Properties

Label 441.2.f.g.295.3
Level $441$
Weight $2$
Character 441.295
Analytic conductor $3.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(148,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.148");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.3
Root \(-1.29589 - 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 441.295
Dual form 441.2.f.g.148.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.119562 + 0.207087i) q^{2} +(-1.12441 - 1.31746i) q^{3} +(0.971410 + 1.68253i) q^{4} +(1.29589 + 2.24456i) q^{5} +(0.407265 - 0.0753324i) q^{6} -0.942820 q^{8} +(-0.471410 + 2.96273i) q^{9} -0.619757 q^{10} +(-2.09097 + 3.62167i) q^{11} +(1.12441 - 3.17165i) q^{12} +(-1.84155 - 3.18966i) q^{13} +(1.50000 - 4.23109i) q^{15} +(-1.83009 + 3.16982i) q^{16} +1.71107 q^{17} +(-0.557180 - 0.451852i) q^{18} -7.15561 q^{19} +(-2.51769 + 4.36077i) q^{20} +(-0.500000 - 0.866025i) q^{22} +(2.56238 + 4.43818i) q^{23} +(1.06012 + 1.24213i) q^{24} +(-0.858685 + 1.48729i) q^{25} +0.880716 q^{26} +(4.43334 - 2.71026i) q^{27} +(1.06238 - 1.84010i) q^{29} +(0.696860 + 0.816506i) q^{30} +(3.26793 + 5.66021i) q^{31} +(-1.38044 - 2.39099i) q^{32} +(7.12252 - 1.31746i) q^{33} +(-0.204579 + 0.354341i) q^{34} +(-5.44282 + 2.08486i) q^{36} +1.66019 q^{37} +(0.855536 - 1.48183i) q^{38} +(-2.13160 + 6.01266i) q^{39} +(-1.22180 - 2.11621i) q^{40} +(5.10948 + 8.84988i) q^{41} +(0.830095 - 1.43777i) q^{43} -8.12476 q^{44} +(-7.26091 + 2.78128i) q^{45} -1.22545 q^{46} +(-4.66912 + 8.08715i) q^{47} +(6.23389 - 1.15309i) q^{48} +(-0.205332 - 0.355645i) q^{50} +(-1.92395 - 2.25427i) q^{51} +(3.57780 - 6.19694i) q^{52} +10.6465 q^{53} +(0.0312007 + 1.24213i) q^{54} -10.8387 q^{55} +(8.04583 + 9.42724i) q^{57} +(0.254040 + 0.440011i) q^{58} +(-3.03215 - 5.25183i) q^{59} +(8.57605 - 1.58632i) q^{60} +(3.99298 - 6.91605i) q^{61} -1.56287 q^{62} -6.66019 q^{64} +(4.77292 - 8.26693i) q^{65} +(-0.578751 + 1.63250i) q^{66} +(-4.13160 - 7.15614i) q^{67} +(1.66215 + 2.87893i) q^{68} +(2.96596 - 8.36616i) q^{69} +6.23912 q^{71} +(0.444455 - 2.79332i) q^{72} +7.15561 q^{73} +(-0.198495 + 0.343803i) q^{74} +(2.92495 - 0.541033i) q^{75} +(-6.95103 - 12.0395i) q^{76} +(-0.990285 - 1.16031i) q^{78} +(4.91423 - 8.51170i) q^{79} -9.48644 q^{80} +(-8.55555 - 2.79332i) q^{81} -2.44359 q^{82} +(-3.44733 + 5.97094i) q^{83} +(2.21737 + 3.84060i) q^{85} +(0.198495 + 0.343803i) q^{86} +(-3.61881 + 0.669376i) q^{87} +(1.97141 - 3.41458i) q^{88} -5.03538 q^{89} +(0.292160 - 1.83617i) q^{90} +(-4.97825 + 8.62258i) q^{92} +(3.78263 - 10.6698i) q^{93} +(-1.11650 - 1.93383i) q^{94} +(-9.27292 - 16.0612i) q^{95} +(-1.59786 + 4.50712i) q^{96} +(-1.53167 + 2.65294i) q^{97} +(-9.74433 - 7.90228i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 6 q^{4} + 24 q^{8} + 12 q^{9} - 8 q^{11} + 18 q^{15} - 6 q^{16} - 42 q^{18} - 6 q^{22} - 4 q^{23} - 12 q^{25} - 22 q^{29} - 48 q^{30} - 16 q^{32} - 30 q^{36} - 12 q^{37} + 24 q^{39} - 6 q^{43}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.119562 + 0.207087i −0.0845428 + 0.146433i −0.905196 0.424994i \(-0.860276\pi\)
0.820653 + 0.571426i \(0.193610\pi\)
\(3\) −1.12441 1.31746i −0.649178 0.760637i
\(4\) 0.971410 + 1.68253i 0.485705 + 0.841266i
\(5\) 1.29589 + 2.24456i 0.579542 + 1.00380i 0.995532 + 0.0944264i \(0.0301017\pi\)
−0.415990 + 0.909369i \(0.636565\pi\)
\(6\) 0.407265 0.0753324i 0.166265 0.0307543i
\(7\) 0 0
\(8\) −0.942820 −0.333337
\(9\) −0.471410 + 2.96273i −0.157137 + 0.987577i
\(10\) −0.619757 −0.195984
\(11\) −2.09097 + 3.62167i −0.630452 + 1.09197i 0.357008 + 0.934101i \(0.383797\pi\)
−0.987459 + 0.157873i \(0.949536\pi\)
\(12\) 1.12441 3.17165i 0.324589 0.915576i
\(13\) −1.84155 3.18966i −0.510755 0.884653i −0.999922 0.0124633i \(-0.996033\pi\)
0.489168 0.872190i \(-0.337301\pi\)
\(14\) 0 0
\(15\) 1.50000 4.23109i 0.387298 1.09246i
\(16\) −1.83009 + 3.16982i −0.457524 + 0.792454i
\(17\) 1.71107 0.414996 0.207498 0.978235i \(-0.433468\pi\)
0.207498 + 0.978235i \(0.433468\pi\)
\(18\) −0.557180 0.451852i −0.131329 0.106502i
\(19\) −7.15561 −1.64161 −0.820805 0.571209i \(-0.806475\pi\)
−0.820805 + 0.571209i \(0.806475\pi\)
\(20\) −2.51769 + 4.36077i −0.562973 + 0.975097i
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) 2.56238 + 4.43818i 0.534294 + 0.925424i 0.999197 + 0.0400622i \(0.0127556\pi\)
−0.464904 + 0.885361i \(0.653911\pi\)
\(24\) 1.06012 + 1.24213i 0.216395 + 0.253549i
\(25\) −0.858685 + 1.48729i −0.171737 + 0.297457i
\(26\) 0.880716 0.172723
\(27\) 4.43334 2.71026i 0.853197 0.521589i
\(28\) 0 0
\(29\) 1.06238 1.84010i 0.197279 0.341698i −0.750366 0.661023i \(-0.770123\pi\)
0.947645 + 0.319325i \(0.103456\pi\)
\(30\) 0.696860 + 0.816506i 0.127229 + 0.149073i
\(31\) 3.26793 + 5.66021i 0.586937 + 1.01660i 0.994631 + 0.103486i \(0.0329997\pi\)
−0.407694 + 0.913119i \(0.633667\pi\)
\(32\) −1.38044 2.39099i −0.244029 0.422671i
\(33\) 7.12252 1.31746i 1.23987 0.229341i
\(34\) −0.204579 + 0.354341i −0.0350850 + 0.0607689i
\(35\) 0 0
\(36\) −5.44282 + 2.08486i −0.907137 + 0.347477i
\(37\) 1.66019 0.272934 0.136467 0.990645i \(-0.456425\pi\)
0.136467 + 0.990645i \(0.456425\pi\)
\(38\) 0.855536 1.48183i 0.138786 0.240385i
\(39\) −2.13160 + 6.01266i −0.341329 + 0.962796i
\(40\) −1.22180 2.11621i −0.193183 0.334602i
\(41\) 5.10948 + 8.84988i 0.797967 + 1.38212i 0.920938 + 0.389708i \(0.127424\pi\)
−0.122972 + 0.992410i \(0.539242\pi\)
\(42\) 0 0
\(43\) 0.830095 1.43777i 0.126588 0.219257i −0.795764 0.605606i \(-0.792931\pi\)
0.922353 + 0.386349i \(0.126264\pi\)
\(44\) −8.12476 −1.22485
\(45\) −7.26091 + 2.78128i −1.08239 + 0.414609i
\(46\) −1.22545 −0.180683
\(47\) −4.66912 + 8.08715i −0.681061 + 1.17963i 0.293596 + 0.955930i \(0.405148\pi\)
−0.974657 + 0.223703i \(0.928185\pi\)
\(48\) 6.23389 1.15309i 0.899784 0.166434i
\(49\) 0 0
\(50\) −0.205332 0.355645i −0.0290383 0.0502958i
\(51\) −1.92395 2.25427i −0.269406 0.315661i
\(52\) 3.57780 6.19694i 0.496152 0.859361i
\(53\) 10.6465 1.46241 0.731206 0.682157i \(-0.238958\pi\)
0.731206 + 0.682157i \(0.238958\pi\)
\(54\) 0.0312007 + 1.24213i 0.00424588 + 0.169032i
\(55\) −10.8387 −1.46149
\(56\) 0 0
\(57\) 8.04583 + 9.42724i 1.06570 + 1.24867i
\(58\) 0.254040 + 0.440011i 0.0333571 + 0.0577762i
\(59\) −3.03215 5.25183i −0.394752 0.683730i 0.598318 0.801259i \(-0.295836\pi\)
−0.993069 + 0.117529i \(0.962503\pi\)
\(60\) 8.57605 1.58632i 1.10716 0.204794i
\(61\) 3.99298 6.91605i 0.511249 0.885509i −0.488666 0.872471i \(-0.662516\pi\)
0.999915 0.0130384i \(-0.00415038\pi\)
\(62\) −1.56287 −0.198485
\(63\) 0 0
\(64\) −6.66019 −0.832524
\(65\) 4.77292 8.26693i 0.592007 1.02539i
\(66\) −0.578751 + 1.63250i −0.0712393 + 0.200947i
\(67\) −4.13160 7.15614i −0.504755 0.874262i −0.999985 0.00549964i \(-0.998249\pi\)
0.495230 0.868762i \(-0.335084\pi\)
\(68\) 1.66215 + 2.87893i 0.201566 + 0.349122i
\(69\) 2.96596 8.36616i 0.357060 1.00717i
\(70\) 0 0
\(71\) 6.23912 0.740448 0.370224 0.928943i \(-0.379281\pi\)
0.370224 + 0.928943i \(0.379281\pi\)
