Properties

Label 416.4.i.d.321.3
Level $416$
Weight $4$
Character 416.321
Analytic conductor $24.545$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,4,Mod(289,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5447945624\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 74x^{6} + 5367x^{4} + 8066x^{2} + 11881 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 321.3
Root \(0.613091 + 1.06190i\) of defining polynomial
Character \(\chi\) \(=\) 416.321
Dual form 416.4.i.d.289.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.613091 - 1.06190i) q^{3} +13.8322 q^{5} +(-12.7720 - 22.1218i) q^{7} +(12.7482 + 22.0806i) q^{9} +(-31.0618 + 53.8007i) q^{11} +(-13.0000 + 45.0333i) q^{13} +(8.48037 - 14.6884i) q^{15} +(28.4161 + 49.2181i) q^{17} +(13.9982 + 24.2456i) q^{19} -31.3216 q^{21} +(-28.7124 + 49.7313i) q^{23} +66.3286 q^{25} +64.3702 q^{27} +(12.3322 - 21.3599i) q^{29} +297.130 q^{31} +(38.0874 + 65.9694i) q^{33} +(-176.664 - 305.992i) q^{35} +(-19.4161 + 33.6296i) q^{37} +(39.8509 + 41.4143i) q^{39} +(58.4020 - 101.155i) q^{41} +(40.6655 + 70.4347i) q^{43} +(176.336 + 305.422i) q^{45} -462.450 q^{47} +(-154.748 + 268.032i) q^{49} +69.6865 q^{51} +412.182 q^{53} +(-429.652 + 744.179i) q^{55} +34.3286 q^{57} +(4.18873 + 7.25510i) q^{59} +(403.800 + 699.403i) q^{61} +(325.641 - 564.027i) q^{63} +(-179.818 + 622.908i) q^{65} +(0.921795 - 1.59660i) q^{67} +(35.2066 + 60.9796i) q^{69} +(-329.212 - 570.213i) q^{71} -487.090 q^{73} +(40.6655 - 70.4347i) q^{75} +1586.89 q^{77} +1240.62 q^{79} +(-304.738 + 527.821i) q^{81} +438.544 q^{83} +(393.056 + 680.793i) q^{85} +(-15.1215 - 26.1911i) q^{87} +(-423.011 + 732.676i) q^{89} +(1162.25 - 287.583i) q^{91} +(182.168 - 315.524i) q^{93} +(193.625 + 335.369i) q^{95} +(359.129 + 622.030i) q^{97} -1583.93 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} - 40 q^{9} - 104 q^{13} + 180 q^{17} + 696 q^{21} + 152 q^{25} + 4 q^{29} + 636 q^{33} - 108 q^{37} - 716 q^{41} + 1600 q^{45} - 1096 q^{49} + 4528 q^{53} - 104 q^{57} + 580 q^{61} - 208 q^{65}+ \cdots - 156 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.613091 1.06190i 0.117989 0.204364i −0.800981 0.598689i \(-0.795688\pi\)
0.918971 + 0.394326i \(0.129022\pi\)
\(4\) 0 0
\(5\) 13.8322 1.23719 0.618593 0.785712i \(-0.287703\pi\)
0.618593 + 0.785712i \(0.287703\pi\)
\(6\) 0 0
\(7\) −12.7720 22.1218i −0.689623 1.19446i −0.971960 0.235147i \(-0.924443\pi\)
0.282336 0.959316i \(-0.408891\pi\)
\(8\) 0 0
\(9\) 12.7482 + 22.0806i 0.472157 + 0.817800i
\(10\) 0 0
\(11\) −31.0618 + 53.8007i −0.851408 + 1.47468i 0.0285288 + 0.999593i \(0.490918\pi\)
−0.879937 + 0.475090i \(0.842416\pi\)
\(12\) 0 0
\(13\) −13.0000 + 45.0333i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 8.48037 14.6884i 0.145975 0.252836i
\(16\) 0 0
\(17\) 28.4161 + 49.2181i 0.405407 + 0.702185i 0.994369 0.105976i \(-0.0337966\pi\)
−0.588962 + 0.808161i \(0.700463\pi\)
\(18\) 0 0
\(19\) 13.9982 + 24.2456i 0.169021 + 0.292753i 0.938076 0.346429i \(-0.112606\pi\)
−0.769055 + 0.639183i \(0.779273\pi\)
\(20\) 0 0
\(21\) −31.3216 −0.325473
\(22\) 0 0
\(23\) −28.7124 + 49.7313i −0.260302 + 0.450856i −0.966322 0.257336i \(-0.917155\pi\)
0.706020 + 0.708192i \(0.250489\pi\)
\(24\) 0 0
\(25\) 66.3286 0.530629
\(26\) 0 0
\(27\) 64.3702 0.458817
\(28\) 0 0
\(29\) 12.3322 21.3599i 0.0789664 0.136774i −0.823838 0.566826i \(-0.808171\pi\)
0.902804 + 0.430052i \(0.141505\pi\)
\(30\) 0 0
\(31\) 297.130 1.72149 0.860745 0.509037i \(-0.169998\pi\)
0.860745 + 0.509037i \(0.169998\pi\)
\(32\) 0 0
\(33\) 38.0874 + 65.9694i 0.200914 + 0.347994i
\(34\) 0 0
\(35\) −176.664 305.992i −0.853192 1.47777i
\(36\) 0 0
\(37\) −19.4161 + 33.6296i −0.0862698 + 0.149424i −0.905932 0.423424i \(-0.860828\pi\)
0.819662 + 0.572848i \(0.194161\pi\)
\(38\) 0 0
\(39\) 39.8509 + 41.4143i 0.163622 + 0.170041i
\(40\) 0 0
\(41\) 58.4020 101.155i 0.222460 0.385312i −0.733094 0.680127i \(-0.761925\pi\)
0.955554 + 0.294815i \(0.0952580\pi\)
\(42\) 0 0
\(43\) 40.6655 + 70.4347i 0.144219 + 0.249795i 0.929081 0.369875i \(-0.120600\pi\)
−0.784862 + 0.619670i \(0.787266\pi\)
\(44\) 0 0
\(45\) 176.336 + 305.422i 0.584146 + 1.01177i
\(46\) 0 0
\(47\) −462.450 −1.43522 −0.717610 0.696445i \(-0.754764\pi\)
−0.717610 + 0.696445i \(0.754764\pi\)
\(48\) 0 0
\(49\) −154.748 + 268.032i −0.451161 + 0.781434i
\(50\) 0 0
\(51\) 69.6865 0.191335
\(52\) 0 0
\(53\) 412.182 1.06826 0.534128 0.845404i \(-0.320640\pi\)
0.534128 + 0.845404i \(0.320640\pi\)
\(54\) 0 0
\(55\) −429.652 + 744.179i −1.05335 + 1.82446i
\(56\) 0 0
\(57\) 34.3286 0.0797709
\(58\) 0 0
\(59\) 4.18873 + 7.25510i 0.00924283 + 0.0160090i 0.870610 0.491974i \(-0.163725\pi\)
−0.861367 + 0.507983i \(0.830391\pi\)
\(60\) 0 0
\(61\) 403.800 + 699.403i 0.847563 + 1.46802i 0.883377 + 0.468664i \(0.155264\pi\)
−0.0358134 + 0.999358i \(0.511402\pi\)
\(62\) 0 0
\(63\) 325.641 564.027i 0.651221 1.12795i
\(64\) 0 0
\(65\) −179.818 + 622.908i −0.343134 + 1.18865i
\(66\) 0 0
\(67\) 0.921795 1.59660i 0.00168082 0.00291127i −0.865184 0.501455i \(-0.832798\pi\)
0.866865 + 0.498544i \(0.166132\pi\)
\(68\) 0 0
\(69\) 35.2066 + 60.9796i 0.0614257 + 0.106392i
\(70\) 0 0
