Properties

Label 845.2.o.f.488.2
Level $845$
Weight $2$
Character 845.488
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(258,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.258");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 488.2
Root \(-1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 845.488
Dual form 845.2.o.f.587.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.511309 + 0.885613i) q^{2} +(2.69193 - 0.721300i) q^{3} +(0.477126 + 0.826407i) q^{4} +(1.69584 + 1.45744i) q^{5} +(-0.737614 + 2.75281i) q^{6} +(0.834479 - 0.481787i) q^{7} -3.02107 q^{8} +(4.12812 - 2.38337i) q^{9} +(-2.15782 + 0.756660i) q^{10} +(0.430490 + 1.60661i) q^{11} +(1.88048 + 1.88048i) q^{12} +0.985368i q^{14} +(5.61633 + 2.70010i) q^{15} +(0.590448 - 1.02269i) q^{16} +(1.87656 - 7.00342i) q^{17} +4.87456i q^{18} +(-2.64041 - 0.707496i) q^{19} +(-0.395304 + 2.09684i) q^{20} +(1.89884 - 1.89884i) q^{21} +(-1.64295 - 0.440226i) q^{22} +(0.997344 + 3.72214i) q^{23} +(-8.13250 + 2.17910i) q^{24} +(0.751762 + 4.94316i) q^{25} +(3.48159 - 3.48159i) q^{27} +(0.796304 + 0.459747i) q^{28} +(-0.253107 - 0.146132i) q^{29} +(-5.26292 + 3.59331i) q^{30} +(0.125649 + 0.125649i) q^{31} +(-2.41727 - 4.18683i) q^{32} +(2.31769 + 4.01436i) q^{33} +(5.24282 + 5.24282i) q^{34} +(2.11732 + 0.399166i) q^{35} +(3.93927 + 2.27434i) q^{36} +(3.53443 + 2.04061i) q^{37} +(1.97663 - 1.97663i) q^{38} +(-5.12326 - 4.40302i) q^{40} +(-6.69071 + 1.79277i) q^{41} +(0.710745 + 2.65254i) q^{42} +(-7.67707 - 2.05706i) q^{43} +(-1.12232 + 1.12232i) q^{44} +(10.4743 + 1.97465i) q^{45} +(-3.80633 - 1.01990i) q^{46} -7.84582i q^{47} +(0.851780 - 3.17888i) q^{48} +(-3.03576 + 5.25810i) q^{49} +(-4.76211 - 1.86171i) q^{50} -20.2063i q^{51} +(-1.99855 - 1.99855i) q^{53} +(1.30317 + 4.86351i) q^{54} +(-1.61149 + 3.35197i) q^{55} +(-2.52102 + 1.45551i) q^{56} -7.61811 q^{57} +(0.258832 - 0.149437i) q^{58} +(1.30739 - 4.87924i) q^{59} +(0.448318 + 5.92967i) q^{60} +(-1.04169 - 1.80425i) q^{61} +(-0.175522 + 0.0470311i) q^{62} +(2.29655 - 3.97775i) q^{63} +7.30568 q^{64} -4.74023 q^{66} +(3.64915 - 6.32050i) q^{67} +(6.68304 - 1.79071i) q^{68} +(5.36956 + 9.30034i) q^{69} +(-1.43611 + 1.67103i) q^{70} +(3.37837 - 12.6082i) q^{71} +(-12.4713 + 7.20034i) q^{72} -3.22747 q^{73} +(-3.61437 + 2.08676i) q^{74} +(5.58919 + 12.7644i) q^{75} +(-0.675130 - 2.51962i) q^{76} +(1.13328 + 1.13328i) q^{77} +13.5845i q^{79} +(2.49180 - 0.873774i) q^{80} +(-0.289196 + 0.500902i) q^{81} +(1.83332 - 6.84204i) q^{82} +8.56854i q^{83} +(2.47521 + 0.663230i) q^{84} +(13.3894 - 9.14173i) q^{85} +(5.74712 - 5.74712i) q^{86} +(-0.786751 - 0.210809i) q^{87} +(-1.30054 - 4.85368i) q^{88} +(0.500868 - 0.134207i) q^{89} +(-7.10435 + 8.26648i) q^{90} +(-2.60014 + 2.60014i) q^{92} +(0.428870 + 0.247608i) q^{93} +(6.94836 + 4.01164i) q^{94} +(-3.44659 - 5.04803i) q^{95} +(-9.52707 - 9.52707i) q^{96} +(3.75660 + 6.50662i) q^{97} +(-3.10442 - 5.37702i) q^{98} +(5.60626 + 5.60626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 2 q^{3} - 6 q^{4} + 6 q^{5} - 4 q^{6} - 6 q^{7} - 12 q^{8} + 12 q^{9} + 2 q^{10} - 8 q^{11} + 24 q^{12} - 12 q^{15} - 2 q^{16} - 4 q^{17} + 16 q^{19} - 8 q^{20} - 4 q^{21} + 16 q^{22} + 10 q^{23}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.511309 + 0.885613i −0.361550 + 0.626223i −0.988216 0.153065i \(-0.951086\pi\)
0.626666 + 0.779288i \(0.284419\pi\)
\(3\) 2.69193 0.721300i 1.55418 0.416443i 0.623368 0.781929i \(-0.285764\pi\)
0.930817 + 0.365486i \(0.119097\pi\)
\(4\) 0.477126 + 0.826407i 0.238563 + 0.413204i
\(5\) 1.69584 + 1.45744i 0.758404 + 0.651785i
\(6\) −0.737614 + 2.75281i −0.301130 + 1.12383i
\(7\) 0.834479 0.481787i 0.315404 0.182098i −0.333938 0.942595i \(-0.608378\pi\)
0.649342 + 0.760497i \(0.275044\pi\)
\(8\) −3.02107 −1.06811
\(9\) 4.12812 2.38337i 1.37604 0.794457i
\(10\) −2.15782 + 0.756660i −0.682364 + 0.239277i
\(11\) 0.430490 + 1.60661i 0.129797 + 0.484411i 0.999965 0.00834492i \(-0.00265630\pi\)
−0.870168 + 0.492756i \(0.835990\pi\)
\(12\) 1.88048 + 1.88048i 0.542847 + 0.542847i
\(13\) 0 0
\(14\) 0.985368i 0.263351i
\(15\) 5.61633 + 2.70010i 1.45013 + 0.697163i
\(16\) 0.590448 1.02269i 0.147612 0.255671i
\(17\) 1.87656 7.00342i 0.455133 1.69858i −0.232564 0.972581i \(-0.574711\pi\)
0.687697 0.725998i \(-0.258622\pi\)
\(18\) 4.87456i 1.14894i
\(19\) −2.64041 0.707496i −0.605752 0.162311i −0.0571095 0.998368i \(-0.518188\pi\)
−0.548642 + 0.836057i \(0.684855\pi\)
\(20\) −0.395304 + 2.09684i −0.0883927 + 0.468867i
\(21\) 1.89884 1.89884i 0.414362 0.414362i
\(22\) −1.64295 0.440226i −0.350277 0.0938565i
\(23\) 0.997344 + 3.72214i 0.207961 + 0.776120i 0.988527 + 0.151046i \(0.0482643\pi\)
−0.780566 + 0.625073i \(0.785069\pi\)
\(24\) −8.13250 + 2.17910i −1.66004 + 0.444806i
\(25\) 0.751762 + 4.94316i 0.150352 + 0.988632i
\(26\) 0 0
\(27\) 3.48159 3.48159i 0.670033 0.670033i
\(28\) 0.796304 + 0.459747i 0.150487 + 0.0868839i
\(29\) −0.253107 0.146132i −0.0470008 0.0271360i 0.476315 0.879274i \(-0.341972\pi\)
−0.523316 + 0.852139i \(0.675305\pi\)
\(30\) −5.26292 + 3.59331i −0.960874 + 0.656046i
\(31\) 0.125649 + 0.125649i 0.0225673 + 0.0225673i 0.718300 0.695733i \(-0.244920\pi\)
−0.695733 + 0.718300i \(0.744920\pi\)
\(32\) −2.41727 4.18683i −0.427317 0.740134i
\(33\) 2.31769 + 4.01436i 0.403458 + 0.698811i
\(34\) 5.24282 + 5.24282i 0.899136 + 0.899136i
\(35\) 2.11732 + 0.399166i 0.357892 + 0.0674713i
\(36\) 3.93927 + 2.27434i 0.656545 + 0.379057i
\(37\) 3.53443 + 2.04061i 0.581057 + 0.335474i 0.761553 0.648102i \(-0.224437\pi\)
−0.180496 + 0.983576i \(0.557770\pi\)
\(38\) 1.97663 1.97663i 0.320652 0.320652i
\(39\) 0 0
\(40\) −5.12326 4.40302i −0.810059 0.696178i
\(41\) −6.69071 + 1.79277i −1.04491 + 0.279984i −0.740148 0.672444i \(-0.765245\pi\)
−0.304765 + 0.952427i \(0.598578\pi\)
\(42\) 0.710745 + 2.65254i 0.109670 + 0.409295i
\(43\) −7.67707 2.05706i −1.17074 0.313699i −0.379494 0.925194i \(-0.623902\pi\)
−0.791248 + 0.611495i \(0.790568\pi\)
\(44\) −1.12232 + 1.12232i −0.169195 + 0.169195i
\(45\) 10.4743 + 1.97465i 1.56141 + 0.294363i
\(46\) −3.80633 1.01990i −0.561212 0.150376i
\(47\) 7.84582i 1.14443i −0.820103 0.572215i \(-0.806084\pi\)
0.820103 0.572215i \(-0.193916\pi\)
\(48\) 0.851780 3.17888i 0.122944 0.458832i
\(49\) −3.03576 + 5.25810i −0.433680 + 0.751156i
\(50\) −4.76211 1.86171i −0.673464 0.263286i
\(51\) 20.2063i 2.82944i
\(52\) 0 0
\(53\) −1.99855 1.99855i −0.274522 0.274522i 0.556395 0.830918i \(-0.312184\pi\)
−0.830918 + 0.556395i \(0.812184\pi\)
\(54\) 1.30317 + 4.86351i 0.177339 + 0.661840i
\(55\) −1.61149 + 3.35197i −0.217293 + 0.451979i
\(56\) −2.52102 + 1.45551i −0.336886 + 0.194501i
\(57\) −7.61811 −1.00904
\(58\) 0.258832 0.149437i 0.0339863 0.0196220i
\(59\) 1.30739 4.87924i 0.170207 0.635223i −0.827111 0.562039i \(-0.810017\pi\)
0.997318 0.0731843i \(-0.0233161\pi\)
\(60\) 0.448318 + 5.92967i 0.0578776 + 0.765517i
\(61\) −1.04169 1.80425i −0.133374 0.231011i 0.791601 0.611038i \(-0.209248\pi\)
−0.924975 + 0.380027i \(0.875915\pi\)
\(62\) −0.175522 + 0.0470311i −0.0222914 + 0.00597296i
\(63\) 2.29655 3.97775i 0.289339 0.501149i
\(64\) 7.30568 0.913209
\(65\) 0 0
\(66\) −4.74023 −0.583482
\(67\) 3.64915 6.32050i 0.445814 0.772173i −0.552294 0.833649i \(-0.686248\pi\)
0.998109 + 0.0614765i \(0.0195809\pi\)
\(68\) 6.68304 1.79071i 0.810437 0.217156i
\(69\) 5.36956 + 9.30034i 0.646419 + 1.11963i
\(70\) −1.43611 + 1.67103i −0.171648 + 0.199726i
\(71\) 3.37837 12.6082i 0.400939 1.49632i −0.410486 0.911867i \(-0.634641\pi\)