\(72\) 0.444455 2.79332i 0.0523795 0.329196i
\(73\) 7.15561 0.837501 0.418750 0.908101i \(-0.362468\pi\)
0.418750 + 0.908101i \(0.362468\pi\)
\(74\) −0.198495 + 0.343803i −0.0230746 + 0.0399663i
\(75\) 2.92495 0.541033i 0.337745 0.0624731i
\(76\) −6.95103 12.0395i −0.797338 1.38103i
\(77\) 0 0
\(78\) −0.990285 1.16031i −0.112128 0.131379i
\(79\) 4.91423 8.51170i 0.552894 0.957641i −0.445170 0.895446i \(-0.646857\pi\)
0.998064 0.0621945i \(-0.0198099\pi\)
\(80\) −9.48644 −1.06062
\(81\) −8.55555 2.79332i −0.950616 0.310369i
\(82\) −2.44359 −0.269849
\(83\) −3.44733 + 5.97094i −0.378393 + 0.655396i −0.990829 0.135124i \(-0.956857\pi\)
0.612436 + 0.790521i \(0.290190\pi\)
\(84\) 0 0
\(85\) 2.21737 + 3.84060i 0.240508 + 0.416571i
\(86\) 0.198495 + 0.343803i 0.0214043 + 0.0370733i
\(87\) −3.61881 + 0.669376i −0.387977 + 0.0717647i
\(88\) 1.97141 3.41458i 0.210153 0.363996i
\(89\) −5.03538 −0.533749 −0.266875 0.963731i \(-0.585991\pi\)
−0.266875 + 0.963731i \(0.585991\pi\)
\(90\) 0.292160 1.83617i 0.0307963 0.193550i
\(91\) 0 0
\(92\) −4.97825 + 8.62258i −0.519018 + 0.898966i
\(93\) 3.78263 10.6698i 0.392240 1.10640i
\(94\) −1.11650 1.93383i −0.115158 0.199459i
\(95\) −9.27292 16.0612i −0.951381 1.64784i
\(96\) −1.59786 + 4.50712i −0.163081 + 0.460006i
\(97\) −1.53167 + 2.65294i −0.155518 + 0.269365i −0.933247 0.359234i \(-0.883038\pi\)
0.777730 + 0.628599i \(0.216371\pi\)
\(98\) 0 0
\(99\) −9.74433 7.90228i −0.979342 0.794209i
\(100\) −3.33654 −0.333654
\(101\) 5.54984 9.61260i 0.552229 0.956489i −0.445884 0.895091i \(-0.647111\pi\)
0.998113 0.0613986i \(-0.0195561\pi\)
\(102\) 0.696860 0.128899i 0.0689994 0.0127629i
\(103\) −3.99298 6.91605i −0.393440 0.681459i 0.599460 0.800404i \(-0.295382\pi\)
−0.992901 + 0.118946i \(0.962049\pi\)
\(104\) 1.73625 + 3.00728i 0.170254 + 0.294888i
\(105\) 0 0
\(106\) −1.27292 + 2.20475i −0.123636 + 0.214145i
\(107\) 3.95649 0.382489 0.191244 0.981542i \(-0.438748\pi\)
0.191244 + 0.981542i \(0.438748\pi\)
\(108\) 8.86668 + 4.82647i 0.853197 + 0.464427i
\(109\) 7.26320 0.695688 0.347844 0.937552i \(-0.386914\pi\)
0.347844 + 0.937552i \(0.386914\pi\)
\(110\) 1.29589 2.24456i 0.123559 0.214010i
\(111\) −1.86673 2.18724i −0.177182 0.207603i
\(112\) 0 0
\(113\) −3.46457 6.00082i −0.325920 0.564509i 0.655778 0.754953i \(-0.272341\pi\)
−0.981698 + 0.190444i \(0.939007\pi\)
\(114\) −2.91423 + 0.539049i −0.272943 + 0.0504866i
\(115\) −6.64115 + 11.5028i −0.619291 + 1.07264i
\(116\) 4.12803 0.383278
\(117\) 10.3182 3.95238i 0.953921 0.365398i
\(118\) 1.45011 0.133494
\(119\) 0 0
\(120\) −1.41423 + 3.98916i −0.129101 + 0.364158i
\(121\) −3.24433 5.61934i −0.294939 0.510849i
\(122\) 0.954815 + 1.65379i 0.0864449 + 0.149727i
\(123\) 5.91423 16.6824i 0.533268 1.50420i
\(124\) −6.34899 + 10.9968i −0.570156 + 0.987540i
\(125\) 8.50788 0.760968
\(126\) 0 0
\(127\) 9.11109 0.808479 0.404239 0.914653i \(-0.367536\pi\)
0.404239 + 0.914653i \(0.367536\pi\)
\(128\) 3.55718 6.16122i 0.314413 0.544580i
\(129\) −2.82757 + 0.523019i −0.248954 + 0.0460493i
\(130\) 1.14132 + 1.97682i 0.100100 + 0.173378i
\(131\) 2.15143 + 3.72639i 0.187971 + 0.325576i 0.944574 0.328299i \(-0.106475\pi\)
−0.756602 + 0.653875i \(0.773142\pi\)
\(132\) 9.13555 + 10.7041i 0.795148 + 0.931669i
\(133\) 0 0
\(134\) 1.97592 0.170694
\(135\) 11.8285 + 6.43867i 1.01803 + 0.554153i
\(136\) −1.61323 −0.138334
\(137\) −10.2947 + 17.8309i −0.879533 + 1.52340i −0.0276785 + 0.999617i \(0.508811\pi\)
−0.851854 + 0.523779i \(0.824522\pi\)
\(138\) 1.37791 + 1.61448i 0.117295 + 0.137434i
\(139\) 7.88067 + 13.6497i 0.668429 + 1.15775i 0.978343 + 0.206989i \(0.0663665\pi\)
−0.309914 + 0.950765i \(0.600300\pi\)
\(140\) 0 0
\(141\) 15.9045 2.94188i 1.33940 0.247751i
\(142\) −0.745960 + 1.29204i −0.0625996 + 0.108426i
\(143\) 15.4025 1.28802
\(144\) −8.52859 6.91636i −0.710716 0.576364i
\(145\) 5.50694 0.457326
\(146\) −0.855536 + 1.48183i −0.0708047 + 0.122637i
\(147\) 0 0
\(148\) 1.61273 + 2.79332i 0.132565 + 0.229610i
\(149\) −3.03379 5.25468i −0.248538 0.430480i 0.714582 0.699551i \(-0.246617\pi\)
−0.963120 + 0.269071i \(0.913283\pi\)
\(150\) −0.237672 + 0.670406i −0.0194058 + 0.0547385i
\(151\) −2.24433 + 3.88728i −0.182641 + 0.316343i −0.942779 0.333418i \(-0.891798\pi\)
0.760138 + 0.649761i \(0.225131\pi\)
\(152\) 6.74645 0.547210
\(153\) −0.806617 + 5.06945i −0.0652111 + 0.409841i
\(154\) 0 0
\(155\) −8.46978 + 14.6701i −0.680309 + 1.17833i
\(156\) −12.1871 + 2.25427i −0.975753 + 0.180486i
\(157\) −0.514457 0.891066i −0.0410582 0.0711148i 0.844766 0.535136i \(-0.179740\pi\)
−0.885824 + 0.464021i \(0.846406\pi\)
\(158\) 1.17511 + 2.03534i 0.0934865 + 0.161923i
\(159\) −11.9710 14.0264i −0.949365 1.11236i
\(160\) 3.57780 6.19694i 0.282850 0.489911i
\(161\) 0 0
\(162\) 1.60138 1.43777i 0.125816 0.112962i
\(163\) 6.82846 0.534846 0.267423 0.963579i \(-0.413828\pi\)
0.267423 + 0.963579i \(0.413828\pi\)
\(164\) −9.92680 + 17.1937i −0.775153 + 1.34260i
\(165\) 12.1871 + 14.2796i 0.948768 + 1.11166i
\(166\) −0.824336 1.42779i −0.0639809 0.110818i
\(167\) −8.99716 15.5835i −0.696221 1.20589i −0.969767 0.244032i \(-0.921530\pi\)
0.273546 0.961859i \(-0.411803\pi\)
\(168\) 0 0
\(169\) −0.282630 + 0.489530i −0.0217408 + 0.0376561i
\(170\) −1.06045 −0.0813328
\(171\) 3.37323 21.2001i 0.257957 1.62122i
\(172\) 3.22545 0.245938
\(173\) 0.415178 0.719110i 0.0315654 0.0546729i −0.849811 0.527087i \(-0.823284\pi\)
0.881377 + 0.472414i \(0.156617\pi\)
\(174\) 0.294052 0.829440i 0.0222920 0.0628797i
\(175\) 0 0
\(176\) −7.65335 13.2560i −0.576893 0.999208i
\(177\) −3.50972 + 9.89994i −0.263806 + 0.744125i
\(178\) 0.602038 1.04276i 0.0451247 0.0781582i
\(179\) 7.57893 0.566476 0.283238 0.959050i \(-0.408591\pi\)
0.283238 + 0.959050i \(0.408591\pi\)
\(180\) −11.7329 9.51495i −0.874520 0.709202i
\(181\) 0.409157 0.0304124 0.0152062 0.999884i \(-0.495160\pi\)
0.0152062 + 0.999884i \(0.495160\pi\)
\(182\) 0 0
\(183\) −13.6014 + 2.51586i −1.00544 + 0.185978i
\(184\) −2.41586 4.18440i −0.178100 0.308478i
\(185\) 2.15143 + 3.72639i 0.158176 + 0.273969i
\(186\) 1.75731 + 2.05903i 0.128852 + 0.150975i
\(187\) −3.57780 + 6.19694i −0.261635 + 0.453165i
\(188\) −18.1425 −1.32318
\(189\) 0 0
\(190\) 4.43474 0.321730
\(191\) −8.01204 + 13.8773i −0.579731 + 1.00412i 0.415779 + 0.909466i \(0.363509\pi\)
−0.995510 + 0.0946575i \(0.969824\pi\)
\(192\) 7.48878 + 8.77454i 0.540456 + 0.633248i
\(193\) 6.18715 + 10.7164i 0.445360 + 0.771387i 0.998077 0.0619822i \(-0.0197422\pi\)
−0.552717 + 0.833369i \(0.686409\pi\)
\(194\) −0.366259 0.634379i −0.0262959 0.0455458i
\(195\) −16.2581 + 3.00728i −1.16426 + 0.215356i
\(196\) 0 0
\(197\) 23.1021 1.64595 0.822977 0.568075i \(-0.192312\pi\)
0.822977 + 0.568075i \(0.192312\pi\)
\(198\) 2.80150 1.07311i 0.199094 0.0762628i
\(199\) −6.74645 −0.478243 −0.239122 0.970990i \(-0.576859\pi\)
−0.239122 + 0.970990i \(0.576859\pi\)
\(200\) 0.809585 1.40224i 0.0572463 0.0991536i
\(201\) −4.78233 + 13.4897i −0.337320 + 0.951487i
