Properties

Label 1323.2.g.g.667.3
Level $1323$
Weight $2$
Character 1323.667
Analytic conductor $10.564$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(361,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 667.3
Root \(1.29589 + 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 1323.667
Dual form 1323.2.g.g.361.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.119562 + 0.207087i) q^{2} +(0.971410 - 1.68253i) q^{4} -2.59179 q^{5} +0.942820 q^{8} +(-0.309879 - 0.536725i) q^{10} -4.18194 q^{11} +(1.84155 + 3.18966i) q^{13} +(-1.83009 - 3.16982i) q^{16} +(-0.855536 - 1.48183i) q^{17} +(-3.57780 + 6.19694i) q^{19} +(-2.51769 + 4.36077i) q^{20} +(-0.500000 - 0.866025i) q^{22} +5.12476 q^{23} +1.71737 q^{25} +(-0.440358 + 0.762722i) q^{26} +(-1.06238 + 1.84010i) q^{29} +(-3.26793 + 5.66021i) q^{31} +(1.38044 - 2.39099i) q^{32} +(0.204579 - 0.354341i) q^{34} +(-0.830095 + 1.43777i) q^{37} -1.71107 q^{38} -2.44359 q^{40} +(5.10948 + 8.84988i) q^{41} +(0.830095 - 1.43777i) q^{43} +(-4.06238 + 7.03625i) q^{44} +(0.612725 + 1.06127i) q^{46} +(-4.66912 - 8.08715i) q^{47} +(0.205332 + 0.355645i) q^{50} +7.15561 q^{52} +(5.32326 + 9.22015i) q^{53} +10.8387 q^{55} -0.508080 q^{58} +(-3.03215 + 5.25183i) q^{59} +(-3.99298 - 6.91605i) q^{61} -1.56287 q^{62} -6.66019 q^{64} +(-4.77292 - 8.26693i) q^{65} +(-4.13160 + 7.15614i) q^{67} -3.32431 q^{68} -6.23912 q^{71} +(3.57780 + 6.19694i) q^{73} -0.396990 q^{74} +(6.95103 + 12.0395i) q^{76} +(4.91423 + 8.51170i) q^{79} +(4.74322 + 8.21550i) q^{80} +(-1.22180 + 2.11621i) q^{82} +(-3.44733 + 5.97094i) q^{83} +(2.21737 + 3.84060i) q^{85} +0.396990 q^{86} -3.94282 q^{88} +(2.51769 - 4.36077i) q^{89} +(4.97825 - 8.62258i) q^{92} +(1.11650 - 1.93383i) q^{94} +(9.27292 - 16.0612i) q^{95} +(1.53167 - 2.65294i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 6 q^{4} - 24 q^{8} - 16 q^{11} - 6 q^{16} - 6 q^{22} - 8 q^{23} + 24 q^{25} + 22 q^{29} + 16 q^{32} + 6 q^{37} - 6 q^{43} - 14 q^{44} - 12 q^{46} + 56 q^{50} + 28 q^{53} + 36 q^{58} - 48 q^{64}+ \cdots + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.119562 + 0.207087i 0.0845428 + 0.146433i 0.905196 0.424994i \(-0.139724\pi\)
−0.820653 + 0.571426i \(0.806390\pi\)
\(3\) 0 0
\(4\) 0.971410 1.68253i 0.485705 0.841266i
\(5\) −2.59179 −1.15908 −0.579542 0.814943i \(-0.696768\pi\)
−0.579542 + 0.814943i \(0.696768\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.942820 0.333337
\(9\) 0 0
\(10\) −0.309879 0.536725i −0.0979922 0.169727i
\(11\) −4.18194 −1.26090 −0.630452 0.776228i \(-0.717130\pi\)
−0.630452 + 0.776228i \(0.717130\pi\)
\(12\) 0 0
\(13\) 1.84155 + 3.18966i 0.510755 + 0.884653i 0.999922 + 0.0124633i \(0.00396730\pi\)
−0.489168 + 0.872190i \(0.662699\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.83009 3.16982i −0.457524 0.792454i
\(17\) −0.855536 1.48183i −0.207498 0.359397i 0.743428 0.668816i \(-0.233199\pi\)
−0.950926 + 0.309419i \(0.899865\pi\)
\(18\) 0 0
