Properties

Label 416.4.i.d.321.2
Level $416$
Weight $4$
Character 416.321
Analytic conductor $24.545$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,4,Mod(289,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5447945624\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 74x^{6} + 5367x^{4} + 8066x^{2} + 11881 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 321.2
Root \(-0.613091 - 1.06190i\) of defining polynomial
Character \(\chi\) \(=\) 416.321
Dual form 416.4.i.d.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.613091 + 1.06190i) q^{3} +13.8322 q^{5} +(12.7720 + 22.1218i) q^{7} +(12.7482 + 22.0806i) q^{9} +(31.0618 - 53.8007i) q^{11} +(-13.0000 + 45.0333i) q^{13} +(-8.48037 + 14.6884i) q^{15} +(28.4161 + 49.2181i) q^{17} +(-13.9982 - 24.2456i) q^{19} -31.3216 q^{21} +(28.7124 - 49.7313i) q^{23} +66.3286 q^{25} -64.3702 q^{27} +(12.3322 - 21.3599i) q^{29} -297.130 q^{31} +(38.0874 + 65.9694i) q^{33} +(176.664 + 305.992i) q^{35} +(-19.4161 + 33.6296i) q^{37} +(-39.8509 - 41.4143i) q^{39} +(58.4020 - 101.155i) q^{41} +(-40.6655 - 70.4347i) q^{43} +(176.336 + 305.422i) q^{45} +462.450 q^{47} +(-154.748 + 268.032i) q^{49} -69.6865 q^{51} +412.182 q^{53} +(429.652 - 744.179i) q^{55} +34.3286 q^{57} +(-4.18873 - 7.25510i) q^{59} +(403.800 + 699.403i) q^{61} +(-325.641 + 564.027i) q^{63} +(-179.818 + 622.908i) q^{65} +(-0.921795 + 1.59660i) q^{67} +(35.2066 + 60.9796i) q^{69} +(329.212 + 570.213i) q^{71} -487.090 q^{73} +(-40.6655 + 70.4347i) q^{75} +1586.89 q^{77} -1240.62 q^{79} +(-304.738 + 527.821i) q^{81} -438.544 q^{83} +(393.056 + 680.793i) q^{85} +(15.1215 + 26.1911i) q^{87} +(-423.011 + 732.676i) q^{89} +(-1162.25 + 287.583i) q^{91} +(182.168 - 315.524i) q^{93} +(-193.625 - 335.369i) q^{95} +(359.129 + 622.030i) q^{97} +1583.93 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} - 40 q^{9} - 104 q^{13} + 180 q^{17} + 696 q^{21} + 152 q^{25} + 4 q^{29} + 636 q^{33} - 108 q^{37} - 716 q^{41} + 1600 q^{45} - 1096 q^{49} + 4528 q^{53} - 104 q^{57} + 580 q^{61} - 208 q^{65}+ \cdots - 156 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.613091 + 1.06190i −0.117989 + 0.204364i −0.918971 0.394326i \(-0.870978\pi\)
0.800981 + 0.598689i \(0.204312\pi\)
\(4\) 0 0
\(5\) 13.8322 1.23719 0.618593 0.785712i \(-0.287703\pi\)
0.618593 + 0.785712i \(0.287703\pi\)
\(6\) 0 0
\(7\) 12.7720 + 22.1218i 0.689623 + 1.19446i 0.971960 + 0.235147i \(0.0755573\pi\)
−0.282336 + 0.959316i \(0.591109\pi\)
\(8\) 0 0
\(9\) 12.7482 + 22.0806i 0.472157 + 0.817800i
\(10\) 0 0
\(11\) 31.0618 53.8007i 0.851408 1.47468i −0.0285288 0.999593i \(-0.509082\pi\)
0.879937 0.475090i \(-0.157584\pi\)
\(12\) 0 0
\(13\) −13.0000 + 45.0333i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) −8.48037 + 14.6884i −0.145975 + 0.252836i
\(16\) 0 0
\(17\) 28.4161 + 49.2181i 0.405407 + 0.702185i 0.994369 0.105976i \(-0.0337966\pi\)
−0.588962 + 0.808161i \(0.700463\pi\)
\(18\) 0 0
\(19\) −13.9982 24.2456i −0.169021 0.292753i 0.769055 0.639183i \(-0.220727\pi\)
−0.938076 + 0.346429i \(0.887394\pi\)
\(20\) 0 0
\(21\) −31.3216 −0.325473
\(22\) 0 0
\(23\) 28.7124 49.7313i 0.260302 0.450856i −0.706020 0.708192i \(-0.749511\pi\)
0.966322 + 0.257336i \(0.0828446\pi\)
\(24\) 0 0
\(25\) 66.3286 0.530629
\(26\) 0 0
\(27\) −64.3702 −0.458817
\(28\) 0 0
\(29\) 12.3322 21.3599i 0.0789664 0.136774i −0.823838 0.566826i \(-0.808171\pi\)
0.902804 + 0.430052i \(0.141505\pi\)
\(30\) 0 0
\(31\) −297.130 −1.72149 −0.860745 0.509037i \(-0.830002\pi\)
−0.860745 + 0.509037i \(0.830002\pi\)
\(32\) 0 0
\(33\) 38.0874 + 65.9694i 0.200914 + 0.347994i
\(34\) 0 0
\(35\) 176.664 + 305.992i 0.853192 + 1.47777i
\(36\) 0 0
\(37\) −19.4161 + 33.6296i −0.0862698 + 0.149424i −0.905932 0.423424i \(-0.860828\pi\)
0.819662 + 0.572848i \(0.194161\pi\)
\(38\) 0 0
\(39\) −39.8509 41.4143i −0.163622 0.170041i
\(40\) 0 0
\(41\) 58.4020 101.155i 0.222460 0.385312i −0.733094 0.680127i \(-0.761925\pi\)
0.955554 + 0.294815i \(0.0952580\pi\)
\(42\) 0 0
\(43\) −40.6655 70.4347i −0.144219 0.249795i 0.784862 0.619670i \(-0.212734\pi\)
−0.929081 + 0.369875i \(0.879400\pi\)
\(44\) 0 0
\(45\) 176.336 + 305.422i 0.584146 + 1.01177i
\(46\) 0 0
\(47\) 462.450 1.43522 0.717610 0.696445i \(-0.245236\pi\)
0.717610 + 0.696445i \(0.245236\pi\)
\(48\) 0 0
\(49\) −154.748 + 268.032i −0.451161 + 0.781434i
\(50\) 0 0
\(51\) −69.6865 −0.191335
\(52\) 0 0
\(53\) 412.182 1.06826 0.534128 0.845404i \(-0.320640\pi\)
0.534128 + 0.845404i \(0.320640\pi\)
\(54\) 0 0
\(55\) 429.652 744.179i 1.05335 1.82446i
\(56\) 0 0
\(57\) 34.3286 0.0797709
\(58\) 0 0
\(59\) −4.18873 7.25510i −0.00924283 0.0160090i 0.861367 0.507983i \(-0.169609\pi\)
−0.870610 + 0.491974i \(0.836275\pi\)
\(60\) 0 0
\(61\) 403.800 + 699.403i 0.847563 + 1.46802i 0.883377 + 0.468664i \(0.155264\pi\)
−0.0358134 + 0.999358i \(0.511402\pi\)
\(62\) 0 0
\(63\) −325.641 + 564.027i −0.651221 + 1.12795i
\(64\) 0 0
\(65\) −179.818 + 622.908i −0.343134 + 1.18865i
\(66\) 0 0
\(67\) −0.921795 + 1.59660i −0.00168082 + 0.00291127i −0.866865 0.498544i \(-0.833868\pi\)
0.865184 + 0.501455i \(0.167202\pi\)
\(68\) 0 0
\(69\) 35.2066 + 60.9796i 0.0614257 + 0.106392i
\(70\) 0 0
