Properties

Label 435.2.u.a
Level 435435
Weight 22
Character orbit 435.u
Analytic conductor 3.4733.473
Analytic rank 00
Dimension 3030
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(16,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 435=3529 435 = 3 \cdot 5 \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 435.u (of order 77, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.473492487933.47349248793
Analytic rank: 00
Dimension: 3030
Relative dimension: 55 over Q(ζ7)\Q(\zeta_{7})
Twist minimal: yes
Sato-Tate group: SU(2)[C7]\mathrm{SU}(2)[C_{7}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 30q+q25q33q4+5q5+q65q9+6q1018q11+32q125q13+18q14+5q1513q16+44q17+q188q19+10q20+7q2119q22++10q99+O(q100) 30 q + q^{2} - 5 q^{3} - 3 q^{4} + 5 q^{5} + q^{6} - 5 q^{9} + 6 q^{10} - 18 q^{11} + 32 q^{12} - 5 q^{13} + 18 q^{14} + 5 q^{15} - 13 q^{16} + 44 q^{17} + q^{18} - 8 q^{19} + 10 q^{20} + 7 q^{21} - 19 q^{22}+ \cdots + 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
16.1 −1.70259 0.819922i 0.623490 0.781831i 0.979547 + 1.22831i 0.900969 + 0.433884i −1.70259 + 0.819922i −0.471718 + 0.591515i 0.180366 + 0.790235i −0.222521 0.974928i −1.17823 1.47745i
16.2 −1.57475 0.758361i 0.623490 0.781831i 0.657755 + 0.824799i 0.900969 + 0.433884i −1.57475 + 0.758361i −2.68227 + 3.36346i 0.367557 + 1.61037i −0.222521 0.974928i −1.08976 1.36652i
16.3 −0.212418 0.102295i 0.623490 0.781831i −1.21232 1.52020i 0.900969 + 0.433884i −0.212418 + 0.102295i 2.04210 2.56071i 0.206936 + 0.906644i −0.222521 0.974928i −0.146998 0.184330i
16.4 1.52210 + 0.733005i 0.623490 0.781831i 0.532514 + 0.667752i 0.900969 + 0.433884i 1.52210 0.733005i 1.30031 1.63054i −0.430781 1.88737i −0.222521 0.974928i 1.05333 + 1.32083i
16.5 2.19018 + 1.05473i 0.623490 0.781831i 2.43743 + 3.05645i 0.900969 + 0.433884i 2.19018 1.05473i −1.71288 + 2.14789i 1.03282 + 4.52507i −0.222521 0.974928i 1.51565 + 1.90056i
136.1 −1.70259 + 0.819922i 0.623490 + 0.781831i 0.979547 1.22831i 0.900969 0.433884i −1.70259 0.819922i −0.471718 0.591515i 0.180366 0.790235i −0.222521 + 0.974928i −1.17823 + 1.47745i
136.2 −1.57475 + 0.758361i 0.623490 + 0.781831i 0.657755 0.824799i 0.900969 0.433884i −1.57475 0.758361i −2.68227 3.36346i 0.367557 1.61037i −0.222521 + 0.974928i −1.08976 + 1.36652i
136.3 −0.212418 + 0.102295i 0.623490 + 0.781831i −1.21232 + 1.52020i 0.900969 0.433884i −0.212418 0.102295i 2.04210 + 2.56071i 0.206936 0.906644i −0.222521 + 0.974928i −0.146998 + 0.184330i
136.4 1.52210 0.733005i 0.623490 + 0.781831i 0.532514 0.667752i 0.900969 0.433884i 1.52210 + 0.733005i 1.30031 + 1.63054i −0.430781 + 1.88737i −0.222521 + 0.974928i 1.05333 1.32083i
136.5 2.19018 1.05473i 0.623490 + 0.781831i 2.43743 3.05645i 0.900969 0.433884i 2.19018 + 1.05473i −1.71288 2.14789i 1.03282 4.52507i −0.222521 + 0.974928i 1.51565 1.90056i
181.1 −0.525740 2.30342i −0.900969 0.433884i −3.22739 + 1.55423i 0.222521 + 0.974928i −0.525740 + 2.30342i 3.87321 + 1.86524i 2.33062 + 2.92251i 0.623490 + 0.781831i 2.12868 1.02512i
181.2 −0.410184 1.79714i −0.900969 0.433884i −1.25951 + 0.606547i 0.222521 + 0.974928i −0.410184 + 1.79714i −3.46070 1.66659i −0.691946 0.867673i 0.623490 + 0.781831i 1.66080 0.799801i
181.3 −0.224650 0.984254i −0.900969 0.433884i 0.883648 0.425543i 0.222521 + 0.974928i −0.224650 + 0.984254i 2.01432 + 0.970046i −1.87626 2.35276i 0.623490 + 0.781831i 0.909588 0.438034i
181.4 0.124254 + 0.544394i −0.900969 0.433884i 1.52101 0.732481i 0.222521 + 0.974928i 0.124254 0.544394i 1.04157 + 0.501593i 1.28406 + 1.61016i 0.623490 + 0.781831i −0.503096 + 0.242278i
181.5 0.412830 + 1.80872i −0.900969 0.433884i −1.29912 + 0.625623i 0.222521 + 0.974928i 0.412830 1.80872i −2.78995 1.34357i 0.645551 + 0.809496i 0.623490 + 0.781831i −1.67151 + 0.804958i
226.1 −1.44601 + 1.81324i −0.222521 + 0.974928i −0.751852 3.29408i −0.623490 + 0.781831i −1.44601 1.81324i 0.715709 3.13572i 2.88105 + 1.38744i −0.900969 0.433884i −0.516076 2.26107i
226.2 −0.703739 + 0.882461i −0.222521 + 0.974928i 0.161554 + 0.707812i −0.623490 + 0.781831i −0.703739 0.882461i 0.123775 0.542294i −2.77217 1.33501i −0.900969 0.433884i −0.251161 1.10041i
226.3 0.320185 0.401499i −0.222521 + 0.974928i 0.386359 + 1.69275i −0.623490 + 0.781831i 0.320185 + 0.401499i −0.169813 + 0.744000i 1.72870 + 0.832500i −0.900969 0.433884i 0.114273 + 0.500661i
226.4 1.12553 1.41136i −0.222521 + 0.974928i −0.280099 1.22719i −0.623490 + 0.781831i 1.12553 + 1.41136i −0.863563 + 3.78351i 1.20558 + 0.580579i −0.900969 0.433884i 0.401695 + 1.75994i
226.5 1.60501 2.01262i −0.222521 + 0.974928i −1.02953 4.51069i −0.623490 + 0.781831i 1.60501 + 2.01262i 1.03990 4.55611i −6.09209 2.93379i −0.900969 0.433884i 0.572821 + 2.50969i
See all 30 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 16.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.2.u.a 30
29.d even 7 1 inner 435.2.u.a 30
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.u.a 30 1.a even 1 1 trivial
435.2.u.a 30 29.d even 7 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T230T229+7T2288T227+54T22613T225+227T224++8281 T_{2}^{30} - T_{2}^{29} + 7 T_{2}^{28} - 8 T_{2}^{27} + 54 T_{2}^{26} - 13 T_{2}^{25} + 227 T_{2}^{24} + \cdots + 8281 acting on S2new(435,[χ])S_{2}^{\mathrm{new}}(435, [\chi]). Copy content Toggle raw display