Properties

Label 3724.1.bk.a.3203.2
Level 37243724
Weight 11
Character 3724.3203
Analytic conductor 1.8591.859
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,1,Mod(1451,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1451");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3724=227219 3724 = 2^{2} \cdot 7^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3724.bk (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.858518107051.85851810705
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 532)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.283024.1

Embedding invariants

Embedding label 3203.2
Root 0.866025+0.500000i-0.866025 + 0.500000i of defining polynomial
Character χ\chi == 3724.3203
Dual form 3724.1.bk.a.1451.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq2+(0.866025+0.500000i)q31.00000q4+(0.5000000.866025i)q61.00000iq8+(0.866025+0.500000i)q11+(0.8660250.500000i)q12+(0.5000000.866025i)q13+1.00000q16+(0.5000000.866025i)q17+1.00000iq19+(0.500000+0.866025i)q22+(0.8660250.500000i)q23+(0.500000+0.866025i)q241.00000q25+(0.8660250.500000i)q261.00000iq27+(0.5000000.866025i)q29+(0.866025+0.500000i)q31+1.00000iq321.00000q33+(0.8660250.500000i)q34+(0.5000000.866025i)q371.00000q38+(0.866025+0.500000i)q39+(0.5000000.866025i)q41+(0.8660250.500000i)q43+(0.8660250.500000i)q44+(0.5000000.866025i)q46+(0.8660250.500000i)q47+(0.866025+0.500000i)q481.00000iq50+(0.866025+0.500000i)q51+(0.500000+0.866025i)q52+1.00000q54+(0.5000000.866025i)q57+(0.8660250.500000i)q58+(0.8660250.500000i)q59+(0.5000000.866025i)q61+(0.500000+0.866025i)q621.00000q641.00000iq66+(0.500000+0.866025i)q68+1.00000q69+(0.866025+0.500000i)q71+(0.5000000.866025i)q73+(0.8660250.500000i)q74+(0.8660250.500000i)q751.00000iq76+(0.500000+0.866025i)q78+(0.500000+0.866025i)q81+(0.866025+0.500000i)q82+(0.5000000.866025i)q86+(0.866025+0.500000i)q87+(0.5000000.866025i)q88+(0.500000+0.866025i)q89+(0.866025+0.500000i)q921.00000q93+(0.5000000.866025i)q94+(0.5000000.866025i)q96+(0.500000+0.866025i)q97+O(q100)q+1.00000i q^{2} +(-0.866025 + 0.500000i) q^{3} -1.00000 q^{4} +(-0.500000 - 0.866025i) q^{6} -1.00000i q^{8} +(0.866025 + 0.500000i) q^{11} +(0.866025 - 0.500000i) q^{12} +(-0.500000 - 0.866025i) q^{13} +1.00000 q^{16} +(-0.500000 - 0.866025i) q^{17} +1.00000i q^{19} +(-0.500000 + 0.866025i) q^{22} +(-0.866025 - 0.500000i) q^{23} +(0.500000 + 0.866025i) q^{24} -1.00000 q^{25} +(0.866025 - 0.500000i) q^{26} -1.00000i q^{27} +(-0.500000 - 0.866025i) q^{29} +(0.866025 + 0.500000i) q^{31} +1.00000i q^{32} -1.00000 q^{33} +(0.866025 - 0.500000i) q^{34} +(-0.500000 - 0.866025i) q^{37} -1.00000 q^{38} +(0.866025 + 0.500000i) q^{39} +(0.500000 - 0.866025i) q^{41} +(-0.866025 - 0.500000i) q^{43} +(-0.866025 - 0.500000i) q^{44} +(0.500000 - 0.866025i) q^{46} +(-0.866025 - 0.500000i) q^{47} +(-0.866025 + 0.500000i) q^{48} -1.00000i q^{50} +(0.866025 + 0.500000i) q^{51} +(0.500000 + 0.866025i) q^{52} +1.00000 q^{54} +(-0.500000 - 0.866025i) q^{57} +(0.866025 - 0.500000i) q^{58} +(0.866025 - 0.500000i) q^{59} +(0.500000 - 0.866025i) q^{61} +(-0.500000 + 0.866025i) q^{62} -1.00000 q^{64} -1.00000i q^{66} +(0.500000 + 0.866025i) q^{68} +1.00000 q^{69} +(0.866025 + 0.500000i) q^{71} +(-0.500000 - 0.866025i) q^{73} +(0.866025 - 0.500000i) q^{74} +(0.866025 - 0.500000i) q^{75} -1.00000i q^{76} +(-0.500000 + 0.866025i) q^{78} +(0.500000 + 0.866025i) q^{81} +(0.866025 + 0.500000i) q^{82} +(0.500000 - 0.866025i) q^{86} +(0.866025 + 0.500000i) q^{87} +(0.500000 - 0.866025i) q^{88} +(-0.500000 + 0.866025i) q^{89} +(0.866025 + 0.500000i) q^{92} -1.00000 q^{93} +(0.500000 - 0.866025i) q^{94} +(-0.500000 - 0.866025i) q^{96} +(-0.500000 + 0.866025i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q42q62q13+4q162q172q22+2q244q252q294q332q374q38+2q41+2q46+2q52+4q542q57+2q612q62+2q97+O(q100) 4 q - 4 q^{4} - 2 q^{6} - 2 q^{13} + 4 q^{16} - 2 q^{17} - 2 q^{22} + 2 q^{24} - 4 q^{25} - 2 q^{29} - 4 q^{33} - 2 q^{37} - 4 q^{38} + 2 q^{41} + 2 q^{46} + 2 q^{52} + 4 q^{54} - 2 q^{57} + 2 q^{61} - 2 q^{62}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3724Z)×\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times.