\(71\) 329.212 + 570.213i 0.550286 + 0.953124i 0.998254 + 0.0590740i \(0.0188148\pi\)
−0.447967 + 0.894050i \(0.647852\pi\)
\(72\) 0 0
\(73\) −487.090 −0.780954 −0.390477 0.920613i \(-0.627690\pi\)
−0.390477 + 0.920613i \(0.627690\pi\)
\(74\) 0 0
\(75\) −40.6655 + 70.4347i −0.0626086 + 0.108441i
\(76\) 0 0
\(77\) 1586.89 2.34861
\(78\) 0 0
\(79\) −1240.62 −1.76684 −0.883422 0.468577i \(-0.844767\pi\)
−0.883422 + 0.468577i \(0.844767\pi\)
\(80\) 0 0
\(81\) −304.738 + 527.821i −0.418022 + 0.724034i
\(82\) 0 0
\(83\) −438.544 −0.579957 −0.289979 0.957033i \(-0.593648\pi\)
−0.289979 + 0.957033i \(0.593648\pi\)
\(84\) 0 0
\(85\) 393.056 + 680.793i 0.501563 + 0.868733i
\(86\) 0 0
\(87\) 15.1215 + 26.1911i 0.0186344 + 0.0322757i
\(88\) 0 0
\(89\) −423.011 + 732.676i −0.503809 + 0.872623i 0.496181 + 0.868219i \(0.334735\pi\)
−0.999990 + 0.00440423i \(0.998598\pi\)
\(90\) 0 0
\(91\) −1162.25 + 287.583i −1.33887 + 0.331284i
\(92\) 0 0
\(93\) 182.168 315.524i 0.203117 0.351810i
\(94\) 0 0
\(95\) −193.625 335.369i −0.209111 0.362190i
\(96\) 0 0
\(97\) 359.129 + 622.030i 0.375918 + 0.651109i 0.990464 0.137772i \(-0.0439941\pi\)
−0.614546 + 0.788881i \(0.710661\pi\)
\(98\) 0 0
\(99\) 1583.93 1.60799
\(100\) 0 0
\(101\) 612.192 1060.35i 0.603122 1.04464i −0.389223 0.921144i \(-0.627256\pi\)
0.992345 0.123495i \(-0.0394103\pi\)
\(102\) 0 0
\(103\) 838.674 0.802301 0.401150 0.916012i \(-0.368610\pi\)
0.401150 + 0.916012i \(0.368610\pi\)
\(104\) 0 0
\(105\) −433.245 −0.402671
\(106\) 0 0
\(107\) 840.307 1455.45i 0.759211 1.31499i −0.184043 0.982918i \(-0.558918\pi\)
0.943254 0.332073i \(-0.107748\pi\)
\(108\) 0 0
\(109\) 923.874 0.811845 0.405923 0.913907i \(-0.366950\pi\)
0.405923 + 0.913907i \(0.366950\pi\)
\(110\) 0 0
\(111\) −23.8076 41.2360i −0.0203578 0.0352608i
\(112\) 0 0
\(113\) −573.024 992.507i −0.477040 0.826258i 0.522613 0.852570i \(-0.324957\pi\)
−0.999654 + 0.0263115i \(0.991624\pi\)
\(114\) 0 0
\(115\) 397.154 687.891i 0.322042 0.557793i
\(116\) 0 0
\(117\) −1160.09 + 287.048i −0.916670 + 0.226817i
\(118\) 0 0
\(119\) −725.861 + 1257.23i −0.559156 + 0.968486i
\(120\) 0 0
\(121\) −1264.17 2189.61i −0.949793 1.64509i
\(122\) 0 0
\(123\) 71.6115 + 124.035i 0.0524958 + 0.0909254i
\(124\) 0 0
\(125\) −811.552 −0.580699
\(126\) 0 0
\(127\) 1246.97 2159.82i 0.871266 1.50908i 0.0105775 0.999944i \(-0.496633\pi\)
0.860688 0.509132i \(-0.170034\pi\)
\(128\) 0 0
\(129\) 99.7265 0.0680654
\(130\) 0 0
\(131\) −396.837 −0.264670 −0.132335 0.991205i \(-0.542247\pi\)
−0.132335 + 0.991205i \(0.542247\pi\)
\(132\) 0 0
\(133\) 357.570 619.329i 0.233122 0.403779i
\(134\) 0 0
\(135\) −890.379 −0.567642
\(136\) 0 0
\(137\) −796.661 1379.86i −0.496813 0.860505i 0.503181 0.864181i \(-0.332163\pi\)
−0.999993 + 0.00367660i \(0.998830\pi\)
\(138\) 0 0
\(139\) 1418.11 + 2456.24i 0.865344 + 1.49882i 0.866706 + 0.498820i \(0.166233\pi\)
−0.00136200 + 0.999999i \(0.500434\pi\)
\(140\) 0 0
\(141\) −283.524 + 491.078i −0.169341 + 0.293307i
\(142\) 0 0
\(143\) 2019.02 + 2098.23i 1.18069 + 1.22701i
\(144\) 0 0
\(145\) 170.580 295.454i 0.0976961 0.169215i
\(146\) 0 0
\(147\) −189.749 328.656i −0.106464 0.184402i
\(148\) 0 0
\(149\) −9.66784 16.7452i −0.00531557 0.00920684i 0.863355 0.504596i \(-0.168359\pi\)
−0.868671 + 0.495390i \(0.835025\pi\)
\(150\) 0 0
\(151\) −1268.20 −0.683473 −0.341736 0.939796i \(-0.611015\pi\)
−0.341736 + 0.939796i \(0.611015\pi\)
\(152\) 0 0
\(153\) −724.510 + 1254.89i −0.382831 + 0.663083i
\(154\) 0 0
\(155\) −4109.95 −2.12980
\(156\) 0 0
\(157\) −290.839 −0.147844 −0.0739220 0.997264i \(-0.523552\pi\)
−0.0739220 + 0.997264i \(0.523552\pi\)
\(158\) 0 0
\(159\) −252.705 + 437.698i −0.126043 + 0.218313i
\(160\) 0 0
\(161\) 1466.86 0.718041
\(162\) 0 0
\(163\) −1157.26 2004.44i −0.556097 0.963188i −0.997817 0.0660351i \(-0.978965\pi\)
0.441721 0.897153i \(-0.354368\pi\)
\(164\) 0 0
\(165\) 526.832 + 912.499i 0.248568 + 0.430533i
\(166\) 0 0
\(167\) 1101.77 1908.32i 0.510523 0.884251i −0.489403 0.872058i \(-0.662785\pi\)
0.999926 0.0121933i \(-0.00388134\pi\)
\(168\) 0 0
\(169\) −1859.00 1170.87i −0.846154 0.532939i
\(170\) 0 0
\(171\) 356.904 618.177i 0.159609 0.276451i
\(172\) 0 0
\(173\) −1826.74 3164.01i −0.802802 1.39049i −0.917765 0.397124i \(-0.870008\pi\)
0.114963 0.993370i \(-0.463325\pi\)
\(174\) 0 0
\(175\) 847.150 + 1467.31i 0.365934 + 0.633817i
\(176\) 0 0
\(177\) 10.2723 0.00436222
\(178\) 0 0
\(179\) −1148.47 + 1989.21i −0.479558 + 0.830619i −0.999725 0.0234455i \(-0.992536\pi\)
0.520167 + 0.854065i \(0.325870\pi\)
\(180\) 0 0
\(181\) 3694.28 1.51709 0.758546 0.651620i \(-0.225910\pi\)
0.758546 + 0.651620i \(0.225910\pi\)
\(182\) 0 0
\(183\) −990.265 −0.400014
\(184\) 0 0
\(185\) −268.566 + 465.171i −0.106732 + 0.184865i
\(186\) 0 0
\(187\) 3530.62 1.38067
\(188\) 0 0
\(189\) −822.137 1423.98i −0.316411 0.548040i
\(190\) 0 0
\(191\) −2326.87 4030.25i −0.881499 1.52680i −0.849675 0.527307i \(-0.823202\pi\)
−0.0318235 0.999494i \(-0.510131\pi\)
\(192\) 0 0
\(193\) −1168.60 + 2024.08i −0.435844 + 0.754904i −0.997364 0.0725588i \(-0.976883\pi\)
0.561520 + 0.827463i \(0.310217\pi\)
\(194\) 0 0
\(195\) −551.224 572.849i −0.202431 0.210372i
