328300i −0.986435 0.164150i \(-0.947512\pi\)
0.986435 0.164150i \(-0.0524882\pi\)
\(492\) 18.4209i 0.830480i
\(493\) −1.49839 1.49839i −0.0674842 0.0674842i
\(494\) 0 0
\(495\) 1.33657 17.6781i 0.0600743 0.794571i
\(496\) −0.148379 + 0.148379i −0.00666241 + 0.00666241i
\(497\) −8.89367 8.89367i −0.398936 0.398936i
\(498\) 17.2673 + 17.2673i 0.773766 + 0.773766i
\(499\) 4.24201 + 4.24201i 0.189899 + 0.189899i 0.795652 0.605754i \(-0.207128\pi\)
−0.605754 + 0.795652i \(0.707128\pi\)
\(500\) 5.65822 + 9.04486i 0.253043 + 0.404498i
\(501\) −3.37852 3.37852i −0.150941 0.150941i
\(502\) 14.2889i 0.637745i
\(503\) 2.56713 2.56713i 0.114463 0.114463i −0.647555 0.762018i \(-0.724209\pi\)
0.762018 + 0.647555i \(0.224209\pi\)
\(504\) 13.8761 0.618091
\(505\) −14.2152 16.5405i −0.632569 0.736044i
\(506\) 6.55433i 0.291376i
\(507\) 0 0
\(508\) 1.46769 1.46769i 0.0651184 0.0651184i
\(509\) 16.4739 + 16.4739i 0.730191 + 0.730191i 0.970658 0.240466i \(-0.0773003\pi\)
−0.240466 + 0.970658i \(0.577300\pi\)
\(510\) 30.1154 + 35.0417i 1.33353 + 1.55167i
\(511\) 3.10990i 0.137574i
\(512\) −12.8442 −0.567640
\(513\) 13.4592i 0.594240i
\(514\) −16.7599 + 16.7599i −0.739248 + 0.739248i
\(515\) −7.95639 0.601550i −0.350600 0.0265075i
\(516\) 21.1366 0.930486
\(517\) −9.22762 + 9.22762i −0.405830 + 0.405830i
\(518\) 4.02150 0.176694
\(519\) 42.2960 1.85659
\(520\) 0 0
\(521\) −13.0530 −0.571862 −0.285931 0.958250i \(-0.592303\pi\)
−0.285931 + 0.958250i \(0.592303\pi\)
\(522\) −1.42465 −0.0623554
\(523\) 12.0352 12.0352i 0.526264 0.526264i −0.393192 0.919456i \(-0.628629\pi\)
0.919456 + 0.393192i \(0.128629\pi\)
\(524\) 0.0594015 0.00259497
\(525\) 10.8138 7.95882i 0.471952 0.347351i
\(526\) 0.940790 0.940790i 0.0410204 0.0410204i
\(527\) 1.28837i 0.0561225i
\(528\) 5.47391 0.238221
\(529\) 8.15098i 0.354390i
\(530\) −0.487244 + 6.44453i −0.0211645 + 0.279932i
\(531\) −17.0261 17.0261i −0.738870 0.738870i
\(532\) −1.77730 + 1.77730i −0.0770558 + 0.0770558i
\(533\) 0 0
\(534\) 1.47779i 0.0639501i
\(535\) −0.991116 0.0749342i −0.0428497 0.00323969i
\(536\) 22.0487 0.952357
\(537\) 5.43741 5.43741i 0.234641 0.234641i
\(538\) 8.11728i 0.349961i
\(539\) 7.14084 + 7.14084i 0.307578 + 0.307578i
\(540\) −10.4762 0.792062i −0.450824 0.0340849i
\(541\) 10.9728 + 10.9728i 0.471756 + 0.471756i 0.902483 0.430727i \(-0.141743\pi\)
−0.430727 + 0.902483i \(0.641743\pi\)
\(542\) −0.647577 0.647577i −0.0278158 0.0278158i
\(543\) 20.4095 + 20.4095i 0.875855 + 0.875855i
\(544\) 24.7860 24.7860i 1.06269 1.06269i
\(545\) 20.2483 + 1.53089i 0.867340 + 0.0655761i
\(546\) 0 0
\(547\) −20.4450 20.4450i −0.874167 0.874167i 0.118756 0.992923i \(-0.462109\pi\)
−0.992923 + 0.118756i \(0.962109\pi\)
\(548\) 4.21538i 0.180072i
\(549\) 9.93091i 0.423841i
\(550\) 6.84940 5.04108i 0.292059 0.214952i
\(551\) 0.564920 0.564920i 0.0240664 0.0240664i
\(552\) 32.4436 1.38089
\(553\) −13.0897 −0.556631
\(554\) −6.90913 + 6.90913i −0.293541 + 0.293541i
\(555\) −25.3604 1.91740i −1.07649 0.0813889i
\(556\) 13.1196i 0.556397i
\(557\) 13.5803i 0.575415i 0.957718 + 0.287708i \(0.0928932\pi\)
−0.957718 + 0.287708i \(0.907107\pi\)
\(558\) −0.612485 0.612485i −0.0259286 0.0259286i
\(559\) 0 0
\(560\) 1.65839 + 1.92967i 0.0700797 + 0.0815432i
\(561\) −23.7650 + 23.7650i −1.00336 + 1.00336i
\(562\) −5.71037 5.71037i −0.240878 0.240878i
