Properties

Label 532.1.n.a.235.2
Level 532532
Weight 11
Character 532.235
Analytic conductor 0.2660.266
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [532,1,Mod(163,532)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(532, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("532.163");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 532=22719 532 = 2^{2} \cdot 7 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 532.n (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2655025867210.265502586721
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.283024.1

Embedding invariants

Embedding label 235.2
Root 0.866025+0.500000i-0.866025 + 0.500000i of defining polynomial
Character χ\chi == 532.235
Dual form 532.1.n.a.163.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.866025+0.500000i)q21.00000iq3+(0.500000+0.866025i)q4+(0.5000000.866025i)q6+1.00000iq7+1.00000iq8+(0.8660250.500000i)q11+(0.8660250.500000i)q12+(0.5000000.866025i)q13+(0.500000+0.866025i)q14+(0.500000+0.866025i)q161.00000q17+(0.8660250.500000i)q19+1.00000q21+(0.5000000.866025i)q221.00000iq23+1.00000q24+(0.500000+0.866025i)q25+(0.8660250.500000i)q261.00000iq27+(0.866025+0.500000i)q28+(0.500000+0.866025i)q29+(0.866025+0.500000i)q31+(0.866025+0.500000i)q32+(0.500000+0.866025i)q33+(0.8660250.500000i)q34+(0.5000000.866025i)q37+(0.5000000.866025i)q38+(0.8660250.500000i)q39+(0.5000000.866025i)q41+(0.866025+0.500000i)q42+(0.866025+0.500000i)q431.00000iq44+(0.5000000.866025i)q46+1.00000iq47+(0.866025+0.500000i)q481.00000q49+1.00000iq50+1.00000iq51+1.00000q52+(0.5000000.866025i)q541.00000q56+(0.500000+0.866025i)q57+(0.866025+0.500000i)q58+1.00000iq59+1.00000q61+(0.500000+0.866025i)q621.00000q64+(0.866025+0.500000i)q66+(0.5000000.866025i)q681.00000q69+(0.8660250.500000i)q711.00000q731.00000iq74+(0.8660250.500000i)q751.00000iq76+(0.5000000.866025i)q77+(0.5000000.866025i)q781.00000q811.00000iq82+(0.500000+0.866025i)q841.00000q86+(0.866025+0.500000i)q87+(0.5000000.866025i)q881.00000q89+(0.866025+0.500000i)q91+(0.8660250.500000i)q92+(0.5000000.866025i)q93+(0.500000+0.866025i)q94+(0.500000+0.866025i)q96+(0.500000+0.866025i)q97+(0.8660250.500000i)q98+O(q100)q+(0.866025 + 0.500000i) q^{2} -1.00000i q^{3} +(0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{6} +1.00000i q^{7} +1.00000i q^{8} +(-0.866025 - 0.500000i) q^{11} +(0.866025 - 0.500000i) q^{12} +(0.500000 - 0.866025i) q^{13} +(-0.500000 + 0.866025i) q^{14} +(-0.500000 + 0.866025i) q^{16} -1.00000 q^{17} +(-0.866025 - 0.500000i) q^{19} +1.00000 q^{21} +(-0.500000 - 0.866025i) q^{22} -1.00000i q^{23} +1.00000 q^{24} +(0.500000 + 0.866025i) q^{25} +(0.866025 - 0.500000i) q^{26} -1.00000i q^{27} +(-0.866025 + 0.500000i) q^{28} +(-0.500000 + 0.866025i) q^{29} +(0.866025 + 0.500000i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(-0.500000 + 0.866025i) q^{33} +(-0.866025 - 0.500000i) q^{34} +(-0.500000 - 0.866025i) q^{37} +(-0.500000 - 0.866025i) q^{38} +(-0.866025 - 0.500000i) q^{39} +(-0.500000 - 0.866025i) q^{41} +(0.866025 + 0.500000i) q^{42} +(-0.866025 + 0.500000i) q^{43} -1.00000i q^{44} +(0.500000 - 0.866025i) q^{46} +1.00000i q^{47} +(0.866025 + 0.500000i) q^{48} -1.00000 q^{49} +1.00000i q^{50} +1.00000i q^{51} +1.00000 q^{52} +(0.500000 - 0.866025i) q^{54} -1.00000 q^{56} +(-0.500000 + 0.866025i) q^{57} +(-0.866025 + 0.500000i) q^{58} +1.00000i q^{59} +1.00000 q^{61} +(0.500000 + 0.866025i) q^{62} -1.00000 q^{64} +(-0.866025 + 0.500000i) q^{66} +(-0.500000 - 0.866025i) q^{68} -1.00000 q^{69} +(0.866025 - 0.500000i) q^{71} -1.00000 q^{73} -1.00000i q^{74} +(0.866025 - 0.500000i) q^{75} -1.00000i q^{76} +(0.500000 - 0.866025i) q^{77} +(-0.500000 - 0.866025i) q^{78} -1.00000 q^{81} -1.00000i q^{82} +(0.500000 + 0.866025i) q^{84} -1.00000 q^{86} +(0.866025 + 0.500000i) q^{87} +(0.500000 - 0.866025i) q^{88} -1.00000 q^{89} +(0.866025 + 0.500000i) q^{91} +(0.866025 - 0.500000i) q^{92} +(0.500000 - 0.866025i) q^{93} +(-0.500000 + 0.866025i) q^{94} +(0.500000 + 0.866025i) q^{96} +(0.500000 + 0.866025i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+2q6+2q132q142q164q17+4q212q22+4q24+2q252q292q332q372q382q41+2q464q49+4q52+2q54++2q97+O(q100) 4 q + 2 q^{4} + 2 q^{6} + 2 q^{13} - 2 q^{14} - 2 q^{16} - 4 q^{17} + 4 q^{21} - 2 q^{22} + 4 q^{24} + 2 q^{25} - 2 q^{29} - 2 q^{33} - 2 q^{37} - 2 q^{38} - 2 q^{41} + 2 q^{46} - 4 q^{49} + 4 q^{52} + 2 q^{54}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/532Z)×\left(\mathbb{Z}/532\mathbb{Z}\right)^\times.