\(196\) 0 0
\(197\) 1759.00 3046.68i 0.636161 1.10186i −0.350107 0.936710i \(-0.613855\pi\)
0.986268 0.165153i \(-0.0528119\pi\)
\(198\) 0 0
\(199\) 543.974 + 942.191i 0.193775 + 0.335629i 0.946498 0.322709i \(-0.104593\pi\)
−0.752723 + 0.658337i \(0.771260\pi\)
\(200\) 0 0
\(201\) −1.13029 1.95772i −0.000396639 0.000686998i
\(202\) 0 0
\(203\) 630.026 0.217828
\(204\) 0 0
\(205\) 807.826 1399.20i 0.275224 0.476703i
\(206\) 0 0
\(207\) 1464.13 0.491613
\(208\) 0 0
\(209\) −1739.24 −0.575625
\(210\) 0 0
\(211\) −2037.62 + 3529.26i −0.664812 + 1.15149i 0.314524 + 0.949249i \(0.398155\pi\)
−0.979336 + 0.202239i \(0.935178\pi\)
\(212\) 0 0
\(213\) −807.349 −0.259712
\(214\) 0 0
\(215\) −562.491 974.264i −0.178426 0.309043i
\(216\) 0 0
\(217\) −3794.95 6573.05i −1.18718 2.05626i
\(218\) 0 0
\(219\) 298.631 517.243i 0.0921442 0.159598i
\(220\) 0 0
\(221\) −2585.86 + 639.835i −0.787077 + 0.194751i
\(222\) 0 0
\(223\) −1012.07 + 1752.95i −0.303915 + 0.526396i −0.977019 0.213152i \(-0.931627\pi\)
0.673104 + 0.739548i \(0.264960\pi\)
\(224\) 0 0
\(225\) 845.573 + 1464.58i 0.250540 + 0.433948i
\(226\) 0 0
\(227\) 2264.35 + 3921.97i 0.662071 + 1.14674i 0.980071 + 0.198650i \(0.0636557\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(228\) 0 0
\(229\) −24.4613 −0.00705872 −0.00352936 0.999994i \(-0.501123\pi\)
−0.00352936 + 0.999994i \(0.501123\pi\)
\(230\) 0 0
\(231\) −972.906 + 1685.12i −0.277110 + 0.479969i
\(232\) 0 0
\(233\) −2991.73 −0.841180 −0.420590 0.907251i \(-0.638177\pi\)
−0.420590 + 0.907251i \(0.638177\pi\)
\(234\) 0 0
\(235\) 6396.69 1.77563
\(236\) 0 0
\(237\) 760.613 1317.42i 0.208469 0.361079i
\(238\) 0 0
\(239\) 2113.39 0.571982 0.285991 0.958232i \(-0.407677\pi\)
0.285991 + 0.958232i \(0.407677\pi\)
\(240\) 0 0
\(241\) −3485.44 6036.96i −0.931606 1.61359i −0.780577 0.625060i \(-0.785075\pi\)
−0.151029 0.988529i \(-0.548259\pi\)
\(242\) 0 0
\(243\) −1242.66 2152.35i −0.328053 0.568204i
\(244\) 0 0
\(245\) −2140.50 + 3707.46i −0.558170 + 0.966779i
\(246\) 0 0
\(247\) 1273.84 315.192i 0.328146 0.0811952i
\(248\) 0 0
\(249\) 268.867 465.692i 0.0684288 0.118522i
\(250\) 0 0
\(251\) −2853.18 4941.86i −0.717495 1.24274i −0.961989 0.273087i \(-0.911955\pi\)
0.244494 0.969651i \(-0.421378\pi\)
\(252\) 0 0
\(253\) −1783.72 3089.49i −0.443246 0.767725i
\(254\) 0 0
\(255\) −963.915 −0.236717
\(256\) 0 0
\(257\) −1002.07 + 1735.64i −0.243220 + 0.421269i −0.961630 0.274351i \(-0.911537\pi\)
0.718410 + 0.695620i \(0.244870\pi\)
\(258\) 0 0
\(259\) −991.929 −0.237975
\(260\) 0 0
\(261\) 628.853 0.149138
\(262\) 0 0
\(263\) −270.030 + 467.705i −0.0633108 + 0.109658i −0.895943 0.444168i \(-0.853499\pi\)
0.832633 + 0.553826i \(0.186833\pi\)
\(264\) 0 0
\(265\) 5701.37 1.32163
\(266\) 0 0
\(267\) −518.688 898.394i −0.118888 0.205921i
\(268\) 0 0
\(269\) −79.2764 137.311i −0.0179687 0.0311226i 0.856901 0.515481i \(-0.172387\pi\)
−0.874870 + 0.484358i \(0.839053\pi\)
\(270\) 0 0
\(271\) −3466.13 + 6003.51i −0.776945 + 1.34571i 0.156749 + 0.987638i \(0.449899\pi\)
−0.933695 + 0.358070i \(0.883435\pi\)
\(272\) 0 0
\(273\) 407.181 1410.52i 0.0902700 0.312704i
\(274\) 0 0
\(275\) 2060.29 3568.52i 0.451782 0.782510i
\(276\) 0 0
\(277\) 2241.25 + 3881.97i 0.486151 + 0.842039i 0.999873 0.0159180i \(-0.00506706\pi\)
−0.513722 + 0.857957i \(0.671734\pi\)
\(278\) 0 0
\(279\) −3787.89 6560.81i −0.812813 1.40783i
\(280\) 0 0
\(281\) 7631.00 1.62003 0.810013 0.586411i \(-0.199460\pi\)
0.810013 + 0.586411i \(0.199460\pi\)
\(282\) 0 0
\(283\) 1201.42 2080.92i 0.252357 0.437096i −0.711817 0.702365i \(-0.752127\pi\)
0.964174 + 0.265269i \(0.0854608\pi\)
\(284\) 0 0
\(285\) 474.839 0.0986914
\(286\) 0 0
\(287\) 2983.64 0.613654
\(288\) 0 0
\(289\) 841.553 1457.61i 0.171291 0.296685i
\(290\) 0 0
\(291\) −880.715 −0.177417
\(292\) 0 0
\(293\) 1416.14 + 2452.82i 0.282360 + 0.489062i 0.971966 0.235123i \(-0.0755493\pi\)
−0.689605 + 0.724185i \(0.742216\pi\)
\(294\) 0 0
\(295\) −57.9392 100.354i −0.0114351 0.0198062i
\(296\) 0 0
\(297\) −1999.46 + 3463.16i −0.390641 + 0.676609i
\(298\) 0 0
\(299\) 1866.30 + 1939.52i 0.360974 + 0.375135i
\(300\) 0 0
\(301\) 1038.76 1799.18i 0.198914 0.344529i
\(302\) 0 0
\(303\) 750.658 + 1300.18i 0.142324 + 0.246513i
\(304\) 0 0
\(305\) 5585.43 + 9674.25i 1.04859 + 1.81622i
\(306\) 0 0
\(307\) −7397.22 −1.37518 −0.687592 0.726097i \(-0.741332\pi\)
−0.687592 + 0.726097i \(0.741332\pi\)
\(308\) 0 0
\(309\) −514.183 + 890.591i −0.0946630 + 0.163961i
\(310\) 0 0
\(311\) 5160.32 0.940884 0.470442 0.882431i \(-0.344095\pi\)
0.470442 + 0.882431i \(0.344095\pi\)
\(312\) 0 0
\(313\) 3804.66 0.687067 0.343533 0.939140i \(-0.388376\pi\)
0.343533 + 0.939140i \(0.388376\pi\)
\(314\) 0 0
\(315\) −4504.32 + 7801.71i −0.805682 + 1.39548i
\(316\) 0 0
\(317\) −7727.00 −1.36906 −0.684530 0.728985i \(-0.739992\pi\)
−0.684530 + 0.728985i \(0.739992\pi\)
\(318\) 0 0
\(319\) −766.119 1326.96i −0.134465 0.232901i
\(320\) 0 0
\(321\) 1030.37 + 1784.65i 0.179158 + 0.310310i
\(322\) 0 0
\(323\) 795.547 1377.93i 0.137045 0.237368i
\(324\) 0 0
\(325\) −862.272 + 2987.00i −0.147170 + 0.509812i
\(326\) 0 0
\(327\) −566.419 + 981.066i −0.0957891 + 0.165912i