0.811425 0.584457i \(-0.198692\pi\)
\(72\) −12.4713 + 7.20034i −1.46976 + 0.848568i
\(73\) −3.22747 −0.377746 −0.188873 0.982001i \(-0.560483\pi\)
−0.188873 + 0.982001i \(0.560483\pi\)
\(74\) −3.61437 + 2.08676i −0.420163 + 0.242581i
\(75\) 5.58919 + 12.7644i 0.645384 + 1.47390i
\(76\) −0.675130 2.51962i −0.0774427 0.289020i
\(77\) 1.13328 + 1.13328i 0.129149 + 0.129149i
\(78\) 0 0
\(79\) 13.5845i 1.52838i 0.644992 + 0.764190i \(0.276861\pi\)
−0.644992 + 0.764190i \(0.723139\pi\)
\(80\) 2.49180 0.873774i 0.278592 0.0976909i
\(81\) −0.289196 + 0.500902i −0.0321329 + 0.0556558i
\(82\) 1.83332 6.84204i 0.202456 0.755577i
\(83\) 8.56854i 0.940519i 0.882528 + 0.470260i \(0.155840\pi\)
−0.882528 + 0.470260i \(0.844160\pi\)
\(84\) 2.47521 + 0.663230i 0.270067 + 0.0723643i
\(85\) 13.3894 9.14173i 1.45228 0.991560i
\(86\) 5.74712 5.74712i 0.619728 0.619728i
\(87\) −0.786751 0.210809i −0.0843486 0.0226011i
\(88\) −1.30054 4.85368i −0.138638 0.517404i
\(89\) 0.500868 0.134207i 0.0530919 0.0142259i −0.232175 0.972674i \(-0.574584\pi\)
0.285267 + 0.958448i \(0.407918\pi\)
\(90\) −7.10435 + 8.26648i −0.748864 + 0.871363i
\(91\) 0 0
\(92\) −2.60014 + 2.60014i −0.271084 + 0.271084i
\(93\) 0.428870 + 0.247608i 0.0444718 + 0.0256758i
\(94\) 6.94836 + 4.01164i 0.716669 + 0.413769i
\(95\) −3.44659 5.04803i −0.353613 0.517917i
\(96\) −9.52707 9.52707i −0.972353 0.972353i
\(97\) 3.75660 + 6.50662i 0.381425 + 0.660648i 0.991266 0.131876i \(-0.0421001\pi\)
−0.609841 + 0.792524i \(0.708767\pi\)
\(98\) −3.10442 5.37702i −0.313594 0.543161i
\(99\) 5.60626 + 5.60626i 0.563450 + 0.563450i
\(100\) −3.72638 + 2.97978i −0.372638 + 0.297978i
\(101\) −8.44685 4.87679i −0.840493 0.485259i 0.0169388 0.999857i \(-0.494608\pi\)
−0.857432 + 0.514598i \(0.827941\pi\)
\(102\) 17.8949 + 10.3316i 1.77186 + 1.02298i
\(103\) −2.52321 + 2.52321i −0.248619 + 0.248619i −0.820404 0.571784i \(-0.806251\pi\)
0.571784 + 0.820404i \(0.306251\pi\)
\(104\) 0 0
\(105\) 5.98759 0.452697i 0.584329 0.0441787i
\(106\) 2.79182 0.748066i 0.271166 0.0726586i
\(107\) −0.115046 0.429359i −0.0111220 0.0415077i 0.960142 0.279513i \(-0.0901731\pi\)
−0.971264 + 0.238005i \(0.923506\pi\)
\(108\) 4.53837 + 1.21605i 0.436705 + 0.117015i
\(109\) 6.42134 6.42134i 0.615053 0.615053i −0.329206 0.944258i \(-0.606781\pi\)
0.944258 + 0.329206i \(0.106781\pi\)
\(110\) −2.14458 3.14104i −0.204477 0.299487i
\(111\) 10.9863 + 2.94378i 1.04278 + 0.279411i
\(112\) 1.13788i 0.107520i
\(113\) 0.500704 1.86865i 0.0471023 0.175788i −0.938367 0.345639i \(-0.887662\pi\)
0.985470 + 0.169851i \(0.0543287\pi\)
\(114\) 3.89521 6.74670i 0.364820 0.631886i
\(115\) −3.73344 + 7.76573i −0.348145 + 0.724158i
\(116\) 0.278893i 0.0258946i
\(117\) 0 0
\(118\) 3.65264 + 3.65264i 0.336253 + 0.336253i
\(119\) −1.80821 6.74831i −0.165758 0.618617i
\(120\) −16.9673 8.15720i −1.54890 0.744647i
\(121\) 7.13041 4.11674i 0.648219 0.374249i
\(122\) 2.13050 0.192886
\(123\) −16.7178 + 9.65202i −1.50739 + 0.870293i
\(124\) −0.0438869 + 0.163788i −0.00394116 + 0.0147086i
\(125\) −5.92947 + 9.47847i −0.530348 + 0.847780i
\(126\) 2.34850 + 4.06772i 0.209221 + 0.362381i
\(127\) 2.10102 0.562967i 0.186436 0.0499553i −0.164393 0.986395i \(-0.552567\pi\)
0.350829 + 0.936440i \(0.385900\pi\)
\(128\) 1.09908 1.90366i 0.0971460 0.168262i
\(129\) −22.1499 −1.95019
\(130\) 0 0
\(131\) −0.0622493 −0.00543874 −0.00271937 0.999996i \(-0.500866\pi\)
−0.00271937 + 0.999996i \(0.500866\pi\)
\(132\) −2.21166 + 3.83072i −0.192501 + 0.333421i
\(133\) −2.54423 + 0.681725i −0.220613 + 0.0591130i
\(134\) 3.73168 + 6.46346i 0.322368 + 0.558358i
\(135\) 10.9784 0.830034i 0.944872 0.0714380i
\(136\) −5.66923 + 21.1578i −0.486132 + 1.81427i
\(137\) −3.82564 + 2.20873i −0.326846 + 0.188705i −0.654440 0.756114i \(-0.727096\pi\)
0.327594 + 0.944819i \(0.393762\pi\)
\(138\) −10.9820 −0.934850
\(139\) −11.9066 + 6.87430i −1.00991 + 0.583070i −0.911165 0.412043i \(-0.864816\pi\)
−0.0987430 + 0.995113i \(0.531482\pi\)
\(140\) 0.680356 + 1.94022i 0.0575005 + 0.163979i
\(141\) −5.65919 21.1204i −0.476590 1.77866i
\(142\) 9.43864 + 9.43864i 0.792073 + 0.792073i
\(143\) 0 0
\(144\) 5.62903i 0.469085i
\(145\) −0.216253 0.616704i −0.0179588 0.0512145i
\(146\) 1.65023 2.85829i 0.136574 0.236553i
\(147\) −4.37939 + 16.3441i −0.361206 + 1.34804i
\(148\) 3.89451i 0.320127i
\(149\) −4.18471 1.12129i −0.342825 0.0918596i 0.0832987 0.996525i \(-0.473454\pi\)
−0.426124 + 0.904665i \(0.640121\pi\)
\(150\) −14.1621 1.57669i −1.15633 0.128736i
\(151\) −4.74990 + 4.74990i −0.386542 + 0.386542i −0.873452 0.486910i \(-0.838124\pi\)
0.486910 + 0.873452i \(0.338124\pi\)
\(152\) 7.97687 + 2.13740i 0.647010 + 0.173366i
\(153\) −8.94508 33.3835i −0.723167 2.69890i
\(154\) −1.58310 + 0.424190i −0.127570 + 0.0341822i
\(155\) 0.0299556 + 0.396208i 0.00240610 + 0.0318242i
\(156\) 0 0
\(157\) 14.4488 14.4488i 1.15314 1.15314i 0.167218 0.985920i \(-0.446522\pi\)
0.985920 0.167218i \(-0.0534784\pi\)
\(158\) −12.0306 6.94589i −0.957106 0.552586i
\(159\) −6.82151 3.93840i −0.540981 0.312336i
\(160\) 2.00273 10.6232i 0.158330 0.839839i
\(161\) 2.62554 + 2.62554i 0.206922 + 0.206922i
\(162\) −0.295737 0.512231i −0.0232353 0.0402447i
\(163\) 10.6926 + 18.5201i 0.837508 + 1.45061i 0.891972 + 0.452091i \(0.149322\pi\)
−0.0544633 + 0.998516i \(0.517345\pi\)
\(164\) −4.67387 4.67387i −0.364968 0.364968i
\(165\) −1.92023 + 10.1856i −0.149490 + 0.792949i
\(166\) −7.58841 4.38117i −0.588975 0.340045i
\(167\) 1.48475 + 0.857220i 0.114893 + 0.0663337i 0.556345 0.830951i \(-0.312203\pi\)
−0.441452 + 0.897285i \(0.645536\pi\)
\(168\) −5.73655 + 5.73655i −0.442584 + 0.442584i
\(169\) 0 0
\(170\) 1.24992 + 16.5321i 0.0958646 + 1.26795i
\(171\) −12.5862 + 3.37245i −0.962488 + 0.257898i
\(172\) −1.96296 7.32587i −0.149674 0.558592i
\(173\) 14.6596 + 3.92804i 1.11455 + 0.298643i 0.768677 0.639638i \(-0.220916\pi\)
0.345875 + 0.938281i \(0.387582\pi\)
\(174\) 0.588968 0.588968i 0.0446496 0.0446496i
\(175\) 3.00888 + 3.76278i 0.227450 + 0.284439i
\(176\) 1.89724 + 0.508363i 0.143010 + 0.0383193i
\(177\) 14.0776i 1.05814i
\(178\) −0.137243 + 0.512196i −0.0102868 + 0.0383907i
\(179\) 1.37961 2.38956i 0.103117 0.178604i −0.809850 0.586637i \(-0.800452\pi\)
0.912967 + 0.408033i \(0.133785\pi\)
\(180\) 3.36568 + 9.59815i 0.250863 + 0.715404i
\(181\) 10.3568i 0.769818i 0.922954 + 0.384909i \(0.125767\pi\)
−0.922954 + 0.384909i \(0.874233\pi\)
\(182\) 0 0
\(183\) −4.10555 4.10555i −0.303491 0.303491i
\(184\) −3.01305 11.2449i −0.222125 0.828981i
\(185\) 3.01979 + 8.61176i 0.222019 + 0.633149i
\(186\) −0.438570 + 0.253209i −0.0321575 + 0.0185662i
\(187\) 12.0596 0.881885
\(188\) 6.48384 3.74345i 0.472883 0.273019i
\(189\) 1.22793 4.58270i 0.0893188 0.333342i
\(190\) 6.23287 0.471242i 0.452180 0.0341875i
\(191\) −9.28983 16.0905i −0.672189 1.16427i −0.977282 0.211943i \(-0.932021\pi\)
0.305093 0.952322i \(-0.401312\pi\)
\(192\) 19.6663 5.26958i 1.41930 0.380299i
\(193\) 6.28576 10.8872i 0.452459 0.783681i −0.546079 0.837733i \(-0.683880\pi\)
0.998538 + 0.0540520i \(0.0172137\pi\)
\(194\) −7.68313 −0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) 7.14308 12.3722i 0.508924 0.881481i −0.491023 0.871147i \(-0.663377\pi\)
0.999947 0.0103349i \(-0.00328975\pi\)
\(198\) −7.83150 + 2.09845i −0.556561 + 0.149130i
\(199\) −7.36781 12.7614i −0.522291 0.904634i −0.999664 0.0259331i \(-0.991744\pi\)
0.477373 0.878701i \(-0.341589\pi\)
\(200\) −2.27113 14.9336i −0.160593 1.05597i
\(201\) 5.26425 19.6465i 0.371312 1.38575i
\(202\) 8.63790 4.98709i 0.607760 0.350891i
