Properties

Label 3724.1.bb.a.3431.2
Level $3724$
Weight $1$
Character 3724.3431
Analytic conductor $1.859$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,1,Mod(2059,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.2059");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3724.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.85851810705\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.283024.1

Embedding invariants

Embedding label 3431.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3724.3431
Dual form 3724.1.bb.a.2059.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{6} +1.00000i q^{8} +1.00000i q^{11} -1.00000i q^{12} +(-0.500000 - 0.866025i) q^{13} +(-0.500000 + 0.866025i) q^{16} +(-0.500000 + 0.866025i) q^{17} +(0.866025 + 0.500000i) q^{19} +(-0.500000 + 0.866025i) q^{22} +(-0.866025 + 0.500000i) q^{23} +(0.500000 - 0.866025i) q^{24} +(0.500000 + 0.866025i) q^{25} -1.00000i q^{26} +1.00000i q^{27} +(-0.500000 - 0.866025i) q^{29} +1.00000i q^{31} +(-0.866025 + 0.500000i) q^{32} +(0.500000 - 0.866025i) q^{33} +(-0.866025 + 0.500000i) q^{34} +1.00000 q^{37} +(0.500000 + 0.866025i) q^{38} +1.00000i q^{39} +(0.500000 - 0.866025i) q^{41} +(0.866025 + 0.500000i) q^{43} +(-0.866025 + 0.500000i) q^{44} -1.00000 q^{46} +(-0.866025 + 0.500000i) q^{47} +(0.866025 - 0.500000i) q^{48} +1.00000i q^{50} +(0.866025 - 0.500000i) q^{51} +(0.500000 - 0.866025i) q^{52} +(-0.500000 + 0.866025i) q^{54} +(-0.500000 - 0.866025i) q^{57} -1.00000i q^{58} +(0.866025 + 0.500000i) q^{59} +(0.500000 + 0.866025i) q^{61} +(-0.500000 + 0.866025i) q^{62} -1.00000 q^{64} +(0.866025 - 0.500000i) q^{66} -1.00000 q^{68} +1.00000 q^{69} +(-0.866025 - 0.500000i) q^{71} +(-0.500000 + 0.866025i) q^{73} +(0.866025 + 0.500000i) q^{74} -1.00000i q^{75} +1.00000i q^{76} +(-0.500000 + 0.866025i) q^{78} +(0.500000 - 0.866025i) q^{81} +(0.866025 - 0.500000i) q^{82} +(0.500000 + 0.866025i) q^{86} +1.00000i q^{87} -1.00000 q^{88} +(-0.500000 - 0.866025i) q^{89} +(-0.866025 - 0.500000i) q^{92} +(0.500000 - 0.866025i) q^{93} -1.00000 q^{94} +1.00000 q^{96} +(-0.500000 + 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{6} - 2 q^{13} - 2 q^{16} - 2 q^{17} - 2 q^{22} + 2 q^{24} + 2 q^{25} - 2 q^{29} + 2 q^{33} + 4 q^{37} + 2 q^{38} + 2 q^{41} - 4 q^{46} + 2 q^{52} - 2 q^{54} - 2 q^{57} + 2 q^{61} - 2 q^{62}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times\).