\(563\) 3.42976 + 3.42976i 0.144547 + 0.144547i 0.775677 0.631130i \(-0.217409\pi\)
−0.631130 + 0.775677i \(0.717409\pi\)
\(564\) 14.7539 + 14.7539i 0.621251 + 0.621251i
\(565\) 0.326128 4.31352i 0.0137203 0.181471i
\(566\) 15.2605 + 15.2605i 0.641446 + 0.641446i
\(567\) 0.557323i 0.0234054i
\(568\) −27.8841 + 27.8841i −1.16999 + 1.16999i
\(569\) 0.248793 0.0104299 0.00521497 0.999986i \(-0.498340\pi\)
0.00521497 + 0.999986i \(0.498340\pi\)
\(570\) −13.2113 + 11.3540i −0.553361 + 0.475568i
\(571\) 7.72842i 0.323424i 0.986838 + 0.161712i \(0.0517016\pi\)
−0.986838 + 0.161712i \(0.948298\pi\)
\(572\) 0 0
\(573\) −36.6136 + 36.6136i −1.52955 + 1.52955i
\(574\) −4.82627 4.82627i −0.201445 0.201445i
\(575\) 15.5175 11.4207i 0.647125 0.476276i
\(576\) 34.8243i 1.45101i
\(577\) 12.1339 0.505141 0.252570 0.967578i \(-0.418724\pi\)
0.252570 + 0.967578i \(0.418724\pi\)
\(578\) 36.3739i 1.51295i
\(579\) 24.7738 24.7738i 1.02956 1.02956i
\(580\) 0.406469 + 0.472958i 0.0168777 + 0.0196385i
\(581\) −8.25642 −0.342534
\(582\) 15.1406 15.1406i 0.627598 0.627598i
\(583\) −4.70107 −0.194698
\(584\) 9.75040 0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) 36.5294 1.50773 0.753865 0.657030i \(-0.228187\pi\)
0.753865 + 0.657030i \(0.228187\pi\)
\(588\) 11.4174 11.4174i 0.470844 0.470844i
\(589\) 0.485739 0.0200145
\(590\) 0.870813 11.5178i 0.0358508 0.474180i
\(591\) 28.1527 28.1527i 1.15805 1.15805i
\(592\) 4.81949i 0.198080i
\(593\) 16.6936 0.685525 0.342762 0.939422i \(-0.388637\pi\)
0.342762 + 0.939422i \(0.388637\pi\)
\(594\) 8.37476i 0.343621i
\(595\) −15.5775 1.17775i −0.638617 0.0482832i
\(596\) −2.92328 2.92328i −0.119742 0.119742i
\(597\) −29.0384 + 29.0384i −1.18846 + 1.18846i
\(598\) 0 0
\(599\) 13.2549i 0.541579i −0.962639 0.270789i \(-0.912715\pi\)
0.962639 0.270789i \(-0.0872847\pi\)
\(600\) −24.9531 33.9042i −1.01871 1.38413i
\(601\) 1.09321 0.0445930 0.0222965 0.999751i \(-0.492902\pi\)
0.0222965 + 0.999751i \(0.492902\pi\)
\(602\) 5.53777 5.53777i 0.225703 0.225703i
\(603\) 34.7891i 1.41672i
\(604\) 4.53261 + 4.53261i 0.184429 + 0.184429i
\(605\) −11.9998 13.9627i −0.487860 0.567664i
\(606\) 19.6554 + 19.6554i 0.798446 + 0.798446i
\(607\) −29.6013 29.6013i −1.20148 1.20148i −0.973717 0.227761i \(-0.926860\pi\)
−0.227761 0.973717i \(-0.573140\pi\)
\(608\) 9.34475 + 9.34475i 0.378980 + 0.378980i
\(609\) 0.554962 0.554962i 0.0224882 0.0224882i
\(610\) 3.61298 3.10506i 0.146285 0.125720i
\(611\) 0 0
\(612\) 23.3204 + 23.3204i 0.942673 + 0.942673i
\(613\) 27.9096i 1.12726i 0.826028 + 0.563630i \(0.190596\pi\)
−0.826028 + 0.563630i \(0.809404\pi\)
\(614\) 24.7669i 0.999510i
\(615\) 28.1344 + 32.7366i 1.13449 + 1.32007i
\(616\) −3.42371 + 3.42371i −0.137945 + 0.137945i
\(617\) −4.38264 −0.176439 −0.0882193 0.996101i \(-0.528118\pi\)
−0.0882193 + 0.996101i \(0.528118\pi\)
\(618\) 10.1695 0.409079
\(619\) 8.67268 8.67268i 0.348584 0.348584i −0.510998 0.859582i \(-0.670724\pi\)
0.859582 + 0.510998i \(0.170724\pi\)
\(620\) −0.0285853 + 0.378082i −0.00114801 + 0.0151842i
\(621\) 18.9732i 0.761370i
\(622\) 8.05049i 0.322795i
\(623\) 0.353304 + 0.353304i 0.0141548 + 0.0141548i
\(624\) 0 0
\(625\) −23.8697 7.43216i −0.954788 0.297287i
\(626\) 3.46791 3.46791i 0.138606 0.138606i
\(627\) −8.95980 8.95980i −0.357820 0.357820i
\(628\) −13.7878 13.7878i −0.550193 0.550193i