\(328\) 0 0
\(329\) 5906.42 + 10230.2i 0.989761 + 1.71432i
\(330\) 0 0
\(331\) −3767.67 6525.80i −0.625650 1.08366i −0.988415 0.151776i \(-0.951501\pi\)
0.362765 0.931881i \(-0.381833\pi\)
\(332\) 0 0
\(333\) −990.083 −0.162932
\(334\) 0 0
\(335\) −12.7504 + 22.0844i −0.00207949 + 0.00360179i
\(336\) 0 0
\(337\) 4662.39 0.753640 0.376820 0.926286i \(-0.377017\pi\)
0.376820 + 0.926286i \(0.377017\pi\)
\(338\) 0 0
\(339\) 1405.26 0.225143
\(340\) 0 0
\(341\) −9229.41 + 15985.8i −1.46569 + 2.53865i
\(342\) 0 0
\(343\) 855.814 0.134722
\(344\) 0 0
\(345\) 486.983 + 843.479i 0.0759950 + 0.131627i
\(346\) 0 0
\(347\) 3601.76 + 6238.43i 0.557212 + 0.965120i 0.997728 + 0.0673751i \(0.0214624\pi\)
−0.440515 + 0.897745i \(0.645204\pi\)
\(348\) 0 0
\(349\) 3523.18 6102.33i 0.540377 0.935961i −0.458505 0.888692i \(-0.651615\pi\)
0.998882 0.0472689i \(-0.0150518\pi\)
\(350\) 0 0
\(351\) 836.813 2898.80i 0.127253 0.440817i
\(352\) 0 0
\(353\) −1851.90 + 3207.59i −0.279226 + 0.483634i −0.971193 0.238295i \(-0.923411\pi\)
0.691966 + 0.721930i \(0.256745\pi\)
\(354\) 0 0
\(355\) 4553.72 + 7887.27i 0.680807 + 1.17919i
\(356\) 0 0
\(357\) −890.037 1541.59i −0.131949 0.228542i
\(358\) 0 0
\(359\) 1444.39 0.212345 0.106173 0.994348i \(-0.466140\pi\)
0.106173 + 0.994348i \(0.466140\pi\)
\(360\) 0 0
\(361\) 3037.60 5261.28i 0.442864 0.767062i
\(362\) 0 0
\(363\) 3100.21 0.448262
\(364\) 0 0
\(365\) −6737.51 −0.966185
\(366\) 0 0
\(367\) 1549.30 2683.46i 0.220361 0.381677i −0.734556 0.678548i \(-0.762610\pi\)
0.954918 + 0.296871i \(0.0959430\pi\)
\(368\) 0 0
\(369\) 2978.09 0.420144
\(370\) 0 0
\(371\) 5264.39 + 9118.19i 0.736694 + 1.27599i
\(372\) 0 0
\(373\) 2289.51 + 3965.54i 0.317818 + 0.550477i 0.980033 0.198837i \(-0.0637165\pi\)
−0.662214 + 0.749315i \(0.730383\pi\)
\(374\) 0 0
\(375\) 497.555 861.790i 0.0685163 0.118674i
\(376\) 0 0
\(377\) 801.590 + 833.037i 0.109507 + 0.113803i
\(378\) 0 0
\(379\) 3386.92 5866.32i 0.459036 0.795073i −0.539875 0.841745i \(-0.681528\pi\)
0.998910 + 0.0466724i \(0.0148617\pi\)
\(380\) 0 0
\(381\) 1529.01 + 2648.33i 0.205600 + 0.356110i
\(382\) 0 0
\(383\) −4722.07 8178.87i −0.629991 1.09118i −0.987553 0.157287i \(-0.949725\pi\)
0.357562 0.933889i \(-0.383608\pi\)
\(384\) 0 0
\(385\) 21950.1 2.90566
\(386\) 0 0
\(387\) 1036.83 1795.84i 0.136188 0.235885i
\(388\) 0 0
\(389\) 5899.20 0.768898 0.384449 0.923146i \(-0.374391\pi\)
0.384449 + 0.923146i \(0.374391\pi\)
\(390\) 0 0
\(391\) 3263.57 0.422112
\(392\) 0 0
\(393\) 243.297 421.403i 0.0312283 0.0540889i
\(394\) 0 0
\(395\) −17160.5 −2.18592
\(396\) 0 0
\(397\) −5915.29 10245.6i −0.747808 1.29524i −0.948871 0.315664i \(-0.897773\pi\)
0.201063 0.979578i \(-0.435560\pi\)
\(398\) 0 0
\(399\) 438.446 + 759.410i 0.0550119 + 0.0952833i
\(400\) 0 0
\(401\) −700.942 + 1214.07i −0.0872902 + 0.151191i −0.906365 0.422496i \(-0.861154\pi\)
0.819075 + 0.573687i \(0.194487\pi\)
\(402\) 0 0
\(403\) 3862.69 13380.8i 0.477455 1.65395i
\(404\) 0 0
\(405\) −4215.18 + 7300.91i −0.517170 + 0.895765i
\(406\) 0 0
\(407\) 1206.20 + 2089.20i 0.146902 + 0.254441i
\(408\) 0 0
\(409\) −6640.14 11501.1i −0.802772 1.39044i −0.917785 0.397078i \(-0.870024\pi\)
0.115013 0.993364i \(-0.463309\pi\)
\(410\) 0 0
\(411\) 1953.70 0.234474
\(412\) 0 0
\(413\) 106.997 185.324i 0.0127481 0.0220804i
\(414\) 0 0
\(415\) −6066.01 −0.717515
\(416\) 0 0
\(417\) −3477.73 −0.408405
\(418\) 0 0
\(419\) 6089.01 10546.5i 0.709947 1.22966i −0.254929 0.966960i \(-0.582052\pi\)
0.964876 0.262705i \(-0.0846145\pi\)
\(420\) 0 0
\(421\) 6141.75 0.710998 0.355499 0.934677i \(-0.384311\pi\)
0.355499 + 0.934677i \(0.384311\pi\)
\(422\) 0 0
\(423\) 5895.43 + 10211.2i 0.677649 + 1.17372i
\(424\) 0 0
\(425\) 1884.80 + 3264.57i 0.215121 + 0.372600i
\(426\) 0 0
\(427\) −10314.7 + 17865.6i −1.16900 + 2.02477i
\(428\) 0 0
\(429\) −3465.96 + 857.602i −0.390065 + 0.0965161i
\(430\) 0 0
\(431\) −4269.15 + 7394.38i −0.477117 + 0.826391i −0.999656 0.0262241i \(-0.991652\pi\)
0.522539 + 0.852616i \(0.324985\pi\)
\(432\) 0 0
\(433\) 7470.26 + 12938.9i 0.829094 + 1.43603i 0.898750 + 0.438462i \(0.144477\pi\)
−0.0696557 + 0.997571i \(0.522190\pi\)
\(434\) 0 0
\(435\) 209.163 + 362.280i 0.0230542 + 0.0399310i
\(436\) 0 0
\(437\) −1607.68 −0.175986
\(438\) 0 0
\(439\) −2266.51 + 3925.71i −0.246411 + 0.426797i −0.962528 0.271184i \(-0.912585\pi\)
0.716116 + 0.697981i \(0.245918\pi\)
\(440\) 0 0
\(441\) −7891.07 −0.852075
\(442\) 0 0
\(443\) −4626.67 −0.496207 −0.248103 0.968734i \(-0.579807\pi\)
−0.248103 + 0.968734i \(0.579807\pi\)
\(444\) 0 0
\(445\) −5851.15 + 10134.5i −0.623306 + 1.07960i
\(446\) 0 0
\(447\) 23.7091 0.00250872
\(448\) 0 0
\(449\) 836.152 + 1448.26i 0.0878852 + 0.152222i 0.906617 0.421954i \(-0.138656\pi\)
−0.818732 + 0.574176i \(0.805322\pi\)
\(450\) 0 0
\(451\) −3628.15 6284.13i −0.378809 0.656116i
\(452\) 0 0
\(453\) 777.520 1346.70i 0.0806425 0.139677i
\(454\) 0 0
\(455\) −16076.5 + 3977.89i −1.65643 + 0.409860i
\(456\) 0 0
\(457\) 2887.88 5001.96i 0.295601 0.511996i −0.679524 0.733654i \(-0.737814\pi\)
0.975124 + 0.221658i \(0.0711469\pi\)
\(458\) 0 0
\(459\) −1829.15 3168.18i −0.186007 0.322174i
\(460\) 0 0