\(202\) 1.32710 + 2.29860i 0.0933741 + 0.161729i
\(203\) 0 0
\(204\) 1.92395 5.42692i 0.134703 0.379961i
\(205\) −13.2427 + 22.9370i −0.924910 + 1.60199i
\(206\) 1.90963 0.133050
\(207\) −14.3571 + 5.49945i −0.997884 + 0.382238i
\(208\) 13.4809 0.934730
\(209\) 14.9622 25.9153i 1.03496 1.79260i
\(210\) 0 0
\(211\) −8.44282 14.6234i −0.581228 1.00672i −0.995334 0.0964875i \(-0.969239\pi\)
0.414106 0.910228i \(-0.364094\pi\)
\(212\) 10.3421 + 17.9131i 0.710301 + 1.23028i
\(213\) −7.01532 8.21981i −0.480682 0.563212i
\(214\) −0.473045 + 0.819338i −0.0323367 + 0.0560088i
\(215\) 4.30286 0.293453
\(216\) −4.17984 + 2.55528i −0.284402 + 0.173865i
\(217\) 0 0
\(218\) −0.868400 + 1.50411i −0.0588155 + 0.101871i
\(219\) −8.04583 9.42724i −0.543687 0.637034i
\(220\) −10.5288 18.2365i −0.709854 1.22950i
\(221\) −3.15103 5.45774i −0.211961 0.367128i
\(222\) 0.676137 0.125066i 0.0453794 0.00839388i
\(223\) 2.25071 3.89834i 0.150719 0.261052i −0.780773 0.624815i \(-0.785175\pi\)
0.931492 + 0.363762i \(0.118508\pi\)
\(224\) 0 0
\(225\) −4.00163 3.24517i −0.266776 0.216345i
\(226\) 1.65692 0.110217
\(227\) 3.03215 5.25183i 0.201251 0.348576i −0.747681 0.664058i \(-0.768833\pi\)
0.948932 + 0.315482i \(0.102166\pi\)
\(228\) −8.04583 + 22.6951i −0.532848 + 1.50302i
\(229\) 5.52466 + 9.56899i 0.365080 + 0.632336i 0.988789 0.149320i \(-0.0477084\pi\)
−0.623709 + 0.781656i \(0.714375\pi\)
\(230\) −1.58805 2.75059i −0.104713 0.181369i
\(231\) 0 0
\(232\) −1.00163 + 1.73488i −0.0657605 + 0.113901i
\(233\) −8.13844 −0.533167 −0.266583 0.963812i \(-0.585895\pi\)
−0.266583 + 0.963812i \(0.585895\pi\)
\(234\) −0.415178 + 2.60932i −0.0271411 + 0.170577i
\(235\) −24.2028 −1.57881
\(236\) 5.89092 10.2034i 0.383466 0.664183i
\(237\) −16.7394 + 3.09632i −1.08734 + 0.201127i
\(238\) 0 0
\(239\) −10.5813 18.3273i −0.684445 1.18549i −0.973611 0.228214i \(-0.926711\pi\)
0.289166 0.957279i \(-0.406622\pi\)
\(240\) 10.6666 + 12.4980i 0.688528 + 0.806744i
\(241\) −6.84573 + 11.8572i −0.440972 + 0.763786i −0.997762 0.0668671i \(-0.978700\pi\)
0.556790 + 0.830654i \(0.312033\pi\)
\(242\) 1.55159 0.0997398
\(243\) 5.93984 + 14.4124i 0.381041 + 0.924558i
\(244\) 15.5153 0.993265
\(245\) 0 0
\(246\) 2.74759 + 3.21934i 0.175180 + 0.205257i
\(247\) 13.1774 + 22.8240i 0.838460 + 1.45225i
\(248\) −3.08107 5.33656i −0.195648 0.338872i
\(249\) 11.7427 2.17206i 0.744163 0.137649i
\(250\) −1.01722 + 1.76187i −0.0643344 + 0.111430i
\(251\) 15.2040 0.959667 0.479833 0.877360i \(-0.340697\pi\)
0.479833 + 0.877360i \(0.340697\pi\)
\(252\) 0 0
\(253\) −21.4315 −1.34738
\(254\) −1.08934 + 1.88679i −0.0683511 + 0.118388i
\(255\) 2.56661 7.23970i 0.160727 0.453368i
\(256\) −5.80959 10.0625i −0.363099 0.628906i
\(257\) −12.8107 22.1889i −0.799112 1.38410i −0.920195 0.391461i \(-0.871970\pi\)
0.121082 0.992642i \(-0.461363\pi\)
\(258\) 0.229758 0.648085i 0.0143041 0.0403480i
\(259\) 0 0
\(260\) 18.5458 1.15016
\(261\) 4.95090 + 4.01499i 0.306453 + 0.248522i
\(262\) −1.02891 −0.0635665
\(263\) −3.55034 + 6.14938i −0.218924 + 0.379187i −0.954479 0.298278i \(-0.903588\pi\)
0.735556 + 0.677464i \(0.236921\pi\)
\(264\) −6.71525 + 1.24213i −0.413295 + 0.0764478i
\(265\) 13.7968 + 23.8967i 0.847528 + 1.46796i
\(266\) 0 0
\(267\) 5.66182 + 6.63392i 0.346498 + 0.405989i
\(268\) 8.02696 13.9031i 0.490324 0.849267i
\(269\) −16.4314 −1.00184 −0.500922 0.865493i \(-0.667006\pi\)
−0.500922 + 0.865493i \(0.667006\pi\)
\(270\) −2.74759 + 1.67970i −0.167213 + 0.102223i
\(271\) 12.6980 0.771348 0.385674 0.922635i \(-0.373969\pi\)
0.385674 + 0.922635i \(0.373969\pi\)
\(272\) −3.13143 + 5.42379i −0.189871 + 0.328865i
\(273\) 0 0
\(274\) −2.46169 4.26378i −0.148716 0.257584i
\(275\) −3.59097 6.21975i −0.216544 0.375065i
\(276\) 16.9575 3.13665i 1.02072 0.188804i
\(277\) 0.414230 0.717468i 0.0248887 0.0431084i −0.853313 0.521399i \(-0.825410\pi\)
0.878201 + 0.478291i \(0.158744\pi\)
\(278\) −3.76890 −0.226044
\(279\) −18.3102 + 7.01370i −1.09620 + 0.419899i
\(280\) 0 0
\(281\) −2.60985 + 4.52039i −0.155690 + 0.269664i −0.933310 0.359071i \(-0.883094\pi\)
0.777620 + 0.628735i \(0.216427\pi\)
\(282\) −1.29235 + 3.64535i −0.0769580 + 0.217078i
\(283\) 3.67708 + 6.36890i 0.218580 + 0.378592i 0.954374 0.298614i \(-0.0965242\pi\)
−0.735794 + 0.677205i \(0.763191\pi\)
\(284\) 6.06075 + 10.4975i 0.359639 + 0.622913i
\(285\) −10.7334 + 30.2760i −0.635793 + 1.79340i
\(286\) −1.84155 + 3.18966i −0.108893 + 0.188609i
\(287\) 0 0
\(288\) 7.73461 2.96273i 0.455766 0.174581i
\(289\) −14.0722 −0.827778
\(290\) −0.658419 + 1.14041i −0.0386637 + 0.0669674i
\(291\) 5.21737 0.965064i 0.305848 0.0565731i
\(292\) 6.95103 + 12.0395i 0.406778 + 0.704561i
\(293\) −3.91286 6.77728i −0.228592 0.395933i 0.728799 0.684728i \(-0.240079\pi\)
−0.957391 + 0.288795i \(0.906745\pi\)
\(294\) 0 0
\(295\) 7.85868 13.6116i 0.457550 0.792500i
\(296\) −1.56526 −0.0909789
\(297\) 0.545658 + 21.7232i 0.0316623 + 1.26051i
\(298\) 1.45090 0.0840484
\(299\) 9.43752 16.3463i 0.545786 0.945329i
\(300\) 3.75164 + 4.39576i 0.216601 + 0.253790i
\(301\) 0 0
\(302\) −0.536670 0.929540i −0.0308819 0.0534890i
\(303\) −18.9045 + 3.49679i −1.08604 + 0.200886i
\(304\) 13.0954 22.6820i 0.751075 1.30090i
\(305\) 20.6979 1.18516
\(306\) −0.953375 0.773151i −0.0545008 0.0441981i
\(307\) 22.6709 1.29390 0.646948 0.762534i \(-0.276045\pi\)
0.646948 + 0.762534i \(0.276045\pi\)
\(308\) 0 0
\(309\) −4.62188 + 13.0371i −0.262930 + 0.741653i
\(310\) −2.02532 3.50796i −0.115030 0.199239i
\(311\) 16.1588 + 27.9879i 0.916281 + 1.58705i 0.805015 + 0.593255i \(0.202157\pi\)
0.111266 + 0.993791i \(0.464509\pi\)
\(312\) 2.00972 5.66886i 0.113778 0.320936i
\(313\) 12.1598 21.0614i 0.687312 1.19046i −0.285392 0.958411i \(-0.592124\pi\)
0.972704 0.232048i \(-0.0745428\pi\)
\(314\) 0.246037 0.0138847
\(315\) 0 0
\(316\) 19.0949 1.07417
\(317\) −2.56922 + 4.45002i −0.144302 + 0.249938i −0.929112 0.369798i \(-0.879427\pi\)
0.784811 + 0.619736i \(0.212760\pi\)
\(318\) 4.33595 0.802027i 0.243148 0.0449755i
\(319\) 4.44282 + 7.69519i 0.248750 + 0.430848i
\(320\) −8.63090 14.9492i −0.482482 0.835684i
\(321\) −4.44872 5.21253i −0.248303 0.290935i
\(322\) 0 0
\(323\) −12.2438 −0.681262
\(324\) −3.61109 17.1084i −0.200616 0.950469i
\(325\) 6.32525 0.350862
\(326\) −0.816422 + 1.41408i −0.0452174 + 0.0783189i
\(327\) −8.16681 9.56899i −0.451625 0.529166i
\(328\) −4.81732 8.34384i −0.265992 0.460712i
\(329\) 0 0
\(330\) −4.41423 + 0.816506i −0.242995 + 0.0449472i
\(331\) 5.84897 10.1307i 0.321488 0.556834i −0.659307 0.751874i \(-0.729150\pi\)
0.980795 + 0.195040i \(0.0624835\pi\)
\(332\) −13.3951 −0.735150
\(333\) −0.782630 + 4.91870i −0.0428879 + 0.269543i
\(334\) 4.30286 0.235442
\(335\) 10.7082 18.5472i 0.585053 1.01334i
\(336\) 0 0
\(337\) 16.8473 + 29.1804i 0.917733 + 1.58956i 0.802850 + 0.596181i \(0.203316\pi\)
0.114883 + 0.993379i \(0.463351\pi\)
\(338\) −0.0675835 0.117058i −0.00367606 0.00636711i
\(339\) −4.01025 + 11.3118i −0.217807 + 0.614373i