\(629\) 20.9238 + 20.9238i 0.834287 + 0.834287i
\(630\) −7.96536 + 6.84557i −0.317348 + 0.272734i
\(631\) 17.9168 + 17.9168i 0.713256 + 0.713256i 0.967215 0.253959i \(-0.0817328\pi\)
−0.253959 + 0.967215i \(0.581733\pi\)
\(632\) 41.0398i 1.63248i
\(633\) 16.8136 16.8136i 0.668279 0.668279i
\(634\) −23.4440 −0.931081
\(635\) −0.366682 + 4.84992i −0.0145513 + 0.192463i
\(636\) 7.51646i 0.298047i
\(637\) 0 0
\(638\) 0.351511 0.351511i 0.0139164 0.0139164i
\(639\) −43.9964 43.9964i −1.74047 1.74047i
\(640\) −3.72774 + 3.20368i −0.147352 + 0.126637i
\(641\) 1.63592i 0.0646150i −0.999478 0.0323075i \(-0.989714\pi\)
0.999478 0.0323075i \(-0.0102856\pi\)
\(642\) 1.26681 0.0499968
\(643\) 39.6687i 1.56438i −0.623039 0.782191i \(-0.714102\pi\)
0.623039 0.782191i \(-0.285898\pi\)
\(644\) −2.50543 + 2.50543i −0.0987278 + 0.0987278i
\(645\) −37.5627 + 32.2820i −1.47903 + 1.27110i
\(646\) 20.2678 0.797428
\(647\) −10.5113 + 10.5113i −0.413244 + 0.413244i −0.882867 0.469623i \(-0.844390\pi\)
0.469623 + 0.882867i \(0.344390\pi\)
\(648\) −1.74736 −0.0686429
\(649\) 8.40185 0.329801
\(650\) 0 0
\(651\) 0.477178 0.0187021
\(652\) 20.4069 0.799195
\(653\) 9.09002 9.09002i 0.355720 0.355720i −0.506513 0.862233i \(-0.669066\pi\)
0.862233 + 0.506513i \(0.169066\pi\)
\(654\) −25.8805 −1.01201
\(655\) −0.105565 + 0.0907243i −0.00412476 + 0.00354489i
\(656\) −5.78396 + 5.78396i −0.225826 + 0.225826i
\(657\) 15.3845i 0.600206i
\(658\) 7.73102 0.301387
\(659\) 24.1035i 0.938938i −0.882949 0.469469i \(-0.844445\pi\)
0.882949 0.469469i \(-0.155555\pi\)
\(660\) 7.50127 6.44672i 0.291987 0.250938i
\(661\) 27.6825 + 27.6825i 1.07672 + 1.07672i 0.996801 + 0.0799231i \(0.0254675\pi\)
0.0799231 + 0.996801i \(0.474533\pi\)
\(662\) −24.2637 + 24.2637i −0.943036 + 0.943036i
\(663\) 0 0
\(664\) 25.8862i 1.00458i
\(665\) 0.444034 5.87300i 0.0172189 0.227745i
\(666\) 19.8941 0.770881
\(667\) 0.796357 0.796357i 0.0308351 0.0308351i
\(668\) 1.63601i 0.0632991i
\(669\) −13.9142 13.9142i −0.537954 0.537954i
\(670\) −12.6567 + 10.8774i −0.488970 + 0.420229i
\(671\) 2.45030 + 2.45030i 0.0945926 + 0.0945926i
\(672\) 9.18004 + 9.18004i 0.354128 + 0.354128i
\(673\) 7.23064 + 7.23064i 0.278721 + 0.278721i 0.832598 0.553878i \(-0.186852\pi\)
−0.553878 + 0.832598i \(0.686852\pi\)
\(674\) 14.8835 14.8835i 0.573293 0.573293i
\(675\) 19.8274 14.5927i 0.763157 0.561675i
\(676\) 0 0
\(677\) 29.8933 + 29.8933i 1.14889 + 1.14889i 0.986771 + 0.162121i \(0.0518333\pi\)
0.162121 + 0.986771i \(0.448167\pi\)
\(678\) 5.51338i 0.211740i
\(679\) 7.23953i 0.277828i
\(680\) −3.69259 + 48.8399i −0.141604 + 1.87292i
\(681\) −33.8465 + 33.8465i −1.29700 + 1.29700i
\(682\) 0.302242 0.0115735
\(683\) −20.0207 −0.766070 −0.383035 0.923734i \(-0.625121\pi\)
−0.383035 + 0.923734i \(0.625121\pi\)
\(684\) −8.79221 + 8.79221i −0.336178 + 0.336178i
\(685\) 6.43817 + 7.49133i 0.245990 + 0.286229i
\(686\) 12.8803i 0.491771i
\(687\) 35.1027i 1.33925i
\(688\) −6.63664 6.63664i −0.253019 0.253019i
\(689\) 0 0
\(690\) −18.6238 + 16.0056i −0.708994 + 0.609322i
\(691\) 25.0225 25.0225i 0.951900 0.951900i −0.0469952 0.998895i \(-0.514965\pi\)
0.998895 + 0.0469952i \(0.0149645\pi\)
\(692\) 10.2407 + 10.2407i 0.389291 + 0.389291i
\(693\) −5.40204 5.40204i −0.205207 0.205207i
\(694\) 16.4960 + 16.4960i 0.626181 + 0.626181i
\(695\) 20.0377 + 23.3155i 0.760073 + 0.884406i