nn 267267 381381 477477
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right) e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.866025 + 0.500000i 0.866025 + 0.500000i
33 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
44 0.500000 + 0.866025i 0.500000 + 0.866025i
55 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
66 0.500000 0.866025i 0.500000 0.866025i
77 1.00000i 1.00000i
88 1.00000i 1.00000i
99 0 0
1010 0 0
1111 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1212 0.866025 0.500000i 0.866025 0.500000i
1313 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
1414 −0.500000 + 0.866025i −0.500000 + 0.866025i
1515 0 0
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 0 0
1919 −0.866025 0.500000i −0.866025 0.500000i
2020 0 0
2121 1.00000 1.00000
2222 −0.500000 0.866025i −0.500000 0.866025i
2323 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
2424 1.00000 1.00000
2525 0.500000 + 0.866025i 0.500000 + 0.866025i
2626 0.866025 0.500000i 0.866025 0.500000i
2727 1.00000i 1.00000i
2828 −0.866025 + 0.500000i −0.866025 + 0.500000i
2929 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
3030 0 0
3131 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
3232 −0.866025 + 0.500000i −0.866025 + 0.500000i
3333 −0.500000 + 0.866025i −0.500000 + 0.866025i
3434 −0.866025 0.500000i −0.866025 0.500000i
3535 0 0
3636 0 0
3737 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
3838 −0.500000 0.866025i −0.500000 0.866025i
3939 −0.866025 0.500000i −0.866025 0.500000i
4040 0 0
4141 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
4242 0.866025 + 0.500000i 0.866025 + 0.500000i
4343 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
4444 1.00000i 1.00000i
4545 0 0
4646 0.500000 0.866025i 0.500000 0.866025i
4747 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4848 0.866025 + 0.500000i 0.866025 + 0.500000i
4949 −1.00000 −1.00000
5050 1.00000i 1.00000i
5151 1.00000i 1.00000i
5252 1.00000 1.00000
5353 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
5454 0.500000 0.866025i 0.500000 0.866025i
5555 0 0
5656 −1.00000 −1.00000
5757 −0.500000 + 0.866025i −0.500000 + 0.866025i
5858 −0.866025 + 0.500000i −0.866025 + 0.500000i
5959 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 0 0
6161 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 0.500000 + 0.866025i 0.500000 + 0.866025i
6363 0 0
6464 −1.00000 −1.00000
6565 0 0
6666 −0.866025 + 0.500000i −0.866025 + 0.500000i
6767 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 −0.500000 0.866025i −0.500000 0.866025i
6969 −1.00000 −1.00000
7070 0 0
7171 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
7272 0 0
7373 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 1.00000i 1.00000i
7575 0.866025 0.500000i 0.866025 0.500000i
7676 1.00000i 1.00000i
7777 0.500000 0.866025i 0.500000 0.866025i
7878 −0.500000 0.866025i −0.500000 0.866025i
7979 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 0 0
8181 −1.00000 −1.00000
8282 1.00000i 1.00000i
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0.500000 + 0.866025i 0.500000 + 0.866025i
8585 0 0
8686 −1.00000 −1.00000
8787 0.866025 + 0.500000i 0.866025 + 0.500000i
8888 0.500000 0.866025i 0.500000 0.866025i
8989 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0 0
9191 0.866025 + 0.500000i 0.866025 + 0.500000i
9292 0.866025 0.500000i 0.866025 0.500000i
9393 0.500000 0.866025i 0.500000 0.866025i
9494 −0.500000 + 0.866025i −0.500000 + 0.866025i
9595 0 0
9696 0.500000 + 0.866025i 0.500000 + 0.866025i
9797 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 −0.866025 0.500000i −0.866025 0.500000i
9999 0 0
100100 −0.500000 + 0.866025i −0.500000 + 0.866025i
101101 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 −0.500000 + 0.866025i −0.500000 + 0.866025i
103103 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
104104 0.866025 + 0.500000i 0.866025 + 0.500000i
105105 0 0
106106 0 0
107107 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
108108 0.866025 0.500000i 0.866025 0.500000i
109109 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
110110 0 0
111111 −0.866025 + 0.500000i −0.866025 + 0.500000i
112112 −0.866025 0.500000i −0.866025 0.500000i
113113 2.00000 2.00000 1.00000 00
1.00000 00
114114 −0.866025 + 0.500000i −0.866025 + 0.500000i
115115 0 0
116116 −1.00000 −1.00000
117117 0 0
118118 −0.500000 + 0.866025i −0.500000 + 0.866025i
119119 1.00000i 1.00000i
120120 0 0
121121 0 0
122122 0.866025 + 0.500000i 0.866025 + 0.500000i
123123 −0.866025 + 0.500000i −0.866025 + 0.500000i
124124 1.00000i 1.00000i
125125 0 0
126126 0 0
127127 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
128128 −0.866025 0.500000i −0.866025 0.500000i
129129 0.500000 + 0.866025i 0.500000 + 0.866025i
130130 0 0
131131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 −1.00000 −1.00000
133133 0.500000 0.866025i 0.500000 0.866025i
134134 0 0