nn 18631863 30413041 31373137
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right) e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i
33 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
44 −1.00000 −1.00000
55 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
66 −0.500000 0.866025i −0.500000 0.866025i
77 0 0
88 1.00000i 1.00000i
99 0 0
1010 0 0
1111 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
1212 0.866025 0.500000i 0.866025 0.500000i
1313 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
1414 0 0
1515 0 0
1616 1.00000 1.00000
1717 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
1818 0 0
1919 1.00000i 1.00000i
2020 0 0
2121 0 0
2222 −0.500000 + 0.866025i −0.500000 + 0.866025i
2323 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2424 0.500000 + 0.866025i 0.500000 + 0.866025i
2525 −1.00000 −1.00000
2626 0.866025 0.500000i 0.866025 0.500000i
2727 1.00000i 1.00000i
2828 0 0
2929 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
3030 0 0
3131 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
3232 1.00000i 1.00000i
3333 −1.00000 −1.00000
3434 0.866025 0.500000i 0.866025 0.500000i
3535 0 0
3636 0 0
3737 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
3838 −1.00000 −1.00000
3939 0.866025 + 0.500000i 0.866025 + 0.500000i
4040 0 0
4141 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
4242 0 0
4343 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4444 −0.866025 0.500000i −0.866025 0.500000i
4545 0 0
4646 0.500000 0.866025i 0.500000 0.866025i
4747 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4848 −0.866025 + 0.500000i −0.866025 + 0.500000i
4949 0 0
5050 1.00000i 1.00000i
5151 0.866025 + 0.500000i 0.866025 + 0.500000i
5252 0.500000 + 0.866025i 0.500000 + 0.866025i
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 1.00000 1.00000
5555 0 0
5656 0 0
5757 −0.500000 0.866025i −0.500000 0.866025i
5858 0.866025 0.500000i 0.866025 0.500000i
5959 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6060 0 0
6161 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
6262 −0.500000 + 0.866025i −0.500000 + 0.866025i
6363 0 0
6464 −1.00000 −1.00000
6565 0 0
6666 1.00000i 1.00000i
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0.500000 + 0.866025i 0.500000 + 0.866025i
6969 1.00000 1.00000
7070 0 0
7171 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
7474 0.866025 0.500000i 0.866025 0.500000i
7575 0.866025 0.500000i 0.866025 0.500000i
7676 1.00000i 1.00000i
7777 0 0
7878 −0.500000 + 0.866025i −0.500000 + 0.866025i
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 0.500000 + 0.866025i 0.500000 + 0.866025i
8282 0.866025 + 0.500000i 0.866025 + 0.500000i
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0.500000 0.866025i 0.500000 0.866025i
8787 0.866025 + 0.500000i 0.866025 + 0.500000i
8888 0.500000 0.866025i 0.500000 0.866025i
8989 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0.866025 + 0.500000i 0.866025 + 0.500000i
9393 −1.00000 −1.00000
9494 0.500000 0.866025i 0.500000 0.866025i
9595 0 0
9696 −0.500000 0.866025i −0.500000 0.866025i
9797 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
9898 0 0
9999 0 0
100100 1.00000 1.00000
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 −0.500000 + 0.866025i −0.500000 + 0.866025i
103103 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
104104 −0.866025 + 0.500000i −0.866025 + 0.500000i
105105 0 0
106106 0 0
107107 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
108108 1.00000i 1.00000i
109109 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
110110 0 0
111111 0.866025 + 0.500000i 0.866025 + 0.500000i
112112 0 0
113113 2.00000 2.00000 1.00000 00
1.00000 00
114114 0.866025 0.500000i 0.866025 0.500000i
115115 0 0
116116 0.500000 + 0.866025i 0.500000 + 0.866025i
117117 0 0
118118 0.500000 + 0.866025i 0.500000 + 0.866025i
119119 0 0
120120 0 0
121121 0 0
122122 0.866025 + 0.500000i 0.866025 + 0.500000i
123123 1.00000i 1.00000i
124124 −0.866025 0.500000i −0.866025 0.500000i
125125 0 0
126126 0 0
127127 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
128128 1.00000i 1.00000i
129129 1.00000 1.00000
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 1.00000 1.00000
133133 0 0
134134 0 0
135135 0 0
136136 −0.866025 + 0.500000i −0.866025 + 0.500000i
137137 2.00000 2.00000 1.00000 00
1.00000 00