\(340\) −4.30795 + 7.46159i −0.233631 + 0.404661i
\(341\) −27.3326 −1.48014
\(342\) 3.98696 + 3.23327i 0.215590 + 0.174835i
\(343\) 0 0
\(344\) −0.782630 + 1.35556i −0.0421966 + 0.0730866i
\(345\) 22.6219 4.18440i 1.21792 0.225281i
\(346\) 0.0992788 + 0.171956i 0.00533726 + 0.00924441i
\(347\) −13.6557 23.6523i −0.733075 1.26972i −0.955563 0.294788i \(-0.904751\pi\)
0.222488 0.974936i \(-0.428582\pi\)
\(348\) −4.64160 5.43852i −0.248816 0.291536i
\(349\) −11.4585 + 19.8467i −0.613358 + 1.06237i 0.377312 + 0.926086i \(0.376848\pi\)
−0.990670 + 0.136281i \(0.956485\pi\)
\(350\) 0 0
\(351\) −16.8090 9.14978i −0.897200 0.488379i
\(352\) 11.5458 0.615395
\(353\) −5.13466 + 8.89349i −0.273290 + 0.473353i −0.969702 0.244289i \(-0.921445\pi\)
0.696412 + 0.717642i \(0.254779\pi\)
\(354\) −1.63052 1.91047i −0.0866612 0.101540i
\(355\) 8.08525 + 14.0041i 0.429120 + 0.743258i
\(356\) −4.89142 8.47218i −0.259245 0.449025i
\(357\) 0 0
\(358\) −0.906150 + 1.56950i −0.0478915 + 0.0829505i
\(359\) 10.1007 0.533094 0.266547 0.963822i \(-0.414117\pi\)
0.266547 + 0.963822i \(0.414117\pi\)
\(360\) 6.84573 2.62225i 0.360802 0.138205i
\(361\) 32.2028 1.69488
\(362\) −0.0489195 + 0.0847311i −0.00257115 + 0.00445337i
\(363\) −3.75531 + 10.5927i −0.197103 + 0.555973i
\(364\) 0 0
\(365\) 9.27292 + 16.0612i 0.485367 + 0.840680i
\(366\) 1.10520 3.11747i 0.0577697 0.162953i
\(367\) 3.88768 6.73367i 0.202935 0.351494i −0.746538 0.665343i \(-0.768285\pi\)
0.949473 + 0.313849i \(0.101619\pi\)
\(368\) −18.7576 −0.977808
\(369\) −28.6285 + 10.9661i −1.49034 + 0.570872i
\(370\) −1.02891 −0.0534907
\(371\) 0 0
\(372\) 21.6267 4.00032i 1.12129 0.207407i
\(373\) −12.0555 20.8808i −0.624212 1.08117i −0.988693 0.149957i \(-0.952087\pi\)
0.364480 0.931211i \(-0.381247\pi\)
\(374\) −0.855536 1.48183i −0.0442387 0.0766237i
\(375\) −9.56634 11.2088i −0.494004 0.578821i
\(376\) 4.40214 7.62473i 0.227023 0.393215i
\(377\) −7.82573 −0.403045
\(378\) 0 0
\(379\) −13.3581 −0.686161 −0.343081 0.939306i \(-0.611470\pi\)
−0.343081 + 0.939306i \(0.611470\pi\)
\(380\) 18.0156 31.2039i 0.924181 1.60073i
\(381\) −10.2446 12.0035i −0.524846 0.614959i
\(382\) −1.91586 3.31838i −0.0980242 0.169783i
\(383\) 4.62020 + 8.00242i 0.236081 + 0.408905i 0.959586 0.281414i \(-0.0908035\pi\)
−0.723505 + 0.690319i \(0.757470\pi\)
\(384\) −12.1169 + 2.24128i −0.618337 + 0.114375i
\(385\) 0 0
\(386\) −2.95898 −0.150608
\(387\) 3.86840 + 3.13713i 0.196642 + 0.159469i
\(388\) −5.95153 −0.302143
\(389\) −5.22421 + 9.04859i −0.264878 + 0.458782i −0.967532 0.252750i \(-0.918665\pi\)
0.702654 + 0.711532i \(0.251998\pi\)
\(390\) 1.32107 3.72639i 0.0668952 0.188693i
\(391\) 4.38442 + 7.59404i 0.221730 + 0.384047i
\(392\) 0 0
\(393\) 2.49028 7.02441i 0.125618 0.354335i
\(394\) −2.76212 + 4.78413i −0.139154 + 0.241021i
\(395\) 25.4733 1.28170
\(396\) 3.83009 24.0715i 0.192470 1.20964i
\(397\) −0.409157 −0.0205350 −0.0102675 0.999947i \(-0.503268\pi\)
−0.0102675 + 0.999947i \(0.503268\pi\)
\(398\) 0.806617 1.39710i 0.0404321 0.0700304i
\(399\) 0 0
\(400\) −3.14295 5.44375i −0.157147 0.272187i
\(401\) −7.62640 13.2093i −0.380844 0.659641i 0.610339 0.792140i \(-0.291033\pi\)
−0.991183 + 0.132499i \(0.957700\pi\)
\(402\) −2.22175 2.60320i −0.110811 0.129836i
\(403\) 12.0361 20.8472i 0.599562 1.03847i
\(404\) 21.5647 1.07288
\(405\) −4.81732 22.8232i −0.239375 1.13410i
\(406\) 0 0
\(407\) −3.47141 + 6.01266i −0.172071 + 0.298036i
\(408\) 1.81393 + 2.12537i 0.0898031 + 0.105222i
\(409\) 3.06335 + 5.30587i 0.151473 + 0.262359i 0.931769 0.363051i \(-0.118265\pi\)
−0.780296 + 0.625410i \(0.784932\pi\)
\(410\) −3.16664 5.48477i −0.156389 0.270874i
\(411\) 35.0669 6.48638i 1.72972 0.319949i
\(412\) 7.75765 13.4366i 0.382192 0.661976i
\(413\) 0 0
\(414\) 0.577690 3.63068i 0.0283919 0.178438i
\(415\) −17.8695 −0.877178
\(416\) −5.08430 + 8.80626i −0.249278 + 0.431763i
\(417\) 9.12188 25.7303i 0.446701 1.26002i
\(418\) 3.57780 + 6.19694i 0.174996 + 0.303102i
\(419\) −0.781437 1.35349i −0.0381757 0.0661223i 0.846306 0.532697i \(-0.178821\pi\)
−0.884482 + 0.466574i \(0.845488\pi\)
\(420\) 0 0
\(421\) −11.6316 + 20.1465i −0.566889 + 0.981881i 0.429982 + 0.902838i \(0.358520\pi\)
−0.996871 + 0.0790438i \(0.974813\pi\)
\(422\) 4.03775 0.196555
\(423\) −21.7590 17.6457i −1.05796 0.857964i
\(424\) −10.0377 −0.487476
\(425\) −1.46927 + 2.54485i −0.0712702 + 0.123444i
\(426\) 2.54098 0.470008i 0.123111 0.0227720i
\(427\) 0 0
\(428\) 3.84338 + 6.65692i 0.185777 + 0.321775i
\(429\) −17.3187 20.2922i −0.836157 0.979719i
\(430\) −0.514457 + 0.891066i −0.0248093 + 0.0429710i
\(431\) 1.00576 0.0484456 0.0242228 0.999707i \(-0.492289\pi\)
0.0242228 + 0.999707i \(0.492289\pi\)
\(432\) 0.477580 + 19.0129i 0.0229776 + 0.914759i
\(433\) 13.1071 0.629889 0.314945 0.949110i \(-0.398014\pi\)
0.314945 + 0.949110i \(0.398014\pi\)
\(434\) 0 0
\(435\) −6.19205 7.25518i −0.296886 0.347859i
\(436\) 7.05555 + 12.2206i 0.337899 + 0.585259i
\(437\) −18.3354 31.7579i −0.877101 1.51918i
\(438\) 2.91423 0.539049i 0.139247 0.0257568i
\(439\) −9.30704 + 16.1203i −0.444201 + 0.769378i −0.997996 0.0632744i \(-0.979846\pi\)
0.553795 + 0.832653i \(0.313179\pi\)
\(440\) 10.2190 0.487170
\(441\) 0 0
\(442\) 1.50697 0.0716792
\(443\) 0.559503 0.969088i 0.0265828 0.0460427i −0.852428 0.522845i \(-0.824871\pi\)
0.879011 + 0.476802i \(0.158204\pi\)
\(444\) 1.86673 5.26554i 0.0885912 0.249891i
\(445\) −6.52532 11.3022i −0.309330 0.535775i
\(446\) 0.538197 + 0.932185i 0.0254844 + 0.0441402i
\(447\) −3.51162 + 9.90531i −0.166094 + 0.468505i
\(448\) 0 0
\(449\) −39.4419 −1.86138 −0.930689 0.365813i \(-0.880791\pi\)
−0.930689 + 0.365813i \(0.880791\pi\)
\(450\) 1.15047 0.440688i 0.0542339 0.0207742i
\(451\) −42.7351 −2.01232
\(452\) 6.73104 11.6585i 0.316602 0.548370i
\(453\) 7.64489 1.41409i 0.359188 0.0664395i
\(454\) 0.725057 + 1.25584i 0.0340286 + 0.0589393i
\(455\) 0 0
\(456\) −7.58577 8.88819i −0.355236 0.416228i
\(457\) 17.1202 29.6531i 0.800852 1.38712i −0.118205 0.992989i \(-0.537714\pi\)
0.919056 0.394126i \(-0.128953\pi\)
\(458\) −2.64215 −0.123459
\(459\) 7.58577 4.63744i 0.354073 0.216457i
\(460\) −25.8051 −1.20317
\(461\) −10.1938 + 17.6561i −0.474772 + 0.822328i −0.999583 0.0288903i \(-0.990803\pi\)
0.524811 + 0.851219i \(0.324136\pi\)
\(462\) 0 0
\(463\) −3.40451 5.89679i −0.158221 0.274047i 0.776006 0.630725i \(-0.217243\pi\)
−0.934227 + 0.356678i \(0.883909\pi\)
\(464\) 3.88852 + 6.73511i 0.180520 + 0.312670i
\(465\) 28.8508 5.33656i 1.33792 0.247477i
\(466\) 0.973045 1.68536i 0.0450754 0.0780729i
\(467\) 24.7911 1.14720 0.573598 0.819137i \(-0.305547\pi\)
0.573598 + 0.819137i \(0.305547\pi\)
\(468\) 16.6733 + 13.5214i 0.770721 + 0.625026i
\(469\) 0 0
\(470\) 2.89372 5.01207i 0.133477 0.231190i
\(471\) −0.595485 + 1.67970i −0.0274385 + 0.0773965i
\(472\) 2.85877 + 4.95153i 0.131586 + 0.227913i
\(473\) 3.47141 + 6.01266i 0.159616 + 0.276462i
\(474\) 1.36019 3.83672i 0.0624755 0.176226i
\(475\) 6.14441 10.6424i 0.281925 0.488309i