\(461\) −8876.18 15374.0i −0.896757 1.55323i −0.831615 0.555353i \(-0.812583\pi\)
−0.0651426 0.997876i \(-0.520750\pi\)
\(462\) 0 0
\(463\) 3060.93 0.307243 0.153621 0.988130i \(-0.450906\pi\)
0.153621 + 0.988130i \(0.450906\pi\)
\(464\) 0 0
\(465\) 2519.77 4364.38i 0.251294 0.435254i
\(466\) 0 0
\(467\) −1019.98 −0.101068 −0.0505342 0.998722i \(-0.516092\pi\)
−0.0505342 + 0.998722i \(0.516092\pi\)
\(468\) 0 0
\(469\) −47.0927 −0.00463654
\(470\) 0 0
\(471\) 178.311 308.843i 0.0174440 0.0302139i
\(472\) 0 0
\(473\) −5052.58 −0.491158
\(474\) 0 0
\(475\) −928.481 1608.18i −0.0896876 0.155343i
\(476\) 0 0
\(477\) 5254.59 + 9101.22i 0.504384 + 0.873619i
\(478\) 0 0
\(479\) −2854.97 + 4944.96i −0.272332 + 0.471693i −0.969459 0.245255i \(-0.921128\pi\)
0.697126 + 0.716948i \(0.254462\pi\)
\(480\) 0 0
\(481\) −1262.05 1311.56i −0.119635 0.124328i
\(482\) 0 0
\(483\) −899.317 + 1557.66i −0.0847212 + 0.146741i
\(484\) 0 0
\(485\) 4967.53 + 8604.02i 0.465080 + 0.805543i
\(486\) 0 0
\(487\) 313.040 + 542.202i 0.0291278 + 0.0504507i 0.880222 0.474562i \(-0.157394\pi\)
−0.851094 + 0.525013i \(0.824060\pi\)
\(488\) 0 0
\(489\) 2838.03 0.262454
\(490\) 0 0
\(491\) 8004.57 13864.3i 0.735725 1.27431i −0.218679 0.975797i \(-0.570175\pi\)
0.954404 0.298516i \(-0.0964918\pi\)
\(492\) 0 0
\(493\) 1401.73 0.128054
\(494\) 0 0
\(495\) 21909.2 1.98939
\(496\) 0 0
\(497\) −8409.41 + 14565.5i −0.758981 + 1.31459i
\(498\) 0 0
\(499\) 8716.04 0.781931 0.390965 0.920405i \(-0.372141\pi\)
0.390965 + 0.920405i \(0.372141\pi\)
\(500\) 0 0
\(501\) 1350.97 + 2339.94i 0.120472 + 0.208664i
\(502\) 0 0
\(503\) 6079.76 + 10530.5i 0.538933 + 0.933459i 0.998962 + 0.0455551i \(0.0145056\pi\)
−0.460029 + 0.887904i \(0.652161\pi\)
\(504\) 0 0
\(505\) 8467.94 14666.9i 0.746175 1.29241i
\(506\) 0 0
\(507\) 2383.08 1256.23i 0.208750 0.110042i
\(508\) 0 0
\(509\) 1267.48 2195.34i 0.110373 0.191172i −0.805547 0.592531i \(-0.798129\pi\)
0.915921 + 0.401359i \(0.131462\pi\)
\(510\) 0 0
\(511\) −6221.12 10775.3i −0.538564 0.932820i
\(512\) 0 0
\(513\) 901.066 + 1560.69i 0.0775498 + 0.134320i
\(514\) 0 0
\(515\) 11600.7 0.992595
\(516\) 0 0
\(517\) 14364.6 24880.1i 1.22196 2.11649i
\(518\) 0 0
\(519\) 4479.84 0.378889
\(520\) 0 0
\(521\) −19884.2 −1.67206 −0.836030 0.548684i \(-0.815129\pi\)
−0.836030 + 0.548684i \(0.815129\pi\)
\(522\) 0 0
\(523\) 179.507 310.915i 0.0150082 0.0259950i −0.858424 0.512941i \(-0.828556\pi\)
0.873432 + 0.486946i \(0.161889\pi\)
\(524\) 0 0
\(525\) −2077.52 −0.172705
\(526\) 0 0
\(527\) −8443.28 14624.2i −0.697903 1.20880i
\(528\) 0 0
\(529\) 4434.70 + 7681.13i 0.364486 + 0.631308i
\(530\) 0 0
\(531\) 106.798 184.980i 0.00872813 0.0151176i
\(532\) 0 0
\(533\) 3796.13 + 3945.05i 0.308496 + 0.320599i
\(534\) 0 0
\(535\) 11623.3 20132.1i 0.939285 1.62689i
\(536\) 0 0
\(537\) −1408.24 2439.14i −0.113166 0.196008i
\(538\) 0 0
\(539\) 9613.53 + 16651.1i 0.768245 + 1.33064i
\(540\) 0 0
\(541\) −6607.14 −0.525070 −0.262535 0.964922i \(-0.584559\pi\)
−0.262535 + 0.964922i \(0.584559\pi\)
\(542\) 0 0
\(543\) −2264.93 + 3922.97i −0.179001 + 0.310038i
\(544\) 0 0
\(545\) 12779.2 1.00440
\(546\) 0 0
\(547\) −23607.2 −1.84529 −0.922644 0.385654i \(-0.873976\pi\)
−0.922644 + 0.385654i \(0.873976\pi\)
\(548\) 0 0
\(549\) −10295.5 + 17832.3i −0.800366 + 1.38627i
\(550\) 0 0
\(551\) −690.511 −0.0533880
\(552\) 0 0
\(553\) −15845.2 27444.7i −1.21846 2.11043i
\(554\) 0 0
\(555\) −329.311 570.384i −0.0251864 0.0436242i
\(556\) 0 0
\(557\) 6312.86 10934.2i 0.480223 0.831771i −0.519519 0.854459i \(-0.673889\pi\)
0.999743 + 0.0226876i \(0.00722230\pi\)
\(558\) 0 0
\(559\) 3700.56 915.651i 0.279995 0.0692807i
\(560\) 0 0
\(561\) −2164.59 + 3749.18i −0.162904 + 0.282158i
\(562\) 0 0
\(563\) 4243.47 + 7349.91i 0.317657 + 0.550199i 0.979999 0.199003i \(-0.0637705\pi\)
−0.662341 + 0.749202i \(0.730437\pi\)
\(564\) 0 0
\(565\) −7926.16 13728.5i −0.590188 1.02224i
\(566\) 0 0
\(567\) −15568.4 −1.15311
\(568\) 0 0
\(569\) 2504.88 4338.57i 0.184552 0.319653i −0.758874 0.651238i \(-0.774250\pi\)
0.943425 + 0.331585i \(0.107583\pi\)
\(570\) 0 0
\(571\) 16275.6 1.19284 0.596419 0.802673i \(-0.296590\pi\)
0.596419 + 0.802673i \(0.296590\pi\)
\(572\) 0 0
\(573\) 5706.32 0.416030
\(574\) 0 0
\(575\) 1904.45 3298.61i 0.138124 0.239237i
\(576\) 0 0
\(577\) −20850.8 −1.50438 −0.752191 0.658945i \(-0.771003\pi\)
−0.752191 + 0.658945i \(0.771003\pi\)
\(578\) 0 0
\(579\) −1432.92 2481.89i −0.102850 0.178141i
\(580\) 0 0
\(581\) −5601.09 9701.37i −0.399952 0.692738i
\(582\) 0 0
\(583\) 12803.1 22175.7i 0.909522 1.57534i
\(584\) 0 0
\(585\) −16046.5 + 3970.49i −1.13409 + 0.280615i
\(586\) 0 0
\(587\) −8392.84 + 14536.8i −0.590135 + 1.02214i 0.404078 + 0.914724i \(0.367592\pi\)
−0.994214 + 0.107420i \(0.965741\pi\)
\(588\) 0 0
\(589\) 4159.29 + 7204.09i 0.290968 + 0.503972i
\(590\) 0 0
\(591\) 2156.86 + 3735.78i 0.150120 + 0.260016i
\(592\) 0 0
\(593\) 22582.3 1.56382 0.781909 0.623393i \(-0.214246\pi\)
0.781909 + 0.623393i \(0.214246\pi\)
\(594\) 0 0
\(595\) −10040.2 + 17390.2i −0.691780 + 1.19820i
\(596\) 0 0
\(597\) −1334.02 −0.0914538
\(598\) 0 0
\(599\) −27736.8 −1.89198 −0.945990 0.324195i \(-0.894907\pi\)