138138 1.00000i 1.00000i
139139 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 1.00000 1.00000
142142 −0.500000 + 0.866025i −0.500000 + 0.866025i
143143 1.00000i 1.00000i
144144 0 0
145145 0 0
146146 0.866025 0.500000i 0.866025 0.500000i
147147 0 0
148148 0.500000 + 0.866025i 0.500000 + 0.866025i
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0.500000 + 0.866025i 0.500000 + 0.866025i
151151 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
152152 1.00000 1.00000
153153 0 0
154154 0 0
155155 0 0
156156 −0.866025 0.500000i −0.866025 0.500000i
157157 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 −0.866025 + 0.500000i −0.866025 + 0.500000i
163163 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
164164 −0.500000 + 0.866025i −0.500000 + 0.866025i
165165 0 0
166166 0 0
167167 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
168168 0 0
169169 0 0
170170 0 0
171171 0 0
172172 0.866025 + 0.500000i 0.866025 + 0.500000i
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 −0.500000 + 0.866025i −0.500000 + 0.866025i
175175 0 0
176176 0.866025 + 0.500000i 0.866025 + 0.500000i
177177 −0.500000 + 0.866025i −0.500000 + 0.866025i
178178 −0.866025 0.500000i −0.866025 0.500000i
179179 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
180180 0 0
181181 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
182182 0 0
183183 1.00000i 1.00000i
184184 −0.500000 + 0.866025i −0.500000 + 0.866025i
185185 0 0
186186 1.00000i 1.00000i
187187 1.00000i 1.00000i
188188 0.866025 + 0.500000i 0.866025 + 0.500000i
189189 0 0
190190 0 0
191191 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
192192 0.866025 0.500000i 0.866025 0.500000i
193193 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 −0.866025 0.500000i −0.866025 0.500000i
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 1.00000i 1.00000i
201201 0 0
202202 0 0
203203 0 0
204204 −0.866025 0.500000i −0.866025 0.500000i
205205 0 0
206206 0.500000 + 0.866025i 0.500000 + 0.866025i
207207 0 0
208208 −0.500000 0.866025i −0.500000 0.866025i
209209 −0.500000 + 0.866025i −0.500000 + 0.866025i
210210 0 0
211211 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
212212 0 0
213213 −1.00000 −1.00000
214214 −0.500000 0.866025i −0.500000 0.866025i
215215 0 0
216216 −1.00000 −1.00000
217217 0 0
218218 0.866025 0.500000i 0.866025 0.500000i
219219 0.866025 + 0.500000i 0.866025 + 0.500000i
220220 0 0
221221 −0.500000 + 0.866025i −0.500000 + 0.866025i
222222 −0.500000 + 0.866025i −0.500000 + 0.866025i
223223 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
224224 0 0
225225 0 0
226226 2.00000i 2.00000i
227227 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
228228 0.500000 + 0.866025i 0.500000 + 0.866025i
229229 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
230230 0 0
231231 0 0
232232 −0.866025 + 0.500000i −0.866025 + 0.500000i
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 −0.866025 + 0.500000i −0.866025 + 0.500000i
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0 0
243243 0 0
244244 −0.500000 + 0.866025i −0.500000 + 0.866025i
245245 0 0
246246 −1.00000 −1.00000
247247 0.866025 0.500000i 0.866025 0.500000i
248248 0.500000 0.866025i 0.500000 0.866025i
249249 0 0
250250 0 0
251251 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 −0.500000 0.866025i −0.500000 0.866025i
254254 0.500000 + 0.866025i 0.500000 + 0.866025i
255255 0 0
256256 1.00000 1.00000
257257 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
258258 1.00000i 1.00000i
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
264264 1.00000i 1.00000i
265265 0 0
266266 0 0
267267 1.00000i 1.00000i
268268 0 0
269269 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 −0.500000 0.866025i −0.500000 0.866025i
273273 0 0
274274 2.00000i 2.00000i
275275 −0.866025 0.500000i −0.866025 0.500000i
276276 −1.00000 −1.00000
277277 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
278278 −0.500000 0.866025i −0.500000 0.866025i
279279 0 0
280280 0 0
281281 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
282282 1.00000i 1.00000i
283283 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
284284 −0.866025 0.500000i −0.866025 0.500000i
285285 0 0
286286 1.00000 1.00000
287287 0 0
288288 0 0
289289 0 0
290290 0 0
291291 1.00000i 1.00000i
292292 0.500000 + 0.866025i 0.500000 + 0.866025i