\(696\) −1.73996 1.73996i −0.0659531 0.0659531i
\(697\) 50.2221i 1.90230i
\(698\) −7.50978 + 7.50978i −0.284250 + 0.284250i
\(699\) −69.2959 −2.62101
\(700\) 4.54520 + 0.691240i 0.171793 + 0.0261264i
\(701\) 37.1781i 1.40420i −0.712080 0.702098i \(-0.752247\pi\)
0.712080 0.702098i \(-0.247753\pi\)
\(702\) 0 0
\(703\) −7.88864 + 7.88864i −0.297526 + 0.297526i
\(704\) 8.59235 + 8.59235i 0.323836 + 0.323836i
\(705\) −48.7534 3.68605i −1.83616 0.138825i
\(706\) 4.39760i 0.165506i
\(707\) −9.39830 −0.353459
\(708\) 13.4336i 0.504864i
\(709\) 34.0774 34.0774i 1.27980 1.27980i 0.339026 0.940777i \(-0.389903\pi\)
0.940777 0.339026i \(-0.110097\pi\)
\(710\) 2.25023 29.7626i 0.0844497 1.11697i
\(711\) −64.7540 −2.42846
\(712\) 1.10771 1.10771i 0.0415131 0.0415131i
\(713\) 0.684738 0.0256436
\(714\) 19.9106 0.745135
\(715\) 0 0
\(716\) 2.63300 0.0983998
\(717\) 8.80822 0.328949
\(718\) −10.6632 + 10.6632i −0.397946 + 0.397946i
\(719\) −33.3985 −1.24555 −0.622777 0.782400i \(-0.713996\pi\)
−0.622777 + 0.782400i \(0.713996\pi\)
\(720\) 8.20394 + 9.54594i 0.305743 + 0.355756i
\(721\) −2.43130 + 2.43130i −0.0905464 + 0.0905464i
\(722\) 11.7884i 0.438719i
\(723\) −50.2164 −1.86757
\(724\) 9.88305i 0.367301i
\(725\) −1.44470 0.219712i −0.0536550 0.00815991i
\(726\) 16.5921 + 16.5921i 0.615791 + 0.615791i
\(727\) −23.6487 + 23.6487i −0.877083 + 0.877083i −0.993232 0.116149i \(-0.962945\pi\)
0.116149 + 0.993232i \(0.462945\pi\)
\(728\) 0 0
\(729\) 43.9226i 1.62676i
\(730\) −5.59707 + 4.81021i −0.207157 + 0.178034i
\(731\) 57.6260 2.13137
\(732\) 3.91774 3.91774i 0.144804 0.144804i
\(733\) 14.7049i 0.543138i −0.962419 0.271569i \(-0.912458\pi\)
0.962419 0.271569i \(-0.0875424\pi\)
\(734\) 8.26018 + 8.26018i 0.304889 + 0.304889i
\(735\) −2.85247 + 37.7281i −0.105215 + 1.39162i
\(736\) 13.1731 + 13.1731i 0.485568 + 0.485568i
\(737\) −8.58366 8.58366i −0.316183 0.316183i
\(738\) −23.8753 23.8753i −0.878861 0.878861i
\(739\) −14.5463 + 14.5463i −0.535095 + 0.535095i −0.922084 0.386989i \(-0.873515\pi\)
0.386989 + 0.922084i \(0.373515\pi\)
\(740\) −5.67600 6.60447i −0.208654 0.242785i
\(741\) 0 0
\(742\) 1.96931 + 1.96931i 0.0722956 + 0.0722956i
\(743\) 44.6408i 1.63771i −0.573999 0.818856i \(-0.694609\pi\)
0.573999 0.818856i \(-0.305391\pi\)
\(744\) 1.49608i 0.0548491i
\(745\) 9.65982 + 0.730339i 0.353908 + 0.0267576i
\(746\) 20.3603 20.3603i 0.745443 0.745443i
\(747\) −40.8440 −1.49440
\(748\) −11.5079 −0.420771
\(749\) −0.302864 + 0.302864i −0.0110664 + 0.0110664i
\(750\) 31.0501 + 7.15193i 1.13379 + 0.261152i
\(751\) 17.5799i 0.641500i −0.947164 0.320750i \(-0.896065\pi\)
0.947164 0.320750i \(-0.103935\pi\)
\(752\) 9.26510i 0.337863i
\(753\) −27.5353 27.5353i −1.00344 1.00344i
\(754\) 0 0
\(755\) −14.9778 1.13241i −0.545097 0.0412125i
\(756\) −3.20130 + 3.20130i −0.116430 + 0.116430i
\(757\) −24.8848 24.8848i −0.904455 0.904455i 0.0913630 0.995818i \(-0.470878\pi\)
−0.995818 + 0.0913630i \(0.970878\pi\)
\(758\) −12.2435 12.2435i −0.444705 0.444705i
\(759\) −12.6305 12.6305i −0.458457 0.458457i
\(760\) −18.4135 1.39217i −0.667927 0.0504993i
\(761\) 8.28144 + 8.28144i 0.300202 + 0.300202i 0.841093 0.540891i \(-0.181913\pi\)
−0.540891 + 0.841093i \(0.681913\pi\)
\(762\) 6.19897i 0.224565i
\(763\) 6.18743 6.18743i 0.224000 0.224000i
\(764\) −17.7297 −0.641438