\(71\) −329.212 570.213i −0.550286 0.953124i −0.998254 0.0590740i \(-0.981185\pi\)
0.447967 0.894050i \(-0.352148\pi\)
\(72\) 0 0
\(73\) −487.090 −0.780954 −0.390477 0.920613i \(-0.627690\pi\)
−0.390477 + 0.920613i \(0.627690\pi\)
\(74\) 0 0
\(75\) 40.6655 70.4347i 0.0626086 0.108441i
\(76\) 0 0
\(77\) 1586.89 2.34861
\(78\) 0 0
\(79\) 1240.62 1.76684 0.883422 0.468577i \(-0.155233\pi\)
0.883422 + 0.468577i \(0.155233\pi\)
\(80\) 0 0
\(81\) −304.738 + 527.821i −0.418022 + 0.724034i
\(82\) 0 0
\(83\) 438.544 0.579957 0.289979 0.957033i \(-0.406352\pi\)
0.289979 + 0.957033i \(0.406352\pi\)
\(84\) 0 0
\(85\) 393.056 + 680.793i 0.501563 + 0.868733i
\(86\) 0 0
\(87\) −15.1215 26.1911i −0.0186344 0.0322757i
\(88\) 0 0
\(89\) −423.011 + 732.676i −0.503809 + 0.872623i 0.496181 + 0.868219i \(0.334735\pi\)
−0.999990 + 0.00440423i \(0.998598\pi\)
\(90\) 0 0
\(91\) 1162.25 287.583i 1.33887 0.331284i
\(92\) 0 0
\(93\) 182.168 315.524i 0.203117 0.351810i
\(94\) 0 0
\(95\) 193.625 + 335.369i 0.209111 + 0.362190i
\(96\) 0 0
\(97\) 359.129 + 622.030i 0.375918 + 0.651109i 0.990464 0.137772i \(-0.0439941\pi\)
−0.614546 + 0.788881i \(0.710661\pi\)
\(98\) 0 0
\(99\) −1583.93 −1.60799
\(100\) 0 0
\(101\) 612.192 1060.35i 0.603122 1.04464i −0.389223 0.921144i \(-0.627256\pi\)
0.992345 0.123495i \(-0.0394103\pi\)
\(102\) 0 0
\(103\) −838.674 −0.802301 −0.401150 0.916012i \(-0.631390\pi\)
−0.401150 + 0.916012i \(0.631390\pi\)
\(104\) 0 0
\(105\) −433.245 −0.402671
\(106\) 0 0
\(107\) −840.307 + 1455.45i −0.759211 + 1.31499i 0.184043 + 0.982918i \(0.441082\pi\)
−0.943254 + 0.332073i \(0.892252\pi\)
\(108\) 0 0
\(109\) 923.874 0.811845 0.405923 0.913907i \(-0.366950\pi\)
0.405923 + 0.913907i \(0.366950\pi\)
\(110\) 0 0
\(111\) 23.8076 + 41.2360i 0.0203578 + 0.0352608i
\(112\) 0 0
\(113\) −573.024 992.507i −0.477040 0.826258i 0.522613 0.852570i \(-0.324957\pi\)
−0.999654 + 0.0263115i \(0.991624\pi\)
\(114\) 0 0
\(115\) −397.154 + 687.891i −0.322042 + 0.557793i
\(116\) 0 0
\(117\) −1160.09 + 287.048i −0.916670 + 0.226817i
\(118\) 0 0
\(119\) 725.861 1257.23i 0.559156 0.968486i
\(120\) 0 0
\(121\) −1264.17 2189.61i −0.949793 1.64509i
\(122\) 0 0
\(123\) −71.6115 124.035i −0.0524958 0.0909254i
\(124\) 0 0
\(125\) −811.552 −0.580699
\(126\) 0 0
\(127\) −1246.97 + 2159.82i −0.871266 + 1.50908i −0.0105775 + 0.999944i \(0.503367\pi\)
−0.860688 + 0.509132i \(0.829966\pi\)
\(128\) 0 0
\(129\) 99.7265 0.0680654
\(130\) 0 0
\(131\) 396.837 0.264670 0.132335 0.991205i \(-0.457753\pi\)
0.132335 + 0.991205i \(0.457753\pi\)
\(132\) 0 0
\(133\) 357.570 619.329i 0.233122 0.403779i
\(134\) 0 0
\(135\) 890.379 0.567642
\(136\) 0 0
\(137\) −796.661 1379.86i −0.496813 0.860505i 0.503181 0.864181i \(-0.332163\pi\)
−0.999993 + 0.00367660i \(0.998830\pi\)
\(138\) 0 0
\(139\) −1418.11 2456.24i −0.865344 1.49882i −0.866706 0.498820i \(-0.833767\pi\)
0.00136200 0.999999i \(-0.499566\pi\)
\(140\) 0 0
\(141\) −283.524 + 491.078i −0.169341 + 0.293307i
\(142\) 0 0
\(143\) −2019.02 2098.23i −1.18069 1.22701i
\(144\) 0 0
\(145\) 170.580 295.454i 0.0976961 0.169215i
\(146\) 0 0
\(147\) 189.749 + 328.656i 0.106464 + 0.184402i
\(148\) 0 0
\(149\) −9.66784 16.7452i −0.00531557 0.00920684i 0.863355 0.504596i \(-0.168359\pi\)
−0.868671 + 0.495390i \(0.835025\pi\)
\(150\) 0 0
\(151\) 1268.20 0.683473 0.341736 0.939796i \(-0.388985\pi\)
0.341736 + 0.939796i \(0.388985\pi\)
\(152\) 0 0
\(153\) −724.510 + 1254.89i −0.382831 + 0.663083i
\(154\) 0 0
\(155\) 4109.95 2.12980
\(156\) 0 0
\(157\) −290.839 −0.147844 −0.0739220 0.997264i \(-0.523552\pi\)
−0.0739220 + 0.997264i \(0.523552\pi\)
\(158\) 0 0
\(159\) 252.705 437.698i 0.126043 0.218313i
\(160\) 0 0
\(161\) 1466.86 0.718041
\(162\) 0 0
\(163\) 1157.26 + 2004.44i 0.556097 + 0.963188i 0.997817 + 0.0660351i \(0.0210349\pi\)
−0.441721 + 0.897153i \(0.645632\pi\)
\(164\) 0 0
\(165\) 526.832 + 912.499i 0.248568 + 0.430533i
\(166\) 0 0
\(167\) −1101.77 + 1908.32i −0.510523 + 0.884251i 0.489403 + 0.872058i \(0.337215\pi\)
−0.999926 + 0.0121933i \(0.996119\pi\)
\(168\) 0 0
\(169\) −1859.00 1170.87i −0.846154 0.532939i
\(170\) 0 0
\(171\) −356.904 + 618.177i −0.159609 + 0.276451i
\(172\) 0 0
\(173\) −1826.74 3164.01i −0.802802 1.39049i −0.917765 0.397124i \(-0.870008\pi\)
0.114963 0.993370i \(-0.463325\pi\)
\(174\) 0 0
\(175\) −847.150 1467.31i −0.365934 0.633817i
\(176\) 0 0
\(177\) 10.2723 0.00436222
\(178\) 0 0
\(179\) 1148.47 1989.21i 0.479558 0.830619i −0.520167 0.854065i \(-0.674130\pi\)
0.999725 + 0.0234455i \(0.00746363\pi\)
\(180\) 0 0
\(181\) 3694.28 1.51709 0.758546 0.651620i \(-0.225910\pi\)
0.758546 + 0.651620i \(0.225910\pi\)
\(182\) 0 0
\(183\) 990.265 0.400014
\(184\) 0 0
\(185\) −268.566 + 465.171i −0.106732 + 0.184865i
\(186\) 0 0
\(187\) −3530.62 −1.38067
\(188\) 0 0
\(189\) −822.137 1423.98i −0.316411 0.548040i
\(190\) 0 0
\(191\) 2326.87 + 4030.25i 0.881499 + 1.52680i 0.849675 + 0.527307i \(0.176798\pi\)
0.0318235 + 0.999494i \(0.489869\pi\)
\(192\) 0 0
\(193\) −1168.60 + 2024.08i −0.435844 + 0.754904i −0.997364 0.0725588i \(-0.976883\pi\)
0.561520 + 0.827463i \(0.310217\pi\)
\(194\) 0 0
\(195\) 551.224 + 572.849i 0.202431 + 0.210372i
\(196\) 0 0