293293 2.00000 2.00000 1.00000 00
1.00000 00
294294 0 0
295295 0 0
296296 −0.866025 + 0.500000i −0.866025 + 0.500000i
297297 0.500000 0.866025i 0.500000 0.866025i
298298 0 0
299299 1.00000i 1.00000i
300300 −0.866025 + 0.500000i −0.866025 + 0.500000i
301301 0 0
302302 0.500000 0.866025i 0.500000 0.866025i
303303 0 0
304304 1.00000i 1.00000i
305305 0 0
306306 0 0
307307 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 −0.500000 + 0.866025i −0.500000 + 0.866025i
310310 0 0
311311 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
312312 0.500000 0.866025i 0.500000 0.866025i
313313 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
314314 0.866025 0.500000i 0.866025 0.500000i
315315 0 0
316316 0 0
317317 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
318318 0 0
319319 1.00000i 1.00000i
320320 0 0
321321 0.500000 0.866025i 0.500000 0.866025i
322322 0 0
323323 0.866025 0.500000i 0.866025 0.500000i
324324 −0.500000 0.866025i −0.500000 0.866025i
325325 0.500000 + 0.866025i 0.500000 + 0.866025i
326326 −0.500000 0.866025i −0.500000 0.866025i
327327 0.866025 + 0.500000i 0.866025 + 0.500000i
328328 −0.866025 0.500000i −0.866025 0.500000i
329329 0 0
330330 0 0
331331 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
332332 0 0
333333 0 0
334334 0.500000 + 0.866025i 0.500000 + 0.866025i
335335 0 0
336336 0 0
337337 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
338338 0 0
339339 −1.73205 + 1.00000i −1.73205 + 1.00000i
340340 0 0
341341 0.500000 + 0.866025i 0.500000 + 0.866025i
342342 0 0
343343 0 0
344344 −0.500000 + 0.866025i −0.500000 + 0.866025i
345345 0 0
346346 0 0
347347 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
348348 −0.866025 0.500000i −0.866025 0.500000i
349349 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
350350 0 0
351351 −0.866025 + 0.500000i −0.866025 + 0.500000i
352352 −0.500000 + 0.866025i −0.500000 + 0.866025i
353353 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
354354 −0.866025 0.500000i −0.866025 0.500000i
355355 0 0
356356 0.500000 0.866025i 0.500000 0.866025i
357357 0 0
358358 0.500000 0.866025i 0.500000 0.866025i
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 −1.00000 −1.00000
362362 −0.866025 + 0.500000i −0.866025 + 0.500000i
363363 0 0
364364 0 0
365365 0 0
366366 −1.00000 −1.00000
367367 0 0 1.00000 00
−1.00000 π\pi
368368 −0.866025 0.500000i −0.866025 0.500000i
369369 0 0
370370 0 0
371371 0 0
372372 1.00000 1.00000
373373 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
374374 1.00000 1.00000
375375 0 0
376376 −0.500000 + 0.866025i −0.500000 + 0.866025i
377377 −0.500000 + 0.866025i −0.500000 + 0.866025i
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 −0.500000 + 0.866025i −0.500000 + 0.866025i
382382 0.500000 + 0.866025i 0.500000 + 0.866025i
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0.500000 + 0.866025i 0.500000 + 0.866025i
385385 0 0
386386 −0.866025 + 0.500000i −0.866025 + 0.500000i
387387 0 0
388388 0.500000 0.866025i 0.500000 0.866025i
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 1.00000i 1.00000i
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 1.00000i 1.00000i
404404 0 0
405405 0 0
406406 0 0
407407 1.00000i 1.00000i
408408 0.500000 0.866025i 0.500000 0.866025i
409409 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
410410 0 0
411411 −1.73205 + 1.00000i −1.73205 + 1.00000i
412412 −0.866025 + 0.500000i −0.866025 + 0.500000i
413413 0 0
414414 0 0
415415 0 0
416416 0.866025 0.500000i 0.866025 0.500000i
417417 0.500000 0.866025i 0.500000 0.866025i
418418 −0.866025 0.500000i −0.866025 0.500000i
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
422422 0.500000 0.866025i 0.500000 0.866025i
423423 0 0
424424 0 0
425425 0.500000 + 0.866025i 0.500000 + 0.866025i
426426 1.00000i 1.00000i
427427 0 0
428428 0.866025 0.500000i 0.866025 0.500000i
429429 0.500000 + 0.866025i 0.500000 + 0.866025i
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 1.00000i 1.00000i
433433 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0.500000 + 0.866025i 0.500000 + 0.866025i
437437 0.500000 0.866025i 0.500000 0.866025i
438438 −0.500000 + 0.866025i −0.500000 + 0.866025i
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 −0.866025 0.500000i −0.866025 0.500000i
443443 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