\(765\) −77.0611 5.82628i −2.78615 0.210650i
\(766\) 6.75331i 0.244007i
\(767\) 0 0
\(768\) 33.2233 33.2233i 1.19884 1.19884i
\(769\) −13.4131 13.4131i −0.483689 0.483689i 0.422618 0.906308i \(-0.361111\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(770\) 0.276292 3.65437i 0.00995686 0.131694i
\(771\) 64.5941i 2.32630i
\(772\) 11.9964 0.431760
\(773\) 16.4099i 0.590224i 0.955463 + 0.295112i \(0.0953570\pi\)
−0.955463 + 0.295112i \(0.904643\pi\)
\(774\) 27.3950 27.3950i 0.984694 0.984694i
\(775\) −0.526647 0.715564i −0.0189177 0.0257038i
\(776\) 22.6979 0.814808
\(777\) −7.74959 + 7.74959i −0.278015 + 0.278015i
\(778\) −34.4570 −1.23534
\(779\) 18.9346 0.678403
\(780\) 0 0
\(781\) 21.7109 0.776876
\(782\) 28.5712 1.02170
\(783\) 1.01754 1.01754i 0.0363639 0.0363639i
\(784\) −7.16984 −0.256066
\(785\) 45.5610 + 3.44468i 1.62614 + 0.122946i
\(786\) 0.125445 0.125445i 0.00447446 0.00447446i
\(787\) 13.6002i 0.484794i 0.970177 + 0.242397i \(0.0779336\pi\)
−0.970177 + 0.242397i \(0.922066\pi\)
\(788\) 13.6326 0.485642
\(789\) 3.62588i 0.129085i
\(790\) −20.2464 23.5583i −0.720334 0.838166i
\(791\) −1.31812 1.31812i −0.0468669 0.0468669i
\(792\) −16.9369 + 16.9369i −0.601827 + 0.601827i
\(793\) 0 0
\(794\) 5.95255i 0.211248i
\(795\) −11.4799 13.3578i −0.407151 0.473753i
\(796\) −14.0615 −0.498397
\(797\) 21.1671 21.1671i 0.749776 0.749776i −0.224661 0.974437i \(-0.572127\pi\)
0.974437 + 0.224661i \(0.0721274\pi\)
\(798\) 7.50664i 0.265732i
\(799\) 40.2244 + 40.2244i 1.42304 + 1.42304i
\(800\) 3.63442 23.8979i 0.128496 0.844919i
\(801\) 1.74778 + 1.74778i 0.0617546 + 0.0617546i
\(802\) 0.190898 + 0.190898i 0.00674083 + 0.00674083i
\(803\) −3.79588 3.79588i −0.133954 0.133954i
\(804\) −13.7243 + 13.7243i −0.484018 + 0.484018i
\(805\) 0.625946 8.27906i 0.0220617 0.291799i
\(806\) 0 0
\(807\) −15.6423 15.6423i −0.550636 0.550636i
\(808\) 29.4663i 1.03662i
\(809\) 2.94058i 0.103385i −0.998663 0.0516926i \(-0.983538\pi\)
0.998663 0.0516926i \(-0.0164616\pi\)
\(810\) 1.00305 0.862035i 0.0352435 0.0302888i
\(811\) −16.3366 + 16.3366i −0.573657 + 0.573657i −0.933148 0.359492i \(-0.882950\pi\)
0.359492 + 0.933148i \(0.382950\pi\)
\(812\) 0.268734 0.00943071
\(813\) 2.49581 0.0875320
\(814\) −4.90856 + 4.90856i −0.172045 + 0.172045i
\(815\) −36.2659 + 31.1675i −1.27034 + 1.09175i
\(816\) 23.8615i 0.835319i
\(817\) 21.7260i 0.760096i
\(818\) −26.8732 26.8732i −0.939599 0.939599i
\(819\) 0 0
\(820\) −1.11428 + 14.7380i −0.0389124 + 0.514674i
\(821\) −32.4390 + 32.4390i −1.13213 + 1.13213i −0.142305 + 0.989823i \(0.545451\pi\)
−0.989823 + 0.142305i \(0.954549\pi\)
\(822\) −8.90207 8.90207i −0.310495 0.310495i
\(823\) −12.5333 12.5333i −0.436885 0.436885i 0.454077 0.890962i \(-0.349969\pi\)
−0.890962 + 0.454077i \(0.849969\pi\)
\(824\) 7.62280 + 7.62280i 0.265553 + 0.265553i
\(825\) −3.48471 + 22.9135i −0.121322 + 0.797744i
\(826\) −3.51959 3.51959i −0.122462 0.122462i
\(827\) 5.79276i 0.201434i −0.994915 0.100717i \(-0.967886\pi\)
0.994915 0.100717i \(-0.0321137\pi\)
\(828\) −12.3942 + 12.3942i −0.430729 + 0.430729i
\(829\) 33.7598 1.17252 0.586262 0.810121i \(-0.300599\pi\)
0.586262 + 0.810121i \(0.300599\pi\)
\(830\) −12.7705 14.8595i −0.443272 0.515782i
\(831\) 26.6284i 0.923727i
\(832\) 0 0
\(833\) 31.1279 31.1279i 1.07852 1.07852i
\(834\) −27.7062 27.7062i −0.959386 0.959386i