\(197\) 1759.00 3046.68i 0.636161 1.10186i −0.350107 0.936710i \(-0.613855\pi\)
0.986268 0.165153i \(-0.0528119\pi\)
\(198\) 0 0
\(199\) −543.974 942.191i −0.193775 0.335629i 0.752723 0.658337i \(-0.228740\pi\)
−0.946498 + 0.322709i \(0.895407\pi\)
\(200\) 0 0
\(201\) −1.13029 1.95772i −0.000396639 0.000686998i
\(202\) 0 0
\(203\) −630.026 −0.217828
\(204\) 0 0
\(205\) 807.826 1399.20i 0.275224 0.476703i
\(206\) 0 0
\(207\) −1464.13 −0.491613
\(208\) 0 0
\(209\) −1739.24 −0.575625
\(210\) 0 0
\(211\) 2037.62 3529.26i 0.664812 1.15149i −0.314524 0.949249i \(-0.601845\pi\)
0.979336 0.202239i \(-0.0648218\pi\)
\(212\) 0 0
\(213\) −807.349 −0.259712
\(214\) 0 0
\(215\) 562.491 + 974.264i 0.178426 + 0.309043i
\(216\) 0 0
\(217\) −3794.95 6573.05i −1.18718 2.05626i
\(218\) 0 0
\(219\) −298.631 + 517.243i −0.0921442 + 0.159598i
\(220\) 0 0
\(221\) −2585.86 + 639.835i −0.787077 + 0.194751i
\(222\) 0 0
\(223\) 1012.07 1752.95i 0.303915 0.526396i −0.673104 0.739548i \(-0.735040\pi\)
0.977019 + 0.213152i \(0.0683728\pi\)
\(224\) 0 0
\(225\) 845.573 + 1464.58i 0.250540 + 0.433948i
\(226\) 0 0
\(227\) −2264.35 3921.97i −0.662071 1.14674i −0.980071 0.198650i \(-0.936344\pi\)
0.317999 0.948091i \(-0.396989\pi\)
\(228\) 0 0
\(229\) −24.4613 −0.00705872 −0.00352936 0.999994i \(-0.501123\pi\)
−0.00352936 + 0.999994i \(0.501123\pi\)
\(230\) 0 0
\(231\) 972.906 1685.12i 0.277110 0.479969i
\(232\) 0 0
\(233\) −2991.73 −0.841180 −0.420590 0.907251i \(-0.638177\pi\)
−0.420590 + 0.907251i \(0.638177\pi\)
\(234\) 0 0
\(235\) −6396.69 −1.77563
\(236\) 0 0
\(237\) 760.613 1317.42i 0.208469 0.361079i
\(238\) 0 0
\(239\) −2113.39 −0.571982 −0.285991 0.958232i \(-0.592323\pi\)
−0.285991 + 0.958232i \(0.592323\pi\)
\(240\) 0 0
\(241\) −3485.44 6036.96i −0.931606 1.61359i −0.780577 0.625060i \(-0.785075\pi\)
−0.151029 0.988529i \(-0.548259\pi\)
\(242\) 0 0
\(243\) 1242.66 + 2152.35i 0.328053 + 0.568204i
\(244\) 0 0
\(245\) −2140.50 + 3707.46i −0.558170 + 0.966779i
\(246\) 0 0
\(247\) −1273.84 + 315.192i −0.328146 + 0.0811952i
\(248\) 0 0
\(249\) 268.867 465.692i 0.0684288 0.118522i
\(250\) 0 0
\(251\) 2853.18 + 4941.86i 0.717495 + 1.24274i 0.961989 + 0.273087i \(0.0880447\pi\)
−0.244494 + 0.969651i \(0.578622\pi\)
\(252\) 0 0
\(253\) −1783.72 3089.49i −0.443246 0.767725i
\(254\) 0 0
\(255\) 963.915 0.236717
\(256\) 0 0
\(257\) −1002.07 + 1735.64i −0.243220 + 0.421269i −0.961630 0.274351i \(-0.911537\pi\)
0.718410 + 0.695620i \(0.244870\pi\)
\(258\) 0 0
\(259\) 991.929 0.237975
\(260\) 0 0
\(261\) 628.853 0.149138
\(262\) 0 0
\(263\) 270.030 467.705i 0.0633108 0.109658i −0.832633 0.553826i \(-0.813167\pi\)
0.895943 + 0.444168i \(0.146501\pi\)
\(264\) 0 0
\(265\) 5701.37 1.32163
\(266\) 0 0
\(267\) 518.688 + 898.394i 0.118888 + 0.205921i
\(268\) 0 0
\(269\) −79.2764 137.311i −0.0179687 0.0311226i 0.856901 0.515481i \(-0.172387\pi\)
−0.874870 + 0.484358i \(0.839053\pi\)
\(270\) 0 0
\(271\) 3466.13 6003.51i 0.776945 1.34571i −0.156749 0.987638i \(-0.550101\pi\)
0.933695 0.358070i \(-0.116565\pi\)
\(272\) 0 0
\(273\) 407.181 1410.52i 0.0902700 0.312704i
\(274\) 0 0
\(275\) −2060.29 + 3568.52i −0.451782 + 0.782510i
\(276\) 0 0
\(277\) 2241.25 + 3881.97i 0.486151 + 0.842039i 0.999873 0.0159180i \(-0.00506706\pi\)
−0.513722 + 0.857957i \(0.671734\pi\)
\(278\) 0 0
\(279\) 3787.89 + 6560.81i 0.812813 + 1.40783i
\(280\) 0 0
\(281\) 7631.00 1.62003 0.810013 0.586411i \(-0.199460\pi\)
0.810013 + 0.586411i \(0.199460\pi\)
\(282\) 0 0
\(283\) −1201.42 + 2080.92i −0.252357 + 0.437096i −0.964174 0.265269i \(-0.914539\pi\)
0.711817 + 0.702365i \(0.247873\pi\)
\(284\) 0 0
\(285\) 474.839 0.0986914
\(286\) 0 0
\(287\) −2983.64 −0.613654
\(288\) 0 0
\(289\) 841.553 1457.61i 0.171291 0.296685i
\(290\) 0 0
\(291\) 880.715 0.177417
\(292\) 0 0
\(293\) 1416.14 + 2452.82i 0.282360 + 0.489062i 0.971966 0.235123i \(-0.0755493\pi\)
−0.689605 + 0.724185i \(0.742216\pi\)
\(294\) 0 0
\(295\) 57.9392 + 100.354i 0.0114351 + 0.0198062i
\(296\) 0 0
\(297\) −1999.46 + 3463.16i −0.390641 + 0.676609i
\(298\) 0 0
\(299\) −1866.30 1939.52i −0.360974 0.375135i
\(300\) 0 0
\(301\) 1038.76 1799.18i 0.198914 0.344529i
\(302\) 0 0
\(303\) −750.658 1300.18i −0.142324 0.246513i
\(304\) 0 0
\(305\) 5585.43 + 9674.25i 1.04859 + 1.81622i
\(306\) 0 0
\(307\) 7397.22 1.37518 0.687592 0.726097i \(-0.258668\pi\)
0.687592 + 0.726097i \(0.258668\pi\)
\(308\) 0 0
\(309\) −514.183 + 890.591i −0.0946630 + 0.163961i
\(310\) 0 0
\(311\) −5160.32 −0.940884 −0.470442 0.882431i \(-0.655905\pi\)
−0.470442 + 0.882431i \(0.655905\pi\)
\(312\) 0 0
\(313\) 3804.66 0.687067 0.343533 0.939140i \(-0.388376\pi\)
0.343533 + 0.939140i \(0.388376\pi\)
\(314\) 0 0
\(315\) 4504.32 7801.71i 0.805682 1.39548i
\(316\) 0 0
\(317\) −7727.00 −1.36906 −0.684530 0.728985i \(-0.739992\pi\)
−0.684530 + 0.728985i \(0.739992\pi\)
\(318\) 0 0
\(319\) 766.119 + 1326.96i 0.134465 + 0.232901i
\(320\) 0 0
\(321\) 1030.37 + 1784.65i 0.179158 + 0.310310i
\(322\) 0 0
\(323\) −795.547 + 1377.93i −0.137045 + 0.237368i
\(324\) 0 0
\(325\) −862.272 + 2987.00i −0.147170 + 0.509812i
\(326\) 0 0
\(327\) 566.419 981.066i 0.0957891 0.165912i
\(328\) 0 0