135135 0 0
136136 1.00000i 1.00000i
137137 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
138138 −0.866025 0.500000i −0.866025 0.500000i
139139 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 1.00000 1.00000
142142 1.00000 1.00000
143143 −0.866025 + 0.500000i −0.866025 + 0.500000i
144144 0 0
145145 0 0
146146 −0.866025 0.500000i −0.866025 0.500000i
147147 1.00000i 1.00000i
148148 0.500000 0.866025i 0.500000 0.866025i
149149 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
150150 1.00000 1.00000
151151 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
152152 0.500000 0.866025i 0.500000 0.866025i
153153 0 0
154154 0.866025 0.500000i 0.866025 0.500000i
155155 0 0
156156 1.00000i 1.00000i
157157 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
158158 0 0
159159 0 0
160160 0 0
161161 1.00000 1.00000
162162 −0.866025 0.500000i −0.866025 0.500000i
163163 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
164164 0.500000 0.866025i 0.500000 0.866025i
165165 0 0
166166 0 0
167167 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
168168 1.00000i 1.00000i
169169 0 0
170170 0 0
171171 0 0
172172 −0.866025 0.500000i −0.866025 0.500000i
173173 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
174174 0.500000 + 0.866025i 0.500000 + 0.866025i
175175 −0.866025 + 0.500000i −0.866025 + 0.500000i
176176 0.866025 0.500000i 0.866025 0.500000i
177177 1.00000 1.00000
178178 −0.866025 0.500000i −0.866025 0.500000i
179179 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
182182 0.500000 + 0.866025i 0.500000 + 0.866025i
183183 1.00000i 1.00000i
184184 1.00000 1.00000
185185 0 0
186186 0.866025 0.500000i 0.866025 0.500000i
187187 0.866025 + 0.500000i 0.866025 + 0.500000i
188188 −0.866025 + 0.500000i −0.866025 + 0.500000i
189189 1.00000 1.00000
190190 0 0
191191 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
192192 1.00000i 1.00000i
193193 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 1.00000i 1.00000i
195195 0 0
196196 −0.500000 0.866025i −0.500000 0.866025i
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 −0.866025 + 0.500000i −0.866025 + 0.500000i
201201 0 0
202202 0 0
203203 −0.866025 0.500000i −0.866025 0.500000i
204204 −0.866025 + 0.500000i −0.866025 + 0.500000i
205205 0 0
206206 1.00000 1.00000
207207 0 0
208208 0.500000 + 0.866025i 0.500000 + 0.866025i
209209 0.500000 + 0.866025i 0.500000 + 0.866025i
210210 0 0
211211 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 −0.500000 0.866025i −0.500000 0.866025i
214214 1.00000 1.00000
215215 0 0
216216 1.00000 1.00000
217217 −0.500000 + 0.866025i −0.500000 + 0.866025i
218218 0.866025 + 0.500000i 0.866025 + 0.500000i
219219 1.00000i 1.00000i
220220 0 0
221221 −0.500000 + 0.866025i −0.500000 + 0.866025i
222222 −1.00000 −1.00000
223223 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
224224 −0.500000 0.866025i −0.500000 0.866025i
225225 0 0
226226 1.73205 + 1.00000i 1.73205 + 1.00000i
227227 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
228228 −1.00000 −1.00000
229229 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 0 0
231231 −0.866025 0.500000i −0.866025 0.500000i
232232 −0.866025 0.500000i −0.866025 0.500000i
233233 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
234234 0 0
235235 0 0
236236 −0.866025 + 0.500000i −0.866025 + 0.500000i
237237 0 0
238238 0.500000 0.866025i 0.500000 0.866025i
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
242242 0 0
243243 0 0
244244 0.500000 + 0.866025i 0.500000 + 0.866025i
245245 0 0
246246 −1.00000 −1.00000
247247 −0.866025 + 0.500000i −0.866025 + 0.500000i
248248 −0.500000 + 0.866025i −0.500000 + 0.866025i
249249 0 0
250250 0 0
251251 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 −0.500000 + 0.866025i −0.500000 + 0.866025i
254254 0.500000 + 0.866025i 0.500000 + 0.866025i
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
258258 1.00000i 1.00000i
259259 0.866025 0.500000i 0.866025 0.500000i
260260 0 0
261261 0 0
262262 0 0
263263 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
264264 −0.866025 0.500000i −0.866025 0.500000i
265265 0 0
266266 0.866025 0.500000i 0.866025 0.500000i
267267 1.00000i 1.00000i
268268 0 0
269269 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
270270 0 0
271271 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
272272 0.500000 0.866025i 0.500000 0.866025i
273273 0.500000 0.866025i 0.500000 0.866025i
274274 2.00000i 2.00000i
275275 1.00000i 1.00000i
276276 −0.500000 0.866025i −0.500000 0.866025i
277277 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
278278 0.500000 + 0.866025i 0.500000 + 0.866025i
279279 0 0
280280 0 0
281281 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
282282 0.866025 + 0.500000i 0.866025 + 0.500000i
283283 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
284284 0.866025 + 0.500000i 0.866025 + 0.500000i
285285 0 0
286286 −1.00000 −1.00000