\(n\) \(1863\) \(3041\) \(3137\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(3\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) −0.500000 0.866025i −0.500000 0.866025i
\(7\) 0 0
\(8\) 1.00000i 1.00000i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 1.00000i 1.00000i
\(13\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(20\) 0 0
\(21\) 0 0
\(22\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(23\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(24\) 0.500000 0.866025i 0.500000 0.866025i
\(25\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(26\) 1.00000i 1.00000i
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(33\) 0.500000 0.866025i 0.500000 0.866025i
\(34\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(39\) 1.00000i 1.00000i
\(40\) 0 0
\(41\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(42\) 0 0
\(43\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(44\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(45\) 0 0
\(46\) −1.00000 −1.00000
\(47\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(48\) 0.866025 0.500000i 0.866025 0.500000i
\(49\) 0 0
\(50\) 1.00000i 1.00000i
\(51\) 0.866025 0.500000i 0.866025 0.500000i
\(52\) 0.500000 0.866025i 0.500000 0.866025i
\(53\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.500000 0.866025i −0.500000 0.866025i
\(58\) 1.00000i 1.00000i
\(59\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0.866025 0.500000i 0.866025 0.500000i
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −1.00000 −1.00000
\(69\) 1.00000 1.00000
\(70\) 0 0
\(71\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0 0
\(73\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(74\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(75\) 1.00000i 1.00000i
\(76\) 1.00000i 1.00000i
\(77\) 0 0
\(78\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.500000 0.866025i
\(82\) 0.866025 0.500000i 0.866025 0.500000i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(87\) 1.00000i 1.00000i
\(88\) −1.00000 −1.00000
\(89\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.866025 0.500000i −0.866025 0.500000i
\(93\) 0.500000 0.866025i 0.500000 0.866025i
\(94\) −1.00000 −1.00000
\(95\) 0 0
\(96\) 1.00000 1.00000
\(97\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 1.00000 1.00000
\(103\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(104\) 0.866025 0.500000i 0.866025 0.500000i
\(105\) 0 0
\(106\) 0 0
\(107\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(109\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) −0.866025 0.500000i −0.866025 0.500000i
\(112\) 0 0
\(113\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(114\) 1.00000i 1.00000i
\(115\) 0 0
\(116\) 0.500000 0.866025i 0.500000 0.866025i
\(117\) 0 0
\(118\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 1.00000i 1.00000i
\(123\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(124\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(125\) 0 0
\(126\) 0 0
\(127\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(128\) −0.866025 0.500000i −0.866025 0.500000i
\(129\) −0.500000 0.866025i −0.500000 0.866025i
\(130\) 0 0
\(131\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 1.00000 1.00000
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.866025 0.500000i −0.866025 0.500000i
\(137\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(138\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(139\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(140\) 0 0
\(141\) 1.00000 1.00000
\(142\) −0.500000 0.866025i −0.500000 0.866025i
\(143\) 0.866025 0.500000i 0.866025 0.500000i
\(144\) 0 0
\(145\) 0 0
\(146\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(147\) 0 0
\(148\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0.500000 0.866025i 0.500000 0.866025i
\(151\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(152\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(157\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.866025 0.500000i 0.866025 0.500000i
\(163\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(164\) 1.00000 1.00000
\(165\) 0 0
\(166\) 0 0
\(167\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 1.00000i 1.00000i
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(175\) 0 0
\(176\) −0.866025 0.500000i −0.866025 0.500000i
\(177\) −0.500000 0.866025i −0.500000 0.866025i
\(178\) 1.00000i 1.00000i
\(179\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(180\) 0 0
\(181\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 1.00000i 1.00000i
\(184\) −0.500000 0.866025i −0.500000 0.866025i
\(185\) 0 0
\(186\) 0.866025 0.500000i 0.866025 0.500000i
\(187\) −0.866025 0.500000i −0.866025 0.500000i
\(188\) −0.866025 0.500000i −0.866025 0.500000i
\(189\) 0 0
\(190\) 0 0
\(191\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(192\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(193\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(194\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(205\) 0 0
\(206\) 0.500000 0.866025i 0.500000 0.866025i
\(207\) 0 0
\(208\) 1.00000 1.00000
\(209\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(210\) 0 0
\(211\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(214\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(215\) 0 0