\(476\) 0 0
\(477\) −5.01887 + 31.5428i −0.229798 + 1.44424i
\(478\) 5.06045 0.231460
\(479\) 5.54984 9.61260i 0.253579 0.439211i −0.710930 0.703263i \(-0.751726\pi\)
0.964508 + 0.264052i \(0.0850590\pi\)
\(480\) −12.1871 + 2.25427i −0.556265 + 0.102893i
\(481\) −3.05733 5.29545i −0.139402 0.241452i
\(482\) −1.63697 2.83532i −0.0745621 0.129145i
\(483\) 0 0
\(484\) 6.30314 10.9174i 0.286506 0.496244i
\(485\) −7.93955 −0.360516
\(486\) −3.69480 0.493113i −0.167600 0.0223681i
\(487\) −10.0377 −0.454854 −0.227427 0.973795i \(-0.573031\pi\)
−0.227427 + 0.973795i \(0.573031\pi\)
\(488\) −3.76466 + 6.52059i −0.170418 + 0.295173i
\(489\) −7.67798 8.99623i −0.347210 0.406824i
\(490\) 0 0
\(491\) 6.19398 + 10.7283i 0.279530 + 0.484161i 0.971268 0.237988i \(-0.0764879\pi\)
−0.691738 + 0.722149i \(0.743155\pi\)
\(492\) 33.8138 6.25459i 1.52445 0.281979i
\(493\) 1.81781 3.14854i 0.0818702 0.141803i
\(494\) −6.30206 −0.283543
\(495\) 5.10948 32.1122i 0.229654 1.44334i
\(496\) −23.9225 −1.07415
\(497\) 0 0
\(498\) −0.954170 + 2.69145i −0.0427574 + 0.120607i
\(499\) −5.11109 8.85267i −0.228804 0.396300i 0.728650 0.684886i \(-0.240148\pi\)
−0.957454 + 0.288586i \(0.906815\pi\)
\(500\) 8.26464 + 14.3148i 0.369606 + 0.640177i
\(501\) −10.4142 + 29.3757i −0.465273 + 1.31241i
\(502\) −1.81781 + 3.14854i −0.0811329 + 0.140526i
\(503\) −8.45753 −0.377102 −0.188551 0.982063i \(-0.560379\pi\)
−0.188551 + 0.982063i \(0.560379\pi\)
\(504\) 0 0
\(505\) 28.7680 1.28016
\(506\) 2.56238 4.43818i 0.113912 0.197301i
\(507\) 0.962729 0.178077i 0.0427563 0.00790869i
\(508\) 8.85060 + 15.3297i 0.392682 + 0.680145i
\(509\) 5.28286 + 9.15018i 0.234159 + 0.405574i 0.959028 0.283312i \(-0.0914332\pi\)
−0.724869 + 0.688886i \(0.758100\pi\)
\(510\) 1.19238 + 1.39710i 0.0527994 + 0.0618647i
\(511\) 0 0
\(512\) 17.0071 0.751616
\(513\) −31.7233 + 19.3935i −1.40062 + 0.856245i
\(514\) 6.12670 0.270237
\(515\) 10.3490 17.9249i 0.456030 0.789867i
\(516\) −3.62672 4.24941i −0.159658 0.187070i
\(517\) −19.5260 33.8200i −0.858752 1.48740i
\(518\) 0 0
\(519\) −1.41423 + 0.261592i −0.0620778 + 0.0114826i
\(520\) −4.50000 + 7.79423i −0.197338 + 0.341800i
\(521\) 19.7558 0.865515 0.432758 0.901510i \(-0.357541\pi\)
0.432758 + 0.901510i \(0.357541\pi\)
\(522\) −1.42339 + 0.545227i −0.0623001 + 0.0238639i
\(523\) −32.5282 −1.42236 −0.711179 0.703011i \(-0.751839\pi\)
−0.711179 + 0.703011i \(0.751839\pi\)
\(524\) −4.17984 + 7.23970i −0.182597 + 0.316268i
\(525\) 0 0
\(526\) −0.848970 1.47046i −0.0370168 0.0641150i
\(527\) 5.59166 + 9.68504i 0.243577 + 0.421887i
\(528\) −8.85877 + 24.9882i −0.385528 + 1.08747i
\(529\) −1.63160 + 2.82601i −0.0709391 + 0.122870i
\(530\) −6.59825 −0.286610
\(531\) 16.9891 6.50767i 0.737266 0.282409i
\(532\) 0 0
\(533\) 18.8187 32.5950i 0.815130 1.41185i
\(534\) −2.05073 + 0.379327i −0.0887440 + 0.0164151i
\(535\) 5.12720 + 8.88057i 0.221668 + 0.383940i
\(536\) 3.89536 + 6.74695i 0.168254 + 0.291424i
\(537\) −8.52182 9.98495i −0.367744 0.430883i
\(538\) 1.96457 3.40274i 0.0846987 0.146702i
\(539\) 0 0
\(540\) 0.657014 + 26.1563i 0.0282734 + 1.12559i
\(541\) 15.2222 0.654453 0.327226 0.944946i \(-0.393886\pi\)
0.327226 + 0.944946i \(0.393886\pi\)
\(542\) −1.51819 + 2.62959i −0.0652119 + 0.112950i
\(543\) −0.460060 0.539049i −0.0197431 0.0231328i
\(544\) −2.36203 4.09116i −0.101271 0.175407i
\(545\) 9.41234 + 16.3027i 0.403180 + 0.698329i
\(546\) 0 0
\(547\) −11.6871 + 20.2427i −0.499706 + 0.865517i −1.00000 0.000339172i \(-0.999892\pi\)
0.500294 + 0.865856i \(0.333225\pi\)
\(548\) −40.0014 −1.70877
\(549\) 18.6081 + 15.0904i 0.794173 + 0.644044i
\(550\) 1.71737 0.0732289
\(551\) −7.60199 + 13.1670i −0.323856 + 0.560934i
\(552\) −2.79637 + 7.88779i −0.119021 + 0.335726i
\(553\) 0 0
\(554\) 0.0990521 + 0.171563i 0.00420832 + 0.00728902i
\(555\) 2.49028 7.02441i 0.105707 0.298170i
\(556\) −15.3107 + 26.5189i −0.649319 + 1.12465i
\(557\) 27.6673 1.17230 0.586151 0.810202i \(-0.300643\pi\)
0.586151 + 0.810202i \(0.300643\pi\)
\(558\) 0.736755 4.63038i 0.0311893 0.196019i
\(559\) −6.11465 −0.258622
\(560\) 0 0
\(561\) 12.1871 2.25427i 0.514542 0.0951755i
\(562\) −0.624075 1.08093i −0.0263250 0.0455963i
\(563\) 4.27912 + 7.41166i 0.180343 + 0.312364i 0.941998 0.335620i \(-0.108946\pi\)
−0.761654 + 0.647984i \(0.775612\pi\)
\(564\) 20.3996 + 23.9021i 0.858979 + 1.00646i
\(565\) 8.97944 15.5529i 0.377768 0.654313i
\(566\) −1.75855 −0.0739175
\(567\) 0 0
\(568\) −5.88237 −0.246819
\(569\) −6.86389 + 11.8886i −0.287749 + 0.498396i −0.973272 0.229655i \(-0.926240\pi\)
0.685523 + 0.728051i \(0.259574\pi\)
\(570\) −4.98646 5.84260i −0.208860 0.244720i
\(571\) −5.35868 9.28151i −0.224254 0.388419i 0.731841 0.681475i \(-0.238661\pi\)
−0.956095 + 0.293056i \(0.905328\pi\)
\(572\) 14.9622 + 25.9153i 0.625600 + 1.08357i
\(573\) 27.2916 5.04816i 1.14012 0.210890i
\(574\) 0 0
\(575\) −8.80111 −0.367032
\(576\) 3.13968 19.7323i 0.130820 0.822181i
\(577\) 45.6353 1.89982 0.949912 0.312518i \(-0.101173\pi\)
0.949912 + 0.312518i \(0.101173\pi\)
\(578\) 1.68250 2.91417i 0.0699827 0.121214i
\(579\) 7.16163 20.2010i 0.297627 0.839525i
\(580\) 5.34950 + 9.26560i 0.222126 + 0.384733i
\(581\) 0 0
\(582\) −0.423945 + 1.19583i −0.0175731 + 0.0495689i
\(583\) −22.2616 + 38.5582i −0.921980 + 1.59692i
\(584\) −6.74645 −0.279170
\(585\) 22.2427 + 18.0380i 0.919622 + 0.745779i
\(586\) 1.87131 0.0773032
\(587\) −5.10948 + 8.84988i −0.210891 + 0.365274i −0.951994 0.306118i \(-0.900970\pi\)
0.741103 + 0.671392i \(0.234303\pi\)
\(588\) 0 0
\(589\) −23.3840 40.5023i −0.963521 1.66887i
\(590\) 1.87919 + 3.25486i 0.0773652 + 0.134000i
\(591\) −25.9762 30.4361i −1.06852 1.25197i
\(592\) −3.03831 + 5.26250i −0.124874 + 0.216287i
\(593\) −11.3961 −0.467981 −0.233990 0.972239i \(-0.575178\pi\)
−0.233990 + 0.972239i \(0.575178\pi\)
\(594\) −4.56382 2.48426i −0.187256 0.101930i
\(595\) 0 0
\(596\) 5.89411 10.2089i 0.241432 0.418173i
\(597\) 7.58577 + 8.88819i 0.310465 + 0.363769i
\(598\) 2.25673 + 3.90877i 0.0922846 + 0.159842i
\(599\) 17.2873 + 29.9424i 0.706339 + 1.22341i 0.966206 + 0.257771i \(0.0829879\pi\)
−0.259867 + 0.965644i \(0.583679\pi\)
\(600\) −2.75771 + 0.510097i −0.112583 + 0.0208246i
\(601\) −19.4207 + 33.6376i −0.792187 + 1.37211i 0.132423 + 0.991193i \(0.457724\pi\)
−0.924610 + 0.380915i \(0.875609\pi\)
\(602\) 0 0
\(603\) 23.1494 8.86734i 0.942716 0.361106i
\(604\) −8.72064 −0.354838
\(605\) 8.40861 14.5641i 0.341858 0.592116i
\(606\) 1.53611 4.33296i 0.0624004 0.176014i
\(607\) −20.6662 35.7950i −0.838817 1.45287i −0.890885 0.454229i \(-0.849915\pi\)
0.0520683 0.998644i \(-0.483419\pi\)
\(608\) 9.87788 + 17.1090i 0.400601 + 0.693861i
\(609\) 0 0
\(610\) −2.47468 + 4.28627i −0.100197 + 0.173546i
\(611\) 34.3937 1.39142
\(612\) −9.31306 + 3.56735i −0.376458 + 0.144202i
\(613\) −28.6569 −1.15744 −0.578721 0.815526i \(-0.696448\pi\)
−0.578721 + 0.815526i \(0.696448\pi\)
\(614\) −2.71057 + 4.69485i −0.109390 + 0.189469i