\(203\) −0.281617 −0.0197656
\(204\) 16.6986 9.64094i 1.16914 0.675001i
\(205\) −13.9592 6.71103i −0.974956 0.468718i
\(206\) −0.944449 3.52473i −0.0658029 0.245580i
\(207\) 12.9884 + 12.9884i 0.902756 + 0.902756i
\(208\) 0 0
\(209\) 4.54668i 0.314500i
\(210\) −2.66059 + 5.53415i −0.183598 + 0.381893i
\(211\) 4.26604 7.38900i 0.293686 0.508680i −0.680992 0.732291i \(-0.738451\pi\)
0.974678 + 0.223611i \(0.0717845\pi\)
\(212\) 0.698056 2.60518i 0.0479427 0.178925i
\(213\) 36.3773i 2.49253i
\(214\) 0.439070 + 0.117649i 0.0300142 + 0.00804229i
\(215\) −10.0211 14.6773i −0.683431 1.00098i
\(216\) −10.5181 + 10.5181i −0.715669 + 0.715669i
\(217\) 0.165388 + 0.0443156i 0.0112273 + 0.00300834i
\(218\) 2.40353 + 8.97011i 0.162788 + 0.607532i
\(219\) −8.68810 + 2.32797i −0.587087 + 0.157310i
\(220\) −3.53897 + 0.267567i −0.238597 + 0.0180394i
\(221\) 0 0
\(222\) −8.22445 + 8.22445i −0.551989 + 0.551989i
\(223\) 6.11483 + 3.53040i 0.409479 + 0.236413i 0.690566 0.723269i \(-0.257362\pi\)
−0.281087 + 0.959682i \(0.590695\pi\)
\(224\) −4.03432 2.32922i −0.269555 0.155627i
\(225\) 14.8848 + 18.6142i 0.992317 + 1.24095i
\(226\) 1.39889 + 1.39889i 0.0930527 + 0.0930527i
\(227\) −8.58775 14.8744i −0.569989 0.987249i −0.996566 0.0827985i \(-0.973614\pi\)
0.426578 0.904451i \(-0.359719\pi\)
\(228\) −3.63480 6.29566i −0.240721 0.416940i
\(229\) −8.90647 8.90647i −0.588556 0.588556i 0.348684 0.937240i \(-0.386629\pi\)
−0.937240 + 0.348684i \(0.886629\pi\)
\(230\) −4.96849 7.27707i −0.327612 0.479836i
\(231\) 3.86813 + 2.23327i 0.254504 + 0.146938i
\(232\) 0.764655 + 0.441474i 0.0502021 + 0.0289842i
\(233\) 17.5822 17.5822i 1.15185 1.15185i 0.165666 0.986182i \(-0.447023\pi\)
0.986182 0.165666i \(-0.0529773\pi\)
\(234\) 0 0
\(235\) 11.4348 13.3053i 0.745923 0.867940i
\(236\) 4.65603 1.24758i 0.303082 0.0812105i
\(237\) 9.79852 + 36.5686i 0.636482 + 2.37538i
\(238\) 6.90095 + 1.84910i 0.447322 + 0.119860i
\(239\) −2.23488 + 2.23488i −0.144562 + 0.144562i −0.775684 0.631122i \(-0.782595\pi\)
0.631122 + 0.775684i \(0.282595\pi\)
\(240\) 6.07750 4.14947i 0.392301 0.267847i
\(241\) −17.4048 4.66361i −1.12114 0.300409i −0.349797 0.936825i \(-0.613750\pi\)
−0.771346 + 0.636416i \(0.780416\pi\)
\(242\) 8.41971i 0.541239i
\(243\) −4.24025 + 15.8248i −0.272012 + 1.01516i
\(244\) 0.994033 1.72172i 0.0636364 0.110222i
\(245\) −12.8115 + 4.49247i −0.818497 + 0.287013i
\(246\) 19.7406i 1.25862i
\(247\) 0 0
\(248\) −0.379596 0.379596i −0.0241044 0.0241044i
\(249\) 6.18048 + 23.0659i 0.391672 + 1.46174i
\(250\) −5.36246 10.0976i −0.339152 0.638631i
\(251\) −12.1009 + 6.98644i −0.763800 + 0.440980i −0.830658 0.556782i \(-0.812036\pi\)
0.0668586 + 0.997762i \(0.478702\pi\)
\(252\) 4.38299 0.276102
\(253\) −5.55068 + 3.20468i −0.348968 + 0.201477i
\(254\) −0.575700 + 2.14854i −0.0361227 + 0.134812i
\(255\) 29.4493 34.2666i 1.84419 2.14586i
\(256\) 8.42962 + 14.6005i 0.526851 + 0.912533i
\(257\) 22.3881 5.99887i 1.39653 0.374199i 0.519433 0.854511i \(-0.326143\pi\)
0.877098 + 0.480312i \(0.159476\pi\)
\(258\) 11.3254 19.6162i 0.705090 1.22125i
\(259\) 3.93255 0.244357
\(260\) 0 0
\(261\) −1.39314 −0.0862334
\(262\) 0.0318286 0.0551288i 0.00196638 0.00340587i
\(263\) −1.25672 + 0.336737i −0.0774926 + 0.0207641i −0.297357 0.954766i \(-0.596105\pi\)
0.219864 + 0.975530i \(0.429438\pi\)
\(264\) −7.00191 12.1277i −0.430938 0.746407i
\(265\) −0.476468 6.30199i −0.0292692 0.387128i
\(266\) 0.697144 2.60178i 0.0427446 0.159525i
\(267\) 1.25150 0.722551i 0.0765903 0.0442194i
\(268\) 6.96441 0.425419
\(269\) −6.87429 + 3.96887i −0.419133 + 0.241986i −0.694706 0.719294i \(-0.744466\pi\)
0.275574 + 0.961280i \(0.411132\pi\)
\(270\) −4.87828 + 10.1470i −0.296883 + 0.617529i
\(271\) −0.231787 0.865041i −0.0140801 0.0525475i 0.958528 0.284997i \(-0.0919926\pi\)
−0.972608 + 0.232450i \(0.925326\pi\)
\(272\) −6.05429 6.05429i −0.367095 0.367095i
\(273\) 0 0
\(274\) 4.51738i 0.272905i
\(275\) −7.61810 + 3.33577i −0.459389 + 0.201154i
\(276\) −5.12391 + 8.87488i −0.308423 + 0.534205i
\(277\) −2.47298 + 9.22930i −0.148587 + 0.554535i 0.850982 + 0.525194i \(0.176007\pi\)
−0.999569 + 0.0293404i \(0.990659\pi\)
\(278\) 14.0596i 0.843236i
\(279\) 0.818165 + 0.219227i 0.0489823 + 0.0131248i
\(280\) −6.39657 1.20591i −0.382268 0.0720668i
\(281\) −5.58408 + 5.58408i −0.333118 + 0.333118i −0.853769 0.520651i \(-0.825689\pi\)
0.520651 + 0.853769i \(0.325689\pi\)
\(282\) 21.5981 + 5.78719i 1.28615 + 0.344622i
\(283\) 5.46218 + 20.3851i 0.324693 + 1.21177i 0.914620 + 0.404314i \(0.132490\pi\)
−0.589927 + 0.807457i \(0.700843\pi\)
\(284\) 12.0315 3.22382i 0.713936 0.191298i
\(285\) −12.9191 11.1029i −0.765262 0.657679i
\(286\) 0 0
\(287\) −4.71953 + 4.71953i −0.278585 + 0.278585i
\(288\) −19.9576 11.5225i −1.17601 0.678970i
\(289\) −30.8040 17.7847i −1.81200 1.04616i
\(290\) 0.656733 + 0.123810i 0.0385647 + 0.00727037i
\(291\) 14.8057 + 14.8057i 0.867927 + 0.867927i
\(292\) −1.53991 2.66720i −0.0901164 0.156086i
\(293\) 2.01079 + 3.48280i 0.117472 + 0.203467i 0.918765 0.394805i \(-0.129188\pi\)
−0.801293 + 0.598272i \(0.795854\pi\)
\(294\) −12.2353 12.2353i −0.713579 0.713579i
\(295\) 9.32830 6.36899i 0.543115 0.370817i
\(296\) −10.6778 6.16482i −0.620633 0.358323i
\(297\) 7.09234 + 4.09477i 0.411539 + 0.237602i
\(298\) 3.13271 3.13271i 0.181473 0.181473i
\(299\) 0 0
\(300\) −7.88183 + 10.7092i −0.455058 + 0.618294i
\(301\) −7.39742 + 1.98213i −0.426380 + 0.114248i
\(302\) −1.77791 6.63524i −0.102307 0.381815i
\(303\) −26.2559 7.03525i −1.50836 0.404165i
\(304\) −2.28257 + 2.28257i −0.130914 + 0.130914i
\(305\) 0.863049 4.57792i 0.0494180 0.262131i
\(306\) 34.1386 + 9.14740i 1.95157 + 0.522922i
\(307\) 24.2191i 1.38226i 0.722732 + 0.691128i \(0.242886\pi\)
−0.722732 + 0.691128i \(0.757114\pi\)
\(308\) −0.395832 + 1.47727i −0.0225546 + 0.0841750i
\(309\) −4.97231 + 8.61229i −0.282865 + 0.489936i
\(310\) −0.366203 0.176055i −0.0207989 0.00999927i
\(311\) 7.87243i 0.446405i −0.974772 0.223202i \(-0.928349\pi\)
0.974772 0.223202i \(-0.0716511\pi\)
\(312\) 0 0
\(313\) 3.39121 + 3.39121i 0.191683 + 0.191683i 0.796423 0.604740i \(-0.206723\pi\)
−0.604740 + 0.796423i \(0.706723\pi\)
\(314\) 5.40824 + 20.1838i 0.305204 + 1.13904i
\(315\) 9.69191 3.39855i 0.546077 0.191487i
\(316\) −11.2264 + 6.48154i −0.631532 + 0.364615i
\(317\) −22.9255 −1.28762 −0.643812 0.765184i \(-0.722648\pi\)
−0.643812 + 0.765184i \(0.722648\pi\)
\(318\) 6.97580 4.02748i 0.391183 0.225850i
\(319\) 0.125816 0.469553i 0.00704436 0.0262899i
\(320\) 12.3893 + 10.6476i 0.692581 + 0.595216i
\(321\) −0.619393 1.07282i −0.0345712 0.0598790i
\(322\) −3.66768 + 0.982751i −0.204392 + 0.0547666i
\(323\) −9.90979 + 17.1643i −0.551395 + 0.955044i
\(324\) −0.551932 −0.0306629
\(325\) 0 0
\(326\) −21.8689 −1.21120
\(327\) 12.6541 21.9175i 0.699771 1.21204i
\(328\) 20.2131 5.41609i 1.11608 0.299053i
\(329\) −3.78001 6.54718i −0.208399 0.360958i
\(330\) −8.03868 6.90858i −0.442515 0.380305i
\(331\) −8.68470 + 32.4118i −0.477354 + 1.78151i 0.134910 + 0.990858i \(0.456925\pi\)
−0.612264 + 0.790653i \(0.709741\pi\)
\(332\) −7.08110 + 4.08828i −0.388626 + 0.224373i
\(333\) 19.4541 1.06608
\(334\) −1.51833 + 0.876609i −0.0830794 + 0.0479659i
\(335\) 15.4001 5.40018i 0.841398 0.295044i
\(336\) −0.820752 3.06309i −0.0447757 0.167105i
\(337\) 14.5544 + 14.5544i 0.792826 + 0.792826i 0.981953 0.189126i \(-0.0605656\pi\)
−0.189126 + 0.981953i \(0.560566\pi\)
\(338\) 0 0
\(339\) 5.39143i 0.292822i
\(340\) 13.9432 + 6.70333i 0.756178 + 0.363539i