287287 0.866025 0.500000i 0.866025 0.500000i
288288 0 0
289289 0 0
290290 0 0
291291 0.866025 0.500000i 0.866025 0.500000i
292292 −0.500000 0.866025i −0.500000 0.866025i
293293 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
294294 −0.500000 + 0.866025i −0.500000 + 0.866025i
295295 0 0
296296 0.866025 0.500000i 0.866025 0.500000i
297297 −0.500000 + 0.866025i −0.500000 + 0.866025i
298298 0 0
299299 −0.866025 0.500000i −0.866025 0.500000i
300300 0.866025 + 0.500000i 0.866025 + 0.500000i
301301 −0.500000 0.866025i −0.500000 0.866025i
302302 0.500000 + 0.866025i 0.500000 + 0.866025i
303303 0 0
304304 0.866025 0.500000i 0.866025 0.500000i
305305 0 0
306306 0 0
307307 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
308308 1.00000 1.00000
309309 −0.500000 0.866025i −0.500000 0.866025i
310310 0 0
311311 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
312312 0.500000 0.866025i 0.500000 0.866025i
313313 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 −0.866025 0.500000i −0.866025 0.500000i
315315 0 0
316316 0 0
317317 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 0 0
319319 0.866025 0.500000i 0.866025 0.500000i
320320 0 0
321321 −0.500000 0.866025i −0.500000 0.866025i
322322 0.866025 + 0.500000i 0.866025 + 0.500000i
323323 0.866025 + 0.500000i 0.866025 + 0.500000i
324324 −0.500000 0.866025i −0.500000 0.866025i
325325 1.00000 1.00000
326326 1.00000 1.00000
327327 1.00000i 1.00000i
328328 0.866025 0.500000i 0.866025 0.500000i
329329 −1.00000 −1.00000
330330 0 0
331331 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0 0
334334 −0.500000 0.866025i −0.500000 0.866025i
335335 0 0
336336 −0.500000 + 0.866025i −0.500000 + 0.866025i
337337 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
338338 0 0
339339 2.00000i 2.00000i
340340 0 0
341341 −0.500000 0.866025i −0.500000 0.866025i
342342 0 0
343343 1.00000i 1.00000i
344344 −0.500000 0.866025i −0.500000 0.866025i
345345 0 0
346346 0 0
347347 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
348348 1.00000i 1.00000i
349349 2.00000 2.00000 1.00000 00
1.00000 00
350350 −1.00000 −1.00000
351351 −0.866025 0.500000i −0.866025 0.500000i
352352 1.00000 1.00000
353353 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
354354 0.866025 + 0.500000i 0.866025 + 0.500000i
355355 0 0
356356 −0.500000 0.866025i −0.500000 0.866025i
357357 −1.00000 −1.00000
358358 0.500000 + 0.866025i 0.500000 + 0.866025i
359359 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 0.500000 + 0.866025i 0.500000 + 0.866025i
362362 −0.866025 + 0.500000i −0.866025 + 0.500000i
363363 0 0
364364 1.00000i 1.00000i
365365 0 0
366366 0.500000 0.866025i 0.500000 0.866025i
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 0.866025 + 0.500000i 0.866025 + 0.500000i
369369 0 0
370370 0 0
371371 0 0
372372 1.00000 1.00000
373373 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
374374 0.500000 + 0.866025i 0.500000 + 0.866025i
375375 0 0
376376 −1.00000 −1.00000
377377 0.500000 + 0.866025i 0.500000 + 0.866025i
378378 0.866025 + 0.500000i 0.866025 + 0.500000i
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0.500000 0.866025i 0.500000 0.866025i
382382 −1.00000 −1.00000
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 −0.500000 + 0.866025i −0.500000 + 0.866025i
385385 0 0
386386 −0.866025 0.500000i −0.866025 0.500000i
387387 0 0
388388 −0.500000 + 0.866025i −0.500000 + 0.866025i
389389 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
390390 0 0
391391 1.00000i 1.00000i
392392 1.00000i 1.00000i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 0 0
399399 −0.866025 0.500000i −0.866025 0.500000i
400400 −1.00000 −1.00000
401401 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
402402 0 0
403403 0.866025 0.500000i 0.866025 0.500000i
404404 0 0
405405 0 0
406406 −0.500000 0.866025i −0.500000 0.866025i
407407 1.00000i 1.00000i
408408 −1.00000 −1.00000
409409 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
410410 0 0
411411 −1.73205 + 1.00000i −1.73205 + 1.00000i
412412 0.866025 + 0.500000i 0.866025 + 0.500000i
413413 −1.00000 −1.00000
414414 0 0
415415 0 0
416416 1.00000i 1.00000i
417417 0.500000 0.866025i 0.500000 0.866025i
418418 1.00000i 1.00000i
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 −1.00000 −1.00000
423423 0 0
424424 0 0
425425 −0.500000 0.866025i −0.500000 0.866025i
426426 1.00000i 1.00000i
427427 1.00000i 1.00000i
428428 0.866025 + 0.500000i 0.866025 + 0.500000i
429429 0.500000 + 0.866025i 0.500000 + 0.866025i
430430 0 0
431431 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
432432 0.866025 + 0.500000i 0.866025 + 0.500000i
433433 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
434434 −0.866025 + 0.500000i −0.866025 + 0.500000i
435435 0 0
436436 0.500000 + 0.866025i 0.500000 + 0.866025i
437437 −0.500000 + 0.866025i −0.500000 + 0.866025i
438438 −0.500000 + 0.866025i −0.500000 + 0.866025i