\(615\) 45.1088 8.34384i 1.81896 0.336456i
\(616\) 0 0
\(617\) 16.8518 + 29.1883i 0.678430 + 1.17508i 0.975454 + 0.220205i \(0.0706726\pi\)
−0.297024 + 0.954870i \(0.595994\pi\)
\(618\) −2.14721 2.51586i −0.0863733 0.101203i
\(619\) 0.719036 1.24541i 0.0289005 0.0500571i −0.851213 0.524820i \(-0.824133\pi\)
0.880114 + 0.474763i \(0.157466\pi\)
\(620\) −32.9105 −1.32172
\(621\) 23.3885 + 12.7312i 0.938548 + 0.510887i
\(622\) −7.72789 −0.309860
\(623\) 0 0
\(624\) −15.1580 17.7605i −0.606806 0.710990i
\(625\) 15.3187 + 26.5328i 0.612750 + 1.06131i
\(626\) 2.90769 + 5.03626i 0.116215 + 0.201290i
\(627\) −50.9660 + 9.42724i −2.03538 + 0.376488i
\(628\) 0.999498 1.73118i 0.0398843 0.0690816i
\(629\) 2.84071 0.113266
\(630\) 0 0
\(631\) −30.7680 −1.22486 −0.612428 0.790527i \(-0.709807\pi\)
−0.612428 + 0.790527i \(0.709807\pi\)
\(632\) −4.63323 + 8.02500i −0.184300 + 0.319217i
\(633\) −9.77258 + 27.5658i −0.388425 + 1.09564i
\(634\) −0.614360 1.06410i −0.0243993 0.0422609i
\(635\) 11.8070 + 20.4503i 0.468547 + 0.811547i
\(636\) 11.9710 33.7670i 0.474682 1.33895i
\(637\) 0 0
\(638\) −2.12476 −0.0841202
\(639\) −2.94119 + 18.4848i −0.116351 + 0.731249i
\(640\) 18.4389 0.728862
\(641\) −4.61956 + 8.00132i −0.182462 + 0.316033i −0.942718 0.333590i \(-0.891740\pi\)
0.760257 + 0.649623i \(0.225073\pi\)
\(642\) 1.61134 0.298052i 0.0635946 0.0117632i
\(643\) −12.7795 22.1348i −0.503976 0.872912i −0.999989 0.00459728i \(-0.998537\pi\)
0.496013 0.868315i \(-0.334797\pi\)
\(644\) 0 0
\(645\) −4.83818 5.66886i −0.190503 0.223211i
\(646\) 1.46389 2.53552i 0.0575958 0.0997588i
\(647\) −28.3111 −1.11302 −0.556512 0.830839i \(-0.687861\pi\)
−0.556512 + 0.830839i \(0.687861\pi\)
\(648\) 8.06634 + 2.63360i 0.316876 + 0.103458i
\(649\) 25.3605 0.995488
\(650\) −0.756258 + 1.30988i −0.0296629 + 0.0513776i
\(651\) 0 0
\(652\) 6.63323 + 11.4891i 0.259778 + 0.449948i
\(653\) 4.17511 + 7.23150i 0.163385 + 0.282990i 0.936080 0.351786i \(-0.114426\pi\)
−0.772696 + 0.634776i \(0.781092\pi\)
\(654\) 2.95805 0.547154i 0.115669 0.0213954i
\(655\) −5.57605 + 9.65801i −0.217874 + 0.377370i
\(656\) −37.4033 −1.46035
\(657\) −3.37323 + 21.2001i −0.131602 + 0.827096i
\(658\) 0 0
\(659\) 16.7862 29.0745i 0.653897 1.13258i −0.328272 0.944583i \(-0.606466\pi\)
0.982169 0.188000i \(-0.0602005\pi\)
\(660\) −12.1871 + 34.3766i −0.474384 + 1.33811i
\(661\) −8.47668 14.6820i −0.329705 0.571065i 0.652748 0.757575i \(-0.273616\pi\)
−0.982453 + 0.186509i \(0.940283\pi\)
\(662\) 1.39862 + 2.42249i 0.0543591 + 0.0941527i
\(663\) −3.64732 + 10.2881i −0.141650 + 0.399557i
\(664\) 3.25021 5.62952i 0.126133 0.218468i
\(665\) 0 0
\(666\) −0.925025 0.750160i −0.0358440 0.0290681i
\(667\) 10.8889 0.421620
\(668\) 17.4799 30.2760i 0.676316 1.17141i
\(669\) −7.66664 + 1.41811i −0.296409 + 0.0548272i
\(670\) 2.56059 + 4.43507i 0.0989242 + 0.171342i
\(671\) 16.6984 + 28.9225i 0.644636 + 1.11654i
\(672\) 0 0
\(673\) 22.2157 38.4788i 0.856354 1.48325i −0.0190299 0.999819i \(-0.506058\pi\)
0.875384 0.483429i \(-0.160609\pi\)
\(674\) −8.05718 −0.310351
\(675\) 0.224082 + 8.92090i 0.00862490 + 0.343366i
\(676\) −1.09820 −0.0422384
\(677\) −7.18681 + 12.4479i −0.276212 + 0.478412i −0.970440 0.241342i \(-0.922412\pi\)
0.694229 + 0.719755i \(0.255746\pi\)
\(678\) −1.86306 2.18293i −0.0715502 0.0838349i
\(679\) 0 0
\(680\) −2.09058 3.62099i −0.0801701 0.138859i
\(681\) −10.3285 + 1.91047i −0.395787 + 0.0732093i
\(682\) 3.26793 5.66021i 0.125135 0.216741i
\(683\) −32.3092 −1.23628 −0.618138 0.786069i \(-0.712113\pi\)
−0.618138 + 0.786069i \(0.712113\pi\)
\(684\) 38.9467 14.9185i 1.48916 0.570422i
\(685\) −53.3632 −2.03890
\(686\) 0 0
\(687\) 6.39480 18.0380i 0.243977 0.688192i
\(688\) 3.03831 + 5.26250i 0.115834 + 0.200631i
\(689\) −19.6061 33.9588i −0.746934 1.29373i
\(690\) −1.83818 + 5.18499i −0.0699781 + 0.197389i
\(691\) −14.4981 + 25.1114i −0.551533 + 0.955283i 0.446631 + 0.894718i \(0.352624\pi\)
−0.998164 + 0.0605650i \(0.980710\pi\)
\(692\) 1.61323 0.0613259
\(693\) 0 0
\(694\) 6.53078 0.247905
\(695\) −20.4250 + 35.3772i −0.774765 + 1.34193i
\(696\) 3.41189 0.631101i 0.129327 0.0239218i
\(697\) 8.74269 + 15.1428i 0.331153 + 0.573574i
\(698\) −2.73999 4.74580i −0.103710 0.179631i
\(699\) 9.15093 + 10.7221i 0.346120 + 0.405546i
\(700\) 0 0
\(701\) −26.3912 −0.996783 −0.498392 0.866952i \(-0.666076\pi\)
−0.498392 + 0.866952i \(0.666076\pi\)
\(702\) 3.90451 2.38697i 0.147366 0.0900902i
\(703\) −11.8797 −0.448050
\(704\) 13.9263 24.1210i 0.524866 0.909095i
\(705\) 27.2138 + 31.8862i 1.02493 + 1.20090i
\(706\) −1.22782 2.12664i −0.0462095 0.0800372i
\(707\) 0 0
\(708\) −20.0663 + 3.71170i −0.754139 + 0.139494i
\(709\) 3.94282 6.82916i 0.148076 0.256475i −0.782441 0.622725i \(-0.786025\pi\)
0.930516 + 0.366251i \(0.119359\pi\)
\(710\) −3.86674 −0.145116
\(711\) 22.9012 + 18.5720i 0.858864 + 0.696506i
\(712\) 4.74746 0.177918
\(713\) −16.7473 + 29.0073i −0.627193 + 1.08633i
\(714\) 0 0
\(715\) 19.9601 + 34.5718i 0.746464 + 1.29291i
\(716\) 7.36225 + 12.7518i 0.275140 + 0.476557i
\(717\) −12.2478 + 34.5477i −0.457403 + 1.29021i
\(718\) −1.20765 + 2.09172i −0.0450693 + 0.0780623i
\(719\) 33.1508 1.23632 0.618159 0.786053i \(-0.287879\pi\)
0.618159 + 0.786053i \(0.287879\pi\)
\(720\) 4.47200 28.1058i 0.166662 1.04744i
\(721\) 0 0
\(722\) −3.85021 + 6.66877i −0.143290 + 0.248186i
\(723\) 23.3187 4.31330i 0.867233 0.160413i
\(724\) 0.397460 + 0.688420i 0.0147715 + 0.0255849i
\(725\) 1.82450 + 3.16013i 0.0677603 + 0.117364i
\(726\) −1.74462 2.04416i −0.0647489 0.0758658i
\(727\) 16.5502 28.6658i 0.613814 1.06316i −0.376777 0.926304i \(-0.622968\pi\)
0.990591 0.136853i \(-0.0436989\pi\)
\(728\) 0 0
\(729\) 12.3090 24.0310i 0.455890 0.890036i
\(730\) −4.43474 −0.164137
\(731\) 1.42035 2.46012i 0.0525337 0.0909910i
\(732\) −17.4455 20.4408i −0.644805 0.755514i
\(733\) −22.2795 38.5892i −0.822911 1.42532i −0.903505 0.428577i \(-0.859015\pi\)
0.0805946 0.996747i \(-0.474318\pi\)
\(734\) 0.929636 + 1.61018i 0.0343135 + 0.0594327i
\(735\) 0 0
\(736\) 7.07442 12.2533i 0.260767 0.451661i
\(737\) 34.5562 1.27290
\(738\) 1.15193 7.23970i 0.0424032 0.266497i
\(739\) 39.8090 1.46440 0.732199 0.681090i \(-0.238494\pi\)
0.732199 + 0.681090i \(0.238494\pi\)
\(740\) −4.17984 + 7.23970i −0.153654 + 0.266137i
\(741\) 15.2529 43.0242i 0.560329 1.58053i
\(742\) 0 0
\(743\) −5.37072 9.30237i −0.197033 0.341271i 0.750532 0.660834i \(-0.229797\pi\)
−0.947565 + 0.319563i \(0.896464\pi\)
\(744\) −3.56634 + 10.0597i −0.130748 + 0.368805i
\(745\) 7.86295 13.6190i 0.288076 0.498962i
\(746\) 5.76552 0.211091
\(747\) −16.0652 13.0283i −0.587795 0.476679i
\(748\) −13.9021 −0.508310
\(749\) 0 0
\(750\) 3.46496 0.640919i 0.126523 0.0234031i
\(751\) −9.85705 17.0729i −0.359689 0.622999i 0.628220 0.778036i \(-0.283784\pi\)
−0.987909 + 0.155036i \(0.950450\pi\)
\(752\) −17.0899 29.6005i −0.623203 1.07942i
\(753\) −17.0955 20.0307i −0.622994 0.729958i
\(754\) 0.935657 1.62060i 0.0340746 0.0590189i
\(755\) −11.6336 −0.423391