\(329\) 5906.42 + 10230.2i 0.989761 + 1.71432i
\(330\) 0 0
\(331\) 3767.67 + 6525.80i 0.625650 + 1.08366i 0.988415 + 0.151776i \(0.0484994\pi\)
−0.362765 + 0.931881i \(0.618167\pi\)
\(332\) 0 0
\(333\) −990.083 −0.162932
\(334\) 0 0
\(335\) 12.7504 22.0844i 0.00207949 0.00360179i
\(336\) 0 0
\(337\) 4662.39 0.753640 0.376820 0.926286i \(-0.377017\pi\)
0.376820 + 0.926286i \(0.377017\pi\)
\(338\) 0 0
\(339\) −1405.26 −0.225143
\(340\) 0 0
\(341\) −9229.41 + 15985.8i −1.46569 + 2.53865i
\(342\) 0 0
\(343\) −855.814 −0.134722
\(344\) 0 0
\(345\) 486.983 + 843.479i 0.0759950 + 0.131627i
\(346\) 0 0
\(347\) −3601.76 6238.43i −0.557212 0.965120i −0.997728 0.0673751i \(-0.978538\pi\)
0.440515 0.897745i \(-0.354796\pi\)
\(348\) 0 0
\(349\) 3523.18 6102.33i 0.540377 0.935961i −0.458505 0.888692i \(-0.651615\pi\)
0.998882 0.0472689i \(-0.0150518\pi\)
\(350\) 0 0
\(351\) −836.813 + 2898.80i −0.127253 + 0.440817i
\(352\) 0 0
\(353\) −1851.90 + 3207.59i −0.279226 + 0.483634i −0.971193 0.238295i \(-0.923411\pi\)
0.691966 + 0.721930i \(0.256745\pi\)
\(354\) 0 0
\(355\) −4553.72 7887.27i −0.680807 1.17919i
\(356\) 0 0
\(357\) −890.037 1541.59i −0.131949 0.228542i
\(358\) 0 0
\(359\) −1444.39 −0.212345 −0.106173 0.994348i \(-0.533860\pi\)
−0.106173 + 0.994348i \(0.533860\pi\)
\(360\) 0 0
\(361\) 3037.60 5261.28i 0.442864 0.767062i
\(362\) 0 0
\(363\) −3100.21 −0.448262
\(364\) 0 0
\(365\) −6737.51 −0.966185
\(366\) 0 0
\(367\) −1549.30 + 2683.46i −0.220361 + 0.381677i −0.954918 0.296871i \(-0.904057\pi\)
0.734556 + 0.678548i \(0.237390\pi\)
\(368\) 0 0
\(369\) 2978.09 0.420144
\(370\) 0 0
\(371\) −5264.39 9118.19i −0.736694 1.27599i
\(372\) 0 0
\(373\) 2289.51 + 3965.54i 0.317818 + 0.550477i 0.980033 0.198837i \(-0.0637165\pi\)
−0.662214 + 0.749315i \(0.730383\pi\)
\(374\) 0 0
\(375\) −497.555 + 861.790i −0.0685163 + 0.118674i
\(376\) 0 0
\(377\) 801.590 + 833.037i 0.109507 + 0.113803i
\(378\) 0 0
\(379\) −3386.92 + 5866.32i −0.459036 + 0.795073i −0.998910 0.0466724i \(-0.985138\pi\)
0.539875 + 0.841745i \(0.318472\pi\)
\(380\) 0 0
\(381\) 1529.01 + 2648.33i 0.205600 + 0.356110i
\(382\) 0 0
\(383\) 4722.07 + 8178.87i 0.629991 + 1.09118i 0.987553 + 0.157287i \(0.0502748\pi\)
−0.357562 + 0.933889i \(0.616392\pi\)
\(384\) 0 0
\(385\) 21950.1 2.90566
\(386\) 0 0
\(387\) −1036.83 + 1795.84i −0.136188 + 0.235885i
\(388\) 0 0
\(389\) 5899.20 0.768898 0.384449 0.923146i \(-0.374391\pi\)
0.384449 + 0.923146i \(0.374391\pi\)
\(390\) 0 0
\(391\) −3263.57 −0.422112
\(392\) 0 0
\(393\) 243.297 421.403i 0.0312283 0.0540889i
\(394\) 0 0
\(395\) 17160.5 2.18592
\(396\) 0 0
\(397\) −5915.29 10245.6i −0.747808 1.29524i −0.948871 0.315664i \(-0.897773\pi\)
0.201063 0.979578i \(-0.435560\pi\)
\(398\) 0 0
\(399\) −438.446 759.410i −0.0550119 0.0952833i
\(400\) 0 0
\(401\) −700.942 + 1214.07i −0.0872902 + 0.151191i −0.906365 0.422496i \(-0.861154\pi\)
0.819075 + 0.573687i \(0.194487\pi\)
\(402\) 0 0
\(403\) −3862.69 + 13380.8i −0.477455 + 1.65395i
\(404\) 0 0
\(405\) −4215.18 + 7300.91i −0.517170 + 0.895765i
\(406\) 0 0
\(407\) −1206.20 2089.20i −0.146902 0.254441i
\(408\) 0 0
\(409\) −6640.14 11501.1i −0.802772 1.39044i −0.917785 0.397078i \(-0.870024\pi\)
0.115013 0.993364i \(-0.463309\pi\)
\(410\) 0 0
\(411\) −1953.70 −0.234474
\(412\) 0 0
\(413\) 106.997 185.324i 0.0127481 0.0220804i
\(414\) 0 0
\(415\) 6066.01 0.717515
\(416\) 0 0
\(417\) −3477.73 −0.408405
\(418\) 0 0
\(419\) −6089.01 + 10546.5i −0.709947 + 1.22966i 0.254929 + 0.966960i \(0.417948\pi\)
−0.964876 + 0.262705i \(0.915386\pi\)
\(420\) 0 0
\(421\) 6141.75 0.710998 0.355499 0.934677i \(-0.384311\pi\)
0.355499 + 0.934677i \(0.384311\pi\)
\(422\) 0 0
\(423\) −5895.43 10211.2i −0.677649 1.17372i
\(424\) 0 0
\(425\) 1884.80 + 3264.57i 0.215121 + 0.372600i
\(426\) 0 0
\(427\) 10314.7 17865.6i 1.16900 2.02477i
\(428\) 0 0
\(429\) −3465.96 + 857.602i −0.390065 + 0.0965161i
\(430\) 0 0
\(431\) 4269.15 7394.38i 0.477117 0.826391i −0.522539 0.852616i \(-0.675015\pi\)
0.999656 + 0.0262241i \(0.00834834\pi\)
\(432\) 0 0
\(433\) 7470.26 + 12938.9i 0.829094 + 1.43603i 0.898750 + 0.438462i \(0.144477\pi\)
−0.0696557 + 0.997571i \(0.522190\pi\)
\(434\) 0 0
\(435\) −209.163 362.280i −0.0230542 0.0399310i
\(436\) 0 0
\(437\) −1607.68 −0.175986
\(438\) 0 0
\(439\) 2266.51 3925.71i 0.246411 0.426797i −0.716116 0.697981i \(-0.754082\pi\)
0.962528 + 0.271184i \(0.0874152\pi\)
\(440\) 0 0
\(441\) −7891.07 −0.852075
\(442\) 0 0
\(443\) 4626.67 0.496207 0.248103 0.968734i \(-0.420193\pi\)
0.248103 + 0.968734i \(0.420193\pi\)
\(444\) 0 0
\(445\) −5851.15 + 10134.5i −0.623306 + 1.07960i
\(446\) 0 0
\(447\) −23.7091 −0.00250872
\(448\) 0 0
\(449\) 836.152 + 1448.26i 0.0878852 + 0.152222i 0.906617 0.421954i \(-0.138656\pi\)
−0.818732 + 0.574176i \(0.805322\pi\)
\(450\) 0 0
\(451\) 3628.15 + 6284.13i 0.378809 + 0.656116i
\(452\) 0 0
\(453\) 777.520 1346.70i 0.0806425 0.139677i
\(454\) 0 0
\(455\) 16076.5 3977.89i 1.65643 0.409860i
\(456\) 0 0
\(457\) 2887.88 5001.96i 0.295601 0.511996i −0.679524 0.733654i \(-0.737814\pi\)
0.975124 + 0.221658i \(0.0711469\pi\)
\(458\) 0 0
\(459\) 1829.15 + 3168.18i 0.186007 + 0.322174i
\(460\) 0 0