\(19\) −3.57780 + 6.19694i −0.820805 + 1.42168i 0.0842790 + 0.996442i \(0.473141\pi\)
−0.905084 + 0.425233i \(0.860192\pi\)
\(20\) −2.51769 + 4.36077i −0.562973 + 0.975097i
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) 5.12476 1.06859 0.534294 0.845299i \(-0.320578\pi\)
0.534294 + 0.845299i \(0.320578\pi\)
\(24\) 0 0
\(25\) 1.71737 0.343474
\(26\) −0.440358 + 0.762722i −0.0863613 + 0.149582i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.06238 + 1.84010i −0.197279 + 0.341698i −0.947645 0.319325i \(-0.896544\pi\)
0.750366 + 0.661023i \(0.229877\pi\)
\(30\) 0 0
\(31\) −3.26793 + 5.66021i −0.586937 + 1.01660i 0.407694 + 0.913119i \(0.366333\pi\)
−0.994631 + 0.103486i \(0.967000\pi\)
\(32\) 1.38044 2.39099i 0.244029 0.422671i
\(33\) 0 0
\(34\) 0.204579 0.354341i 0.0350850 0.0607689i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.830095 + 1.43777i −0.136467 + 0.236367i −0.926157 0.377139i \(-0.876908\pi\)
0.789690 + 0.613506i \(0.210241\pi\)
\(38\) −1.71107 −0.277573
\(39\) 0 0
\(40\) −2.44359 −0.386366
\(41\) 5.10948 + 8.84988i 0.797967 + 1.38212i 0.920938 + 0.389708i \(0.127424\pi\)
−0.122972 + 0.992410i \(0.539242\pi\)
\(42\) 0 0
\(43\) 0.830095 1.43777i 0.126588 0.219257i −0.795764 0.605606i \(-0.792931\pi\)
0.922353 + 0.386349i \(0.126264\pi\)
\(44\) −4.06238 + 7.03625i −0.612427 + 1.06075i
\(45\) 0 0
\(46\) 0.612725 + 1.06127i 0.0903414 + 0.156476i
\(47\) −4.66912 8.08715i −0.681061 1.17963i −0.974657 0.223703i \(-0.928185\pi\)
0.293596 0.955930i \(-0.405148\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.205332 + 0.355645i 0.0290383 + 0.0502958i
\(51\) 0 0
\(52\) 7.15561 0.992305
\(53\) 5.32326 + 9.22015i 0.731206 + 1.26649i 0.956368 + 0.292164i \(0.0943754\pi\)
−0.225162 + 0.974321i \(0.572291\pi\)
\(54\) 0 0
\(55\) 10.8387 1.46149
\(56\) 0 0
\(57\) 0 0
\(58\) −0.508080 −0.0667142
\(59\) −3.03215 + 5.25183i −0.394752 + 0.683730i −0.993069 0.117529i \(-0.962503\pi\)
0.598318 + 0.801259i \(0.295836\pi\)
\(60\) 0 0
\(61\) −3.99298 6.91605i −0.511249 0.885509i −0.999915 0.0130384i \(-0.995850\pi\)
0.488666 0.872471i \(-0.337484\pi\)
\(62\) −1.56287 −0.198485
\(63\) 0 0
\(64\) −6.66019 −0.832524
\(65\) −4.77292 8.26693i −0.592007 1.02539i
\(66\) 0 0
\(67\) −4.13160 + 7.15614i −0.504755 + 0.874262i 0.495230 + 0.868762i \(0.335084\pi\)
−0.999985 + 0.00549964i \(0.998249\pi\)
\(68\) −3.32431 −0.403131
\(69\) 0 0
\(70\) 0 0
\(71\) −6.23912 −0.740448 −0.370224 0.928943i \(-0.620719\pi\)
−0.370224 + 0.928943i \(0.620719\pi\)
\(72\) 0 0
\(73\) 3.57780 + 6.19694i 0.418750 + 0.725297i 0.995814 0.0914022i \(-0.0291349\pi\)
−0.577064 + 0.816699i \(0.695802\pi\)
\(74\) −0.396990 −0.0461492
\(75\) 0 0
\(76\) 6.95103 + 12.0395i 0.797338 + 1.38103i
\(77\) 0 0
\(78\) 0 0
\(79\) 4.91423 + 8.51170i 0.552894 + 0.957641i 0.998064 + 0.0621945i \(0.0198099\pi\)
−0.445170 + 0.895446i \(0.646857\pi\)
\(80\) 4.74322 + 8.21550i 0.530308 + 0.918521i
\(81\) 0 0
\(82\) −1.22180 + 2.11621i −0.134925 + 0.233696i
\(83\) −3.44733 + 5.97094i −0.378393 + 0.655396i −0.990829 0.135124i \(-0.956857\pi\)