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0 0
442442 −0.866025 + 0.500000i −0.866025 + 0.500000i
443443 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
444444 −0.866025 0.500000i −0.866025 0.500000i
445445 0 0
446446 1.00000 1.00000
447447 0 0
448448 1.00000i 1.00000i
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 1.00000i 1.00000i
452452 1.00000 + 1.73205i 1.00000 + 1.73205i
453453 0.500000 0.866025i 0.500000 0.866025i
454454 −0.500000 0.866025i −0.500000 0.866025i
455455 0 0
456456 −0.866025 0.500000i −0.866025 0.500000i
457457 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
458458 1.00000i 1.00000i
459459 1.00000i 1.00000i
460460 0 0
461461 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
462462 −0.500000 0.866025i −0.500000 0.866025i
463463 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
464464 −0.500000 0.866025i −0.500000 0.866025i
465465 0 0
466466 0 0
467467 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 1.00000i 1.00000i
472472 −1.00000 −1.00000
473473 1.00000 1.00000
474474 0 0
475475 1.00000i 1.00000i
476476 0.866025 0.500000i 0.866025 0.500000i
477477 0 0
478478 0 0
479479 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
480480 0 0
481481 −1.00000 −1.00000
482482 0 0
483483 1.00000i 1.00000i
484484 0 0
485485 0 0
486486 0 0
487487 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
488488 1.00000i 1.00000i
489489 −0.500000 0.866025i −0.500000 0.866025i
490490 0 0
491491 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
492492 −0.866025 0.500000i −0.866025 0.500000i
493493 0.500000 0.866025i 0.500000 0.866025i
494494 −1.00000 −1.00000
495495 0 0
496496 −0.866025 + 0.500000i −0.866025 + 0.500000i
497497 0.500000 + 0.866025i 0.500000 + 0.866025i
498498 0 0
499499 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 −0.500000 + 0.866025i −0.500000 + 0.866025i
502502 0.500000 + 0.866025i 0.500000 + 0.866025i
503503 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 −0.866025 + 0.500000i −0.866025 + 0.500000i
507507 0 0
508508 1.00000i 1.00000i
509509 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 1.00000i 1.00000i
512512 1.00000i 1.00000i
513513 −0.500000 + 0.866025i −0.500000 + 0.866025i
514514 0.866025 + 0.500000i 0.866025 + 0.500000i
515515 0 0
516516 −0.500000 + 0.866025i −0.500000 + 0.866025i
517517 0.500000 0.866025i 0.500000 0.866025i
518518 1.00000 1.00000
519519 0 0
520520 0 0
521521 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
522522 0 0
523523 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
524524 0 0
525525 0.500000 + 0.866025i 0.500000 + 0.866025i
526526 −0.500000 + 0.866025i −0.500000 + 0.866025i
527527 −0.866025 0.500000i −0.866025 0.500000i
528528 −0.500000 0.866025i −0.500000 0.866025i
529529 0 0
530530 0 0
531531 0 0
532532 1.00000 1.00000
533533 −1.00000 −1.00000
534534 −0.500000 + 0.866025i −0.500000 + 0.866025i
535535 0 0
536536 0 0
537537 0.500000 0.866025i 0.500000 0.866025i
538538 0.866025 + 0.500000i 0.866025 + 0.500000i
539539 0.866025 + 0.500000i 0.866025 + 0.500000i
540540 0 0
541541 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
542542 0 0
543543 0.866025 + 0.500000i 0.866025 + 0.500000i
544544 0.866025 0.500000i 0.866025 0.500000i
545545 0 0
546546 0.866025 0.500000i 0.866025 0.500000i
547547 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
548548 1.00000 1.73205i 1.00000 1.73205i
549549 0 0
550550 0.500000 0.866025i 0.500000 0.866025i
551551 0.866025 0.500000i 0.866025 0.500000i
552552 1.00000i 1.00000i
553553 0 0
554554 0.866025 0.500000i 0.866025 0.500000i
555555 0 0
556556 1.00000i 1.00000i
557557 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
558558 0 0
559559 1.00000i 1.00000i
560560 0 0
561561 0.500000 0.866025i 0.500000 0.866025i
562562 −0.866025 + 0.500000i −0.866025 + 0.500000i
563563 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
564564 0.500000 + 0.866025i 0.500000 + 0.866025i
565565 0 0
566566 0.500000 0.866025i 0.500000 0.866025i
567567 1.00000i 1.00000i
568568 0.500000 + 0.866025i 0.500000 + 0.866025i
569569 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 0 0
571571 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
572572 −0.866025 0.500000i −0.866025 0.500000i
573573 0.500000 + 0.866025i 0.500000 + 0.866025i
574574 1.00000 1.00000
575575 0.866025 0.500000i 0.866025 0.500000i
576576 0 0
577577 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
578578 0 0
579579 1.00000i 1.00000i
580580 0 0
581581 0 0
582582 1.00000 1.00000
583583 0 0
584584 1.00000i 1.00000i
585585 0 0
586586 −1.73205 1.00000i −1.73205 1.00000i
587587 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
588588 −0.866025 + 0.500000i −0.866025 + 0.500000i
589589 −0.500000 0.866025i −0.500000 0.866025i
590590 0 0
591591 0 0
592592 1.00000 1.00000
593593 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 −0.866025 + 0.500000i −0.866025 + 0.500000i