\(341\) −0.147779 + 0.255960i −0.00800267 + 0.0138610i
\(342\) 3.44873 12.8708i 0.186486 0.695975i
\(343\) 12.5954i 0.680087i
\(344\) 23.1930 + 6.21454i 1.25048 + 0.335065i
\(345\) −4.44873 + 23.5977i −0.239512 + 1.27046i
\(346\) −10.9743 + 10.9743i −0.589983 + 0.589983i
\(347\) −22.0356 5.90442i −1.18293 0.316966i −0.386844 0.922145i \(-0.626435\pi\)
−0.796089 + 0.605179i \(0.793101\pi\)
\(348\) −0.201165 0.750759i −0.0107836 0.0402449i
\(349\) 10.0317 2.68798i 0.536983 0.143884i 0.0198718 0.999803i \(-0.493674\pi\)
0.517111 + 0.855918i \(0.327008\pi\)
\(350\) −4.87083 + 0.740762i −0.260357 + 0.0395954i
\(351\) 0 0
\(352\) 5.68599 5.68599i 0.303064 0.303064i
\(353\) 3.72420 + 2.15017i 0.198219 + 0.114442i 0.595825 0.803115i \(-0.296825\pi\)
−0.397605 + 0.917556i \(0.630159\pi\)
\(354\) 12.4673 + 7.19799i 0.662629 + 0.382569i
\(355\) 24.1049 16.4578i 1.27935 0.873491i
\(356\) 0.349887 + 0.349887i 0.0185440 + 0.0185440i
\(357\) −9.73511 16.8617i −0.515237 0.892416i
\(358\) 1.41082 + 2.44361i 0.0745640 + 0.129149i
\(359\) −10.4273 10.4273i −0.550333 0.550333i 0.376204 0.926537i \(-0.377229\pi\)
−0.926537 + 0.376204i \(0.877229\pi\)
\(360\) −31.6435 5.96555i −1.66776 0.314412i
\(361\) −9.98326 5.76384i −0.525435 0.303360i
\(362\) −9.17216 5.29555i −0.482078 0.278328i
\(363\) 16.2251 16.2251i 0.851599 0.851599i
\(364\) 0 0
\(365\) −5.47327 4.70382i −0.286484 0.246209i
\(366\) 5.73514 1.53673i 0.299780 0.0803259i
\(367\) 2.95657 + 11.0341i 0.154331 + 0.575973i 0.999162 + 0.0409383i \(0.0130347\pi\)
−0.844830 + 0.535034i \(0.820299\pi\)
\(368\) 4.39546 + 1.17776i 0.229129 + 0.0613950i
\(369\) −23.3472 + 23.3472i −1.21541 + 1.21541i
\(370\) −9.17073 1.72890i −0.476763 0.0898814i
\(371\) −2.63063 0.704874i −0.136575 0.0365953i
\(372\) 0.472562i 0.0245012i
\(373\) 7.28755 27.1975i 0.377335 1.40823i −0.472568 0.881294i \(-0.656673\pi\)
0.849903 0.526939i \(-0.176661\pi\)
\(374\) −6.16618 + 10.6801i −0.318846 + 0.552257i
\(375\) −9.12489 + 29.7923i −0.471207 + 1.53847i
\(376\) 23.7028i 1.22238i
\(377\) 0 0
\(378\) 3.43065 + 3.43065i 0.176453 + 0.176453i
\(379\) −4.38232 16.3551i −0.225105 0.840103i −0.982362 0.186987i \(-0.940128\pi\)
0.757258 0.653116i \(-0.226539\pi\)
\(380\) 2.52727 5.25684i 0.129646 0.269670i
\(381\) 5.24973 3.03093i 0.268952 0.155279i
\(382\) 18.9999 0.972119
\(383\) −5.71918 + 3.30197i −0.292236 + 0.168723i −0.638950 0.769248i \(-0.720631\pi\)
0.346714 + 0.937971i \(0.387298\pi\)
\(384\) 1.58553 5.91729i 0.0809114 0.301966i
\(385\) 0.270181 + 3.57354i 0.0137697 + 0.182124i
\(386\) 6.42793 + 11.1335i 0.327173 + 0.566680i
\(387\) −36.5946 + 9.80550i −1.86021 + 0.498441i
\(388\) −3.58475 + 6.20897i −0.181988 + 0.315212i
\(389\) −33.6949 −1.70840 −0.854199 0.519946i \(-0.825952\pi\)
−0.854199 + 0.519946i \(0.825952\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) 9.17126 15.8851i 0.463218 0.802318i
\(393\) −0.167570 + 0.0449004i −0.00845281 + 0.00226492i
\(394\) 7.30464 + 12.6520i 0.368003 + 0.637399i
\(395\) −19.7986 + 23.0372i −0.996175 + 1.15913i
\(396\) −1.95816 + 7.30795i −0.0984012 + 0.367238i
\(397\) 5.04104 2.91045i 0.253002 0.146071i −0.368136 0.929772i \(-0.620004\pi\)
0.621138 + 0.783701i \(0.286671\pi\)
\(398\) 15.0689 0.755337
\(399\) −6.35716 + 3.67031i −0.318256 + 0.183745i
\(400\) 5.49918 + 2.14986i 0.274959 + 0.107493i
\(401\) 0.0683280 + 0.255004i 0.00341214 + 0.0127343i 0.967611 0.252446i \(-0.0812351\pi\)
−0.964199 + 0.265181i \(0.914568\pi\)
\(402\) 14.7075 + 14.7075i 0.733544 + 0.733544i
\(403\) 0 0
\(404\) 9.30738i 0.463060i
\(405\) −1.22046 + 0.427966i −0.0606453 + 0.0212658i
\(406\) 0.143993 0.249404i 0.00714627 0.0123777i
\(407\) −1.75692 + 6.55691i −0.0870872 + 0.325014i
\(408\) 61.0446i 3.02216i
\(409\) 35.8975 + 9.61872i 1.77502 + 0.475615i 0.989661 0.143427i \(-0.0458121\pi\)
0.785358 + 0.619042i \(0.212479\pi\)
\(410\) 13.0809 8.93108i 0.646017 0.441074i
\(411\) −8.70518 + 8.70518i −0.429395 + 0.429395i
\(412\) −3.28909 0.881310i −0.162042 0.0434190i
\(413\) −1.25977 4.70151i −0.0619890 0.231346i
\(414\) −18.1438 + 4.86161i −0.891718 + 0.238935i
\(415\) −12.4881 + 14.5309i −0.613016 + 0.713293i
\(416\) 0 0
\(417\) −27.0934 + 27.0934i −1.32677 + 1.32677i
\(418\) 4.02660 + 2.32476i 0.196947 + 0.113708i
\(419\) 29.3721 + 16.9580i 1.43492 + 0.828451i 0.997490 0.0708027i \(-0.0225561\pi\)
0.437428 + 0.899253i \(0.355889\pi\)
\(420\) 3.23095 + 4.73219i 0.157654 + 0.230907i
\(421\) 21.5599 + 21.5599i 1.05076 + 1.05076i 0.998641 + 0.0521230i \(0.0165988\pi\)
0.0521230 + 0.998641i \(0.483401\pi\)
\(422\) 4.36253 + 7.55613i 0.212365 + 0.367826i
\(423\) −18.6995 32.3885i −0.909201 1.57478i
\(424\) 6.03777 + 6.03777i 0.293220 + 0.293220i
\(425\) 36.0298 + 4.01124i 1.74770 + 0.194574i
\(426\) 32.2162 + 18.6000i 1.56088 + 0.901175i
\(427\) −1.73853 1.00374i −0.0841335 0.0485745i
\(428\) 0.299934 0.299934i 0.0144979 0.0144979i
\(429\) 0 0
\(430\) 18.1223 1.37015i 0.873933 0.0660745i
\(431\) 4.44167 1.19014i 0.213948 0.0573271i −0.150253 0.988648i \(-0.548009\pi\)
0.364201 + 0.931320i \(0.381342\pi\)
\(432\) −1.50488 5.61627i −0.0724033 0.270213i
\(433\) 3.86627 + 1.03596i 0.185801 + 0.0497853i 0.350520 0.936555i \(-0.386005\pi\)
−0.164719 + 0.986341i \(0.552672\pi\)
\(434\) −0.123811 + 0.123811i −0.00594311 + 0.00594311i
\(435\) −1.02696 1.50414i −0.0492392 0.0721179i
\(436\) 8.37043 + 2.24285i 0.400871 + 0.107413i
\(437\) 10.5336i 0.503890i
\(438\) 2.38062 8.88461i 0.113751 0.424523i
\(439\) −11.3618 + 19.6793i −0.542271 + 0.939242i 0.456502 + 0.889723i \(0.349102\pi\)
−0.998773 + 0.0495192i \(0.984231\pi\)
\(440\) 4.86842 10.1265i 0.232093 0.482763i
\(441\) 28.9414i 1.37816i
\(442\) 0 0
\(443\) 1.84874 + 1.84874i 0.0878361 + 0.0878361i 0.749660 0.661824i \(-0.230217\pi\)
−0.661824 + 0.749660i \(0.730217\pi\)
\(444\) 2.80911 + 10.4837i 0.133314 + 0.497536i
\(445\) 1.04499 + 0.502388i 0.0495373 + 0.0238155i
\(446\) −6.25313 + 3.61025i −0.296094 + 0.170950i
\(447\) −12.0737 −0.571067
\(448\) 6.09644 3.51978i 0.288030 0.166294i
\(449\) −8.32705 + 31.0770i −0.392978 + 1.46661i 0.432219 + 0.901769i \(0.357731\pi\)
−0.825197 + 0.564845i \(0.808936\pi\)
\(450\) −24.0957 + 3.66451i −1.13588 + 0.172746i
\(451\) −5.76056 9.97759i −0.271254 0.469826i
\(452\) 1.78317 0.477798i 0.0838731 0.0224737i
\(453\) −9.36029 + 16.2125i −0.439785 + 0.761729i
\(454\) 17.5640 0.824318
\(455\) 0 0
\(456\) 23.0149 1.07777
\(457\) −14.1837 + 24.5669i −0.663486 + 1.14919i 0.316208 + 0.948690i \(0.397590\pi\)
−0.979693 + 0.200501i \(0.935743\pi\)
\(458\) 12.4416 3.33373i 0.581360 0.155775i
\(459\) −17.8496 30.9165i −0.833149 1.44306i
\(460\) −8.19898 + 0.619891i −0.382279 + 0.0289026i
\(461\) −2.97890 + 11.1174i −0.138741 + 0.517790i 0.861213 + 0.508244i \(0.169705\pi\)
−0.999954 + 0.00954570i \(0.996961\pi\)
\(462\) −3.95562 + 2.28378i −0.184032 + 0.106251i
\(463\) −29.9456 −1.39169 −0.695845 0.718192i \(-0.744970\pi\)
−0.695845 + 0.718192i \(0.744970\pi\)
\(464\) −0.298893 + 0.172566i −0.0138758 + 0.00801118i
\(465\) 0.366423 + 1.04496i 0.0169925 + 0.0484586i
\(466\) 6.58109 + 24.5609i 0.304863 + 1.13776i
\(467\) −16.1332 16.1332i −0.746557 0.746557i 0.227274 0.973831i \(-0.427019\pi\)
−0.973831 + 0.227274i \(0.927019\pi\)
\(468\) 0 0
\(469\) 7.03244i 0.324728i
\(470\) 5.93662 + 16.9299i 0.273836 + 0.780918i
\(471\) 28.4732 49.3170i 1.31197 2.27241i
\(472\) −3.94971 + 14.7405i −0.181800 + 0.678488i
\(473\) 13.2196i 0.607837i
\(474\) −37.3957 10.0201i −1.71764 0.460240i
\(475\) 1.51231 13.5838i 0.0693894 0.623270i
\(476\) 4.71411 4.71411i 0.216071 0.216071i