\(461\) −8876.18 15374.0i −0.896757 1.55323i −0.831615 0.555353i \(-0.812583\pi\)
−0.0651426 0.997876i \(-0.520750\pi\)
\(462\) 0 0
\(463\) −3060.93 −0.307243 −0.153621 0.988130i \(-0.549094\pi\)
−0.153621 + 0.988130i \(0.549094\pi\)
\(464\) 0 0
\(465\) 2519.77 4364.38i 0.251294 0.435254i
\(466\) 0 0
\(467\) 1019.98 0.101068 0.0505342 0.998722i \(-0.483908\pi\)
0.0505342 + 0.998722i \(0.483908\pi\)
\(468\) 0 0
\(469\) −47.0927 −0.00463654
\(470\) 0 0
\(471\) −178.311 + 308.843i −0.0174440 + 0.0302139i
\(472\) 0 0
\(473\) −5052.58 −0.491158
\(474\) 0 0
\(475\) 928.481 + 1608.18i 0.0896876 + 0.155343i
\(476\) 0 0
\(477\) 5254.59 + 9101.22i 0.504384 + 0.873619i
\(478\) 0 0
\(479\) 2854.97 4944.96i 0.272332 0.471693i −0.697126 0.716948i \(-0.745538\pi\)
0.969459 + 0.245255i \(0.0788717\pi\)
\(480\) 0 0
\(481\) −1262.05 1311.56i −0.119635 0.124328i
\(482\) 0 0
\(483\) 899.317 1557.66i 0.0847212 0.146741i
\(484\) 0 0
\(485\) 4967.53 + 8604.02i 0.465080 + 0.805543i
\(486\) 0 0
\(487\) −313.040 542.202i −0.0291278 0.0504507i 0.851094 0.525013i \(-0.175940\pi\)
−0.880222 + 0.474562i \(0.842606\pi\)
\(488\) 0 0
\(489\) 2838.03 0.262454
\(490\) 0 0
\(491\) −8004.57 + 13864.3i −0.735725 + 1.27431i 0.218679 + 0.975797i \(0.429825\pi\)
−0.954404 + 0.298516i \(0.903508\pi\)
\(492\) 0 0
\(493\) 1401.73 0.128054
\(494\) 0 0
\(495\) −21909.2 −1.98939
\(496\) 0 0
\(497\) −8409.41 + 14565.5i −0.758981 + 1.31459i
\(498\) 0 0
\(499\) −8716.04 −0.781931 −0.390965 0.920405i \(-0.627859\pi\)
−0.390965 + 0.920405i \(0.627859\pi\)
\(500\) 0 0
\(501\) 1350.97 + 2339.94i 0.120472 + 0.208664i
\(502\) 0 0
\(503\) −6079.76 10530.5i −0.538933 0.933459i −0.998962 0.0455551i \(-0.985494\pi\)
0.460029 0.887904i \(-0.347839\pi\)
\(504\) 0 0
\(505\) 8467.94 14666.9i 0.746175 1.29241i
\(506\) 0 0
\(507\) −2383.08 + 1256.23i −0.208750 + 0.110042i
\(508\) 0 0
\(509\) 1267.48 2195.34i 0.110373 0.191172i −0.805547 0.592531i \(-0.798129\pi\)
0.915921 + 0.401359i \(0.131462\pi\)
\(510\) 0 0
\(511\) 6221.12 + 10775.3i 0.538564 + 0.932820i
\(512\) 0 0
\(513\) 901.066 + 1560.69i 0.0775498 + 0.134320i
\(514\) 0 0
\(515\) −11600.7 −0.992595
\(516\) 0 0
\(517\) 14364.6 24880.1i 1.22196 2.11649i
\(518\) 0 0
\(519\) −4479.84 −0.378889
\(520\) 0 0
\(521\) −19884.2 −1.67206 −0.836030 0.548684i \(-0.815129\pi\)
−0.836030 + 0.548684i \(0.815129\pi\)
\(522\) 0 0
\(523\) −179.507 + 310.915i −0.0150082 + 0.0259950i −0.873432 0.486946i \(-0.838111\pi\)
0.858424 + 0.512941i \(0.171444\pi\)
\(524\) 0 0
\(525\) −2077.52 −0.172705
\(526\) 0 0
\(527\) 8443.28 + 14624.2i 0.697903 + 1.20880i
\(528\) 0 0
\(529\) 4434.70 + 7681.13i 0.364486 + 0.631308i
\(530\) 0 0
\(531\) −106.798 + 184.980i −0.00872813 + 0.0151176i
\(532\) 0 0
\(533\) 3796.13 + 3945.05i 0.308496 + 0.320599i
\(534\) 0 0
\(535\) −11623.3 + 20132.1i −0.939285 + 1.62689i
\(536\) 0 0
\(537\) −1408.24 2439.14i −0.113166 0.196008i
\(538\) 0 0
\(539\) −9613.53 16651.1i −0.768245 1.33064i
\(540\) 0 0
\(541\) −6607.14 −0.525070 −0.262535 0.964922i \(-0.584559\pi\)
−0.262535 + 0.964922i \(0.584559\pi\)
\(542\) 0 0
\(543\) 2264.93 3922.97i 0.179001 0.310038i
\(544\) 0 0
\(545\) 12779.2 1.00440
\(546\) 0 0
\(547\) 23607.2 1.84529 0.922644 0.385654i \(-0.126024\pi\)
0.922644 + 0.385654i \(0.126024\pi\)
\(548\) 0 0
\(549\) −10295.5 + 17832.3i −0.800366 + 1.38627i
\(550\) 0 0
\(551\) 690.511 0.0533880
\(552\) 0 0
\(553\) −15845.2 27444.7i −1.21846 2.11043i
\(554\) 0 0
\(555\) 329.311 + 570.384i 0.0251864 + 0.0436242i
\(556\) 0 0
\(557\) 6312.86 10934.2i 0.480223 0.831771i −0.519519 0.854459i \(-0.673889\pi\)
0.999743 + 0.0226876i \(0.00722230\pi\)
\(558\) 0 0
\(559\) −3700.56 + 915.651i −0.279995 + 0.0692807i
\(560\) 0 0
\(561\) −2164.59 + 3749.18i −0.162904 + 0.282158i
\(562\) 0 0
\(563\) −4243.47 7349.91i −0.317657 0.550199i 0.662341 0.749202i \(-0.269563\pi\)
−0.979999 + 0.199003i \(0.936230\pi\)
\(564\) 0 0
\(565\) −7926.16 13728.5i −0.590188 1.02224i
\(566\) 0 0
\(567\) 15568.4 1.15311
\(568\) 0 0
\(569\) 2504.88 4338.57i 0.184552 0.319653i −0.758874 0.651238i \(-0.774250\pi\)
0.943425 + 0.331585i \(0.107583\pi\)
\(570\) 0 0
\(571\) −16275.6 −1.19284 −0.596419 0.802673i \(-0.703410\pi\)
−0.596419 + 0.802673i \(0.703410\pi\)
\(572\) 0 0
\(573\) 5706.32 0.416030
\(574\) 0 0
\(575\) −1904.45 + 3298.61i −0.138124 + 0.239237i
\(576\) 0 0
\(577\) −20850.8 −1.50438 −0.752191 0.658945i \(-0.771003\pi\)
−0.752191 + 0.658945i \(0.771003\pi\)
\(578\) 0 0
\(579\) 1432.92 + 2481.89i 0.102850 + 0.178141i
\(580\) 0 0
\(581\) −5601.09 9701.37i −0.399952 0.692738i
\(582\) 0 0
\(583\) −12803.1 + 22175.7i −0.909522 + 1.57534i
\(584\) 0 0
\(585\) −16046.5 + 3970.49i −1.13409 + 0.280615i
\(586\) 0 0
\(587\) 8392.84 14536.8i 0.590135 1.02214i −0.404078 0.914724i \(-0.632408\pi\)
0.994214 0.107420i \(-0.0342590\pi\)
\(588\) 0 0
\(589\) 4159.29 + 7204.09i 0.290968 + 0.503972i
\(590\) 0 0
\(591\) −2156.86 3735.78i −0.150120 0.260016i
\(592\) 0 0
\(593\) 22582.3 1.56382 0.781909 0.623393i \(-0.214246\pi\)
0.781909 + 0.623393i \(0.214246\pi\)
\(594\) 0 0
\(595\) 10040.2 17390.2i 0.691780 1.19820i
\(596\) 0 0
\(597\) −1334.02 −0.0914538
\(598\) 0 0
\(599\) 27736.8 1.89198 0.945990 0.324195i \(-0.105093\pi\)