444444 −0.866025 0.500000i −0.866025 0.500000i
445445 0 0
446446 0.500000 0.866025i 0.500000 0.866025i
447447 0 0
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0.866025 0.500000i 0.866025 0.500000i
452452 −2.00000 −2.00000
453453 1.00000 1.00000
454454 0.500000 0.866025i 0.500000 0.866025i
455455 0 0
456456 −0.866025 + 0.500000i −0.866025 + 0.500000i
457457 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
458458 0.866025 0.500000i 0.866025 0.500000i
459459 −0.866025 + 0.500000i −0.866025 + 0.500000i
460460 0 0
461461 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
462462 0 0
463463 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
464464 −0.500000 0.866025i −0.500000 0.866025i
465465 0 0
466466 0 0
467467 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0.866025 + 0.500000i 0.866025 + 0.500000i
472472 −0.500000 0.866025i −0.500000 0.866025i
473473 −0.500000 0.866025i −0.500000 0.866025i
474474 0 0
475475 1.00000i 1.00000i
476476 0 0
477477 0 0
478478 0 0
479479 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
480480 0 0
481481 −0.500000 + 0.866025i −0.500000 + 0.866025i
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
488488 −0.866025 0.500000i −0.866025 0.500000i
489489 0.500000 0.866025i 0.500000 0.866025i
490490 0 0
491491 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
492492 1.00000i 1.00000i
493493 −0.500000 + 0.866025i −0.500000 + 0.866025i
494494 0.500000 + 0.866025i 0.500000 + 0.866025i
495495 0 0
496496 0.866025 + 0.500000i 0.866025 + 0.500000i
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 −0.500000 + 0.866025i −0.500000 + 0.866025i
502502 −0.500000 0.866025i −0.500000 0.866025i
503503 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0.866025 0.500000i 0.866025 0.500000i
507507 0 0
508508 −0.866025 + 0.500000i −0.866025 + 0.500000i
509509 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 1.00000 1.00000
514514 0.866025 + 0.500000i 0.866025 + 0.500000i
515515 0 0
516516 −1.00000 −1.00000
517517 −0.500000 0.866025i −0.500000 0.866025i
518518 0 0
519519 0 0
520520 0 0
521521 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
522522 0 0
523523 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 −0.500000 0.866025i −0.500000 0.866025i
527527 1.00000i 1.00000i
528528 −1.00000 −1.00000
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 −1.00000 −1.00000
534534 1.00000 1.00000
535535 0 0
536536 0 0
537537 1.00000 1.00000
538538 −0.866025 + 0.500000i −0.866025 + 0.500000i
539539 0 0
540540 0 0
541541 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
542542 0 0
543543 −0.866025 0.500000i −0.866025 0.500000i
544544 0.866025 0.500000i 0.866025 0.500000i
545545 0 0
546546 0 0
547547 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
548548 −2.00000 −2.00000
549549 0 0
550550 0.500000 0.866025i 0.500000 0.866025i
551551 0.866025 0.500000i 0.866025 0.500000i
552552 1.00000i 1.00000i
553553 0 0
554554 0.866025 + 0.500000i 0.866025 + 0.500000i
555555 0 0
556556 0.866025 0.500000i 0.866025 0.500000i
557557 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
558558 0 0
559559 1.00000i 1.00000i
560560 0 0
561561 0.500000 + 0.866025i 0.500000 + 0.866025i
562562 0.866025 0.500000i 0.866025 0.500000i
563563 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
564564 −1.00000 −1.00000
565565 0 0
566566 −0.500000 0.866025i −0.500000 0.866025i
567567 0 0
568568 0.500000 0.866025i 0.500000 0.866025i
569569 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 0 0
571571 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
572572 1.00000i 1.00000i
573573 −0.500000 + 0.866025i −0.500000 + 0.866025i
574574 0 0
575575 0.866025 + 0.500000i 0.866025 + 0.500000i
576576 0 0
577577 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
578578 0 0
579579 −0.866025 0.500000i −0.866025 0.500000i
580580 0 0
581581 0 0
582582 1.00000 1.00000
583583 0 0
584584 −0.866025 + 0.500000i −0.866025 + 0.500000i
585585 0 0
586586 2.00000i 2.00000i
587587 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 −0.500000 + 0.866025i −0.500000 + 0.866025i
590590 0 0
591591 0 0
592592 −0.500000 0.866025i −0.500000 0.866025i
593593 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
594594 0.866025 + 0.500000i 0.866025 + 0.500000i
595595 0 0
596596 0 0
597597 0 0
598598 −1.00000 −1.00000
599599 0 0 1.00000 00