\(477\) −13.0136 3.48697i −0.595850 0.159657i
\(478\) −0.836524 3.12195i −0.0382617 0.142795i
\(479\) 37.5043 10.0493i 1.71362 0.459162i 0.737309 0.675555i \(-0.236096\pi\)
0.976306 + 0.216393i \(0.0694293\pi\)
\(480\) −2.27132 30.0415i −0.103671 1.37120i
\(481\) 0 0
\(482\) 13.0294 13.0294i 0.593473 0.593473i
\(483\) 8.96157 + 5.17396i 0.407765 + 0.235424i
\(484\) 6.80421 + 3.92841i 0.309282 + 0.178564i
\(485\) −3.11238 + 16.5092i −0.141326 + 0.749645i
\(486\) −11.8466 11.8466i −0.537372 0.537372i
\(487\) 14.4718 + 25.0660i 0.655782 + 1.13585i 0.981697 + 0.190448i \(0.0609941\pi\)
−0.325916 + 0.945399i \(0.605673\pi\)
\(488\) 3.14701 + 5.45078i 0.142458 + 0.246745i
\(489\) 42.1422 + 42.1422i 1.90574 + 1.90574i
\(490\) 2.57205 13.6431i 0.116193 0.616332i
\(491\) −6.30003 3.63733i −0.284317 0.164150i 0.351059 0.936353i \(-0.385822\pi\)
−0.635376 + 0.772203i \(0.719155\pi\)
\(492\) −15.9530 9.21046i −0.719216 0.415240i
\(493\) −1.49839 + 1.49839i −0.0674842 + 0.0674842i
\(494\) 0 0
\(495\) 1.33657 + 17.6781i 0.0600743 + 0.794571i
\(496\) 0.202689 0.0543104i 0.00910102 0.00243861i
\(497\) −3.25531 12.1490i −0.146021 0.544956i
\(498\) −23.5876 6.32027i −1.05698 0.283218i
\(499\) 4.24201 4.24201i 0.189899 0.189899i −0.605754 0.795652i \(-0.707128\pi\)
0.795652 + 0.605754i \(0.207128\pi\)
\(500\) −10.6622 0.377731i −0.476827 0.0168926i
\(501\) 4.61515 + 1.23663i 0.206190 + 0.0552483i
\(502\) 14.2889i 0.637745i
\(503\) 0.939636 3.50677i 0.0418963 0.156359i −0.941809 0.336149i \(-0.890875\pi\)
0.983705 + 0.179790i \(0.0575419\pi\)
\(504\) −6.93805 + 12.0171i −0.309046 + 0.535283i
\(505\) −7.21692 20.5810i −0.321149 0.915843i
\(506\) 6.55433i 0.291376i
\(507\) 0 0
\(508\) 1.46769 + 1.46769i 0.0651184 + 0.0651184i
\(509\) 6.02986 + 22.5037i 0.267269 + 0.997460i 0.960847 + 0.277079i \(0.0893664\pi\)
−0.693578 + 0.720381i \(0.743967\pi\)
\(510\) 15.2893 + 43.6015i 0.677020 + 1.93071i
\(511\) −2.69325 + 1.55495i −0.119143 + 0.0687870i
\(512\) −12.8442 −0.567640
\(513\) −11.6560 + 6.72962i −0.514627 + 0.297120i
\(514\) −6.13455 + 22.8945i −0.270584 + 1.00983i
\(515\) −7.95639 + 0.601550i −0.350600 + 0.0265075i
\(516\) −10.5683 18.3048i −0.465243 0.805824i
\(517\) 12.6052 3.37754i 0.554375 0.148544i
\(518\) −2.01075 + 3.48272i −0.0883472 + 0.153022i
\(519\) 42.2960 1.85659
\(520\) 0 0
\(521\) −13.0530 −0.571862 −0.285931 0.958250i \(-0.592303\pi\)
−0.285931 + 0.958250i \(0.592303\pi\)
\(522\) 0.712327 1.23379i 0.0311777 0.0540013i
\(523\) −16.4404 + 4.40520i −0.718890 + 0.192626i −0.599677 0.800243i \(-0.704704\pi\)
−0.119214 + 0.992869i \(0.538037\pi\)
\(524\) −0.0297008 0.0514432i −0.00129748 0.00224731i
\(525\) 10.8138 + 7.95882i 0.471952 + 0.347351i
\(526\) 0.344353 1.28514i 0.0150145 0.0560349i
\(527\) 1.11577 0.644187i 0.0486035 0.0280612i
\(528\) 5.47391 0.238221
\(529\) 7.05896 4.07549i 0.306911 0.177195i
\(530\) 5.82475 + 2.80030i 0.253011 + 0.121637i
\(531\) −6.23198 23.2581i −0.270445 1.00931i
\(532\) −1.77730 1.77730i −0.0770558 0.0770558i
\(533\) 0 0
\(534\) 1.47779i 0.0639501i
\(535\) 0.430663 0.895798i 0.0186192 0.0387287i
\(536\) −11.0243 + 19.0947i −0.476178 + 0.824765i
\(537\) 1.99023 7.42764i 0.0858847 0.320526i
\(538\) 8.11728i 0.349961i
\(539\) −9.75457 2.61373i −0.420159 0.112581i
\(540\) 5.92404 + 8.67662i 0.254930 + 0.373382i
\(541\) 10.9728 10.9728i 0.471756 0.471756i −0.430727 0.902483i \(-0.641743\pi\)
0.902483 + 0.430727i \(0.141743\pi\)
\(542\) 0.884606 + 0.237029i 0.0379971 + 0.0101813i
\(543\) 7.47039 + 27.8799i 0.320585 + 1.19644i
\(544\) −33.8583 + 9.07231i −1.45166 + 0.388972i
\(545\) 20.2483 1.53089i 0.867340 0.0655761i
\(546\) 0 0
\(547\) −20.4450 + 20.4450i −0.874167 + 0.874167i −0.992923 0.118756i \(-0.962109\pi\)
0.118756 + 0.992923i \(0.462109\pi\)
\(548\) −3.65063 2.10769i −0.155947 0.0900361i
\(549\) −8.60042 4.96545i −0.367057 0.211920i
\(550\) 0.941005 8.45230i 0.0401246 0.360407i
\(551\) 0.564920 + 0.564920i 0.0240664 + 0.0240664i
\(552\) −16.2218 28.0970i −0.690446 1.19589i
\(553\) 6.54485 + 11.3360i 0.278315 + 0.482056i
\(554\) −6.90913 6.90913i −0.293541 0.293541i
\(555\) 14.3407 + 21.0040i 0.608729 + 0.891572i
\(556\) −11.3619 6.55982i −0.481854 0.278198i
\(557\) 11.7609 + 6.79015i 0.498324 + 0.287708i 0.728021 0.685555i \(-0.240440\pi\)
−0.229697 + 0.973262i \(0.573774\pi\)
\(558\) −0.612485 + 0.612485i −0.0259286 + 0.0259286i
\(559\) 0 0
\(560\) 1.65839 1.92967i 0.0700797 0.0815432i
\(561\) 32.4636 8.69858i 1.37061 0.367254i
\(562\) −2.09014 7.80052i −0.0881673 0.329045i
\(563\) −4.68514 1.25538i −0.197455 0.0529080i 0.158736 0.987321i \(-0.449258\pi\)
−0.356191 + 0.934413i \(0.615925\pi\)
\(564\) 14.7539 14.7539i 0.621251 0.621251i
\(565\) 3.57256 2.43920i 0.150299 0.102618i
\(566\) −20.8462 5.58573i −0.876232 0.234786i
\(567\) 0.557323i 0.0234054i
\(568\) −10.2063 + 38.0904i −0.428247 + 1.59824i
\(569\) −0.124396 + 0.215461i −0.00521497 + 0.00903259i −0.868621 0.495477i \(-0.834993\pi\)
0.863406 + 0.504509i \(0.168327\pi\)
\(570\) 16.4385 5.76432i 0.688534 0.241441i
\(571\) 7.72842i 0.323424i −0.986838 0.161712i \(-0.948298\pi\)
0.986838 0.161712i \(-0.0517016\pi\)
\(572\) 0 0
\(573\) −36.6136 36.6136i −1.52955 1.52955i
\(574\) −1.76654 6.59281i −0.0737339 0.275179i
\(575\) −17.6494 + 7.72820i −0.736030 + 0.322288i
\(576\) 30.1587 17.4121i 1.25661 0.725506i
\(577\) 12.1339 0.505141 0.252570 0.967578i \(-0.418724\pi\)
0.252570 + 0.967578i \(0.418724\pi\)
\(578\) 31.5007 18.1869i 1.31026 0.756477i
\(579\) 9.06783 33.8416i 0.376846 1.40641i
\(580\) 0.406469 0.472958i 0.0168777 0.0196385i
\(581\) 4.12821 + 7.15027i 0.171267 + 0.296643i
\(582\) −20.6824 + 5.54184i −0.857315 + 0.229717i
\(583\) 2.35054 4.07125i 0.0973492 0.168614i
\(584\) 9.75040 0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) −18.2647 + 31.6354i −0.753865 + 1.30573i 0.192072 + 0.981381i \(0.438479\pi\)
−0.945937 + 0.324351i \(0.894854\pi\)
\(588\) −15.5964 + 4.17904i −0.643185 + 0.172341i
\(589\) −0.242870 0.420663i −0.0100073 0.0173331i
\(590\) 0.870813 + 11.5178i 0.0358508 + 0.474180i
\(591\) 10.3046 38.4573i 0.423875 1.58192i
\(592\) 4.17380 2.40974i 0.171542 0.0990398i
\(593\) 16.6936 0.685525 0.342762 0.939422i \(-0.388637\pi\)
0.342762 + 0.939422i \(0.388637\pi\)
\(594\) −7.25276 + 4.18738i −0.297584 + 0.171810i
\(595\) 6.76880 14.0794i 0.277494 0.577200i
\(596\) −1.06999 3.99327i −0.0438287 0.163571i
\(597\) −29.0384 29.0384i −1.18846 1.18846i
\(598\) 0 0
\(599\) 13.2549i 0.541579i 0.962639 + 0.270789i \(0.0872847\pi\)
−0.962639 + 0.270789i \(0.912715\pi\)
\(600\) −16.8853 38.5621i −0.689341 1.57429i
\(601\) −0.546605 + 0.946748i −0.0222965 + 0.0386187i −0.876958 0.480566i \(-0.840431\pi\)
0.854662 + 0.519185i \(0.173764\pi\)
\(602\) 2.02696 7.56474i 0.0826129 0.308316i
\(603\) 34.7891i 1.41672i
\(604\) −6.19166 1.65905i −0.251935 0.0675058i
\(605\) 18.0919 + 3.41077i 0.735542 + 0.138667i
\(606\) 19.6554 19.6554i 0.798446 0.798446i
\(607\) 40.4361 + 10.8348i 1.64125 + 0.439771i 0.957144 0.289612i \(-0.0935263\pi\)
0.684105 + 0.729384i \(0.260193\pi\)
\(608\) 3.42042 + 12.7652i 0.138716 + 0.517696i
\(609\) −0.758093 + 0.203130i −0.0307195 + 0.00823126i
\(610\) 3.61298 + 3.10506i 0.146285 + 0.125720i
\(611\) 0 0
\(612\) 23.3204 23.3204i 0.942673 0.942673i
\(613\) 24.1705 + 13.9548i 0.976235 + 0.563630i 0.901131 0.433546i \(-0.142738\pi\)
0.0751039 + 0.997176i \(0.476071\pi\)
\(614\) −21.4487 12.3834i −0.865601 0.499755i
\(615\) −42.4179 7.99680i −1.71046 0.322462i
\(616\) −3.42371 3.42371i −0.137945 0.137945i