\(756\) 0 0
\(757\) 35.3549 1.28499 0.642497 0.766288i \(-0.277898\pi\)
0.642497 + 0.766288i \(0.277898\pi\)
\(758\) 1.59712 2.76629i 0.0580100 0.100476i
\(759\) 24.0977 + 28.2351i 0.874692 + 1.02487i
\(760\) 8.74269 + 15.1428i 0.317131 + 0.549286i
\(761\) −19.5572 33.8741i −0.708948 1.22793i −0.965248 0.261336i \(-0.915837\pi\)
0.256300 0.966597i \(-0.417497\pi\)
\(762\) 3.71063 0.686360i 0.134422 0.0248642i
\(763\) 0 0
\(764\) −31.1319 −1.12631
\(765\) −12.4239 + 4.75897i −0.449189 + 0.172061i
\(766\) −2.20960 −0.0798359
\(767\) −11.1677 + 19.3430i −0.403243 + 0.698437i
\(768\) −6.72460 + 18.9683i −0.242653 + 0.684458i
\(769\) −18.9240 32.7773i −0.682415 1.18198i −0.974242 0.225507i \(-0.927596\pi\)
0.291826 0.956471i \(-0.405737\pi\)
\(770\) 0 0
\(771\) −14.8285 + 41.8270i −0.534034 + 1.50636i
\(772\) −12.0205 + 20.8201i −0.432628 + 0.749333i
\(773\) −29.8265 −1.07279 −0.536393 0.843969i \(-0.680213\pi\)
−0.536393 + 0.843969i \(0.680213\pi\)
\(774\) −1.11217 + 0.426015i −0.0399761 + 0.0153128i
\(775\) −11.2245 −0.403195
\(776\) 1.44409 2.50124i 0.0518399 0.0897894i
\(777\) 0 0
\(778\) −1.24923 2.16373i −0.0447870 0.0775734i
\(779\) −36.5614 63.3263i −1.30995 2.26890i
\(780\) −20.8531 24.4334i −0.746661 0.874857i
\(781\) −13.0458 + 22.5960i −0.466817 + 0.808550i
\(782\) −2.09683 −0.0749827
\(783\) −0.277238 11.0371i −0.00990768 0.394434i
\(784\) 0 0
\(785\) 1.33336 2.30946i 0.0475898 0.0824280i
\(786\) 1.15692 + 1.35556i 0.0412660 + 0.0483511i
\(787\) 8.81030 + 15.2599i 0.314053 + 0.543956i 0.979236 0.202724i \(-0.0649796\pi\)
−0.665182 + 0.746681i \(0.731646\pi\)
\(788\) 22.4416 + 38.8700i 0.799448 + 1.38468i
\(789\) 12.0936 2.23697i 0.430544 0.0796382i
\(790\) −3.04563 + 5.27518i −0.108359 + 0.187683i
\(791\) 0 0
\(792\) 9.18715 + 7.45043i 0.326451 + 0.264739i
\(793\) −29.4132 −1.04449
\(794\) 0.0489195 0.0847311i 0.00173609 0.00300699i
\(795\) 15.9698 45.0464i 0.566390 1.59763i
\(796\) −6.55357 11.3511i −0.232285 0.402330i
\(797\) 5.06056 + 8.76515i 0.179254 + 0.310477i 0.941625 0.336663i \(-0.109298\pi\)
−0.762371 + 0.647140i \(0.775965\pi\)
\(798\) 0 0
\(799\) −7.98921 + 13.8377i −0.282638 + 0.489543i
\(800\) 4.74145 0.167635
\(801\) 2.37373 14.9185i 0.0838716 0.527118i
\(802\) 3.64730 0.128791
\(803\) −14.9622 + 25.9153i −0.528004 + 0.914529i
\(804\) −27.3424 + 5.05756i −0.964291 + 0.178366i
\(805\) 0 0
\(806\) 2.87812 + 4.98504i 0.101377 + 0.175591i
\(807\) 18.4757 + 21.6478i 0.650374 + 0.762039i
\(808\) −5.23250 + 9.06295i −0.184079 + 0.318834i
\(809\) −47.1469 −1.65760 −0.828799 0.559546i \(-0.810975\pi\)
−0.828799 + 0.559546i \(0.810975\pi\)
\(810\) 5.30236 + 1.73118i 0.186306 + 0.0608275i
\(811\) −21.0577 −0.739435 −0.369717 0.929144i \(-0.620546\pi\)
−0.369717 + 0.929144i \(0.620546\pi\)
\(812\) 0 0
\(813\) −14.2777 16.7291i −0.500742 0.586715i
\(814\) −0.830095 1.43777i −0.0290948 0.0503937i
\(815\) 8.84896 + 15.3269i 0.309966 + 0.536876i
\(816\) 10.6666 1.97302i 0.373407 0.0690696i
\(817\) −5.93984 + 10.2881i −0.207809 + 0.359935i
\(818\) −1.46504 −0.0512238
\(819\) 0 0
\(820\) −51.4563 −1.79693
\(821\) −5.58018 + 9.66515i −0.194750 + 0.337316i −0.946818 0.321768i \(-0.895723\pi\)
0.752069 + 0.659085i \(0.229056\pi\)
\(822\) −2.84942 + 8.03742i −0.0993848 + 0.280337i
\(823\) −4.71737 8.17072i −0.164437 0.284814i 0.772018 0.635601i \(-0.219247\pi\)
−0.936455 + 0.350787i \(0.885914\pi\)
\(824\) 3.76466 + 6.52059i 0.131148 + 0.227156i
\(825\) −4.15656 + 11.7245i −0.144713 + 0.408195i
\(826\) 0 0
\(827\) 17.2646 0.600348 0.300174 0.953884i \(-0.402955\pi\)
0.300174 + 0.953884i \(0.402955\pi\)
\(828\) −23.1996 18.8140i −0.806241 0.653831i
\(829\) 48.4526 1.68283 0.841415 0.540390i \(-0.181723\pi\)
0.841415 + 0.540390i \(0.181723\pi\)
\(830\) 2.13650 3.70053i 0.0741591 0.128447i
\(831\) −1.41100 + 0.260995i −0.0489470 + 0.00905380i
\(832\) 12.2651 + 21.2438i 0.425215 + 0.736495i
\(833\) 0 0
\(834\) 4.23779 + 4.96538i 0.146743 + 0.171937i
\(835\) 23.3187 40.3893i 0.806978 1.39773i
\(836\) 58.1376 2.01073
\(837\) 29.8285 + 16.2367i 1.03102 + 0.561224i
\(838\) 0.373720 0.0129099
\(839\) −7.43429 + 12.8766i −0.256660 + 0.444548i −0.965345 0.260977i \(-0.915955\pi\)
0.708685 + 0.705525i \(0.249289\pi\)
\(840\) 0 0
\(841\) 12.2427 + 21.2050i 0.422162 + 0.731206i
\(842\) −2.78139 4.81750i −0.0958529 0.166022i
\(843\) 8.88997 1.64439i 0.306187 0.0566358i
\(844\) 16.4029 28.4106i 0.564610 0.977934i
\(845\) −1.46504 −0.0503988
\(846\) 6.25574 2.39625i 0.215077 0.0823848i
\(847\) 0 0
\(848\) −19.4841 + 33.7475i −0.669088 + 1.15889i
\(849\) 4.25623 12.0057i 0.146073 0.412033i
\(850\) −0.351337 0.608534i −0.0120508 0.0208725i
\(851\) 4.25404 + 7.36821i 0.145827 + 0.252579i
\(852\) 7.01532 19.7883i 0.240341 0.677936i
\(853\) 3.99900 6.92648i 0.136923 0.237158i −0.789407 0.613870i \(-0.789612\pi\)
0.926331 + 0.376712i \(0.122945\pi\)
\(854\) 0 0
\(855\) 51.9562 19.9018i 1.77687 0.680626i
\(856\) −3.73026 −0.127498
\(857\) −21.5661 + 37.3536i −0.736684 + 1.27597i 0.217296 + 0.976106i \(0.430276\pi\)
−0.953980 + 0.299869i \(0.903057\pi\)
\(858\) 6.27292 1.16031i 0.214154 0.0396123i
\(859\) −1.22180 2.11621i −0.0416871 0.0722042i 0.844429 0.535667i \(-0.179940\pi\)
−0.886116 + 0.463463i \(0.846607\pi\)
\(860\) 4.17984 + 7.23970i 0.142531 + 0.246872i
\(861\) 0 0
\(862\) −0.120250 + 0.208279i −0.00409573 + 0.00709401i
\(863\) 25.7187 0.875476 0.437738 0.899103i \(-0.355780\pi\)
0.437738 + 0.899103i \(0.355780\pi\)
\(864\) −12.6001 6.85873i −0.428666 0.233339i
\(865\) 2.15211 0.0731739
\(866\) −1.56711 + 2.71432i −0.0532526 + 0.0922362i
\(867\) 15.8229 + 18.5396i 0.537375 + 0.629639i
\(868\) 0 0
\(869\) 20.5510 + 35.5954i 0.697146 + 1.20749i
\(870\) 2.24278 0.414851i 0.0760375 0.0140648i
\(871\) −15.2171 + 26.3568i −0.515612 + 0.893067i
\(872\) −6.84789 −0.231899
\(873\) −7.13789 5.78856i −0.241581 0.195913i
\(874\) 8.76884 0.296611
\(875\) 0 0
\(876\) 8.04583 22.6951i 0.271843 0.766796i
\(877\) 10.9795 + 19.0170i 0.370751 + 0.642160i 0.989681 0.143286i \(-0.0457670\pi\)
−0.618930 + 0.785446i \(0.712434\pi\)
\(878\) −2.22553 3.85473i −0.0751080 0.130091i
\(879\) −4.52915 + 12.7755i −0.152764 + 0.430906i
\(880\) 19.8359 34.3567i 0.668667 1.15817i
\(881\) 35.0576 1.18112 0.590560 0.806994i \(-0.298907\pi\)
0.590560 + 0.806994i \(0.298907\pi\)
\(882\) 0 0
\(883\) 26.3009 0.885097 0.442549 0.896744i \(-0.354074\pi\)
0.442549 + 0.896744i \(0.354074\pi\)
\(884\) 6.12188 10.6034i 0.205901 0.356631i
\(885\) −26.7692 + 4.95153i −0.899836 + 0.166444i
\(886\) 0.133790 + 0.231731i 0.00449477 + 0.00778517i
\(887\) 23.9090 + 41.4116i 0.802785 + 1.39046i 0.917776 + 0.397098i \(0.129983\pi\)
−0.114991 + 0.993366i \(0.536684\pi\)
\(888\) 1.75999 + 2.06217i 0.0590615 + 0.0692019i
\(889\) 0 0
\(890\) 3.12071 0.104607
\(891\) 28.0059 25.1446i 0.938233 0.842376i
\(892\) 8.74545 0.292819
\(893\) 33.4104 57.8685i 1.11804 1.93650i
\(894\) −1.63141 1.91151i −0.0545623 0.0639303i
\(895\) 9.82150 + 17.0113i 0.328296 + 0.568626i