0.945990 + 0.324195i \(0.105093\pi\)
\(600\) 0 0
\(601\) 3514.04 6086.49i 0.238504 0.413100i −0.721782 0.692121i \(-0.756676\pi\)
0.960285 + 0.279021i \(0.0900098\pi\)
\(602\) 0 0
\(603\) 47.0051 0.00317445
\(604\) 0 0
\(605\) −17486.3 30287.1i −1.17507 2.03528i
\(606\) 0 0
\(607\) −7180.51 12437.0i −0.480145 0.831635i 0.519596 0.854412i \(-0.326083\pi\)
−0.999741 + 0.0227768i \(0.992749\pi\)
\(608\) 0 0
\(609\) −386.263 + 669.027i −0.0257014 + 0.0445162i
\(610\) 0 0
\(611\) 6011.85 20825.7i 0.398058 1.37891i
\(612\) 0 0
\(613\) 12038.9 20852.0i 0.793224 1.37390i −0.130737 0.991417i \(-0.541734\pi\)
0.923961 0.382487i \(-0.124932\pi\)
\(614\) 0 0
\(615\) −990.541 1715.67i −0.0649471 0.112492i
\(616\) 0 0
\(617\) −13044.7 22594.1i −0.851152 1.47424i −0.880169 0.474660i \(-0.842571\pi\)
0.0290175 0.999579i \(-0.490762\pi\)
\(618\) 0 0
\(619\) 20791.1 1.35003 0.675013 0.737806i \(-0.264138\pi\)
0.675013 + 0.737806i \(0.264138\pi\)
\(620\) 0 0
\(621\) −1848.22 + 3201.21i −0.119431 + 0.206860i
\(622\) 0 0
\(623\) 21610.8 1.38975
\(624\) 0 0
\(625\) −19516.6 −1.24906
\(626\) 0 0
\(627\) −1066.31 + 1846.90i −0.0679176 + 0.117637i
\(628\) 0 0
\(629\) −2206.92 −0.139897
\(630\) 0 0
\(631\) −5930.20 10271.4i −0.374133 0.648017i 0.616064 0.787696i \(-0.288726\pi\)
−0.990197 + 0.139679i \(0.955393\pi\)
\(632\) 0 0
\(633\) −2498.49 4327.51i −0.156882 0.271727i
\(634\) 0 0
\(635\) −17248.3 + 29874.9i −1.07792 + 1.86701i
\(636\) 0 0
\(637\) −10058.6 10453.2i −0.625648 0.650192i
\(638\) 0 0
\(639\) 8393.76 14538.4i 0.519643 0.900048i
\(640\) 0 0
\(641\) 2421.50 + 4194.16i 0.149210 + 0.258439i 0.930936 0.365183i \(-0.118994\pi\)
−0.781726 + 0.623622i \(0.785660\pi\)
\(642\) 0 0
\(643\) 4804.75 + 8322.07i 0.294682 + 0.510405i 0.974911 0.222595i \(-0.0714528\pi\)
−0.680229 + 0.733000i \(0.738119\pi\)
\(644\) 0 0
\(645\) 1379.43 0.0842095
\(646\) 0 0
\(647\) −8923.09 + 15455.2i −0.542199 + 0.939116i 0.456578 + 0.889683i \(0.349075\pi\)
−0.998777 + 0.0494331i \(0.984259\pi\)
\(648\) 0 0
\(649\) −520.439 −0.0314777
\(650\) 0 0
\(651\) −9306.59 −0.560298
\(652\) 0 0
\(653\) −9391.52 + 16266.6i −0.562816 + 0.974826i 0.434433 + 0.900704i \(0.356949\pi\)
−0.997249 + 0.0741216i \(0.976385\pi\)
\(654\) 0 0
\(655\) 5489.11 0.327446
\(656\) 0 0
\(657\) −6209.54 10755.2i −0.368733 0.638664i
\(658\) 0 0
\(659\) 10374.1 + 17968.5i 0.613229 + 1.06214i 0.990692 + 0.136120i \(0.0434632\pi\)
−0.377463 + 0.926025i \(0.623204\pi\)
\(660\) 0 0
\(661\) −2460.41 + 4261.55i −0.144779 + 0.250764i −0.929290 0.369350i \(-0.879580\pi\)
0.784512 + 0.620114i \(0.212914\pi\)
\(662\) 0 0
\(663\) −905.925 + 3138.22i −0.0530667 + 0.183828i
\(664\) 0 0
\(665\) 4945.96 8566.66i 0.288415 0.499550i
\(666\) 0 0
\(667\) 708.171 + 1226.59i 0.0411102 + 0.0712049i
\(668\) 0 0
\(669\) −1240.98 2149.44i −0.0717174 0.124218i
\(670\) 0 0
\(671\) −50171.1 −2.88649
\(672\) 0 0
\(673\) 9886.94 17124.7i 0.566291 0.980844i −0.430638 0.902525i \(-0.641711\pi\)
0.996928 0.0783195i \(-0.0249554\pi\)
\(674\) 0 0
\(675\) 4269.59 0.243462
\(676\) 0 0
\(677\) −5214.00 −0.295997 −0.147999 0.988988i \(-0.547283\pi\)
−0.147999 + 0.988988i \(0.547283\pi\)
\(678\) 0 0
\(679\) 9173.60 15889.1i 0.518484 0.898040i
\(680\) 0 0
\(681\) −5553.01 −0.312469
\(682\) 0 0
\(683\) 14970.7 + 25930.0i 0.838707 + 1.45268i 0.890977 + 0.454049i \(0.150021\pi\)
−0.0522700 + 0.998633i \(0.516646\pi\)
\(684\) 0 0
\(685\) −11019.5 19086.4i −0.614650 1.06460i
\(686\) 0 0
\(687\) −14.9970 + 25.9755i −0.000832854 + 0.00144254i
\(688\) 0 0
\(689\) −5358.37 + 18561.9i −0.296281 + 1.02635i
\(690\) 0 0
\(691\) 610.634 1057.65i 0.0336174 0.0582270i −0.848727 0.528831i \(-0.822631\pi\)
0.882345 + 0.470604i \(0.155964\pi\)
\(692\) 0 0
\(693\) 20230.0 + 35039.4i 1.10891 + 1.92069i
\(694\) 0 0
\(695\) −19615.6 33975.2i −1.07059 1.85432i
\(696\) 0 0
\(697\) 6638.22 0.360747
\(698\) 0 0
\(699\) −1834.20 + 3176.93i −0.0992502 + 0.171906i
\(700\) 0 0
\(701\) 22838.2 1.23051 0.615253 0.788329i \(-0.289054\pi\)
0.615253 + 0.788329i \(0.289054\pi\)
\(702\) 0 0
\(703\) −1087.16 −0.0583258
\(704\) 0 0
\(705\) −3921.75 + 6792.67i −0.209506 + 0.362875i
\(706\) 0 0
\(707\) −31275.7 −1.66371
\(708\) 0 0
\(709\) 4386.16 + 7597.05i 0.232335 + 0.402417i 0.958495 0.285110i \(-0.0920300\pi\)
−0.726160 + 0.687526i \(0.758697\pi\)
\(710\) 0 0
\(711\) 15815.7 + 27393.7i 0.834228 + 1.44493i
\(712\) 0 0
\(713\) −8531.31 + 14776.7i −0.448107 + 0.776144i
\(714\) 0 0
\(715\) −27927.4 29023.0i −1.46073 1.51804i
\(716\) 0 0
\(717\) −1295.70 + 2244.22i −0.0674878 + 0.116892i
\(718\) 0 0
\(719\) 2370.08 + 4105.10i 0.122933 + 0.212927i 0.920923 0.389744i \(-0.127436\pi\)
−0.797990 + 0.602671i \(0.794103\pi\)
\(720\) 0 0
\(721\) 10711.5 + 18552.9i 0.553285 + 0.958318i
\(722\) 0 0
\(723\) −8547.57 −0.439678
\(724\) 0 0
\(725\) 817.975 1416.77i 0.0419019 0.0725761i
\(726\) 0 0
\(727\) 16666.9 0.850265 0.425132 0.905131i \(-0.360228\pi\)
0.425132 + 0.905131i \(0.360228\pi\)
\(728\) 0 0
\(729\) −13408.4 −0.681216
\(730\) 0 0
\(731\) −2311.11 + 4002.95i −0.116935 + 0.202537i
\(732\) 0 0
\(733\) 31724.7 1.59861 0.799304 0.600927i \(-0.205202\pi\)
0.799304 + 0.600927i \(0.205202\pi\)