\(216\) −1.00000 −1.00000
\(217\) 0 0
\(218\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(219\) 0.866025 0.500000i 0.866025 0.500000i
\(220\) 0 0
\(221\) 1.00000 1.00000
\(222\) −0.500000 0.866025i −0.500000 0.866025i
\(223\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(227\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(228\) 0.500000 0.866025i 0.500000 0.866025i
\(229\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.866025 0.500000i 0.866025 0.500000i
\(233\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.00000i 1.00000i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(245\) 0 0
\(246\) −1.00000 −1.00000
\(247\) 1.00000i 1.00000i
\(248\) −1.00000 −1.00000
\(249\) 0 0
\(250\) 0 0
\(251\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) −0.500000 0.866025i −0.500000 0.866025i
\(254\) −1.00000 −1.00000
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 1.00000i 1.00000i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(265\) 0 0
\(266\) 0 0
\(267\) 1.00000i 1.00000i
\(268\) 0 0
\(269\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(270\) 0 0
\(271\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) −0.500000 0.866025i −0.500000 0.866025i
\(273\) 0 0
\(274\) 2.00000i 2.00000i
\(275\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(276\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(277\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 1.00000 1.00000
\(279\) 0 0
\(280\) 0 0
\(281\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(282\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(283\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 1.00000i 1.00000i
\(285\) 0 0
\(286\) 1.00000 1.00000
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0.866025 0.500000i 0.866025 0.500000i
\(292\) −1.00000 −1.00000
\(293\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.00000i 1.00000i
\(297\) −1.00000 −1.00000
\(298\) 0 0
\(299\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(300\) 0.866025 0.500000i 0.866025 0.500000i
\(301\) 0 0
\(302\) 0.500000 0.866025i 0.500000 0.866025i
\(303\) 0 0
\(304\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(305\) 0 0
\(306\) 0 0
\(307\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(308\) 0 0
\(309\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(310\) 0 0
\(311\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(312\) −1.00000 −1.00000
\(313\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(314\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(315\) 0 0
\(316\) 0 0
\(317\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0.866025 0.500000i 0.866025 0.500000i
\(320\) 0 0
\(321\) 0.500000 0.866025i 0.500000 0.866025i
\(322\) 0 0
\(323\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(324\) 1.00000 1.00000
\(325\) 0.500000 0.866025i 0.500000 0.866025i
\(326\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(327\) 0.866025 0.500000i 0.866025 0.500000i
\(328\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(329\) 0 0
\(330\) 0 0
\(331\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.00000 −1.00000
\(335\) 0 0
\(336\) 0 0
\(337\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) −1.73205 1.00000i −1.73205 1.00000i
\(340\) 0 0
\(341\) −1.00000 −1.00000
\(342\) 0 0
\(343\) 0 0
\(344\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(348\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(349\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0.866025 0.500000i 0.866025 0.500000i
\(352\) −0.500000 0.866025i −0.500000 0.866025i
\(353\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 1.00000i 1.00000i
\(355\) 0 0
\(356\) 0.500000 0.866025i 0.500000 0.866025i
\(357\) 0 0
\(358\) 0.500000 0.866025i 0.500000 0.866025i
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0 0
\(361\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(362\) 1.00000i 1.00000i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0.500000 0.866025i 0.500000 0.866025i
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 1.00000i 1.00000i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.00000 1.00000
\(373\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) −0.500000 0.866025i −0.500000 0.866025i
\(375\) 0 0
\(376\) −0.500000 0.866025i −0.500000 0.866025i
\(377\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 1.00000 1.00000
\(382\) 0.500000 0.866025i 0.500000 0.866025i
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(385\) 0 0
\(386\) 0.866025 0.500000i 0.866025 0.500000i
\(387\) 0 0
\(388\) −1.00000 −1.00000
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 0 0
\(391\) 1.00000i 1.00000i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(402\) 0 0
\(403\) 0.866025 0.500000i 0.866025 0.500000i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00000i 1.00000i
\(408\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(409\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) 0 0
\(411\) 2.00000i 2.00000i
\(412\) 0.866025 0.500000i 0.866025 0.500000i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(417\) −1.00000 −1.00000
\(418\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(422\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 −1.00000