−0.945990 + 0.324195i \(0.894907\pi\)
\(600\) 0 0
\(601\) 3514.04 6086.49i 0.238504 0.413100i −0.721782 0.692121i \(-0.756676\pi\)
0.960285 + 0.279021i \(0.0900098\pi\)
\(602\) 0 0
\(603\) −47.0051 −0.00317445
\(604\) 0 0
\(605\) −17486.3 30287.1i −1.17507 2.03528i
\(606\) 0 0
\(607\) 7180.51 + 12437.0i 0.480145 + 0.831635i 0.999741 0.0227768i \(-0.00725072\pi\)
−0.519596 + 0.854412i \(0.673917\pi\)
\(608\) 0 0
\(609\) −386.263 + 669.027i −0.0257014 + 0.0445162i
\(610\) 0 0
\(611\) −6011.85 + 20825.7i −0.398058 + 1.37891i
\(612\) 0 0
\(613\) 12038.9 20852.0i 0.793224 1.37390i −0.130737 0.991417i \(-0.541734\pi\)
0.923961 0.382487i \(-0.124932\pi\)
\(614\) 0 0
\(615\) 990.541 + 1715.67i 0.0649471 + 0.112492i
\(616\) 0 0
\(617\) −13044.7 22594.1i −0.851152 1.47424i −0.880169 0.474660i \(-0.842571\pi\)
0.0290175 0.999579i \(-0.490762\pi\)
\(618\) 0 0
\(619\) −20791.1 −1.35003 −0.675013 0.737806i \(-0.735862\pi\)
−0.675013 + 0.737806i \(0.735862\pi\)
\(620\) 0 0
\(621\) −1848.22 + 3201.21i −0.119431 + 0.206860i
\(622\) 0 0
\(623\) −21610.8 −1.38975
\(624\) 0 0
\(625\) −19516.6 −1.24906
\(626\) 0 0
\(627\) 1066.31 1846.90i 0.0679176 0.117637i
\(628\) 0 0
\(629\) −2206.92 −0.139897
\(630\) 0 0
\(631\) 5930.20 + 10271.4i 0.374133 + 0.648017i 0.990197 0.139679i \(-0.0446072\pi\)
−0.616064 + 0.787696i \(0.711274\pi\)
\(632\) 0 0
\(633\) −2498.49 4327.51i −0.156882 0.271727i
\(634\) 0 0
\(635\) 17248.3 29874.9i 1.07792 1.86701i
\(636\) 0 0
\(637\) −10058.6 10453.2i −0.625648 0.650192i
\(638\) 0 0
\(639\) −8393.76 + 14538.4i −0.519643 + 0.900048i
\(640\) 0 0
\(641\) 2421.50 + 4194.16i 0.149210 + 0.258439i 0.930936 0.365183i \(-0.118994\pi\)
−0.781726 + 0.623622i \(0.785660\pi\)
\(642\) 0 0
\(643\) −4804.75 8322.07i −0.294682 0.510405i 0.680229 0.733000i \(-0.261881\pi\)
−0.974911 + 0.222595i \(0.928547\pi\)
\(644\) 0 0
\(645\) 1379.43 0.0842095
\(646\) 0 0
\(647\) 8923.09 15455.2i 0.542199 0.939116i −0.456578 0.889683i \(-0.650925\pi\)
0.998777 0.0494331i \(-0.0157415\pi\)
\(648\) 0 0
\(649\) −520.439 −0.0314777
\(650\) 0 0
\(651\) 9306.59 0.560298
\(652\) 0 0
\(653\) −9391.52 + 16266.6i −0.562816 + 0.974826i 0.434433 + 0.900704i \(0.356949\pi\)
−0.997249 + 0.0741216i \(0.976385\pi\)
\(654\) 0 0
\(655\) −5489.11 −0.327446
\(656\) 0 0
\(657\) −6209.54 10755.2i −0.368733 0.638664i
\(658\) 0 0
\(659\) −10374.1 17968.5i −0.613229 1.06214i −0.990692 0.136120i \(-0.956537\pi\)
0.377463 0.926025i \(-0.376796\pi\)
\(660\) 0 0
\(661\) −2460.41 + 4261.55i −0.144779 + 0.250764i −0.929290 0.369350i \(-0.879580\pi\)
0.784512 + 0.620114i \(0.212914\pi\)
\(662\) 0 0
\(663\) 905.925 3138.22i 0.0530667 0.183828i
\(664\) 0 0
\(665\) 4945.96 8566.66i 0.288415 0.499550i
\(666\) 0 0
\(667\) −708.171 1226.59i −0.0411102 0.0712049i
\(668\) 0 0
\(669\) −1240.98 2149.44i −0.0717174 0.124218i
\(670\) 0 0
\(671\) 50171.1 2.88649
\(672\) 0 0
\(673\) 9886.94 17124.7i 0.566291 0.980844i −0.430638 0.902525i \(-0.641711\pi\)
0.996928 0.0783195i \(-0.0249554\pi\)
\(674\) 0 0
\(675\) −4269.59 −0.243462
\(676\) 0 0
\(677\) −5214.00 −0.295997 −0.147999 0.988988i \(-0.547283\pi\)
−0.147999 + 0.988988i \(0.547283\pi\)
\(678\) 0 0
\(679\) −9173.60 + 15889.1i −0.518484 + 0.898040i
\(680\) 0 0
\(681\) −5553.01 −0.312469
\(682\) 0 0
\(683\) −14970.7 25930.0i −0.838707 1.45268i −0.890977 0.454049i \(-0.849979\pi\)
0.0522700 0.998633i \(-0.483354\pi\)
\(684\) 0 0
\(685\) −11019.5 19086.4i −0.614650 1.06460i
\(686\) 0 0
\(687\) 14.9970 25.9755i 0.000832854 0.00144254i
\(688\) 0 0
\(689\) −5358.37 + 18561.9i −0.296281 + 1.02635i
\(690\) 0 0
\(691\) −610.634 + 1057.65i −0.0336174 + 0.0582270i −0.882345 0.470604i \(-0.844036\pi\)
0.848727 + 0.528831i \(0.177369\pi\)
\(692\) 0 0
\(693\) 20230.0 + 35039.4i 1.10891 + 1.92069i
\(694\) 0 0
\(695\) 19615.6 + 33975.2i 1.07059 + 1.85432i
\(696\) 0 0
\(697\) 6638.22 0.360747
\(698\) 0 0
\(699\) 1834.20 3176.93i 0.0992502 0.171906i
\(700\) 0 0
\(701\) 22838.2 1.23051 0.615253 0.788329i \(-0.289054\pi\)
0.615253 + 0.788329i \(0.289054\pi\)
\(702\) 0 0
\(703\) 1087.16 0.0583258
\(704\) 0 0
\(705\) −3921.75 + 6792.67i −0.209506 + 0.362875i
\(706\) 0 0
\(707\) 31275.7 1.66371
\(708\) 0 0
\(709\) 4386.16 + 7597.05i 0.232335 + 0.402417i 0.958495 0.285110i \(-0.0920300\pi\)
−0.726160 + 0.687526i \(0.758697\pi\)
\(710\) 0 0
\(711\) −15815.7 27393.7i −0.834228 1.44493i
\(712\) 0 0
\(713\) −8531.31 + 14776.7i −0.448107 + 0.776144i
\(714\) 0 0
\(715\) 27927.4 + 29023.0i 1.46073 + 1.51804i
\(716\) 0 0
\(717\) −1295.70 + 2244.22i −0.0674878 + 0.116892i
\(718\) 0 0
\(719\) −2370.08 4105.10i −0.122933 0.212927i 0.797990 0.602671i \(-0.205897\pi\)
−0.920923 + 0.389744i \(0.872564\pi\)
\(720\) 0 0
\(721\) 10711.5 + 18552.9i 0.553285 + 0.958318i
\(722\) 0 0
\(723\) 8547.57 0.439678
\(724\) 0 0
\(725\) 817.975 1416.77i 0.0419019 0.0725761i
\(726\) 0 0
\(727\) −16666.9 −0.850265 −0.425132 0.905131i \(-0.639772\pi\)
−0.425132 + 0.905131i \(0.639772\pi\)
\(728\) 0 0
\(729\) −13408.4 −0.681216
\(730\) 0 0
\(731\) 2311.11 4002.95i 0.116935 0.202537i
\(732\) 0 0
\(733\) 31724.7 1.59861 0.799304 0.600927i \(-0.205202\pi\)
0.799304 + 0.600927i \(0.205202\pi\)
\(734\) 0 0