\(734\) 0 0
\(735\) 2624.64 + 4546.02i 0.131716 + 0.228139i
\(736\) 0 0
\(737\) 57.2653 + 99.1864i 0.00286214 + 0.00495736i
\(738\) 0 0
\(739\) 2672.71 4629.27i 0.133041 0.230434i −0.791806 0.610772i \(-0.790859\pi\)
0.924847 + 0.380338i \(0.124193\pi\)
\(740\) 0 0
\(741\) −446.272 + 1545.93i −0.0221245 + 0.0766414i
\(742\) 0 0
\(743\) 7782.47 13479.6i 0.384268 0.665572i −0.607399 0.794397i \(-0.707787\pi\)
0.991667 + 0.128825i \(0.0411205\pi\)
\(744\) 0 0
\(745\) −133.727 231.622i −0.00657635 0.0113906i
\(746\) 0 0
\(747\) 5590.67 + 9683.32i 0.273831 + 0.474289i
\(748\) 0 0
\(749\) 42929.6 2.09428
\(750\) 0 0
\(751\) 9995.88 17313.4i 0.485692 0.841243i −0.514173 0.857687i \(-0.671901\pi\)
0.999865 + 0.0164434i \(0.00523433\pi\)
\(752\) 0 0
\(753\) 6997.04 0.338627
\(754\) 0 0
\(755\) 17541.9 0.845583
\(756\) 0 0
\(757\) −5269.15 + 9126.44i −0.252986 + 0.438185i −0.964347 0.264642i \(-0.914746\pi\)
0.711360 + 0.702827i \(0.248079\pi\)
\(758\) 0 0
\(759\) −4374.32 −0.209193
\(760\) 0 0
\(761\) −4418.07 7652.33i −0.210453 0.364516i 0.741403 0.671060i \(-0.234161\pi\)
−0.951857 + 0.306544i \(0.900827\pi\)
\(762\) 0 0
\(763\) −11799.7 20437.7i −0.559867 0.969719i
\(764\) 0 0
\(765\) −10021.5 + 17357.8i −0.473633 + 0.820357i
\(766\) 0 0
\(767\) −381.175 + 94.3163i −0.0179445 + 0.00444011i
\(768\) 0 0
\(769\) −3299.23 + 5714.43i −0.154711 + 0.267968i −0.932954 0.359996i \(-0.882778\pi\)
0.778242 + 0.627964i \(0.216111\pi\)
\(770\) 0 0
\(771\) 1228.72 + 2128.21i 0.0573948 + 0.0994106i
\(772\) 0 0
\(773\) 3278.11 + 5677.84i 0.152529 + 0.264189i 0.932157 0.362055i \(-0.117925\pi\)
−0.779627 + 0.626244i \(0.784591\pi\)
\(774\) 0 0
\(775\) 19708.2 0.913472
\(776\) 0 0
\(777\) 608.143 1053.33i 0.0280785 0.0486334i
\(778\) 0 0
\(779\) 3270.09 0.150402
\(780\) 0 0
\(781\) 40903.8 1.87407
\(782\) 0 0
\(783\) 793.824 1374.94i 0.0362311 0.0627541i
\(784\) 0 0
\(785\) −4022.93 −0.182910
\(786\) 0 0
\(787\) 5240.67 + 9077.10i 0.237369 + 0.411136i 0.959959 0.280142i \(-0.0903815\pi\)
−0.722589 + 0.691278i \(0.757048\pi\)
\(788\) 0 0
\(789\) −331.106 573.492i −0.0149400 0.0258769i
\(790\) 0 0
\(791\) −14637.3 + 25352.6i −0.657957 + 1.13961i
\(792\) 0 0
\(793\) −36745.8 + 9092.24i −1.64550 + 0.407156i
\(794\) 0 0
\(795\) 3495.46 6054.31i 0.155938 0.270093i
\(796\) 0 0
\(797\) 1047.41 + 1814.16i 0.0465508 + 0.0806284i 0.888362 0.459144i \(-0.151844\pi\)
−0.841811 + 0.539772i \(0.818510\pi\)
\(798\) 0 0
\(799\) −13141.0 22760.9i −0.581847 1.00779i
\(800\) 0 0
\(801\) −21570.6 −0.951508
\(802\) 0 0
\(803\) 15129.9 26205.8i 0.664911 1.15166i
\(804\) 0 0
\(805\) 20289.8 0.888350
\(806\) 0 0
\(807\) −194.415 −0.00848044
\(808\) 0 0
\(809\) −14326.1 + 24813.5i −0.622594 + 1.07837i 0.366406 + 0.930455i \(0.380588\pi\)
−0.989001 + 0.147910i \(0.952745\pi\)
\(810\) 0 0
\(811\) −13299.6 −0.575845 −0.287923 0.957654i \(-0.592965\pi\)
−0.287923 + 0.957654i \(0.592965\pi\)
\(812\) 0 0
\(813\) −4250.10 7361.39i −0.183343 0.317559i
\(814\) 0 0
\(815\) 16007.4 + 27725.7i 0.687995 + 1.19164i
\(816\) 0 0
\(817\) −1138.49 + 1971.92i −0.0487522 + 0.0844414i
\(818\) 0 0
\(819\) 21166.7 + 21997.1i 0.903081 + 0.938510i
\(820\) 0 0
\(821\) 16726.6 28971.3i 0.711038 1.23155i −0.253430 0.967354i \(-0.581559\pi\)
0.964468 0.264200i \(-0.0851078\pi\)
\(822\) 0 0
\(823\) 4275.00 + 7404.52i 0.181066 + 0.313615i 0.942244 0.334928i \(-0.108712\pi\)
−0.761178 + 0.648543i \(0.775379\pi\)
\(824\) 0 0
\(825\) 2526.29 + 4375.66i 0.106611 + 0.184656i
\(826\) 0 0
\(827\) 11423.5 0.480333 0.240167 0.970732i \(-0.422798\pi\)
0.240167 + 0.970732i \(0.422798\pi\)
\(828\) 0 0
\(829\) −7274.46 + 12599.7i −0.304768 + 0.527873i −0.977210 0.212277i \(-0.931912\pi\)
0.672442 + 0.740150i \(0.265245\pi\)
\(830\) 0 0
\(831\) 5496.37 0.229443
\(832\) 0 0
\(833\) −17589.4 −0.731615
\(834\) 0 0
\(835\) −15239.8 + 26396.1i −0.631611 + 1.09398i
\(836\) 0 0
\(837\) 19126.3 0.789848
\(838\) 0 0
\(839\) −9473.23 16408.1i −0.389812 0.675174i 0.602612 0.798034i \(-0.294127\pi\)
−0.992424 + 0.122860i \(0.960793\pi\)
\(840\) 0 0
\(841\) 11890.3 + 20594.7i 0.487529 + 0.844424i
\(842\) 0 0
\(843\) 4678.50 8103.40i 0.191146 0.331074i
\(844\) 0 0
\(845\) −25714.0 16195.6i −1.04685 0.659344i
\(846\) 0 0
\(847\) −32292.1 + 55931.5i −1.31000 + 2.26898i
\(848\) 0 0
\(849\) 1473.16 + 2551.59i 0.0595510 + 0.103145i
\(850\) 0 0
\(851\) −1114.96 1931.17i −0.0449124 0.0777905i
\(852\) 0 0
\(853\) 44528.2 1.78736 0.893679 0.448707i \(-0.148115\pi\)
0.893679 + 0.448707i \(0.148115\pi\)
\(854\) 0 0
\(855\) −4936.76 + 8550.72i −0.197466 + 0.342022i
\(856\) 0 0
\(857\) 3613.56 0.144034 0.0720169 0.997403i \(-0.477056\pi\)
0.0720169 + 0.997403i \(0.477056\pi\)
\(858\) 0 0
\(859\) 13773.8 0.547095 0.273548 0.961858i \(-0.411803\pi\)
0.273548 + 0.961858i \(0.411803\pi\)
\(860\) 0 0
\(861\) −1829.24 + 3168.34i −0.0724047 + 0.125409i
\(862\) 0 0
\(863\) −1110.05 −0.0437849 −0.0218925 0.999760i \(-0.506969\pi\)
−0.0218925 + 0.999760i \(0.506969\pi\)
\(864\) 0 0
\(865\) −25267.8 43765.1i −0.993216 1.72030i
\(866\) 0 0
\(867\) −1031.90 1787.30i −0.0404210 0.0700113i
\(868\) 0 0
\(869\) −38536.0 + 66746.2i −1.50431 + 2.60554i