0.612436 + 0.790521i \(0.290190\pi\)
\(84\) 0 0
\(85\) 2.21737 + 3.84060i 0.240508 + 0.416571i
\(86\) 0.396990 0.0428085
\(87\) 0 0
\(88\) −3.94282 −0.420306
\(89\) 2.51769 4.36077i 0.266875 0.462240i −0.701178 0.712986i \(-0.747342\pi\)
0.968053 + 0.250745i \(0.0806757\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.97825 8.62258i 0.519018 0.898966i
\(93\) 0 0
\(94\) 1.11650 1.93383i 0.115158 0.199459i
\(95\) 9.27292 16.0612i 0.951381 1.64784i
\(96\) 0 0
\(97\) 1.53167 2.65294i 0.155518 0.269365i −0.777730 0.628599i \(-0.783629\pi\)
0.933247 + 0.359234i \(0.116962\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.66827 2.88953i 0.166827 0.288953i
\(101\) −11.0997 −1.10446 −0.552229 0.833692i \(-0.686223\pi\)
−0.552229 + 0.833692i \(0.686223\pi\)
\(102\) 0 0
\(103\) −7.98597 −0.786881 −0.393440 0.919350i \(-0.628715\pi\)
−0.393440 + 0.919350i \(0.628715\pi\)
\(104\) 1.73625 + 3.00728i 0.170254 + 0.294888i
\(105\) 0 0
\(106\) −1.27292 + 2.20475i −0.123636 + 0.214145i
\(107\) 1.97825 3.42642i 0.191244 0.331245i −0.754419 0.656394i \(-0.772081\pi\)
0.945663 + 0.325149i \(0.105414\pi\)
\(108\) 0 0
\(109\) −3.63160 6.29012i −0.347844 0.602484i 0.638022 0.770018i \(-0.279753\pi\)
−0.985866 + 0.167534i \(0.946420\pi\)
\(110\) 1.29589 + 2.24456i 0.123559 + 0.214010i
\(111\) 0 0
\(112\) 0 0
\(113\) 3.46457 + 6.00082i 0.325920 + 0.564509i 0.981698 0.190444i \(-0.0609928\pi\)
−0.655778 + 0.754953i \(0.727659\pi\)
\(114\) 0 0
\(115\) −13.2823 −1.23858
\(116\) 2.06402 + 3.57498i 0.191639 + 0.331929i
\(117\) 0 0
\(118\) −1.45011 −0.133494
\(119\) 0 0
\(120\) 0 0
\(121\) 6.48865 0.589877
\(122\) 0.954815 1.65379i 0.0864449 0.149727i
\(123\) 0 0
\(124\) 6.34899 + 10.9968i 0.570156 + 0.987540i
\(125\) 8.50788 0.760968
\(126\) 0 0
\(127\) 9.11109 0.808479 0.404239 0.914653i \(-0.367536\pi\)
0.404239 + 0.914653i \(0.367536\pi\)
\(128\) −3.55718 6.16122i −0.314413 0.544580i
\(129\) 0 0
\(130\) 1.14132 1.97682i 0.100100 0.173378i
\(131\) −4.30286 −0.375943 −0.187971 0.982175i \(-0.560191\pi\)
−0.187971 + 0.982175i \(0.560191\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.97592 −0.170694
\(135\) 0 0
\(136\) −0.806617 1.39710i −0.0691668 0.119800i
\(137\) −20.5893 −1.75907 −0.879533 0.475838i \(-0.842145\pi\)
−0.879533 + 0.475838i \(0.842145\pi\)
\(138\) 0 0
\(139\) −7.88067 13.6497i −0.668429 1.15775i −0.978343 0.206989i \(-0.933634\pi\)
0.309914 0.950765i \(-0.399700\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.745960 1.29204i −0.0625996 0.108426i
\(143\) −7.70127 13.3390i −0.644012 1.11546i
\(144\) 0 0
\(145\) 2.75347 4.76915i 0.228663 0.396056i
\(146\) −0.855536 + 1.48183i −0.0708047 + 0.122637i
\(147\) 0 0
\(148\) 1.61273 + 2.79332i 0.132565 + 0.229610i
\(149\) −6.06758 −0.497076 −0.248538 0.968622i \(-0.579950\pi\)
−0.248538 + 0.968622i \(0.579950\pi\)
\(150\) 0 0
\(151\) 4.48865 0.365281 0.182641 0.983180i \(-0.441536\pi\)
0.182641 + 0.983180i \(0.441536\pi\)