\(617\) 2.19132 + 3.79548i 0.0882193 + 0.152800i 0.906758 0.421650i \(-0.138549\pi\)
−0.818539 + 0.574451i \(0.805216\pi\)
\(618\) −5.08477 8.80708i −0.204540 0.354273i
\(619\) 8.67268 + 8.67268i 0.348584 + 0.348584i 0.859582 0.510998i \(-0.170724\pi\)
−0.510998 + 0.859582i \(0.670724\pi\)
\(620\) −0.313136 + 0.213797i −0.0125759 + 0.00858628i
\(621\) 16.4313 + 9.48662i 0.659366 + 0.380685i
\(622\) 6.97193 + 4.02525i 0.279549 + 0.161398i
\(623\) 0.353304 0.353304i 0.0141548 0.0141548i
\(624\) 0 0
\(625\) −23.8697 + 7.43216i −0.954788 + 0.297287i
\(626\) −4.73726 + 1.26934i −0.189339 + 0.0507332i
\(627\) −3.27952 12.2393i −0.130971 0.488791i
\(628\) 18.8345 + 5.04668i 0.751577 + 0.201385i
\(629\) 20.9238 20.9238i 0.834287 0.834287i
\(630\) −1.94575 + 10.3210i −0.0775207 + 0.411198i
\(631\) −24.4748 6.55800i −0.974326 0.261070i −0.263673 0.964612i \(-0.584934\pi\)
−0.710653 + 0.703542i \(0.751601\pi\)
\(632\) 41.0398i 1.63248i
\(633\) 6.15419 22.9677i 0.244607 0.912886i
\(634\) 11.7220 20.3031i 0.465540 0.806340i
\(635\) 4.38349 + 2.10740i 0.173954 + 0.0836297i
\(636\) 7.51646i 0.298047i
\(637\) 0 0
\(638\) 0.351511 + 0.351511i 0.0139164 + 0.0139164i
\(639\) −16.1038 60.1003i −0.637057 2.37753i
\(640\) 4.63834 1.62647i 0.183346 0.0642920i
\(641\) 1.41675 0.817961i 0.0559582 0.0323075i −0.471760 0.881727i \(-0.656381\pi\)
0.527718 + 0.849420i \(0.323048\pi\)
\(642\) 1.26681 0.0499968
\(643\) 34.3541 19.8344i 1.35479 0.782191i 0.365878 0.930663i \(-0.380769\pi\)
0.988917 + 0.148472i \(0.0474354\pi\)
\(644\) −0.917051 + 3.42248i −0.0361369 + 0.134865i
\(645\) −37.5627 32.2820i −1.47903 1.27110i
\(646\) −10.1339 17.5525i −0.398714 0.690593i
\(647\) 14.3588 3.84742i 0.564501 0.151258i 0.0347277 0.999397i \(-0.488944\pi\)
0.529773 + 0.848139i \(0.322277\pi\)
\(648\) 0.873682 1.51326i 0.0343215 0.0594465i
\(649\) 8.40185 0.329801
\(650\) 0 0
\(651\) 0.477178 0.0187021
\(652\) −10.2034 + 17.6729i −0.399597 + 0.692123i
\(653\) −12.4172 + 3.32718i −0.485922 + 0.130203i −0.493459 0.869769i \(-0.664268\pi\)
0.00753655 + 0.999972i \(0.497601\pi\)
\(654\) 12.9403 + 22.4132i 0.506005 + 0.876426i
\(655\) −0.105565 0.0907243i −0.00412476 0.00354489i
\(656\) −2.11708 + 7.90103i −0.0826579 + 0.308483i
\(657\) −13.3234 + 7.69225i −0.519794 + 0.300103i
\(658\) 7.73102 0.301387
\(659\) 20.8742 12.0517i 0.813144 0.469469i −0.0349025 0.999391i \(-0.511112\pi\)
0.848047 + 0.529922i \(0.177779\pi\)
\(660\) −9.33366 + 3.27293i −0.363312 + 0.127399i
\(661\) 10.1325 + 37.8150i 0.394108 + 1.47083i 0.823293 + 0.567616i \(0.192134\pi\)
−0.429185 + 0.903217i \(0.641199\pi\)
\(662\) −24.2637 24.2637i −0.943036 0.943036i
\(663\) 0 0
\(664\) 25.8862i 1.00458i
\(665\) −5.30818 2.55196i −0.205843 0.0989606i
\(666\) −9.94705 + 17.2288i −0.385440 + 0.667602i
\(667\) 0.291487 1.08784i 0.0112864 0.0421215i
\(668\) 1.63601i 0.0632991i
\(669\) 19.0071 + 5.09295i 0.734858 + 0.196905i
\(670\) −3.09174 + 16.3997i −0.119444 + 0.633575i
\(671\) 2.45030 2.45030i 0.0945926 0.0945926i
\(672\) −12.5402 3.36013i −0.483747 0.129620i
\(673\) 2.64660 + 9.87723i 0.102019 + 0.380739i 0.997990 0.0633730i \(-0.0201858\pi\)
−0.895971 + 0.444112i \(0.853519\pi\)
\(674\) −20.3313 + 5.44776i −0.783132 + 0.209840i
\(675\) 19.8274 + 14.5927i 0.763157 + 0.561675i
\(676\) 0 0
\(677\) 29.8933 29.8933i 1.14889 1.14889i 0.162121 0.986771i \(-0.448167\pi\)
0.986771 0.162121i \(-0.0518333\pi\)
\(678\) 4.77472 + 2.75669i 0.183372 + 0.105870i
\(679\) 6.26961 + 3.61976i 0.240606 + 0.138914i
\(680\) −40.4503 + 27.6178i −1.55120 + 1.05910i
\(681\) −33.8465 33.8465i −1.29700 1.29700i
\(682\) −0.151121 0.261750i −0.00578673 0.0100229i
\(683\) 10.0103 + 17.3384i 0.383035 + 0.663436i 0.991494 0.130149i \(-0.0415455\pi\)
−0.608459 + 0.793585i \(0.708212\pi\)
\(684\) −8.79221 8.79221i −0.336178 0.336178i
\(685\) −9.70677 1.82996i −0.370876 0.0699191i
\(686\) −11.1546 6.44013i −0.425886 0.245885i
\(687\) −30.3998 17.5513i −1.15983 0.669625i
\(688\) −6.63664 + 6.63664i −0.253019 + 0.253019i
\(689\) 0 0
\(690\) −18.6238 16.0056i −0.708994 0.609322i
\(691\) −34.1813 + 9.15886i −1.30032 + 0.348420i −0.841571 0.540147i \(-0.818369\pi\)
−0.458749 + 0.888566i \(0.651702\pi\)
\(692\) 3.74834 + 13.9890i 0.142491 + 0.531782i
\(693\) 7.37933 + 1.97729i 0.280318 + 0.0751109i
\(694\) 16.4960 16.4960i 0.626181 0.626181i
\(695\) −30.2106 5.69543i −1.14595 0.216040i
\(696\) 2.37683 + 0.636870i 0.0900935 + 0.0241405i
\(697\) 50.2221i 1.90230i
\(698\) −2.74877 + 10.2586i −0.104043 + 0.388292i
\(699\) 34.6479 60.0120i 1.31051 2.26986i
\(700\) −1.67397 + 4.28188i −0.0632701 + 0.161840i
\(701\) 37.1781i 1.40420i 0.712080 + 0.702098i \(0.247753\pi\)
−0.712080 + 0.702098i \(0.752247\pi\)
\(702\) 0 0
\(703\) −7.88864 7.88864i −0.297526 0.297526i
\(704\) 3.14502 + 11.7374i 0.118532 + 0.442368i
\(705\) 21.1845 44.0647i 0.797854 1.65957i
\(706\) −3.80843 + 2.19880i −0.143332 + 0.0827529i
\(707\) −9.39830 −0.353459
\(708\) 11.6338 6.71678i 0.437225 0.252432i
\(709\) 12.4732 46.5506i 0.468440 1.74824i −0.176783 0.984250i \(-0.556569\pi\)
0.645224 0.763994i \(-0.276764\pi\)
\(710\) 2.25023 + 29.7626i 0.0844497 + 1.11697i
\(711\) 32.3770 + 56.0786i 1.21423 + 2.10311i
\(712\) −1.51316 + 0.405449i −0.0567079 + 0.0151948i
\(713\) −0.342369 + 0.593001i −0.0128218 + 0.0222080i
\(714\) 19.9106 0.745135
\(715\) 0 0
\(716\) 2.63300 0.0983998
\(717\) −4.40411 + 7.62814i −0.164474 + 0.284878i
\(718\) 14.5662 3.90299i 0.543604 0.145658i
\(719\) 16.6992 + 28.9239i 0.622777 + 1.07868i 0.988966 + 0.148141i \(0.0473288\pi\)
−0.366190 + 0.930540i \(0.619338\pi\)
\(720\) 8.20394 9.54594i 0.305743 0.355756i
\(721\) −0.889918 + 3.32122i −0.0331423 + 0.123689i
\(722\) 10.2091 5.89421i 0.379942 0.219360i
\(723\) −50.2164 −1.86757
\(724\) −8.55897 + 4.94153i −0.318092 + 0.183650i
\(725\) 0.532076 1.36101i 0.0197608 0.0505465i
\(726\) 6.07313 + 22.6652i 0.225395 + 0.841186i
\(727\) −23.6487 23.6487i −0.877083 0.877083i 0.116149 0.993232i \(-0.462945\pi\)
−0.993232 + 0.116149i \(0.962945\pi\)
\(728\) 0 0
\(729\) 43.9226i 1.62676i
\(730\) 6.96430 2.44209i 0.257760 0.0903860i
\(731\) −28.8130 + 49.9055i −1.06569 + 1.84582i
\(732\) 1.43399 5.35173i 0.0530018 0.197806i
\(733\) 14.7049i 0.543138i 0.962419 + 0.271569i \(0.0875424\pi\)
−0.962419 + 0.271569i \(0.912458\pi\)
\(734\) −11.2836 3.02344i −0.416486 0.111597i
\(735\) −31.2472 + 21.3343i −1.15257 + 0.786929i
\(736\) 13.1731 13.1731i 0.485568 0.485568i
\(737\) 11.7255 + 3.14184i 0.431914 + 0.115731i
\(738\) −8.73896 32.6142i −0.321686 1.20055i
\(739\) 19.8706 5.32432i 0.730953 0.195858i 0.125900 0.992043i \(-0.459818\pi\)
0.605054 + 0.796185i \(0.293152\pi\)
\(740\) −5.67600 + 6.60447i −0.208654 + 0.242785i
\(741\) 0 0
\(742\) 1.96931 1.96931i 0.0722956 0.0722956i
\(743\) −38.6601 22.3204i −1.41830 0.818856i −0.422151 0.906526i \(-0.638725\pi\)
−0.996150 + 0.0876692i \(0.972058\pi\)
\(744\) −1.29565 0.748042i −0.0475007 0.0274246i
\(745\) −5.46240 8.00048i −0.200127 0.293115i
\(746\) 20.3603 + 20.3603i 0.745443 + 0.745443i
\(747\) 20.4220 + 35.3720i 0.747202 + 1.29419i
\(748\) 5.75395 + 9.96614i 0.210385 + 0.364398i
\(749\) −0.302864 0.302864i −0.0110664 0.0110664i
\(750\) −21.7188 23.3142i −0.793058 0.851313i
\(751\) −15.2247 8.78996i −0.555555 0.320750i 0.195804 0.980643i \(-0.437268\pi\)
−0.751360 + 0.659893i \(0.770602\pi\)
\(752\) −8.02381 4.63255i −0.292598 0.168932i
\(753\) −27.5353 + 27.5353i −1.00344 + 1.00344i
\(754\) 0 0
\(755\) −14.9778 + 1.13241i −0.545097 + 0.0412125i
\(756\) 4.37306 1.17176i 0.159047 0.0426164i