595595 0 0
596596 0 0
597597 0 0
598598 −0.500000 0.866025i −0.500000 0.866025i
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0.500000 + 0.866025i 0.500000 + 0.866025i
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 1.00000i 1.00000i
603603 0 0
604604 1.00000i 1.00000i
605605 0 0
606606 0 0
607607 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
608608 1.00000 1.00000
609609 −0.500000 + 0.866025i −0.500000 + 0.866025i
610610 0 0
611611 0.866025 + 0.500000i 0.866025 + 0.500000i
612612 0 0
613613 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 −1.00000 −1.00000
615615 0 0
616616 0.866025 + 0.500000i 0.866025 + 0.500000i
617617 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
618618 1.00000i 1.00000i
619619 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
620620 0 0
621621 −1.00000 −1.00000
622622 −0.500000 0.866025i −0.500000 0.866025i
623623 1.00000i 1.00000i
624624 0.866025 0.500000i 0.866025 0.500000i
625625 −0.500000 + 0.866025i −0.500000 + 0.866025i
626626 −0.866025 0.500000i −0.866025 0.500000i
627627 0.866025 0.500000i 0.866025 0.500000i
628628 −0.500000 0.866025i −0.500000 0.866025i
629629 0.500000 + 0.866025i 0.500000 + 0.866025i
630630 0 0
631631 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0.500000 + 0.866025i 0.500000 + 0.866025i
634634 0.866025 + 0.500000i 0.866025 + 0.500000i
635635 0 0
636636 0 0
637637 −0.500000 + 0.866025i −0.500000 + 0.866025i
638638 1.00000 1.00000
639639 0 0
640640 0 0
641641 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
642642 1.00000i 1.00000i
643643 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
644644 0.500000 + 0.866025i 0.500000 + 0.866025i
645645 0 0
646646 0.500000 + 0.866025i 0.500000 + 0.866025i
647647 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
648648 1.00000i 1.00000i
649649 0.500000 0.866025i 0.500000 0.866025i
650650 0.866025 + 0.500000i 0.866025 + 0.500000i
651651 0.866025 + 0.500000i 0.866025 + 0.500000i
652652 0.866025 + 0.500000i 0.866025 + 0.500000i
653653 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 0.500000 0.866025i 0.500000 0.866025i
655655 0 0
656656 1.00000 1.00000
657657 0 0
658658 −0.866025 0.500000i −0.866025 0.500000i
659659 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
660660 0 0
661661 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
662662 −1.00000 −1.00000
663663 0.866025 + 0.500000i 0.866025 + 0.500000i
664664 0 0
665665 0 0
666666 0 0
667667 0.866025 + 0.500000i 0.866025 + 0.500000i
668668 1.00000i 1.00000i
669669 −0.500000 0.866025i −0.500000 0.866025i
670670 0 0
671671 −0.866025 0.500000i −0.866025 0.500000i
672672 −0.866025 + 0.500000i −0.866025 + 0.500000i
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 1.00000i 1.00000i
675675 0.866025 0.500000i 0.866025 0.500000i
676676 0 0
677677 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 1.00000 1.73205i 1.00000 1.73205i
679679 −0.866025 + 0.500000i −0.866025 + 0.500000i
680680 0 0
681681 −0.500000 + 0.866025i −0.500000 + 0.866025i
682682 1.00000i 1.00000i
683683 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
684684 0 0
685685 0 0
686686 0.500000 0.866025i 0.500000 0.866025i
687687 0.866025 0.500000i 0.866025 0.500000i
688688 1.00000i 1.00000i
689689 0 0
690690 0 0
691691 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0.500000 0.866025i 0.500000 0.866025i
695695 0 0
696696 −0.500000 + 0.866025i −0.500000 + 0.866025i
697697 0.500000 + 0.866025i 0.500000 + 0.866025i
698698 1.73205 + 1.00000i 1.73205 + 1.00000i
699699 0 0
700700 −0.866025 0.500000i −0.866025 0.500000i
701701 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
702702 −0.500000 0.866025i −0.500000 0.866025i
703703 1.00000i 1.00000i
704704 0.866025 + 0.500000i 0.866025 + 0.500000i
705705 0 0
706706 −0.866025 + 0.500000i −0.866025 + 0.500000i
707707 0 0
708708 0.500000 + 0.866025i 0.500000 + 0.866025i
709709 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
710710 0 0
711711 0 0
712712 1.00000i 1.00000i
713713 0.500000 0.866025i 0.500000 0.866025i
714714 −0.866025 0.500000i −0.866025 0.500000i
715715 0 0
716716 1.00000i 1.00000i
717717 0 0
718718 0 0
719719 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
720720 0 0
721721 0.500000 + 0.866025i 0.500000 + 0.866025i
722722 1.00000i 1.00000i
723723 0 0
724724 −1.00000 −1.00000
725725 −1.00000 −1.00000
726726 0 0
727727 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
728728 −0.500000 + 0.866025i −0.500000 + 0.866025i
729729 −1.00000 −1.00000
730730 0 0
731731 0.866025 0.500000i 0.866025 0.500000i
732732 0.866025 0.500000i 0.866025 0.500000i
733733 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 0 0
735735 0 0
736736 0.500000 + 0.866025i 0.500000 + 0.866025i
737737 0 0
738738 0 0
739739 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
740740 0 0
741741 0.500000 + 0.866025i 0.500000 + 0.866025i
742742 0 0