\(896\) 0 0
\(897\) −32.1472 + 5.94631i −1.07336 + 0.198542i
\(898\) 4.71574 8.16789i 0.157366 0.272566i
\(899\) 13.8871 0.463162
\(900\) 1.57288 9.88527i 0.0524293 0.329509i
\(901\) 18.2170 0.606895
\(902\) 5.10948 8.84988i 0.170127 0.294669i
\(903\) 0 0
\(904\) 3.26647 + 5.65769i 0.108641 + 0.188172i
\(905\) 0.530225 + 0.918376i 0.0176253 + 0.0305279i
\(906\) −0.621197 + 1.75223i −0.0206379 + 0.0582138i
\(907\) 9.55718 16.5535i 0.317341 0.549651i −0.662591 0.748981i \(-0.730543\pi\)
0.979932 + 0.199330i \(0.0638767\pi\)
\(908\) 11.7818 0.390994
\(909\) 25.8633 + 20.9741i 0.857831 + 0.695669i
\(910\) 0 0
\(911\) 9.02928 15.6392i 0.299153 0.518149i −0.676789 0.736177i \(-0.736629\pi\)
0.975942 + 0.218028i \(0.0699625\pi\)
\(912\) −44.6073 + 8.25107i −1.47709 + 0.273220i
\(913\) −14.4165 24.9701i −0.477117 0.826391i
\(914\) 4.09385 + 7.09076i 0.135413 + 0.234541i
\(915\) −23.2729 27.2687i −0.769380 0.901477i
\(916\) −10.7334 + 18.5908i −0.354642 + 0.614258i
\(917\) 0 0
\(918\) 0.0533866 + 2.12537i 0.00176202 + 0.0701478i
\(919\) 16.2093 0.534695 0.267348 0.963600i \(-0.413853\pi\)
0.267348 + 0.963600i \(0.413853\pi\)
\(920\) 6.26141 10.8451i 0.206433 0.357552i
\(921\) −25.4914 29.8680i −0.839969 0.984186i
\(922\) −2.43757 4.22199i −0.0802771 0.139044i
\(923\) −11.4897 19.9007i −0.378187 0.655039i
\(924\) 0 0
\(925\) −1.42558 + 2.46918i −0.0468728 + 0.0811860i
\(926\) 1.62820 0.0535059
\(927\) 22.3727 8.56984i 0.734817 0.281470i
\(928\) −5.86621 −0.192568
\(929\) 11.3415 19.6440i 0.372102 0.644499i −0.617787 0.786345i \(-0.711971\pi\)
0.989889 + 0.141846i \(0.0453039\pi\)
\(930\) −2.34431 + 6.61266i −0.0768730 + 0.216838i
\(931\) 0 0
\(932\) −7.90576 13.6932i −0.258962 0.448535i
\(933\) 18.7038 52.7584i 0.612336 1.72723i
\(934\) −2.96407 + 5.13392i −0.0969873 + 0.167987i
\(935\) −18.5458 −0.606513
\(936\) −9.72824 + 3.72639i −0.317977 + 0.121801i
\(937\) 51.2933 1.67568 0.837840 0.545915i \(-0.183818\pi\)
0.837840 + 0.545915i \(0.183818\pi\)
\(938\) 0 0
\(939\) −41.4201 + 7.66154i −1.35169 + 0.250025i
\(940\) −23.5108 40.7219i −0.766838 1.32820i
\(941\) 15.9659 + 27.6538i 0.520474 + 0.901487i 0.999717 + 0.0238048i \(0.00757801\pi\)
−0.479243 + 0.877682i \(0.659089\pi\)
\(942\) −0.276647 0.324145i −0.00901363 0.0105612i
\(943\) −26.1849 + 45.3535i −0.852697 + 1.47691i
\(944\) 22.1965 0.722433
\(945\) 0 0
\(946\) −1.66019 −0.0539774
\(947\) 2.24665 3.89131i 0.0730063 0.126451i −0.827211 0.561891i \(-0.810074\pi\)
0.900218 + 0.435440i \(0.143407\pi\)
\(948\) −21.4705 25.1568i −0.697330 0.817056i
\(949\) −13.1774 22.8240i −0.427757 0.740898i
\(950\) 1.46927 + 2.54485i 0.0476695 + 0.0825660i
\(951\) 8.75158 1.61879i 0.283789 0.0524929i
\(952\) 0 0
\(953\) 1.14635 0.0371340 0.0185670 0.999828i \(-0.494090\pi\)
0.0185670 + 0.999828i \(0.494090\pi\)
\(954\) −5.93203 4.81065i −0.192056 0.155750i
\(955\) −41.5310 −1.34391
\(956\) 20.5575 35.6066i 0.664876 1.15160i
\(957\) 5.14257 14.5058i 0.166236 0.468905i
\(958\) 1.32710 + 2.29860i 0.0428765 + 0.0742643i
\(959\) 0 0
\(960\) −9.99028 + 28.1799i −0.322435 + 0.909501i
\(961\) −5.85868 + 10.1475i −0.188990 + 0.327340i
\(962\) 1.46216 0.0471418
\(963\) −1.86513 + 11.7220i −0.0601030 + 0.377737i
\(964\) −26.6000 −0.856730
\(965\) −16.0358 + 27.7748i −0.516210 + 0.894102i
\(966\) 0 0
\(967\) −24.8080 42.9686i −0.797770 1.38178i −0.921065 0.389408i \(-0.872680\pi\)
0.123295 0.992370i \(-0.460654\pi\)
\(968\) 3.05881 + 5.29802i 0.0983140 + 0.170285i
\(969\) 13.7670 + 16.1307i 0.442260 + 0.518193i
\(970\) 0.949266 1.64418i 0.0304791 0.0527913i
\(971\) −5.13322 −0.164733 −0.0823664 0.996602i \(-0.526248\pi\)
−0.0823664 + 0.996602i \(0.526248\pi\)
\(972\) −18.4794 + 23.9943i −0.592726 + 0.769619i
\(973\) 0 0
\(974\) 1.20013 2.07869i 0.0384546 0.0666054i
\(975\) −7.11217 8.33328i −0.227772 0.266878i
\(976\) 14.6151 + 25.3141i 0.467817 + 0.810283i
\(977\) −15.5974 27.0155i −0.499006 0.864303i 0.500994 0.865451i \(-0.332968\pi\)
−0.999999 + 0.00114787i \(0.999635\pi\)
\(978\) 2.78099 0.514404i 0.0889264 0.0164488i
\(979\) 10.5288 18.2365i 0.336503 0.582840i
\(980\) 0 0
\(981\) −3.42395 + 21.5189i −0.109318 + 0.687046i
\(982\) −2.96225 −0.0945292
\(983\) −10.1700 + 17.6150i −0.324374 + 0.561832i −0.981385 0.192049i \(-0.938487\pi\)
0.657012 + 0.753880i \(0.271820\pi\)
\(984\) −5.57605 + 15.7285i −0.177758 + 0.501407i
\(985\) 29.9378 + 51.8539i 0.953899 + 1.65220i
\(986\) 0.434681 + 0.752890i 0.0138431 + 0.0239769i
\(987\) 0 0
\(988\) −25.6014 + 44.3429i −0.814488 + 1.41074i
\(989\) 8.50808 0.270541
\(990\) 6.03911 + 4.89749i 0.191936 + 0.155653i
\(991\) −12.9655 −0.411863 −0.205932 0.978566i \(-0.566022\pi\)
−0.205932 + 0.978566i \(0.566022\pi\)
\(992\) 9.02234 15.6272i 0.286460 0.496163i
\(993\) −19.9235 + 3.68527i −0.632252 + 0.116948i
\(994\) 0 0
\(995\) −8.74269 15.1428i −0.277162 0.480059i
\(996\) 15.0615 + 17.6475i 0.477243 + 0.559182i
\(997\) 24.7408 42.8523i 0.783548 1.35715i −0.146314 0.989238i \(-0.546741\pi\)
0.929863 0.367907i \(-0.119926\pi\)
\(998\) 2.44436 0.0773749
\(999\) 7.36019 4.49954i 0.232866 0.142359i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.f.g.295.3 yes 12
3.2 odd 2 1323.2.f.g.883.3 12
7.2 even 3 441.2.h.g.214.4 12
7.3 odd 6 441.2.g.g.79.4 12
7.4 even 3 441.2.g.g.79.3 12
7.5 odd 6 441.2.h.g.214.3 12
7.6 odd 2 inner 441.2.f.g.295.4 yes 12
9.2 odd 6 3969.2.a.bd.1.4 6
9.4 even 3 inner 441.2.f.g.148.3 12
9.5 odd 6 1323.2.f.g.442.3 12
9.7 even 3 3969.2.a.be.1.3 6
21.2 odd 6 1323.2.h.g.802.3 12
21.5 even 6 1323.2.h.g.802.4 12
21.11 odd 6 1323.2.g.g.667.4 12
21.17 even 6 1323.2.g.g.667.3 12
21.20 even 2 1323.2.f.g.883.4 12
63.4 even 3 441.2.h.g.373.4 12
63.5 even 6 1323.2.g.g.361.3 12
63.13 odd 6 inner 441.2.f.g.148.4 yes 12
63.20 even 6 3969.2.a.bd.1.3 6
63.23 odd 6 1323.2.g.g.361.4 12
63.31 odd 6 441.2.h.g.373.3 12
63.32 odd 6 1323.2.h.g.226.3 12
63.34 odd 6 3969.2.a.be.1.4 6
63.40 odd 6 441.2.g.g.67.4 12
63.41 even 6 1323.2.f.g.442.4 12
63.58 even 3 441.2.g.g.67.3 12
63.59 even 6 1323.2.h.g.226.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.f.g.148.3 12 9.4 even 3 inner
441.2.f.g.148.4 yes 12 63.13 odd 6 inner
441.2.f.g.295.3 yes 12 1.1 even 1 trivial
441.2.f.g.295.4 yes 12 7.6 odd 2 inner
441.2.g.g.67.3 12 63.58 even 3
441.2.g.g.67.4 12 63.40 odd 6
441.2.g.g.79.3 12 7.4 even 3
441.2.g.g.79.4 12 7.3 odd 6
441.2.h.g.214.3 12 7.5 odd 6
441.2.h.g.214.4 12 7.2 even 3
441.2.h.g.373.3 12 63.31 odd 6
441.2.h.g.373.4 12 63.4 even 3
1323.2.f.g.442.3 12 9.5 odd 6
1323.2.f.g.442.4 12 63.41 even 6
1323.2.f.g.883.3 12 3.2 odd 2
1323.2.f.g.883.4 12 21.20 even 2
1323.2.g.g.361.3 12 63.5 even 6
1323.2.g.g.361.4 12 63.23 odd 6
1323.2.g.g.667.3 12 21.17 even 6
1323.2.g.g.667.4 12 21.11 odd 6
1323.2.h.g.226.3 12 63.32 odd 6
1323.2.h.g.226.4 12 63.59 even 6
1323.2.h.g.802.3 12 21.2 odd 6
1323.2.h.g.802.4 12 21.5 even 6
3969.2.a.bd.1.3 6 63.20 even 6
3969.2.a.bd.1.4 6 9.2 odd 6
3969.2.a.be.1.3 6 9.7 even 3
3969.2.a.be.1.4 6 63.34 odd 6