\(835\) 2.49869 + 2.90742i 0.0864706 + 0.100615i
\(836\) 4.33868i 0.150056i
\(837\) 0.874920 0.0302417
\(838\) 34.6830i 1.19811i
\(839\) −27.7173 + 27.7173i −0.956909 + 0.956909i −0.999109 0.0422005i \(-0.986563\pi\)
0.0422005 + 0.999109i \(0.486563\pi\)
\(840\) −18.0889 1.36763i −0.624127 0.0471877i
\(841\) 28.9146 0.997055
\(842\) 22.0475 22.0475i 0.759807 0.759807i
\(843\) 22.0083 0.758005
\(844\) 8.14177 0.280251
\(845\) 0 0
\(846\) 38.2449 1.31489
\(847\) −7.93357 −0.272601
\(848\) 2.36008 2.36008i 0.0810455 0.0810455i
\(849\) −58.8152 −2.01853
\(850\) −21.9748 29.8575i −0.753728 1.02410i
\(851\) −11.1205 + 11.1205i −0.381205 + 0.381205i
\(852\) 34.7131i 1.18925i
\(853\) −40.6417 −1.39154 −0.695772 0.718262i \(-0.744938\pi\)
−0.695772 + 0.718262i \(0.744938\pi\)
\(854\) 2.05289i 0.0702484i
\(855\) 2.19661 29.0534i 0.0751224 0.993605i
\(856\) 0.949561 + 0.949561i 0.0324553 + 0.0324553i
\(857\) 27.2327 27.2327i 0.930252 0.930252i −0.0674695 0.997721i \(-0.521493\pi\)
0.997721 + 0.0674695i \(0.0214925\pi\)
\(858\) 0 0
\(859\) 44.5502i 1.52003i −0.649904 0.760016i \(-0.725191\pi\)
0.649904 0.760016i \(-0.274809\pi\)
\(860\) −16.9107 1.27855i −0.576651 0.0435982i
\(861\) 18.6009 0.633916
\(862\) −3.32507 + 3.32507i −0.113252 + 0.113252i
\(863\) 55.4497i 1.88753i 0.330615 + 0.943766i \(0.392744\pi\)
−0.330615 + 0.943766i \(0.607256\pi\)
\(864\) 16.8319 + 16.8319i 0.572632 + 0.572632i
\(865\) −33.8397 2.55848i −1.15058 0.0869910i
\(866\) −2.89432 2.89432i −0.0983531 0.0983531i
\(867\) 70.0940 + 70.0940i 2.38052 + 2.38052i
\(868\) 0.115534 + 0.115534i 0.00392147 + 0.00392147i
\(869\) 15.9770 15.9770i 0.541984 0.541984i
\(870\) 1.85718 + 0.140414i 0.0629643 + 0.00476048i
\(871\) 0 0
\(872\) −19.3993 19.3993i −0.656944 0.656944i
\(873\) 35.8135i 1.21210i
\(874\) 10.7718i 0.364363i
\(875\) −9.13320 + 5.71348i −0.308759 + 0.193151i
\(876\) −6.06917 + 6.06917i −0.205058 + 0.205058i
\(877\) −5.37699 −0.181568 −0.0907839 0.995871i \(-0.528937\pi\)
−0.0907839 + 0.995871i \(0.528937\pi\)
\(878\) 23.2377 0.784233
\(879\) 7.92505 7.92505i 0.267305 0.267305i
\(880\) −4.37951 0.331117i −0.147633 0.0111619i
\(881\) 42.8267i 1.44287i 0.692484 + 0.721434i \(0.256516\pi\)
−0.692484 + 0.721434i \(0.743484\pi\)
\(882\) 29.5960i 0.996549i
\(883\) −32.9568 32.9568i −1.10908 1.10908i −0.993271 0.115813i \(-0.963053\pi\)
−0.115813 0.993271i \(-0.536947\pi\)
\(884\) 0 0
\(885\) 20.5172 + 23.8733i 0.689677 + 0.802494i
\(886\) 1.89055 1.89055i 0.0635143 0.0635143i
\(887\) −14.9480 14.9480i −0.501906 0.501906i 0.410124 0.912030i \(-0.365485\pi\)
−0.912030 + 0.410124i \(0.865485\pi\)
\(888\) 24.2971 + 24.2971i 0.815358 + 0.815358i
\(889\) 1.48203 + 1.48203i 0.0497057 + 0.0497057i
\(890\) −0.0893914 + 1.18233i −0.00299641 + 0.0396319i
\(891\) 0.680258 + 0.680258i 0.0227895 + 0.0227895i
\(892\) 6.73778i 0.225598i
\(893\) −15.1653 + 15.1653i −0.507488 + 0.507488i
\(894\) −12.3468 −0.412939
\(895\) −4.67921 + 4.02140i −0.156409 + 0.134420i
\(896\) 2.11809i 0.0707605i
\(897\) 0 0
\(898\) −23.2645 + 23.2645i −0.776346 + 0.776346i
\(899\) −0.0367227 0.0367227i −0.00122477 0.00122477i
\(900\) 22.4849 + 3.41952i 0.749495 + 0.113984i
\(901\) 20.4926i 0.682707i
\(902\) 11.7817 0.392288
\(903\) 21.3430i 0.710252i
\(904\) −4.13267 + 4.13267i −0.137451 + 0.137451i
\(905\) −15.0944 17.5636i −0.501756 0.583833i