\(870\) 0 0
\(871\) 59.9167 + 62.2672i 0.00233088 + 0.00242232i
\(872\) 0 0
\(873\) −9156.53 + 15859.6i −0.354985 + 0.614851i
\(874\) 0 0
\(875\) 10365.1 + 17953.0i 0.400464 + 0.693623i
\(876\) 0 0
\(877\) −8606.62 14907.1i −0.331385 0.573976i 0.651398 0.758736i \(-0.274183\pi\)
−0.982784 + 0.184760i \(0.940849\pi\)
\(878\) 0 0
\(879\) 3472.88 0.133262
\(880\) 0 0
\(881\) −7567.74 + 13107.7i −0.289403 + 0.501260i −0.973667 0.227974i \(-0.926790\pi\)
0.684265 + 0.729234i \(0.260123\pi\)
\(882\) 0 0
\(883\) −23884.1 −0.910266 −0.455133 0.890424i \(-0.650408\pi\)
−0.455133 + 0.890424i \(0.650408\pi\)
\(884\) 0 0
\(885\) 142.088 0.00539688
\(886\) 0 0
\(887\) 4591.78 7953.19i 0.173818 0.301062i −0.765933 0.642920i \(-0.777723\pi\)
0.939752 + 0.341858i \(0.111056\pi\)
\(888\) 0 0
\(889\) 63705.3 2.40338
\(890\) 0 0
\(891\) −18931.4 32790.2i −0.711814 1.23290i
\(892\) 0 0
\(893\) −6473.47 11212.4i −0.242583 0.420165i
\(894\) 0 0
\(895\) 15885.9 27515.1i 0.593303 1.02763i
\(896\) 0 0
\(897\) −3203.80 + 792.734i −0.119255 + 0.0295080i
\(898\) 0 0
\(899\) 3664.26 6346.68i 0.135940 0.235455i
\(900\) 0 0
\(901\) 11712.6 + 20286.8i 0.433078 + 0.750113i
\(902\) 0 0
\(903\) −1273.71 2206.13i −0.0469395 0.0813015i
\(904\) 0 0
\(905\) 51099.8 1.87692
\(906\) 0 0
\(907\) −6376.01 + 11043.6i −0.233420 + 0.404295i −0.958812 0.284040i \(-0.908325\pi\)
0.725392 + 0.688336i \(0.241658\pi\)
\(908\) 0 0
\(909\) 31217.5 1.13907
\(910\) 0 0
\(911\) 15783.7 0.574027 0.287014 0.957926i \(-0.407337\pi\)
0.287014 + 0.957926i \(0.407337\pi\)
\(912\) 0 0
\(913\) −13622.0 + 23594.0i −0.493781 + 0.855253i
\(914\) 0 0
\(915\) 13697.5 0.494891
\(916\) 0 0
\(917\) −5068.40 8778.73i −0.182523 0.316139i
\(918\) 0 0
\(919\) −26544.7 45976.8i −0.952806 1.65031i −0.739311 0.673364i \(-0.764849\pi\)
−0.213495 0.976944i \(-0.568485\pi\)
\(920\) 0 0
\(921\) 4535.17 7855.14i 0.162257 0.281038i
\(922\) 0 0
\(923\) 29958.3 7412.77i 1.06835 0.264349i
\(924\) 0 0
\(925\) −1287.84 + 2230.61i −0.0457773 + 0.0792886i
\(926\) 0 0
\(927\) −10691.6 18518.4i −0.378812 0.656121i
\(928\) 0 0
\(929\) 24382.3 + 42231.4i 0.861096 + 1.49146i 0.870872 + 0.491510i \(0.163555\pi\)
−0.00977577 + 0.999952i \(0.503112\pi\)
\(930\) 0 0
\(931\) −8664.78 −0.305023
\(932\) 0 0
\(933\) −3163.74 + 5479.77i −0.111014 + 0.192282i
\(934\) 0 0
\(935\) −48836.1 −1.70814
\(936\) 0 0
\(937\) −30351.0 −1.05819 −0.529095 0.848562i \(-0.677469\pi\)
−0.529095 + 0.848562i \(0.677469\pi\)
\(938\) 0 0
\(939\) 2332.60 4040.18i 0.0810666 0.140411i
\(940\) 0 0
\(941\) 9796.43 0.339378 0.169689 0.985498i \(-0.445724\pi\)
0.169689 + 0.985498i \(0.445724\pi\)
\(942\) 0 0
\(943\) 3353.72 + 5808.81i 0.115813 + 0.200595i
\(944\) 0 0
\(945\) −11371.9 19696.8i −0.391459 0.678027i
\(946\) 0 0
\(947\) 986.513 1708.69i 0.0338515 0.0586325i −0.848603 0.529030i \(-0.822556\pi\)
0.882455 + 0.470397i \(0.155889\pi\)
\(948\) 0 0
\(949\) 6332.17 21935.3i 0.216598 0.750316i
\(950\) 0 0
\(951\) −4737.36 + 8205.34i −0.161534 + 0.279786i
\(952\) 0 0
\(953\) 2765.13 + 4789.35i 0.0939888 + 0.162793i 0.909186 0.416390i \(-0.136705\pi\)
−0.815197 + 0.579183i \(0.803372\pi\)
\(954\) 0 0
\(955\) 32185.6 + 55747.1i 1.09058 + 1.88894i
\(956\) 0 0
\(957\) 1878.80 0.0634619
\(958\) 0 0
\(959\) −20349.9 + 35247.1i −0.685227 + 1.18685i
\(960\) 0 0
\(961\) 58495.4 1.96353
\(962\) 0 0
\(963\) −42849.7 −1.43387
\(964\) 0 0
\(965\) −16164.3 + 27997.4i −0.539220 + 0.933957i
\(966\) 0 0
\(967\) 30916.7 1.02814 0.514072 0.857747i \(-0.328136\pi\)
0.514072 + 0.857747i \(0.328136\pi\)
\(968\) 0 0
\(969\) 975.485 + 1689.59i 0.0323396 + 0.0560139i
\(970\) 0 0
\(971\) −9462.74 16389.9i −0.312743 0.541687i 0.666212 0.745762i \(-0.267915\pi\)
−0.978955 + 0.204075i \(0.934581\pi\)
\(972\) 0 0
\(973\) −36224.3 + 62742.3i −1.19352 + 2.06724i
\(974\) 0 0
\(975\) 2643.26 + 2746.95i 0.0868225 + 0.0902286i
\(976\) 0 0
\(977\) 12526.0 21695.6i 0.410176 0.710445i −0.584733 0.811226i \(-0.698801\pi\)
0.994909 + 0.100781i \(0.0321340\pi\)
\(978\) 0 0
\(979\) −26279.0 45516.5i −0.857895 1.48592i
\(980\) 0 0
\(981\) 11777.8 + 20399.7i 0.383318 + 0.663927i
\(982\) 0 0
\(983\) 22680.6 0.735909 0.367954 0.929844i \(-0.380058\pi\)
0.367954 + 0.929844i \(0.380058\pi\)
\(984\) 0 0
\(985\) 24330.8 42142.2i 0.787050 1.36321i
\(986\) 0 0
\(987\) 14484.7 0.467125
\(988\) 0 0
\(989\) −4670.41 −0.150162
\(990\) 0 0
\(991\) 10294.5 17830.7i 0.329986 0.571553i −0.652522 0.757770i \(-0.726289\pi\)
0.982509 + 0.186216i \(0.0596225\pi\)
\(992\) 0 0
\(993\) 9239.70 0.295280
\(994\) 0 0
\(995\) −7524.34 13032.5i −0.239736 0.415235i
\(996\) 0 0
\(997\) −15218.4 26359.0i −0.483420 0.837309i 0.516398 0.856349i \(-0.327272\pi\)
−0.999819 + 0.0190397i \(0.993939\pi\)
\(998\) 0 0
\(999\) −1249.82 + 2164.75i −0.0395820 + 0.0685581i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.4.i.d.321.3 yes 8
4.3 odd 2 inner 416.4.i.d.321.2 yes 8
13.3 even 3 inner 416.4.i.d.289.3 yes 8
52.3 odd 6 inner 416.4.i.d.289.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.i.d.289.2 8 52.3 odd 6 inner
416.4.i.d.289.3 yes 8 13.3 even 3 inner
416.4.i.d.321.2 yes 8 4.3 odd 2 inner
416.4.i.d.321.3 yes 8 1.1 even 1 trivial