\(152\) −3.37323 + 5.84260i −0.273605 + 0.473897i
\(153\) 0 0
\(154\) 0 0
\(155\) 8.46978 14.6701i 0.680309 1.17833i
\(156\) 0 0
\(157\) 0.514457 0.891066i 0.0410582 0.0711148i −0.844766 0.535136i \(-0.820260\pi\)
0.885824 + 0.464021i \(0.153594\pi\)
\(158\) −1.17511 + 2.03534i −0.0934865 + 0.161923i
\(159\) 0 0
\(160\) −3.57780 + 6.19694i −0.282850 + 0.489911i
\(161\) 0 0
\(162\) 0 0
\(163\) −3.41423 + 5.91362i −0.267423 + 0.463190i −0.968196 0.250194i \(-0.919505\pi\)
0.700772 + 0.713385i \(0.252839\pi\)
\(164\) 19.8536 1.55031
\(165\) 0 0
\(166\) −1.64867 −0.127962
\(167\) −8.99716 15.5835i −0.696221 1.20589i −0.969767 0.244032i \(-0.921530\pi\)
0.273546 0.961859i \(-0.411803\pi\)
\(168\) 0 0
\(169\) −0.282630 + 0.489530i −0.0217408 + 0.0376561i
\(170\) −0.530225 + 0.918376i −0.0406664 + 0.0704362i
\(171\) 0 0
\(172\) −1.61273 2.79332i −0.122969 0.212989i
\(173\) 0.415178 + 0.719110i 0.0315654 + 0.0546729i 0.881377 0.472414i \(-0.156617\pi\)
−0.849811 + 0.527087i \(0.823284\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 7.65335 + 13.2560i 0.576893 + 0.999208i
\(177\) 0 0
\(178\) 1.20408 0.0902493
\(179\) 3.78947 + 6.56355i 0.283238 + 0.490583i 0.972180 0.234233i \(-0.0752580\pi\)
−0.688942 + 0.724816i \(0.741925\pi\)
\(180\) 0 0
\(181\) −0.409157 −0.0304124 −0.0152062 0.999884i \(-0.504840\pi\)
−0.0152062 + 0.999884i \(0.504840\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.83173 0.356200
\(185\) 2.15143 3.72639i 0.158176 0.273969i
\(186\) 0 0
\(187\) 3.57780 + 6.19694i 0.261635 + 0.453165i
\(188\) −18.1425 −1.32318
\(189\) 0 0
\(190\) 4.43474 0.321730
\(191\) 8.01204 + 13.8773i 0.579731 + 1.00412i 0.995510 + 0.0946575i \(0.0301756\pi\)
−0.415779 + 0.909466i \(0.636491\pi\)
\(192\) 0 0
\(193\) 6.18715 10.7164i 0.445360 0.771387i −0.552717 0.833369i \(-0.686409\pi\)
0.998077 + 0.0619822i \(0.0197422\pi\)
\(194\) 0.732518 0.0525917
\(195\) 0 0
\(196\) 0 0
\(197\) −23.1021 −1.64595 −0.822977 0.568075i \(-0.807688\pi\)
−0.822977 + 0.568075i \(0.807688\pi\)
\(198\) 0 0
\(199\) −3.37323 5.84260i −0.239122 0.414171i 0.721341 0.692580i \(-0.243526\pi\)
−0.960463 + 0.278409i \(0.910193\pi\)
\(200\) 1.61917 0.114493
\(201\) 0 0
\(202\) −1.32710 2.29860i −0.0933741 0.161729i
\(203\) 0 0
\(204\) 0 0
\(205\) −13.2427 22.9370i −0.924910 1.60199i
\(206\) −0.954815 1.65379i −0.0665251 0.115225i
\(207\) 0 0
\(208\) 6.74043 11.6748i 0.467365 0.809500i
\(209\) 14.9622 25.9153i 1.03496 1.79260i
\(210\) 0 0
\(211\) −8.44282 14.6234i −0.581228 1.00672i −0.995334 0.0964875i \(-0.969239\pi\)
0.414106 0.910228i \(-0.364094\pi\)
\(212\) 20.6843 1.42060
\(213\) 0 0
\(214\) 0.946090 0.0646734
\(215\) −2.15143 + 3.72639i −0.146726 + 0.254138i
\(216\) 0 0
\(217\) 0 0
\(218\) 0.868400 1.50411i 0.0588155 0.101871i
\(219\) 0 0
\(220\) 10.5288 18.2365i 0.709854 1.22950i
\(221\) 3.15103 5.45774i 0.211961 0.367128i
\(222\) 0 0
\(223\) −2.25071 + 3.89834i −0.150719 + 0.261052i −0.931492 0.363762i \(-0.881492\pi\)