\(426\) 1.00000i 1.00000i
\(427\) 0 0
\(428\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(429\) −1.00000 −1.00000
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) −0.866025 0.500000i −0.866025 0.500000i
\(433\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.00000 −1.00000
\(437\) −1.00000 −1.00000
\(438\) 1.00000 1.00000
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(443\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(444\) 1.00000i 1.00000i
\(445\) 0 0
\(446\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(452\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(453\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(454\) 0.500000 0.866025i 0.500000 0.866025i
\(455\) 0 0
\(456\) 0.866025 0.500000i 0.866025 0.500000i
\(457\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(459\) −0.866025 0.500000i −0.866025 0.500000i
\(460\) 0 0
\(461\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(462\) 0 0
\(463\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(464\) 1.00000 1.00000
\(465\) 0 0
\(466\) 0 0
\(467\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.866025 0.500000i 0.866025 0.500000i
\(472\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(473\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(474\) 0 0
\(475\) 1.00000i 1.00000i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(480\) 0 0
\(481\) −0.500000 0.866025i −0.500000 0.866025i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(488\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(489\) 0.500000 0.866025i 0.500000 0.866025i
\(490\) 0 0
\(491\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(492\) −0.866025 0.500000i −0.866025 0.500000i
\(493\) 1.00000 1.00000
\(494\) 0.500000 0.866025i 0.500000 0.866025i
\(495\) 0 0
\(496\) −0.866025 0.500000i −0.866025 0.500000i
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) 1.00000 1.00000
\(502\) 1.00000 1.00000
\(503\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.00000i 1.00000i
\(507\) 0 0
\(508\) −0.866025 0.500000i −0.866025 0.500000i
\(509\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(514\) 1.00000i 1.00000i
\(515\) 0 0
\(516\) 0.500000 0.866025i 0.500000 0.866025i
\(517\) −0.500000 0.866025i −0.500000 0.866025i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.500000 0.866025i −0.500000 0.866025i
\(527\) −0.866025 0.500000i −0.866025 0.500000i
\(528\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.00000 −1.00000
\(534\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(535\) 0 0
\(536\) 0 0
\(537\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(538\) 0.866025 0.500000i 0.866025 0.500000i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) 1.00000i 1.00000i
\(544\) 1.00000i 1.00000i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(548\) 1.00000 1.73205i 1.00000 1.73205i
\(549\) 0 0
\(550\) −1.00000 −1.00000
\(551\) 1.00000i 1.00000i
\(552\) 1.00000i 1.00000i
\(553\) 0 0
\(554\) −0.866025 0.500000i −0.866025 0.500000i
\(555\) 0 0
\(556\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(557\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 1.00000i 1.00000i
\(560\) 0 0
\(561\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(562\) 1.00000i 1.00000i
\(563\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(565\) 0 0
\(566\) −0.500000 0.866025i −0.500000 0.866025i
\(567\) 0 0
\(568\) 0.500000 0.866025i 0.500000 0.866025i
\(569\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(572\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(573\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(574\) 0 0
\(575\) −0.866025 0.500000i −0.866025 0.500000i
\(576\) 0 0
\(577\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 0 0
\(579\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.00000 1.00000
\(583\) 0 0
\(584\) −0.866025 0.500000i −0.866025 0.500000i
\(585\) 0 0
\(586\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(587\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(593\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) −0.866025 0.500000i −0.866025 0.500000i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 1.00000 1.00000
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.866025 0.500000i 0.866025 0.500000i
\(605\) 0 0
\(606\) 0 0
\(607\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) −1.00000 −1.00000
\(609\) 0 0
\(610\) 0 0
\(611\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(612\) 0 0
\(613\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(614\) −0.500000 0.866025i −0.500000 0.866025i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(619\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(620\) 0 0
\(621\) −0.500000 0.866025i −0.500000 0.866025i
\(622\) 0.500000 0.866025i 0.500000 0.866025i
\(623\) 0 0
\(624\) −0.866025 0.500000i −0.866025 0.500000i
\(625\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(626\) 1.00000i 1.00000i
\(627\) 0.866025 0.500000i 0.866025 0.500000i
\(628\) −1.00000 −1.00000
\(629\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(630\) 0 0
\(631\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −0.500000 0.866025i −0.500000 0.866025i
\(634\) 1.00000i 1.00000i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.00000 1.00000