\(757\) −9.10848 33.9933i −0.331053 1.23551i −0.908085 0.418786i \(-0.862456\pi\)
0.577032 0.816722i \(-0.304211\pi\)
\(758\) 16.7250 + 4.48144i 0.607478 + 0.162773i
\(759\) −12.6305 + 12.6305i −0.458457 + 0.458457i
\(760\) 10.4124 + 15.2505i 0.377697 + 0.553192i
\(761\) −11.3127 3.03122i −0.410084 0.109882i 0.0478787 0.998853i \(-0.484754\pi\)
−0.457962 + 0.888972i \(0.651421\pi\)
\(762\) 6.19897i 0.224565i
\(763\) 2.26476 8.45219i 0.0819897 0.305990i
\(764\) 8.86485 15.3544i 0.320719 0.555502i
\(765\) 33.4849 69.6501i 1.21065 2.51820i
\(766\) 6.75331i 0.244007i
\(767\) 0 0
\(768\) 33.2233 + 33.2233i 1.19884 + 1.19884i
\(769\) −4.90954 18.3227i −0.177043 0.660732i −0.996195 0.0871555i \(-0.972222\pi\)
0.819152 0.573576i \(-0.194444\pi\)
\(770\) −3.30292 1.58791i −0.119029 0.0572242i
\(771\) 55.9401 32.2971i 2.01463 1.16315i
\(772\) 11.9964 0.431760
\(773\) −14.2114 + 8.20497i −0.511149 + 0.295112i −0.733306 0.679899i \(-0.762024\pi\)
0.222157 + 0.975011i \(0.428690\pi\)
\(774\) 10.0273 37.4223i 0.360423 1.34512i
\(775\) −0.526647 + 0.715564i −0.0189177 + 0.0257038i
\(776\) −11.3490 19.6570i −0.407404 0.705644i
\(777\) 10.5861 2.83655i 0.379775 0.101761i
\(778\) 17.2285 29.8406i 0.617671 1.06984i
\(779\) 18.9346 0.678403
\(780\) 0 0
\(781\) 21.7109 0.776876
\(782\) −14.2856 + 24.7434i −0.510852 + 0.884822i
\(783\) −1.38999 + 0.372446i −0.0496741 + 0.0133101i
\(784\) 3.58492 + 6.20926i 0.128033 + 0.221759i
\(785\) 45.5610 3.44468i 1.62614 0.122946i
\(786\) 0.0459159 0.171361i 0.00163777 0.00611223i
\(787\) −11.7781 + 6.80008i −0.419844 + 0.242397i −0.695010 0.719000i \(-0.744600\pi\)
0.275167 + 0.961396i \(0.411267\pi\)
\(788\) 13.6326 0.485642
\(789\) −3.14011 + 1.81294i −0.111791 + 0.0645424i
\(790\) −10.2789 29.3130i −0.365706 1.04291i
\(791\) −0.482465 1.80058i −0.0171545 0.0640214i
\(792\) −16.9369 16.9369i −0.601827 0.601827i
\(793\) 0 0
\(794\) 5.95255i 0.211248i
\(795\) −5.82824 16.6208i −0.206706 0.589480i
\(796\) 7.03076 12.1776i 0.249199 0.431625i
\(797\) 7.74769 28.9148i 0.274437 1.02421i −0.681780 0.731557i \(-0.738794\pi\)
0.956218 0.292657i \(-0.0945393\pi\)
\(798\) 7.50664i 0.265732i
\(799\) −54.9476 14.7232i −1.94391 0.520868i
\(800\) 18.8790 15.0965i 0.667473 0.533740i
\(801\) 1.74778 1.74778i 0.0617546 0.0617546i
\(802\) −0.260771 0.0698734i −0.00920815 0.00246732i
\(803\) −1.38939 5.18527i −0.0490305 0.182984i
\(804\) 18.7477 5.02343i 0.661180 0.177163i
\(805\) 0.625946 + 8.27906i 0.0220617 + 0.291799i
\(806\) 0 0
\(807\) −15.6423 + 15.6423i −0.550636 + 0.550636i
\(808\) 25.5185 + 14.7331i 0.897739 + 0.518310i
\(809\) −2.54661 1.47029i −0.0895342 0.0516926i 0.454564 0.890714i \(-0.349795\pi\)
−0.544099 + 0.839021i \(0.683128\pi\)
\(810\) 0.245021 1.29968i 0.00860916 0.0456661i
\(811\) −16.3366 16.3366i −0.573657 0.573657i 0.359492 0.933148i \(-0.382950\pi\)
−0.933148 + 0.359492i \(0.882950\pi\)
\(812\) −0.134367 0.232730i −0.00471536 0.00816724i
\(813\) −1.24791 2.16144i −0.0437660 0.0758050i
\(814\) −4.90856 4.90856i −0.172045 0.172045i
\(815\) −8.85892 + 46.9910i −0.310315 + 1.64602i
\(816\) −20.6647 11.9307i −0.723408 0.417660i
\(817\) 18.8153 + 10.8630i 0.658262 + 0.380048i
\(818\) −26.8732 + 26.8732i −0.939599 + 0.939599i
\(819\) 0 0
\(820\) −1.11428 14.7380i −0.0389124 0.514674i
\(821\) 44.3125 11.8735i 1.54652 0.414388i 0.618151 0.786059i \(-0.287882\pi\)
0.928364 + 0.371672i \(0.121215\pi\)
\(822\) −3.25838 12.1605i −0.113649 0.424145i
\(823\) 17.1209 + 4.58752i 0.596796 + 0.159911i 0.544557 0.838724i \(-0.316698\pi\)
0.0522385 + 0.998635i \(0.483364\pi\)
\(824\) 7.62280 7.62280i 0.265553 0.265553i
\(825\) −18.1013 + 14.4746i −0.630206 + 0.503940i
\(826\) 4.80785 + 1.28826i 0.167286 + 0.0448242i
\(827\) 5.79276i 0.201434i 0.994915 + 0.100717i \(0.0321137\pi\)
−0.994915 + 0.100717i \(0.967886\pi\)
\(828\) −4.53660 + 16.9308i −0.157658 + 0.588387i
\(829\) −16.8799 + 29.2368i −0.586262 + 1.01544i 0.408454 + 0.912779i \(0.366068\pi\)
−0.994717 + 0.102657i \(0.967265\pi\)
\(830\) −6.48347 18.4894i −0.225045 0.641776i
\(831\) 26.6284i 0.923727i
\(832\) 0 0
\(833\) 31.1279 + 31.1279i 1.07852 + 1.07852i
\(834\) −10.1412 37.8473i −0.351160 1.31055i
\(835\) 1.26856 + 3.61764i 0.0439002 + 0.125193i
\(836\) 3.75741 2.16934i 0.129953 0.0750282i
\(837\) 0.874920 0.0302417
\(838\) −30.0364 + 17.3415i −1.03759 + 0.599053i
\(839\) −10.1452 + 37.8626i −0.350253 + 1.30716i 0.536101 + 0.844154i \(0.319897\pi\)
−0.886354 + 0.463008i \(0.846770\pi\)
\(840\) −18.0889 + 1.36763i −0.624127 + 0.0471877i
\(841\) −14.4573 25.0408i −0.498527 0.863475i
\(842\) −30.1175 + 8.06995i −1.03792 + 0.278109i
\(843\) −11.0041 + 19.0597i −0.379002 + 0.656451i
\(844\) 8.14177 0.280251
\(845\) 0 0
\(846\) 38.2449 1.31489
\(847\) 3.96679 6.87068i 0.136300 0.236079i
\(848\) −3.22393 + 0.863850i −0.110710 + 0.0296647i
\(849\) 29.4076 + 50.9354i 1.00927 + 1.74810i
\(850\) −21.9748 + 29.8575i −0.753728 + 1.02410i
\(851\) −4.07037 + 15.1908i −0.139531 + 0.520735i
\(852\) 30.0625 17.3566i 1.02992 0.594626i
\(853\) −40.6417 −1.39154 −0.695772 0.718262i \(-0.744938\pi\)
−0.695772 + 0.718262i \(0.744938\pi\)
\(854\) 1.77785 1.02644i 0.0608369 0.0351242i
\(855\) −26.2593 12.6244i −0.898048 0.431744i
\(856\) 0.347564 + 1.29713i 0.0118795 + 0.0443348i
\(857\) 27.2327 + 27.2327i 0.930252 + 0.930252i 0.997721 0.0674695i \(-0.0214925\pi\)
−0.0674695 + 0.997721i \(0.521493\pi\)
\(858\) 0 0
\(859\) 44.5502i 1.52003i 0.649904 + 0.760016i \(0.274809\pi\)
−0.649904 + 0.760016i \(0.725191\pi\)
\(860\) 7.34811 15.2844i 0.250568 0.521194i
\(861\) −9.30043 + 16.1088i −0.316958 + 0.548987i
\(862\) −1.21706 + 4.54213i −0.0414532 + 0.154706i
\(863\) 55.4497i 1.88753i −0.330615 0.943766i \(-0.607256\pi\)
0.330615 0.943766i \(-0.392744\pi\)
\(864\) −22.9928 6.16090i −0.782230 0.209598i
\(865\) 19.1356 + 28.0268i 0.650629 + 0.952940i
\(866\) −2.89432 + 2.89432i −0.0983531 + 0.0983531i
\(867\) −95.7502 25.6562i −3.25185 0.871330i
\(868\) 0.0422883 + 0.157822i 0.00143536 + 0.00535683i
\(869\) −21.8250 + 5.84800i −0.740363 + 0.198380i
\(870\) 1.85718 0.140414i 0.0629643 0.00476048i
\(871\) 0 0
\(872\) −19.3993 + 19.3993i −0.656944 + 0.656944i
\(873\) 31.0154 + 17.9068i 1.04971 + 0.606052i
\(874\) 9.32869 + 5.38592i 0.315548 + 0.182181i
\(875\) −0.381420 + 10.7663i −0.0128944 + 0.363968i
\(876\) −6.06917 6.06917i −0.205058 0.205058i
\(877\) 2.68849 + 4.65661i 0.0907839 + 0.157242i 0.907841 0.419314i \(-0.137729\pi\)
−0.817057 + 0.576557i \(0.804396\pi\)
\(878\) −11.6188 20.1244i −0.392116 0.679166i
\(879\) 7.92505 + 7.92505i 0.267305 + 0.267305i
\(880\) 2.47651 + 3.62721i 0.0834831 + 0.122273i
\(881\) 37.0890 + 21.4133i 1.24956 + 0.721434i 0.971022 0.238992i \(-0.0768169\pi\)
0.278538 + 0.960425i \(0.410150\pi\)
\(882\) −25.6309 14.7980i −0.863037 0.498274i
\(883\) −32.9568 + 32.9568i −1.10908 + 1.10908i −0.115813 + 0.993271i \(0.536947\pi\)
−0.993271 + 0.115813i \(0.963053\pi\)
\(884\) 0 0
\(885\) 20.5172 23.8733i 0.689677 0.802494i
\(886\) −2.58254 + 0.691990i −0.0867622 + 0.0232478i
\(887\) −5.47136 20.4194i −0.183710 0.685616i −0.994903 0.100837i \(-0.967848\pi\)
0.811193 0.584779i \(-0.198819\pi\)
\(888\) −33.1905 8.89336i −1.11380 0.298442i
\(889\) 1.48203 1.48203i 0.0497057 0.0497057i
\(890\) −0.979235 + 0.668582i −0.0328240 + 0.0224109i
\(891\) −0.929249 0.248992i −0.0311310 0.00834153i
\(892\) 6.73778i 0.225598i
\(893\) −5.55089 + 20.7162i −0.185753 + 0.693241i
\(894\) 6.17340 10.6926i 0.206469 0.357616i
\(895\) 5.82224 2.04162i 0.194616 0.0682438i
\(896\) 2.11809i 0.0707605i
\(897\) 0 0