−1.00000 π\pi
600600 −0.500000 0.866025i −0.500000 0.866025i
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0.866025 + 0.500000i 0.866025 + 0.500000i
605605 0 0
606606 0 0
607607 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
608608 −1.00000 −1.00000
609609 0 0
610610 0 0
611611 1.00000i 1.00000i
612612 0 0
613613 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 −0.500000 + 0.866025i −0.500000 + 0.866025i
615615 0 0
616616 0 0
617617 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
618618 −0.866025 0.500000i −0.866025 0.500000i
619619 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
620620 0 0
621621 −0.500000 + 0.866025i −0.500000 + 0.866025i
622622 0.500000 0.866025i 0.500000 0.866025i
623623 0 0
624624 0.866025 + 0.500000i 0.866025 + 0.500000i
625625 1.00000 1.00000
626626 −0.866025 0.500000i −0.866025 0.500000i
627627 1.00000i 1.00000i
628628 0.500000 + 0.866025i 0.500000 + 0.866025i
629629 −0.500000 + 0.866025i −0.500000 + 0.866025i
630630 0 0
631631 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
632632 0 0
633633 1.00000 1.00000
634634 −0.866025 0.500000i −0.866025 0.500000i
635635 0 0
636636 0 0
637637 0 0
638638 1.00000 1.00000
639639 0 0
640640 0 0
641641 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
642642 0.866025 + 0.500000i 0.866025 + 0.500000i
643643 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 0 0
645645 0 0
646646 0.500000 + 0.866025i 0.500000 + 0.866025i
647647 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
648648 0.866025 0.500000i 0.866025 0.500000i
649649 1.00000 1.00000
650650 −0.866025 + 0.500000i −0.866025 + 0.500000i
651651 0 0
652652 0.866025 0.500000i 0.866025 0.500000i
653653 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 −0.500000 + 0.866025i −0.500000 + 0.866025i
655655 0 0
656656 0.500000 0.866025i 0.500000 0.866025i
657657 0 0
658658 0 0
659659 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
662662 0.500000 + 0.866025i 0.500000 + 0.866025i
663663 1.00000i 1.00000i
664664 0 0
665665 0 0
666666 0 0
667667 1.00000i 1.00000i
668668 −0.866025 + 0.500000i −0.866025 + 0.500000i
669669 1.00000 1.00000
670670 0 0
671671 0.866025 0.500000i 0.866025 0.500000i
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 −0.866025 0.500000i −0.866025 0.500000i
675675 1.00000i 1.00000i
676676 0 0
677677 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
678678 −1.00000 1.73205i −1.00000 1.73205i
679679 0 0
680680 0 0
681681 1.00000 1.00000
682682 −0.866025 + 0.500000i −0.866025 + 0.500000i
683683 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0.866025 + 0.500000i 0.866025 + 0.500000i
688688 −0.866025 0.500000i −0.866025 0.500000i
689689 0 0
690690 0 0
691691 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0.500000 + 0.866025i 0.500000 + 0.866025i
695695 0 0
696696 0.500000 0.866025i 0.500000 0.866025i
697697 −1.00000 −1.00000
698698 2.00000i 2.00000i
699699 0 0
700700 0 0
701701 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
702702 −0.500000 0.866025i −0.500000 0.866025i
703703 0.866025 0.500000i 0.866025 0.500000i
704704 −0.866025 0.500000i −0.866025 0.500000i
705705 0 0
706706 0.866025 + 0.500000i 0.866025 + 0.500000i
707707 0 0
708708 0.500000 0.866025i 0.500000 0.866025i
709709 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
710710 0 0
711711 0 0
712712 0.866025 + 0.500000i 0.866025 + 0.500000i
713713 −0.500000 0.866025i −0.500000 0.866025i
714714 0 0
715715 0 0
716716 0.866025 + 0.500000i 0.866025 + 0.500000i
717717 0 0
718718 0 0
719719 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
720720 0 0
721721 0 0
722722 1.00000i 1.00000i
723723 0 0
724724 −0.500000 0.866025i −0.500000 0.866025i
725725 0.500000 + 0.866025i 0.500000 + 0.866025i
726726 0 0
727727 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0 0
731731 1.00000i 1.00000i
732732 1.00000i 1.00000i
733733 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0.500000 0.866025i 0.500000 0.866025i
737737 0 0
738738 0 0
739739 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
740740 0 0
741741 −0.500000 + 0.866025i −0.500000 + 0.866025i
742742 0 0
743743 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
744744 1.00000i 1.00000i
745745 0 0
746746 0.866025 0.500000i 0.866025 0.500000i
747747 0 0
748748 1.00000i 1.00000i
749749 0 0
750750 0 0