\(639\) 0 0
\(640\) 0 0
\(641\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(642\) 0.866025 0.500000i 0.866025 0.500000i
\(643\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.00000 −1.00000
\(647\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(649\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(650\) 0.866025 0.500000i 0.866025 0.500000i
\(651\) 0 0
\(652\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(653\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 1.00000 1.00000
\(655\) 0 0
\(656\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(657\) 0 0
\(658\) 0 0
\(659\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 0.500000 0.866025i 0.500000 0.866025i
\(663\) −0.866025 0.500000i −0.866025 0.500000i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(668\) −0.866025 0.500000i −0.866025 0.500000i
\(669\) −0.500000 0.866025i −0.500000 0.866025i
\(670\) 0 0
\(671\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(675\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(676\) 0 0
\(677\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) −1.00000 1.73205i −1.00000 1.73205i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(682\) −0.866025 0.500000i −0.866025 0.500000i
\(683\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −0.866025 0.500000i −0.866025 0.500000i
\(688\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(695\) 0 0
\(696\) −1.00000 −1.00000
\(697\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(698\) −1.73205 1.00000i −1.73205 1.00000i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(702\) 1.00000 1.00000
\(703\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(704\) 1.00000i 1.00000i
\(705\) 0 0
\(706\) −0.866025 0.500000i −0.866025 0.500000i
\(707\) 0 0
\(708\) 0.500000 0.866025i 0.500000 0.866025i
\(709\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.866025 0.500000i 0.866025 0.500000i
\(713\) −0.500000 0.866025i −0.500000 0.866025i
\(714\) 0 0
\(715\) 0 0
\(716\) 0.866025 0.500000i 0.866025 0.500000i
\(717\) 0 0
\(718\) 0 0
\(719\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(725\) 0.500000 0.866025i 0.500000 0.866025i
\(726\) 0 0
\(727\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(732\) 0.866025 0.500000i 0.866025 0.500000i
\(733\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.500000 0.866025i 0.500000 0.866025i
\(737\) 0 0
\(738\) 0 0
\(739\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 0 0
\(741\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(742\) 0 0
\(743\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(745\) 0 0
\(746\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(747\) 0 0
\(748\) 1.00000i 1.00000i
\(749\) 0 0
\(750\) 0 0
\(751\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(752\) 1.00000i 1.00000i
\(753\) −1.00000 −1.00000
\(754\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 1.00000i 1.00000i
\(760\) 0 0
\(761\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(763\) 0 0
\(764\) 0.866025 0.500000i 0.866025 0.500000i
\(765\) 0 0
\(766\) 0 0
\(767\) 1.00000i 1.00000i
\(768\) 1.00000i 1.00000i
\(769\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 0 0
\(771\) 1.00000i 1.00000i
\(772\) 1.00000 1.00000
\(773\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(776\) −0.866025 0.500000i −0.866025 0.500000i
\(777\) 0 0
\(778\) 0 0
\(779\) 0.866025 0.500000i 0.866025 0.500000i
\(780\) 0 0
\(781\) 0.500000 0.866025i 0.500000 0.866025i
\(782\) 0.500000 0.866025i 0.500000 0.866025i
\(783\) 0.866025 0.500000i 0.866025 0.500000i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(788\) 0 0
\(789\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.500000 0.866025i 0.500000 0.866025i
\(794\) 1.73205 1.00000i 1.73205 1.00000i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 1.00000i 1.00000i
\(800\) −0.866025 0.500000i −0.866025 0.500000i
\(801\) 0 0
\(802\) 0 0
\(803\) −0.866025 0.500000i −0.866025 0.500000i
\(804\) 0 0
\(805\) 0 0
\(806\) 1.00000 1.00000
\(807\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(808\) 0 0
\(809\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(815\) 0 0
\(816\) 1.00000i 1.00000i
\(817\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(823\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 1.00000 1.00000
\(825\) 1.00000 1.00000
\(826\) 0 0
\(827\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(832\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(833\) 0 0
\(834\) −0.866025 0.500000i −0.866025 0.500000i
\(835\) 0 0
\(836\) −1.00000 −1.00000
\(837\) −1.00000 −1.00000
\(838\) 0 0
\(839\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0.866025 0.500000i 0.866025 0.500000i
\(843\) 1.00000i 1.00000i
\(844\) 1.00000i 1.00000i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(850\) −0.866025 0.500000i −0.866025 0.500000i
\(851\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(852\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(853\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.00000 −1.00000
\(857\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(858\) −0.866025 0.500000i −0.866025 0.500000i
\(859\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(864\) −0.500000 0.866025i −0.500000 0.866025i
\(865\) 0 0