743743 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
744744 0.866025 + 0.500000i 0.866025 + 0.500000i
745745 0 0
746746 1.00000i 1.00000i
747747 0 0
748748 1.00000i 1.00000i
749749 0.500000 + 0.866025i 0.500000 + 0.866025i
750750 0 0
751751 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
752752 −0.866025 0.500000i −0.866025 0.500000i
753753 0.500000 0.866025i 0.500000 0.866025i
754754 1.00000i 1.00000i
755755 0 0
756756 0.500000 + 0.866025i 0.500000 + 0.866025i
757757 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
758758 0 0
759759 0.866025 + 0.500000i 0.866025 + 0.500000i
760760 0 0
761761 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
762762 0.866025 0.500000i 0.866025 0.500000i
763763 1.00000i 1.00000i
764764 −0.866025 0.500000i −0.866025 0.500000i
765765 0 0
766766 0 0
767767 0.866025 + 0.500000i 0.866025 + 0.500000i
768768 −0.866025 + 0.500000i −0.866025 + 0.500000i
769769 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
770770 0 0
771771 1.00000i 1.00000i
772772 −0.500000 0.866025i −0.500000 0.866025i
773773 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 0 0
775775 1.00000i 1.00000i
776776 −0.866025 + 0.500000i −0.866025 + 0.500000i
777777 −0.500000 0.866025i −0.500000 0.866025i
778778 0 0
779779 1.00000i 1.00000i
780780 0 0
781781 −1.00000 −1.00000
782782 −0.500000 + 0.866025i −0.500000 + 0.866025i
783783 0.866025 + 0.500000i 0.866025 + 0.500000i
784784 0.500000 0.866025i 0.500000 0.866025i
785785 0 0
786786 0 0
787787 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
788788 0 0
789789 1.00000 1.00000
790790 0 0
791791 2.00000i 2.00000i
792792 0 0
793793 0.500000 0.866025i 0.500000 0.866025i
794794 −1.73205 + 1.00000i −1.73205 + 1.00000i
795795 0 0
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 −0.500000 0.866025i −0.500000 0.866025i
799799 1.00000i 1.00000i
800800 −0.866025 0.500000i −0.866025 0.500000i
801801 0 0
802802 0 0
803803 0.866025 + 0.500000i 0.866025 + 0.500000i
804804 0 0
805805 0 0
806806 1.00000 1.00000
807807 1.00000i 1.00000i
808808 0 0
809809 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
810810 0 0
811811 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
812812 1.00000i 1.00000i
813813 0 0
814814 −0.500000 + 0.866025i −0.500000 + 0.866025i
815815 0 0
816816 −0.866025 0.500000i −0.866025 0.500000i
817817 1.00000 1.00000
818818 0 0
819819 0 0
820820 0 0
821821 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 −2.00000 −2.00000
823823 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
824824 0.500000 + 0.866025i 0.500000 + 0.866025i
825825 −1.00000 −1.00000
826826 −0.866025 0.500000i −0.866025 0.500000i
827827 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
830830 0 0
831831 −0.866025 0.500000i −0.866025 0.500000i
832832 −0.500000 + 0.866025i −0.500000 + 0.866025i
833833 1.00000 1.00000
834834 0.866025 0.500000i 0.866025 0.500000i
835835 0 0
836836 −0.500000 + 0.866025i −0.500000 + 0.866025i
837837 0.500000 0.866025i 0.500000 0.866025i
838838 0 0
839839 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
840840 0 0
841841 0 0
842842 1.00000i 1.00000i
843843 0.866025 + 0.500000i 0.866025 + 0.500000i
844844 −0.866025 0.500000i −0.866025 0.500000i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 −1.00000 −1.00000
850850 1.00000i 1.00000i
851851 −0.866025 + 0.500000i −0.866025 + 0.500000i
852852 0.500000 0.866025i 0.500000 0.866025i
853853 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
854854 −0.500000 + 0.866025i −0.500000 + 0.866025i
855855 0 0
856856 0.500000 + 0.866025i 0.500000 + 0.866025i
857857 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 1.00000i 1.00000i
859859 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
860860 0 0
861861 −0.500000 0.866025i −0.500000 0.866025i
862862 0 0
863863 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
864864 0.500000 + 0.866025i 0.500000 + 0.866025i
865865 0 0
866866 0.866025 0.500000i 0.866025 0.500000i
867867 0 0
868868 −1.00000 −1.00000
869869 0 0
870870 0 0
871871 0 0
872872 1.00000i 1.00000i
873873 0 0
874874 −0.866025 + 0.500000i −0.866025 + 0.500000i
875875 0 0
876876 −0.866025 + 0.500000i −0.866025 + 0.500000i
877877 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
878878 0 0
879879 2.00000i 2.00000i
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
884884 −1.00000 −1.00000
885885 0 0
886886 0.500000 0.866025i 0.500000 0.866025i
887887 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
888888 −0.500000 0.866025i −0.500000 0.866025i
889889 −0.500000 + 0.866025i −0.500000 + 0.866025i
890890 0 0
891891 0.866025 + 0.500000i 0.866025 + 0.500000i
892892 0.866025 + 0.500000i 0.866025 + 0.500000i
893893 0.500000 0.866025i 0.500000 0.866025i
894894 0 0
895895 0 0
896896 0.500000 0.866025i 0.500000 0.866025i
897897 −0.500000 + 0.866025i −0.500000 + 0.866025i
898898 0 0
899899 −0.866025 + 0.500000i −0.866025 + 0.500000i