751751 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
752752 −0.866025 0.500000i −0.866025 0.500000i
753753 0.500000 0.866025i 0.500000 0.866025i
754754 −0.866025 0.500000i −0.866025 0.500000i
755755 0 0
756756 0 0
757757 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
758758 0 0
759759 0.866025 + 0.500000i 0.866025 + 0.500000i
760760 0 0
761761 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 −0.866025 0.500000i −0.866025 0.500000i
763763 0 0
764764 −0.866025 + 0.500000i −0.866025 + 0.500000i
765765 0 0
766766 0 0
767767 −0.866025 0.500000i −0.866025 0.500000i
768768 −0.866025 + 0.500000i −0.866025 + 0.500000i
769769 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 1.00000i 1.00000i
772772 −0.500000 0.866025i −0.500000 0.866025i
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 −0.866025 0.500000i −0.866025 0.500000i
776776 0.866025 + 0.500000i 0.866025 + 0.500000i
777777 0 0
778778 0 0
779779 0.866025 + 0.500000i 0.866025 + 0.500000i
780780 0 0
781781 0.500000 + 0.866025i 0.500000 + 0.866025i
782782 −1.00000 −1.00000
783783 −0.866025 + 0.500000i −0.866025 + 0.500000i
784784 0 0
785785 0 0
786786 0 0
787787 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
788788 0 0
789789 0.500000 0.866025i 0.500000 0.866025i
790790 0 0
791791 0 0
792792 0 0
793793 −1.00000 −1.00000
794794 2.00000i 2.00000i
795795 0 0
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 1.00000i 1.00000i
800800 1.00000i 1.00000i
801801 0 0
802802 0 0
803803 1.00000i 1.00000i
804804 0 0
805805 0 0
806806 1.00000 1.00000
807807 −0.866025 0.500000i −0.866025 0.500000i
808808 0 0
809809 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
810810 0 0
811811 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
812812 0 0
813813 0 0
814814 1.00000 1.00000
815815 0 0
816816 0.866025 + 0.500000i 0.866025 + 0.500000i
817817 0.500000 0.866025i 0.500000 0.866025i
818818 0 0
819819 0 0
820820 0 0
821821 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
822822 −1.00000 1.73205i −1.00000 1.73205i
823823 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
824824 −0.500000 0.866025i −0.500000 0.866025i
825825 1.00000 1.00000
826826 0 0
827827 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
828828 0 0
829829 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
830830 0 0
831831 1.00000i 1.00000i
832832 0.500000 + 0.866025i 0.500000 + 0.866025i
833833 0 0
834834 0.866025 + 0.500000i 0.866025 + 0.500000i
835835 0 0
836836 0.500000 0.866025i 0.500000 0.866025i
837837 0.500000 0.866025i 0.500000 0.866025i
838838 0 0
839839 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
840840 0 0
841841 0 0
842842 0.866025 + 0.500000i 0.866025 + 0.500000i
843843 0.866025 + 0.500000i 0.866025 + 0.500000i
844844 0.866025 + 0.500000i 0.866025 + 0.500000i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0.500000 0.866025i 0.500000 0.866025i
850850 −0.866025 + 0.500000i −0.866025 + 0.500000i
851851 1.00000i 1.00000i
852852 1.00000 1.00000
853853 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0.500000 + 0.866025i 0.500000 + 0.866025i
857857 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 −0.866025 + 0.500000i −0.866025 + 0.500000i
859859 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
864864 1.00000 1.00000
865865 0 0
866866 0.866025 0.500000i 0.866025 0.500000i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.866025 + 0.500000i −0.866025 + 0.500000i
873873 0 0
874874 0.866025 + 0.500000i 0.866025 + 0.500000i
875875 0 0
876876 −0.866025 0.500000i −0.866025 0.500000i
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 −1.73205 + 1.00000i −1.73205 + 1.00000i
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
884884 0.500000 0.866025i 0.500000 0.866025i
885885 0 0
886886 0.500000 0.866025i 0.500000 0.866025i
887887 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
888888 0.500000 0.866025i 0.500000 0.866025i
889889 0 0
890890 0 0
891891 1.00000i 1.00000i
892892 0.866025 + 0.500000i 0.866025 + 0.500000i
893893 0.500000 0.866025i 0.500000 0.866025i
894894 0 0
895895 0 0
896896 0 0
897897 −0.500000 0.866025i −0.500000 0.866025i
898898 0 0
899899 1.00000i 1.00000i
900900 0 0
901901 0 0
902902 0.500000 + 0.866025i 0.500000 + 0.866025i
903903 0 0
904904 2.00000i 2.00000i
905905 0 0
906906 1.00000i 1.00000i
907907 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