\(735\) −2624.64 4546.02i −0.131716 0.228139i
\(736\) 0 0
\(737\) 57.2653 + 99.1864i 0.00286214 + 0.00495736i
\(738\) 0 0
\(739\) −2672.71 + 4629.27i −0.133041 + 0.230434i −0.924847 0.380338i \(-0.875807\pi\)
0.791806 + 0.610772i \(0.209141\pi\)
\(740\) 0 0
\(741\) −446.272 + 1545.93i −0.0221245 + 0.0766414i
\(742\) 0 0
\(743\) −7782.47 + 13479.6i −0.384268 + 0.665572i −0.991667 0.128825i \(-0.958880\pi\)
0.607399 + 0.794397i \(0.292213\pi\)
\(744\) 0 0
\(745\) −133.727 231.622i −0.00657635 0.0113906i
\(746\) 0 0
\(747\) −5590.67 9683.32i −0.273831 0.474289i
\(748\) 0 0
\(749\) 42929.6 2.09428
\(750\) 0 0
\(751\) −9995.88 + 17313.4i −0.485692 + 0.841243i −0.999865 0.0164434i \(-0.994766\pi\)
0.514173 + 0.857687i \(0.328099\pi\)
\(752\) 0 0
\(753\) 6997.04 0.338627
\(754\) 0 0
\(755\) −17541.9 −0.845583
\(756\) 0 0
\(757\) −5269.15 + 9126.44i −0.252986 + 0.438185i −0.964347 0.264642i \(-0.914746\pi\)
0.711360 + 0.702827i \(0.248079\pi\)
\(758\) 0 0
\(759\) 4374.32 0.209193
\(760\) 0 0
\(761\) −4418.07 7652.33i −0.210453 0.364516i 0.741403 0.671060i \(-0.234161\pi\)
−0.951857 + 0.306544i \(0.900827\pi\)
\(762\) 0 0
\(763\) 11799.7 + 20437.7i 0.559867 + 0.969719i
\(764\) 0 0
\(765\) −10021.5 + 17357.8i −0.473633 + 0.820357i
\(766\) 0 0
\(767\) 381.175 94.3163i 0.0179445 0.00444011i
\(768\) 0 0
\(769\) −3299.23 + 5714.43i −0.154711 + 0.267968i −0.932954 0.359996i \(-0.882778\pi\)
0.778242 + 0.627964i \(0.216111\pi\)
\(770\) 0 0
\(771\) −1228.72 2128.21i −0.0573948 0.0994106i
\(772\) 0 0
\(773\) 3278.11 + 5677.84i 0.152529 + 0.264189i 0.932157 0.362055i \(-0.117925\pi\)
−0.779627 + 0.626244i \(0.784591\pi\)
\(774\) 0 0
\(775\) −19708.2 −0.913472
\(776\) 0 0
\(777\) 608.143 1053.33i 0.0280785 0.0486334i
\(778\) 0 0
\(779\) −3270.09 −0.150402
\(780\) 0 0
\(781\) 40903.8 1.87407
\(782\) 0 0
\(783\) −793.824 + 1374.94i −0.0362311 + 0.0627541i
\(784\) 0 0
\(785\) −4022.93 −0.182910
\(786\) 0 0
\(787\) −5240.67 9077.10i −0.237369 0.411136i 0.722589 0.691278i \(-0.242952\pi\)
−0.959959 + 0.280142i \(0.909618\pi\)
\(788\) 0 0
\(789\) −331.106 573.492i −0.0149400 0.0258769i
\(790\) 0 0
\(791\) 14637.3 25352.6i 0.657957 1.13961i
\(792\) 0 0
\(793\) −36745.8 + 9092.24i −1.64550 + 0.407156i
\(794\) 0 0
\(795\) −3495.46 + 6054.31i −0.155938 + 0.270093i
\(796\) 0 0
\(797\) 1047.41 + 1814.16i 0.0465508 + 0.0806284i 0.888362 0.459144i \(-0.151844\pi\)
−0.841811 + 0.539772i \(0.818510\pi\)
\(798\) 0 0
\(799\) 13141.0 + 22760.9i 0.581847 + 1.00779i
\(800\) 0 0
\(801\) −21570.6 −0.951508
\(802\) 0 0
\(803\) −15129.9 + 26205.8i −0.664911 + 1.15166i
\(804\) 0 0
\(805\) 20289.8 0.888350
\(806\) 0 0
\(807\) 194.415 0.00848044
\(808\) 0 0
\(809\) −14326.1 + 24813.5i −0.622594 + 1.07837i 0.366406 + 0.930455i \(0.380588\pi\)
−0.989001 + 0.147910i \(0.952745\pi\)
\(810\) 0 0
\(811\) 13299.6 0.575845 0.287923 0.957654i \(-0.407035\pi\)
0.287923 + 0.957654i \(0.407035\pi\)
\(812\) 0 0
\(813\) −4250.10 7361.39i −0.183343 0.317559i
\(814\) 0 0
\(815\) −16007.4 27725.7i −0.687995 1.19164i
\(816\) 0 0
\(817\) −1138.49 + 1971.92i −0.0487522 + 0.0844414i
\(818\) 0 0
\(819\) −21166.7 21997.1i −0.903081 0.938510i
\(820\) 0 0
\(821\) 16726.6 28971.3i 0.711038 1.23155i −0.253430 0.967354i \(-0.581559\pi\)
0.964468 0.264200i \(-0.0851078\pi\)
\(822\) 0 0
\(823\) −4275.00 7404.52i −0.181066 0.313615i 0.761178 0.648543i \(-0.224621\pi\)
−0.942244 + 0.334928i \(0.891288\pi\)
\(824\) 0 0
\(825\) 2526.29 + 4375.66i 0.106611 + 0.184656i
\(826\) 0 0
\(827\) −11423.5 −0.480333 −0.240167 0.970732i \(-0.577202\pi\)
−0.240167 + 0.970732i \(0.577202\pi\)
\(828\) 0 0
\(829\) −7274.46 + 12599.7i −0.304768 + 0.527873i −0.977210 0.212277i \(-0.931912\pi\)
0.672442 + 0.740150i \(0.265245\pi\)
\(830\) 0 0
\(831\) −5496.37 −0.229443
\(832\) 0 0
\(833\) −17589.4 −0.731615
\(834\) 0 0
\(835\) 15239.8 26396.1i 0.631611 1.09398i
\(836\) 0 0
\(837\) 19126.3 0.789848
\(838\) 0 0
\(839\) 9473.23 + 16408.1i 0.389812 + 0.675174i 0.992424 0.122860i \(-0.0392067\pi\)
−0.602612 + 0.798034i \(0.705873\pi\)
\(840\) 0 0
\(841\) 11890.3 + 20594.7i 0.487529 + 0.844424i
\(842\) 0 0
\(843\) −4678.50 + 8103.40i −0.191146 + 0.331074i
\(844\) 0 0
\(845\) −25714.0 16195.6i −1.04685 0.659344i
\(846\) 0 0
\(847\) 32292.1 55931.5i 1.31000 2.26898i
\(848\) 0 0
\(849\) 1473.16 + 2551.59i 0.0595510 + 0.103145i
\(850\) 0 0
\(851\) 1114.96 + 1931.17i 0.0449124 + 0.0777905i
\(852\) 0 0
\(853\) 44528.2 1.78736 0.893679 0.448707i \(-0.148115\pi\)
0.893679 + 0.448707i \(0.148115\pi\)
\(854\) 0 0
\(855\) 4936.76 8550.72i 0.197466 0.342022i
\(856\) 0 0
\(857\) 3613.56 0.144034 0.0720169 0.997403i \(-0.477056\pi\)
0.0720169 + 0.997403i \(0.477056\pi\)
\(858\) 0 0
\(859\) −13773.8 −0.547095 −0.273548 0.961858i \(-0.588197\pi\)
−0.273548 + 0.961858i \(0.588197\pi\)
\(860\) 0 0
\(861\) −1829.24 + 3168.34i −0.0724047 + 0.125409i
\(862\) 0 0
\(863\) 1110.05 0.0437849 0.0218925 0.999760i \(-0.493031\pi\)
0.0218925 + 0.999760i \(0.493031\pi\)
\(864\) 0 0
\(865\) −25267.8 43765.1i −0.993216 1.72030i
\(866\) 0 0
\(867\) 1031.90 + 1787.30i 0.0404210 + 0.0700113i
\(868\) 0 0
\(869\) −38536.0 + 66746.2i −1.50431 + 2.60554i
\(870\) 0 0