900900 0 0
901901 0 0
902902 −0.500000 + 0.866025i −0.500000 + 0.866025i
903903 −0.866025 + 0.500000i −0.866025 + 0.500000i
904904 2.00000i 2.00000i
905905 0 0
906906 0.866025 0.500000i 0.866025 0.500000i
907907 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
908908 1.00000i 1.00000i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 −0.500000 0.866025i −0.500000 0.866025i
913913 0 0
914914 1.00000i 1.00000i
915915 0 0
916916 −0.500000 + 0.866025i −0.500000 + 0.866025i
917917 0 0
918918 −0.500000 + 0.866025i −0.500000 + 0.866025i
919919 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
920920 0 0
921921 0.500000 + 0.866025i 0.500000 + 0.866025i
922922 1.00000i 1.00000i
923923 1.00000i 1.00000i
924924 1.00000i 1.00000i
925925 0.500000 0.866025i 0.500000 0.866025i
926926 1.00000 1.73205i 1.00000 1.73205i
927927 0 0
928928 1.00000i 1.00000i
929929 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
930930 0 0
931931 0.866025 + 0.500000i 0.866025 + 0.500000i
932932 0 0
933933 −0.500000 + 0.866025i −0.500000 + 0.866025i
934934 −1.00000 −1.00000
935935 0 0
936936 0 0
937937 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
938938 0 0
939939 1.00000i 1.00000i
940940 0 0
941941 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
942942 −0.500000 + 0.866025i −0.500000 + 0.866025i
943943 −0.866025 + 0.500000i −0.866025 + 0.500000i
944944 −0.866025 0.500000i −0.866025 0.500000i
945945 0 0
946946 0.866025 + 0.500000i 0.866025 + 0.500000i
947947 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 −0.500000 + 0.866025i −0.500000 + 0.866025i
950950 0.500000 0.866025i 0.500000 0.866025i
951951 1.00000i 1.00000i
952952 1.00000 1.00000
953953 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 −0.500000 0.866025i −0.500000 0.866025i
958958 −2.00000 −2.00000
959959 1.73205 1.00000i 1.73205 1.00000i
960960 0 0
961961 0 0
962962 −0.866025 0.500000i −0.866025 0.500000i
963963 0 0
964964 0 0
965965 0 0
966966 0.500000 0.866025i 0.500000 0.866025i
967967 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0.500000 0.866025i 0.500000 0.866025i
970970 0 0
971971 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 −0.500000 + 0.866025i −0.500000 + 0.866025i
974974 −0.500000 0.866025i −0.500000 0.866025i
975975 1.00000i 1.00000i
976976 −0.500000 + 0.866025i −0.500000 + 0.866025i
977977 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
978978 1.00000i 1.00000i
979979 0.866025 + 0.500000i 0.866025 + 0.500000i
980980 0 0
981981 0 0
982982 −1.00000 −1.00000
983983 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
984984 −0.500000 0.866025i −0.500000 0.866025i
985985 0 0
986986 0.866025 0.500000i 0.866025 0.500000i
987987 1.00000i 1.00000i
988988 −0.866025 0.500000i −0.866025 0.500000i
989989 0.500000 + 0.866025i 0.500000 + 0.866025i
990990 0 0
991991 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
992992 −1.00000 −1.00000
993993 0.500000 + 0.866025i 0.500000 + 0.866025i
994994 1.00000i 1.00000i
995995 0 0
996996 0 0
997997 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
998998 0 0
999999 −0.866025 + 0.500000i −0.866025 + 0.500000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 532.1.n.a.235.2 yes 4
4.3 odd 2 inner 532.1.n.a.235.1 yes 4
7.2 even 3 532.1.bk.a.387.1 yes 4
7.3 odd 6 3724.1.bb.a.2059.1 4
7.4 even 3 3724.1.bb.b.2059.1 4
7.5 odd 6 3724.1.bk.a.1451.1 4
7.6 odd 2 3724.1.n.a.1831.2 4
19.11 even 3 532.1.bk.a.11.1 yes 4
28.3 even 6 3724.1.bb.a.2059.2 4
28.11 odd 6 3724.1.bb.b.2059.2 4
28.19 even 6 3724.1.bk.a.1451.2 4
28.23 odd 6 532.1.bk.a.387.2 yes 4
28.27 even 2 3724.1.n.a.1831.1 4
76.11 odd 6 532.1.bk.a.11.2 yes 4
133.11 even 3 3724.1.bb.b.3431.2 4
133.30 even 3 inner 532.1.n.a.163.1 4
133.68 odd 6 3724.1.n.a.2823.1 4
133.87 odd 6 3724.1.bb.a.3431.2 4
133.125 odd 6 3724.1.bk.a.3203.1 4
532.11 odd 6 3724.1.bb.b.3431.1 4
532.87 even 6 3724.1.bb.a.3431.1 4
532.163 odd 6 inner 532.1.n.a.163.2 yes 4
532.391 even 6 3724.1.bk.a.3203.2 4
532.467 even 6 3724.1.n.a.2823.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.1.n.a.163.1 4 133.30 even 3 inner
532.1.n.a.163.2 yes 4 532.163 odd 6 inner
532.1.n.a.235.1 yes 4 4.3 odd 2 inner
532.1.n.a.235.2 yes 4 1.1 even 1 trivial
532.1.bk.a.11.1 yes 4 19.11 even 3
532.1.bk.a.11.2 yes 4 76.11 odd 6
532.1.bk.a.387.1 yes 4 7.2 even 3
532.1.bk.a.387.2 yes 4 28.23 odd 6
3724.1.n.a.1831.1 4 28.27 even 2
3724.1.n.a.1831.2 4 7.6 odd 2
3724.1.n.a.2823.1 4 133.68 odd 6
3724.1.n.a.2823.2 4 532.467 even 6
3724.1.bb.a.2059.1 4 7.3 odd 6
3724.1.bb.a.2059.2 4 28.3 even 6
3724.1.bb.a.3431.1 4 532.87 even 6
3724.1.bb.a.3431.2 4 133.87 odd 6
3724.1.bb.b.2059.1 4 7.4 even 3
3724.1.bb.b.2059.2 4 28.11 odd 6
3724.1.bb.b.3431.1 4 532.11 odd 6
3724.1.bb.b.3431.2 4 133.11 even 3
3724.1.bk.a.1451.1 4 7.5 odd 6
3724.1.bk.a.1451.2 4 28.19 even 6
3724.1.bk.a.3203.1 4 133.125 odd 6
3724.1.bk.a.3203.2 4 532.391 even 6