\(906\) 19.1440 0.636017
\(907\) 7.82336 7.82336i 0.259770 0.259770i −0.565190 0.824961i \(-0.691197\pi\)
0.824961 + 0.565190i \(0.191197\pi\)
\(908\) −16.3898 −0.543913
\(909\) −46.4928 −1.54207
\(910\) 0 0
\(911\) −15.0479 −0.498560 −0.249280 0.968431i \(-0.580194\pi\)
−0.249280 + 0.968431i \(0.580194\pi\)
\(912\) 8.99619 0.297894
\(913\) 10.0776 10.0776i 0.333521 0.333521i
\(914\) 29.0090 0.959533
\(915\) −0.978791 + 12.9459i −0.0323578 + 0.427980i
\(916\) 8.49903 8.49903i 0.280816 0.280816i
\(917\) 0.0599818i 0.00198077i
\(918\) 36.5067 1.20490
\(919\) 12.5103i 0.412676i 0.978481 + 0.206338i \(0.0661546\pi\)
−0.978481 + 0.206338i \(0.933845\pi\)
\(920\) −25.9572 1.96252i −0.855782 0.0647022i
\(921\) 47.7268 + 47.7268i 1.57265 + 1.57265i
\(922\) −8.32259 + 8.32259i −0.274090 + 0.274090i
\(923\) 0 0
\(924\) 4.26220i 0.140216i
\(925\) 20.1741 + 3.06810i 0.663320 + 0.100879i
\(926\) −30.6229 −1.00633
\(927\) −12.0275 + 12.0275i −0.395035 + 0.395035i
\(928\) 1.41296i 0.0463826i
\(929\) −34.4704 34.4704i −1.13094 1.13094i −0.990022 0.140915i \(-0.954996\pi\)
−0.140915 0.990022i \(-0.545004\pi\)
\(930\) 0.738070 + 0.858804i 0.0242023 + 0.0281613i
\(931\) 11.7357 + 11.7357i 0.384623 + 0.384623i
\(932\) −16.7779 16.7779i −0.549577 0.549577i
\(933\) −15.5136 15.5136i −0.507894 0.507894i
\(934\) −16.4981 + 16.4981i −0.539836 + 0.539836i
\(935\) 20.4512 17.5761i 0.668825 0.574800i
\(936\) 0 0
\(937\) 7.38027 + 7.38027i 0.241103 + 0.241103i 0.817306 0.576203i \(-0.195466\pi\)
−0.576203 + 0.817306i \(0.695466\pi\)
\(938\) 7.19150i 0.234811i
\(939\) 13.3656i 0.436171i
\(940\) −10.9117 12.6966i −0.355900 0.414117i
\(941\) 1.54410 1.54410i 0.0503363 0.0503363i −0.681491 0.731827i \(-0.738668\pi\)
0.731827 + 0.681491i \(0.238668\pi\)
\(942\) −58.2343 −1.89738
\(943\) 26.6918 0.869204
\(944\) −4.21798 + 4.21798i −0.137284 + 0.137284i
\(945\) 0.799799 10.5785i 0.0260175 0.344119i
\(946\) 13.5186i 0.439527i
\(947\) 6.71654i 0.218258i 0.994028 + 0.109129i \(0.0348062\pi\)
−0.994028 + 0.109129i \(0.965194\pi\)
\(948\) −25.5454 25.5454i −0.829676 0.829676i
\(949\) 0 0
\(950\) 11.2568 8.28486i 0.365218 0.268796i
\(951\) 45.1776 45.1776i 1.46498 1.46498i
\(952\) 14.9244 + 14.9244i 0.483703 + 0.483703i
\(953\) −12.7671 12.7671i −0.413568 0.413568i 0.469412 0.882979i \(-0.344466\pi\)
−0.882979 + 0.469412i \(0.844466\pi\)
\(954\) 9.74205 + 9.74205i 0.315411 + 0.315411i
\(955\) 31.5082 27.0787i 1.01958 0.876245i
\(956\) 2.13264 + 2.13264i 0.0689744 + 0.0689744i
\(957\) 1.35475i 0.0437929i
\(958\) −28.0760 + 28.0760i −0.907095 + 0.907095i
\(959\) 4.25656 0.137451
\(960\) −3.43228 + 45.3970i −0.110776 + 1.46518i
\(961\) 30.9684i 0.998981i
\(962\) 0 0
\(963\) −1.49825 + 1.49825i −0.0482804 + 0.0482804i
\(964\) −12.1583 12.1583i −0.391594 0.391594i
\(965\) −21.3193 + 18.3222i −0.686293 + 0.589812i
\(966\) 10.5820i 0.340469i
\(967\) −60.0570 −1.93130 −0.965651 0.259841i \(-0.916330\pi\)
−0.965651 + 0.259841i \(0.916330\pi\)
\(968\) 24.8740i 0.799479i
\(969\) −39.0570 + 39.0570i −1.25469 + 1.25469i
\(970\) −13.0294 + 11.1977i −0.418348 + 0.359536i
\(971\) −40.9179 −1.31312 −0.656558 0.754275i \(-0.727988\pi\)
−0.656558 + 0.754275i \(0.727988\pi\)
\(972\) 11.0546 11.0546i 0.354577 0.354577i
\(973\) 13.2478 0.424705
\(974\) −29.5983 −0.948391
\(975\) 0 0
\(976\) −2.46025 −0.0787506