\(871\) −59.9167 62.2672i −0.00233088 0.00242232i
\(872\) 0 0
\(873\) −9156.53 + 15859.6i −0.354985 + 0.614851i
\(874\) 0 0
\(875\) −10365.1 17953.0i −0.400464 0.693623i
\(876\) 0 0
\(877\) −8606.62 14907.1i −0.331385 0.573976i 0.651398 0.758736i \(-0.274183\pi\)
−0.982784 + 0.184760i \(0.940849\pi\)
\(878\) 0 0
\(879\) −3472.88 −0.133262
\(880\) 0 0
\(881\) −7567.74 + 13107.7i −0.289403 + 0.501260i −0.973667 0.227974i \(-0.926790\pi\)
0.684265 + 0.729234i \(0.260123\pi\)
\(882\) 0 0
\(883\) 23884.1 0.910266 0.455133 0.890424i \(-0.349592\pi\)
0.455133 + 0.890424i \(0.349592\pi\)
\(884\) 0 0
\(885\) 142.088 0.00539688
\(886\) 0 0
\(887\) −4591.78 + 7953.19i −0.173818 + 0.301062i −0.939752 0.341858i \(-0.888944\pi\)
0.765933 + 0.642920i \(0.222277\pi\)
\(888\) 0 0
\(889\) 63705.3 2.40338
\(890\) 0 0
\(891\) 18931.4 + 32790.2i 0.711814 + 1.23290i
\(892\) 0 0
\(893\) −6473.47 11212.4i −0.242583 0.420165i
\(894\) 0 0
\(895\) −15885.9 + 27515.1i −0.593303 + 1.02763i
\(896\) 0 0
\(897\) −3203.80 + 792.734i −0.119255 + 0.0295080i
\(898\) 0 0
\(899\) −3664.26 + 6346.68i −0.135940 + 0.235455i
\(900\) 0 0
\(901\) 11712.6 + 20286.8i 0.433078 + 0.750113i
\(902\) 0 0
\(903\) 1273.71 + 2206.13i 0.0469395 + 0.0813015i
\(904\) 0 0
\(905\) 51099.8 1.87692
\(906\) 0 0
\(907\) 6376.01 11043.6i 0.233420 0.404295i −0.725392 0.688336i \(-0.758342\pi\)
0.958812 + 0.284040i \(0.0916750\pi\)
\(908\) 0 0
\(909\) 31217.5 1.13907
\(910\) 0 0
\(911\) −15783.7 −0.574027 −0.287014 0.957926i \(-0.592663\pi\)
−0.287014 + 0.957926i \(0.592663\pi\)
\(912\) 0 0
\(913\) −13622.0 + 23594.0i −0.493781 + 0.855253i
\(914\) 0 0
\(915\) −13697.5 −0.494891
\(916\) 0 0
\(917\) −5068.40 8778.73i −0.182523 0.316139i
\(918\) 0 0
\(919\) 26544.7 + 45976.8i 0.952806 + 1.65031i 0.739311 + 0.673364i \(0.235151\pi\)
0.213495 + 0.976944i \(0.431515\pi\)
\(920\) 0 0
\(921\) 4535.17 7855.14i 0.162257 0.281038i
\(922\) 0 0
\(923\) −29958.3 + 7412.77i −1.06835 + 0.264349i
\(924\) 0 0
\(925\) −1287.84 + 2230.61i −0.0457773 + 0.0792886i
\(926\) 0 0
\(927\) 10691.6 + 18518.4i 0.378812 + 0.656121i
\(928\) 0 0
\(929\) 24382.3 + 42231.4i 0.861096 + 1.49146i 0.870872 + 0.491510i \(0.163555\pi\)
−0.00977577 + 0.999952i \(0.503112\pi\)
\(930\) 0 0
\(931\) 8664.78 0.305023
\(932\) 0 0
\(933\) −3163.74 + 5479.77i −0.111014 + 0.192282i
\(934\) 0 0
\(935\) 48836.1 1.70814
\(936\) 0 0
\(937\) −30351.0 −1.05819 −0.529095 0.848562i \(-0.677469\pi\)
−0.529095 + 0.848562i \(0.677469\pi\)
\(938\) 0 0
\(939\) −2332.60 + 4040.18i −0.0810666 + 0.140411i
\(940\) 0 0
\(941\) 9796.43 0.339378 0.169689 0.985498i \(-0.445724\pi\)
0.169689 + 0.985498i \(0.445724\pi\)
\(942\) 0 0
\(943\) −3353.72 5808.81i −0.115813 0.200595i
\(944\) 0 0
\(945\) −11371.9 19696.8i −0.391459 0.678027i
\(946\) 0 0
\(947\) −986.513 + 1708.69i −0.0338515 + 0.0586325i −0.882455 0.470397i \(-0.844111\pi\)
0.848603 + 0.529030i \(0.177444\pi\)
\(948\) 0 0
\(949\) 6332.17 21935.3i 0.216598 0.750316i
\(950\) 0 0
\(951\) 4737.36 8205.34i 0.161534 0.279786i
\(952\) 0 0
\(953\) 2765.13 + 4789.35i 0.0939888 + 0.162793i 0.909186 0.416390i \(-0.136705\pi\)
−0.815197 + 0.579183i \(0.803372\pi\)
\(954\) 0 0
\(955\) −32185.6 55747.1i −1.09058 1.88894i
\(956\) 0 0
\(957\) 1878.80 0.0634619
\(958\) 0 0
\(959\) 20349.9 35247.1i 0.685227 1.18685i
\(960\) 0 0
\(961\) 58495.4 1.96353
\(962\) 0 0
\(963\) 42849.7 1.43387
\(964\) 0 0
\(965\) −16164.3 + 27997.4i −0.539220 + 0.933957i
\(966\) 0 0
\(967\) −30916.7 −1.02814 −0.514072 0.857747i \(-0.671864\pi\)
−0.514072 + 0.857747i \(0.671864\pi\)
\(968\) 0 0
\(969\) 975.485 + 1689.59i 0.0323396 + 0.0560139i
\(970\) 0 0
\(971\) 9462.74 + 16389.9i 0.312743 + 0.541687i 0.978955 0.204075i \(-0.0654187\pi\)
−0.666212 + 0.745762i \(0.732085\pi\)
\(972\) 0 0
\(973\) −36224.3 + 62742.3i −1.19352 + 2.06724i
\(974\) 0 0
\(975\) −2643.26 2746.95i −0.0868225 0.0902286i
\(976\) 0 0
\(977\) 12526.0 21695.6i 0.410176 0.710445i −0.584733 0.811226i \(-0.698801\pi\)
0.994909 + 0.100781i \(0.0321340\pi\)
\(978\) 0 0
\(979\) 26279.0 + 45516.5i 0.857895 + 1.48592i
\(980\) 0 0
\(981\) 11777.8 + 20399.7i 0.383318 + 0.663927i
\(982\) 0 0
\(983\) −22680.6 −0.735909 −0.367954 0.929844i \(-0.619942\pi\)
−0.367954 + 0.929844i \(0.619942\pi\)
\(984\) 0 0
\(985\) 24330.8 42142.2i 0.787050 1.36321i
\(986\) 0 0
\(987\) −14484.7 −0.467125
\(988\) 0 0
\(989\) −4670.41 −0.150162
\(990\) 0 0
\(991\) −10294.5 + 17830.7i −0.329986 + 0.571553i −0.982509 0.186216i \(-0.940378\pi\)
0.652522 + 0.757770i \(0.273711\pi\)
\(992\) 0 0
\(993\) 9239.70 0.295280
\(994\) 0 0
\(995\) 7524.34 + 13032.5i 0.239736 + 0.415235i
\(996\) 0 0
\(997\) −15218.4 26359.0i −0.483420 0.837309i 0.516398 0.856349i \(-0.327272\pi\)
−0.999819 + 0.0190397i \(0.993939\pi\)
\(998\) 0 0
\(999\) 1249.82 2164.75i 0.0395820 0.0685581i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.4.i.d.321.2 yes 8
4.3 odd 2 inner 416.4.i.d.321.3 yes 8
13.3 even 3 inner 416.4.i.d.289.2 8
52.3 odd 6 inner 416.4.i.d.289.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.i.d.289.2 8 13.3 even 3 inner
416.4.i.d.289.3 yes 8 52.3 odd 6 inner
416.4.i.d.321.2 yes 8 1.1 even 1 trivial
416.4.i.d.321.3 yes 8 4.3 odd 2 inner