908908 0.866025 + 0.500000i 0.866025 + 0.500000i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 −0.500000 0.866025i −0.500000 0.866025i
913913 0 0
914914 0.866025 0.500000i 0.866025 0.500000i
915915 0 0
916916 0.500000 + 0.866025i 0.500000 + 0.866025i
917917 0 0
918918 −0.500000 0.866025i −0.500000 0.866025i
919919 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 −1.00000 −1.00000
922922 0.866025 + 0.500000i 0.866025 + 0.500000i
923923 1.00000i 1.00000i
924924 0 0
925925 0.500000 + 0.866025i 0.500000 + 0.866025i
926926 −2.00000 −2.00000
927927 0 0
928928 0.866025 0.500000i 0.866025 0.500000i
929929 2.00000 2.00000 1.00000 00
1.00000 00
930930 0 0
931931 0 0
932932 0 0
933933 1.00000 1.00000
934934 −0.500000 0.866025i −0.500000 0.866025i
935935 0 0
936936 0 0
937937 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
938938 0 0
939939 1.00000i 1.00000i
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 −0.500000 + 0.866025i −0.500000 + 0.866025i
943943 −0.866025 + 0.500000i −0.866025 + 0.500000i
944944 0.866025 0.500000i 0.866025 0.500000i
945945 0 0
946946 0.866025 0.500000i 0.866025 0.500000i
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 −0.500000 + 0.866025i −0.500000 + 0.866025i
950950 1.00000 1.00000
951951 1.00000i 1.00000i
952952 0 0
953953 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 0.500000 + 0.866025i 0.500000 + 0.866025i
958958 2.00000 2.00000
959959 0 0
960960 0 0
961961 0 0
962962 −0.866025 0.500000i −0.866025 0.500000i
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
968968 0 0
969969 −0.500000 + 0.866025i −0.500000 + 0.866025i
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 −0.500000 + 0.866025i −0.500000 + 0.866025i
975975 −0.866025 0.500000i −0.866025 0.500000i
976976 0.500000 0.866025i 0.500000 0.866025i
977977 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
978978 0.866025 + 0.500000i 0.866025 + 0.500000i
979979 −0.866025 + 0.500000i −0.866025 + 0.500000i
980980 0 0
981981 0 0
982982 0.500000 0.866025i 0.500000 0.866025i
983983 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
984984 1.00000 1.00000
985985 0 0
986986 −0.866025 0.500000i −0.866025 0.500000i
987987 0 0
988988 −0.866025 + 0.500000i −0.866025 + 0.500000i
989989 0.500000 + 0.866025i 0.500000 + 0.866025i
990990 0 0
991991 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
992992 −0.500000 + 0.866025i −0.500000 + 0.866025i
993993 −0.500000 + 0.866025i −0.500000 + 0.866025i
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 −0.866025 + 0.500000i −0.866025 + 0.500000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.1.bk.a.3203.2 4
4.3 odd 2 inner 3724.1.bk.a.3203.1 4
7.2 even 3 3724.1.n.a.2823.2 4
7.3 odd 6 3724.1.bb.b.3431.1 4
7.4 even 3 3724.1.bb.a.3431.1 4
7.5 odd 6 532.1.n.a.163.2 yes 4
7.6 odd 2 532.1.bk.a.11.2 yes 4
19.7 even 3 3724.1.n.a.1831.1 4
28.3 even 6 3724.1.bb.b.3431.2 4
28.11 odd 6 3724.1.bb.a.3431.2 4
28.19 even 6 532.1.n.a.163.1 4
28.23 odd 6 3724.1.n.a.2823.1 4
28.27 even 2 532.1.bk.a.11.1 yes 4
76.7 odd 6 3724.1.n.a.1831.2 4
133.26 odd 6 532.1.bk.a.387.2 yes 4
133.45 odd 6 3724.1.bb.b.2059.2 4
133.83 odd 6 532.1.n.a.235.1 yes 4
133.102 even 3 3724.1.bb.a.2059.2 4
133.121 even 3 inner 3724.1.bk.a.1451.2 4
532.83 even 6 532.1.n.a.235.2 yes 4
532.159 even 6 532.1.bk.a.387.1 yes 4
532.235 odd 6 3724.1.bb.a.2059.1 4
532.311 even 6 3724.1.bb.b.2059.1 4
532.387 odd 6 inner 3724.1.bk.a.1451.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.1.n.a.163.1 4 28.19 even 6
532.1.n.a.163.2 yes 4 7.5 odd 6
532.1.n.a.235.1 yes 4 133.83 odd 6
532.1.n.a.235.2 yes 4 532.83 even 6
532.1.bk.a.11.1 yes 4 28.27 even 2
532.1.bk.a.11.2 yes 4 7.6 odd 2
532.1.bk.a.387.1 yes 4 532.159 even 6
532.1.bk.a.387.2 yes 4 133.26 odd 6
3724.1.n.a.1831.1 4 19.7 even 3
3724.1.n.a.1831.2 4 76.7 odd 6
3724.1.n.a.2823.1 4 28.23 odd 6
3724.1.n.a.2823.2 4 7.2 even 3
3724.1.bb.a.2059.1 4 532.235 odd 6
3724.1.bb.a.2059.2 4 133.102 even 3
3724.1.bb.a.3431.1 4 7.4 even 3
3724.1.bb.a.3431.2 4 28.11 odd 6
3724.1.bb.b.2059.1 4 532.311 even 6
3724.1.bb.b.2059.2 4 133.45 odd 6
3724.1.bb.b.3431.1 4 7.3 odd 6
3724.1.bb.b.3431.2 4 28.3 even 6
3724.1.bk.a.1451.1 4 532.387 odd 6 inner
3724.1.bk.a.1451.2 4 133.121 even 3 inner
3724.1.bk.a.3203.1 4 4.3 odd 2 inner
3724.1.bk.a.3203.2 4 1.1 even 1 trivial