\(977\) −37.4959 −1.19960 −0.599800 0.800150i \(-0.704753\pi\)
−0.599800 + 0.800150i \(0.704753\pi\)
\(978\) 43.0954 43.0954i 1.37804 1.37804i
\(979\) −0.862473 −0.0275648
\(980\) −9.82532 + 8.44405i −0.313858 + 0.269735i
\(981\) 30.6089 30.6089i 0.977266 0.977266i
\(982\) 7.43919i 0.237394i
\(983\) 46.1176 1.47092 0.735461 0.677567i \(-0.236966\pi\)
0.735461 + 0.677567i \(0.236966\pi\)
\(984\) 58.3189i 1.85914i
\(985\) −24.2271 + 20.8212i −0.771939 + 0.663418i
\(986\) −1.53228 1.53228i −0.0487978 0.0487978i
\(987\) −14.8980 + 14.8980i −0.474208 + 0.474208i
\(988\) 0 0
\(989\) 30.6267i 0.973873i
\(990\) 1.36680 18.0779i 0.0434397 0.574554i
\(991\) 0.802199 0.0254827 0.0127413 0.999919i \(-0.495944\pi\)
0.0127413 + 0.999919i \(0.495944\pi\)
\(992\) 0.607457 0.607457i 0.0192868 0.0192868i
\(993\) 93.5143i 2.96759i
\(994\) −9.09482 9.09482i −0.288470 0.288470i
\(995\) 24.9893 21.4762i 0.792214 0.680842i
\(996\) −16.1129 16.1129i −0.510558 0.510558i
\(997\) 11.0378 + 11.0378i 0.349571 + 0.349571i 0.859950 0.510379i \(-0.170495\pi\)
−0.510379 + 0.859950i \(0.670495\pi\)
\(998\) 4.33796 + 4.33796i 0.137316 + 0.137316i
\(999\) −14.2091 + 14.2091i −0.449556 + 0.449556i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.d.577.8 20
5.3 odd 4 845.2.f.d.408.3 20
13.2 odd 12 845.2.t.f.657.4 20
13.3 even 3 845.2.o.g.357.2 20
13.4 even 6 845.2.o.e.587.4 20
13.5 odd 4 845.2.f.e.437.3 20
13.6 odd 12 65.2.t.a.37.2 yes 20
13.7 odd 12 845.2.t.g.427.4 20
13.8 odd 4 845.2.f.d.437.8 20
13.9 even 3 845.2.o.f.587.2 20
13.10 even 6 65.2.o.a.32.4 20
13.11 odd 12 845.2.t.e.657.2 20
13.12 even 2 845.2.k.e.577.3 20
39.23 odd 6 585.2.cf.a.487.2 20
39.32 even 12 585.2.dp.a.37.4 20
65.3 odd 12 845.2.t.g.188.4 20
65.8 even 4 inner 845.2.k.d.268.8 20
65.18 even 4 845.2.k.e.268.3 20
65.19 odd 12 325.2.x.b.232.4 20
65.23 odd 12 65.2.t.a.58.2 yes 20
65.28 even 12 845.2.o.e.488.4 20
65.32 even 12 325.2.s.b.193.2 20
65.33 even 12 845.2.o.g.258.2 20
65.38 odd 4 845.2.f.e.408.8 20
65.43 odd 12 845.2.t.f.418.4 20
65.48 odd 12 845.2.t.e.418.2 20
65.49 even 6 325.2.s.b.32.2 20
65.58 even 12 65.2.o.a.63.4 yes 20
65.62 odd 12 325.2.x.b.318.4 20
65.63 even 12 845.2.o.f.488.2 20
195.23 even 12 585.2.dp.a.253.4 20
195.188 odd 12 585.2.cf.a.388.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.4 20 13.10 even 6
65.2.o.a.63.4 yes 20 65.58 even 12
65.2.t.a.37.2 yes 20 13.6 odd 12
65.2.t.a.58.2 yes 20 65.23 odd 12
325.2.s.b.32.2 20 65.49 even 6
325.2.s.b.193.2 20 65.32 even 12
325.2.x.b.232.4 20 65.19 odd 12
325.2.x.b.318.4 20 65.62 odd 12
585.2.cf.a.388.2 20 195.188 odd 12
585.2.cf.a.487.2 20 39.23 odd 6
585.2.dp.a.37.4 20 39.32 even 12
585.2.dp.a.253.4 20 195.23 even 12
845.2.f.d.408.3 20 5.3 odd 4
845.2.f.d.437.8 20 13.8 odd 4
845.2.f.e.408.8 20 65.38 odd 4
845.2.f.e.437.3 20 13.5 odd 4
845.2.k.d.268.8 20 65.8 even 4 inner
845.2.k.d.577.8 20 1.1 even 1 trivial
845.2.k.e.268.3 20 65.18 even 4
845.2.k.e.577.3 20 13.12 even 2
845.2.o.e.488.4 20 65.28 even 12
845.2.o.e.587.4 20 13.4 even 6
845.2.o.f.488.2 20 65.63 even 12
845.2.o.f.587.2 20 13.9 even 3
845.2.o.g.258.2 20 65.33 even 12
845.2.o.g.357.2 20 13.3 even 3
845.2.t.e.418.2 20 65.48 odd 12
845.2.t.e.657.2 20 13.11 odd 12
845.2.t.f.418.4 20 65.43 odd 12
845.2.t.f.657.4 20 13.2 odd 12
845.2.t.g.188.4 20 65.3 odd 12
845.2.t.g.427.4 20 13.7 odd 12