\(866\) 1.00000i 1.00000i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.866025 0.500000i −0.866025 0.500000i
\(873\) 0 0
\(874\) −0.866025 0.500000i −0.866025 0.500000i
\(875\) 0 0
\(876\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(877\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(878\) 0 0
\(879\) −1.73205 1.00000i −1.73205 1.00000i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(884\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(885\) 0 0
\(886\) −1.00000 −1.00000
\(887\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0.500000 0.866025i 0.500000 0.866025i
\(889\) 0 0
\(890\) 0 0
\(891\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(892\) 1.00000i 1.00000i
\(893\) −1.00000 −1.00000
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −0.500000 0.866025i −0.500000 0.866025i
\(898\) 0 0
\(899\) 0.866025 0.500000i 0.866025 0.500000i
\(900\) 0 0
\(901\) 0 0
\(902\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(903\) 0 0
\(904\) 2.00000i 2.00000i
\(905\) 0 0
\(906\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(907\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(908\) 0.866025 0.500000i 0.866025 0.500000i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 1.00000 1.00000
\(913\) 0 0
\(914\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(915\) 0 0
\(916\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(917\) 0 0
\(918\) −0.500000 0.866025i −0.500000 0.866025i
\(919\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(920\) 0 0
\(921\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(922\) 0.866025 0.500000i 0.866025 0.500000i
\(923\) 1.00000i 1.00000i
\(924\) 0 0
\(925\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(926\) 1.00000 1.73205i 1.00000 1.73205i
\(927\) 0 0
\(928\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(929\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(934\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(935\) 0 0
\(936\) 0 0
\(937\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 1.00000i 1.00000i
\(940\) 0 0
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 1.00000 1.00000
\(943\) 1.00000i 1.00000i
\(944\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(945\) 0 0
\(946\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0 0
\(949\) 1.00000 1.00000
\(950\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(951\) 1.00000i 1.00000i
\(952\) 0 0
\(953\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.00000 −1.00000
\(958\) 2.00000 2.00000
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 1.00000i 1.00000i
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 1.00000 1.00000
\(970\) 0 0
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(975\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(976\) −1.00000 −1.00000
\(977\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0.866025 0.500000i 0.866025 0.500000i
\(979\) 0.866025 0.500000i 0.866025 0.500000i
\(980\) 0 0
\(981\) 0 0
\(982\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(983\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(984\) −0.500000 0.866025i −0.500000 0.866025i
\(985\) 0 0
\(986\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(987\) 0 0
\(988\) 0.866025 0.500000i 0.866025 0.500000i
\(989\) −1.00000 −1.00000
\(990\) 0 0
\(991\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(992\) −0.500000 0.866025i −0.500000 0.866025i
\(993\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(998\) 0 0
\(999\) 1.00000i 1.00000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.1.bb.a.3431.2 4
4.3 odd 2 inner 3724.1.bb.a.3431.1 4
7.2 even 3 3724.1.bk.a.3203.1 4
7.3 odd 6 532.1.n.a.163.1 4
7.4 even 3 3724.1.n.a.2823.1 4
7.5 odd 6 532.1.bk.a.11.1 yes 4
7.6 odd 2 3724.1.bb.b.3431.2 4
19.7 even 3 inner 3724.1.bb.a.2059.1 4
28.3 even 6 532.1.n.a.163.2 yes 4
28.11 odd 6 3724.1.n.a.2823.2 4
28.19 even 6 532.1.bk.a.11.2 yes 4
28.23 odd 6 3724.1.bk.a.3203.2 4
28.27 even 2 3724.1.bb.b.3431.1 4
76.7 odd 6 inner 3724.1.bb.a.2059.2 4
133.26 odd 6 532.1.n.a.235.2 yes 4
133.45 odd 6 532.1.bk.a.387.1 yes 4
133.83 odd 6 3724.1.bb.b.2059.1 4
133.102 even 3 3724.1.bk.a.1451.1 4
133.121 even 3 3724.1.n.a.1831.2 4
532.83 even 6 3724.1.bb.b.2059.2 4
532.159 even 6 532.1.n.a.235.1 yes 4
532.235 odd 6 3724.1.bk.a.1451.2 4
532.311 even 6 532.1.bk.a.387.2 yes 4
532.387 odd 6 3724.1.n.a.1831.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.1.n.a.163.1 4 7.3 odd 6
532.1.n.a.163.2 yes 4 28.3 even 6
532.1.n.a.235.1 yes 4 532.159 even 6
532.1.n.a.235.2 yes 4 133.26 odd 6
532.1.bk.a.11.1 yes 4 7.5 odd 6
532.1.bk.a.11.2 yes 4 28.19 even 6
532.1.bk.a.387.1 yes 4 133.45 odd 6
532.1.bk.a.387.2 yes 4 532.311 even 6
3724.1.n.a.1831.1 4 532.387 odd 6
3724.1.n.a.1831.2 4 133.121 even 3
3724.1.n.a.2823.1 4 7.4 even 3
3724.1.n.a.2823.2 4 28.11 odd 6
3724.1.bb.a.2059.1 4 19.7 even 3 inner
3724.1.bb.a.2059.2 4 76.7 odd 6 inner
3724.1.bb.a.3431.1 4 4.3 odd 2 inner
3724.1.bb.a.3431.2 4 1.1 even 1 trivial
3724.1.bb.b.2059.1 4 133.83 odd 6
3724.1.bb.b.2059.2 4 532.83 even 6
3724.1.bb.b.3431.1 4 28.27 even 2
3724.1.bb.b.3431.2 4 7.6 odd 2
3724.1.bk.a.1451.1 4 133.102 even 3
3724.1.bk.a.1451.2 4 532.235 odd 6
3724.1.bk.a.3203.1 4 7.2 even 3
3724.1.bk.a.3203.2 4 28.23 odd 6