\(898\) −23.2645 23.2645i −0.776346 0.776346i
\(899\) −0.0134414 0.0501642i −0.000448297 0.00167307i
\(900\) −8.28103 + 21.1822i −0.276034 + 0.706074i
\(901\) −17.7471 + 10.2463i −0.591242 + 0.341354i
\(902\) 11.7817 0.392288
\(903\) −18.4836 + 10.6715i −0.615096 + 0.355126i
\(904\) −1.51266 + 5.64533i −0.0503104 + 0.187761i
\(905\) −15.0944 + 17.5636i −0.501756 + 0.583833i
\(906\) −9.57200 16.5792i −0.318008 0.550807i
\(907\) −10.6869 + 2.86355i −0.354853 + 0.0950825i −0.431842 0.901949i \(-0.642136\pi\)
0.0769889 + 0.997032i \(0.475469\pi\)
\(908\) 8.19488 14.1940i 0.271957 0.471043i
\(909\) −46.4928 −1.54207
\(910\) 0 0
\(911\) −15.0479 −0.498560 −0.249280 0.968431i \(-0.580194\pi\)
−0.249280 + 0.968431i \(0.580194\pi\)
\(912\) −4.49810 + 7.79093i −0.148947 + 0.257983i
\(913\) −13.7663 + 3.68867i −0.455598 + 0.122077i
\(914\) −14.5045 25.1226i −0.479767 0.830980i
\(915\) −0.978791 12.9459i −0.0323578 0.427980i
\(916\) 3.11086 11.6099i 0.102786 0.383602i
\(917\) −0.0519457 + 0.0299909i −0.00171540 + 0.000990386i
\(918\) 36.5067 1.20490
\(919\) −10.8342 + 6.25513i −0.357388 + 0.206338i −0.667934 0.744220i \(-0.732821\pi\)
0.310547 + 0.950558i \(0.399488\pi\)
\(920\) 11.2790 23.4608i 0.371857 0.773480i
\(921\) 17.4692 + 65.1960i 0.575630 + 2.14828i
\(922\) −8.32259 8.32259i −0.274090 0.274090i
\(923\) 0 0
\(924\) 4.26220i 0.140216i
\(925\) −7.42999 + 19.0053i −0.244297 + 0.624891i
\(926\) 15.3114 26.5202i 0.503165 0.871508i
\(927\) −4.40237 + 16.4299i −0.144593 + 0.539628i
\(928\) 1.41296i 0.0463826i
\(929\) 47.0874 + 12.6170i 1.54489 + 0.413952i 0.927841 0.372975i \(-0.121662\pi\)
0.617047 + 0.786926i \(0.288329\pi\)
\(930\) −1.11278 0.209786i −0.0364895 0.00687915i
\(931\) 11.7357 11.7357i 0.384623 0.384623i
\(932\) 22.9190 + 6.14112i 0.750736 + 0.201159i
\(933\) −5.67838 21.1920i −0.185902 0.693795i
\(934\) 22.5369 6.03874i 0.737429 0.197594i
\(935\) 20.4512 + 17.5761i 0.668825 + 0.574800i
\(936\) 0 0
\(937\) 7.38027 7.38027i 0.241103 0.241103i −0.576203 0.817306i \(-0.695466\pi\)
0.817306 + 0.576203i \(0.195466\pi\)
\(938\) 6.22802 + 3.59575i 0.203352 + 0.117405i
\(939\) 11.5750 + 6.68281i 0.377735 + 0.218085i
\(940\) 16.4514 + 3.10149i 0.536586 + 0.101159i
\(941\) 1.54410 + 1.54410i 0.0503363 + 0.0503363i 0.731827 0.681491i \(-0.238668\pi\)
−0.681491 + 0.731827i \(0.738668\pi\)
\(942\) 29.1172 + 50.4324i 0.948688 + 1.64318i
\(943\) −13.3459 23.1158i −0.434602 0.752753i
\(944\) −4.21798 4.21798i −0.137284 0.137284i
\(945\) 8.76137 5.98191i 0.285007 0.194591i
\(946\) 11.7074 + 6.75929i 0.380642 + 0.219764i
\(947\) 5.81670 + 3.35827i 0.189017 + 0.109129i 0.591522 0.806289i \(-0.298527\pi\)
−0.402505 + 0.915418i \(0.631860\pi\)
\(948\) −25.5454 + 25.5454i −0.829676 + 0.829676i
\(949\) 0 0
\(950\) 11.2568 + 8.28486i 0.365218 + 0.268796i
\(951\) −61.7137 + 16.5361i −2.00121 + 0.536221i
\(952\) 5.46272 + 20.3871i 0.177048 + 0.660751i
\(953\) 17.4402 + 4.67309i 0.564944 + 0.151376i 0.529977 0.848012i \(-0.322201\pi\)
0.0349673 + 0.999388i \(0.488867\pi\)
\(954\) 9.74205 9.74205i 0.315411 0.315411i
\(955\) 7.69672 40.8262i 0.249060 1.32111i
\(956\) −2.91324 0.780600i −0.0942208 0.0252464i
\(957\) 1.35475i 0.0437929i
\(958\) −10.2765 + 38.3526i −0.332020 + 1.23912i
\(959\) −2.12828 + 3.68629i −0.0687257 + 0.119036i
\(960\) 41.0311 + 19.7261i 1.32427 + 0.636656i
\(961\) 30.9684i 0.998981i
\(962\) 0 0
\(963\) −1.49825 1.49825i −0.0482804 0.0482804i
\(964\) −4.45026 16.6086i −0.143333 0.534927i
\(965\) 26.5271 9.30197i 0.853938 0.299441i
\(966\) −9.16426 + 5.29099i −0.294855 + 0.170235i
\(967\) −60.0570 −1.93130 −0.965651 0.259841i \(-0.916330\pi\)
−0.965651 + 0.259841i \(0.916330\pi\)
\(968\) −21.5415 + 12.4370i −0.692369 + 0.399740i
\(969\) −14.2958 + 53.3528i −0.459249 + 1.71394i
\(970\) −13.0294 11.1977i −0.418348 0.359536i
\(971\) 20.4589 + 35.4359i 0.656558 + 1.13719i 0.981501 + 0.191459i \(0.0613218\pi\)
−0.324942 + 0.945734i \(0.605345\pi\)
\(972\) −15.1009 + 4.04627i −0.484361 + 0.129784i
\(973\) −6.62390 + 11.4729i −0.212352 + 0.367805i
\(974\) −29.5983 −0.948391
\(975\) 0 0
\(976\) −2.46025 −0.0787506
\(977\) 18.7479 32.4724i 0.599800 1.03888i −0.393050 0.919517i \(-0.628580\pi\)
0.992850 0.119367i \(-0.0380865\pi\)
\(978\) −58.8694 + 15.7740i −1.88244 + 0.504397i
\(979\) 0.431236 + 0.746923i 0.0137824 + 0.0238718i
\(980\) −9.82532 8.44405i −0.313858 0.269735i
\(981\) 11.2036 41.8125i 0.357704 1.33497i
\(982\) 6.44253 3.71959i 0.205589 0.118697i
\(983\) 46.1176 1.47092 0.735461 0.677567i \(-0.236966\pi\)
0.735461 + 0.677567i \(0.236966\pi\)
\(984\) 50.5056 29.1594i 1.61006 0.929569i
\(985\) 30.1452 10.5707i 0.960506 0.336810i
\(986\) −0.560854 2.09314i −0.0178612 0.0666591i
\(987\) −14.8980 14.8980i −0.474208 0.474208i
\(988\) 0 0
\(989\) 30.6267i 0.973873i
\(990\) −16.3393 7.85528i −0.519298 0.249657i
\(991\) −0.401099 + 0.694724i −0.0127413 + 0.0220686i −0.872326 0.488925i \(-0.837389\pi\)
0.859584 + 0.510994i \(0.170722\pi\)
\(992\) 0.222345 0.829802i 0.00705945 0.0263462i
\(993\) 93.5143i 2.96759i
\(994\) 12.4238 + 3.32894i 0.394058 + 0.105587i
\(995\) 6.10431 32.3795i 0.193520 1.02650i
\(996\) −16.1129 + 16.1129i −0.510558 + 0.510558i
\(997\) −15.0779 4.04012i −0.477522 0.127952i 0.0120264 0.999928i \(-0.496172\pi\)
−0.489549 + 0.871976i \(0.662838\pi\)
\(998\) 1.58780 + 5.92576i 0.0502610 + 0.187577i
\(999\) 19.4100 5.20090i 0.614106 0.164549i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.f.488.2 20
5.2 odd 4 845.2.t.e.657.2 20
13.2 odd 12 845.2.t.e.418.2 20
13.3 even 3 845.2.o.g.258.2 20
13.4 even 6 845.2.k.e.268.3 20
13.5 odd 4 845.2.t.g.188.4 20
13.6 odd 12 845.2.f.d.408.3 20
13.7 odd 12 845.2.f.e.408.8 20
13.8 odd 4 65.2.t.a.58.2 yes 20
13.9 even 3 845.2.k.d.268.8 20
13.10 even 6 65.2.o.a.63.4 yes 20
13.11 odd 12 845.2.t.f.418.4 20
13.12 even 2 845.2.o.e.488.4 20
39.8 even 4 585.2.dp.a.253.4 20
39.23 odd 6 585.2.cf.a.388.2 20
65.2 even 12 inner 845.2.o.f.587.2 20
65.7 even 12 845.2.k.e.577.3 20
65.8 even 4 325.2.s.b.32.2 20
65.12 odd 4 845.2.t.f.657.4 20
65.17 odd 12 845.2.f.e.437.3 20
65.22 odd 12 845.2.f.d.437.8 20
65.23 odd 12 325.2.x.b.232.4 20
65.32 even 12 845.2.k.d.577.8 20
65.34 odd 4 325.2.x.b.318.4 20
65.37 even 12 845.2.o.e.587.4 20
65.42 odd 12 845.2.t.g.427.4 20
65.47 even 4 65.2.o.a.32.4 20
65.49 even 6 325.2.s.b.193.2 20
65.57 even 4 845.2.o.g.357.2 20
65.62 odd 12 65.2.t.a.37.2 yes 20
195.47 odd 4 585.2.cf.a.487.2 20
195.62 even 12 585.2.dp.a.37.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.4 20 65.47 even 4
65.2.o.a.63.4 yes 20 13.10 even 6
65.2.t.a.37.2 yes 20 65.62 odd 12
65.2.t.a.58.2 yes 20 13.8 odd 4
325.2.s.b.32.2 20 65.8 even 4
325.2.s.b.193.2 20 65.49 even 6
325.2.x.b.232.4 20 65.23 odd 12
325.2.x.b.318.4 20 65.34 odd 4
585.2.cf.a.388.2 20 39.23 odd 6
585.2.cf.a.487.2 20 195.47 odd 4
585.2.dp.a.37.4 20 195.62 even 12
585.2.dp.a.253.4 20 39.8 even 4
845.2.f.d.408.3 20 13.6 odd 12
845.2.f.d.437.8 20 65.22 odd 12
845.2.f.e.408.8 20 13.7 odd 12
845.2.f.e.437.3 20 65.17 odd 12
845.2.k.d.268.8 20 13.9 even 3
845.2.k.d.577.8 20 65.32 even 12
845.2.k.e.268.3 20 13.4 even 6
845.2.k.e.577.3 20 65.7 even 12
845.2.o.e.488.4 20 13.12 even 2
845.2.o.e.587.4 20 65.37 even 12
845.2.o.f.488.2 20 1.1 even 1 trivial
845.2.o.f.587.2 20 65.2 even 12 inner
845.2.o.g.258.2 20 13.3 even 3
845.2.o.g.357.2 20 65.57 even 4
845.2.t.e.418.2 20 13.2 odd 12
845.2.t.e.657.2 20 5.2 odd 4
845.2.t.f.418.4 20 13.11 odd 12
845.2.t.f.657.4 20 65.12 odd 4
845.2.t.g.188.4 20 13.5 odd 4
845.2.t.g.427.4 20 65.42 odd 12