0.780773 + 0.624815i \(0.214825\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.828460 + 1.43494i −0.0551084 + 0.0954505i
\(227\) −6.06429 −0.402501 −0.201251 0.979540i \(-0.564501\pi\)
−0.201251 + 0.979540i \(0.564501\pi\)
\(228\) 0 0
\(229\) 11.0493 0.730159 0.365080 0.930976i \(-0.381042\pi\)
0.365080 + 0.930976i \(0.381042\pi\)
\(230\) −1.58805 2.75059i −0.104713 0.181369i
\(231\) 0 0
\(232\) −1.00163 + 1.73488i −0.0657605 + 0.113901i
\(233\) −4.06922 + 7.04809i −0.266583 + 0.461736i −0.967977 0.251038i \(-0.919228\pi\)
0.701394 + 0.712774i \(0.252561\pi\)
\(234\) 0 0
\(235\) 12.1014 + 20.9602i 0.789407 + 1.36729i
\(236\) 5.89092 + 10.2034i 0.383466 + 0.664183i
\(237\) 0 0
\(238\) 0 0
\(239\) 10.5813 + 18.3273i 0.684445 + 1.18549i 0.973611 + 0.228214i \(0.0732886\pi\)
−0.289166 + 0.957279i \(0.593378\pi\)
\(240\) 0 0
\(241\) −13.6915 −0.881945 −0.440972 0.897521i \(-0.645366\pi\)
−0.440972 + 0.897521i \(0.645366\pi\)
\(242\) 0.775794 + 1.34371i 0.0498699 + 0.0863772i
\(243\) 0 0
\(244\) −15.5153 −0.993265
\(245\) 0 0
\(246\) 0 0
\(247\) −26.3549 −1.67692
\(248\) −3.08107 + 5.33656i −0.195648 + 0.338872i
\(249\) 0 0
\(250\) 1.01722 + 1.76187i 0.0643344 + 0.111430i
\(251\) 15.2040 0.959667 0.479833 0.877360i \(-0.340697\pi\)
0.479833 + 0.877360i \(0.340697\pi\)
\(252\) 0 0
\(253\) −21.4315 −1.34738
\(254\) 1.08934 + 1.88679i 0.0683511 + 0.118388i
\(255\) 0 0
\(256\) −5.80959 + 10.0625i −0.363099 + 0.628906i
\(257\) 25.6215 1.59822 0.799112 0.601182i \(-0.205303\pi\)
0.799112 + 0.601182i \(0.205303\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −18.5458 −1.15016
\(261\) 0 0
\(262\) −0.514457 0.891066i −0.0317833 0.0550502i
\(263\) −7.10069 −0.437847 −0.218924 0.975742i \(-0.570255\pi\)
−0.218924 + 0.975742i \(0.570255\pi\)
\(264\) 0 0
\(265\) −13.7968 23.8967i −0.847528 1.46796i
\(266\) 0 0
\(267\) 0 0
\(268\) 8.02696 + 13.9031i 0.490324 + 0.849267i
\(269\) 8.21572 + 14.2301i 0.500922 + 0.867622i 0.999999 + 0.00106448i \(0.000338834\pi\)
−0.499078 + 0.866557i \(0.666328\pi\)
\(270\) 0 0
\(271\) 6.34899 10.9968i 0.385674 0.668007i −0.606189 0.795321i \(-0.707302\pi\)
0.991862 + 0.127314i \(0.0406357\pi\)
\(272\) −3.13143 + 5.42379i −0.189871 + 0.328865i
\(273\) 0 0
\(274\) −2.46169 4.26378i −0.148716 0.257584i
\(275\) −7.18194 −0.433087
\(276\) 0 0
\(277\) −0.828460 −0.0497773 −0.0248887 0.999690i \(-0.507923\pi\)
−0.0248887 + 0.999690i \(0.507923\pi\)
\(278\) 1.88445 3.26396i 0.113022 0.195760i
\(279\) 0 0
\(280\) 0 0
\(281\) 2.60985 4.52039i 0.155690 0.269664i −0.777620 0.628735i \(-0.783573\pi\)
0.933310 + 0.359071i \(0.116906\pi\)
\(282\) 0 0
\(283\) −3.67708 + 6.36890i −0.218580 + 0.378592i −0.954374 0.298614i \(-0.903476\pi\)
0.735794 + 0.677205i \(0.236809\pi\)
\(284\) −6.06075 + 10.4975i −0.359639 + 0.622913i
\(285\) 0 0
\(286\) 1.84155 3.18966i 0.108893 0.188609i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.03611 12.1869i 0.413889 0.716877i
\(290\) 1.31684 0.0773273
\(291\) 0 0
\(292\) 13.9021 0.813557
\(293\) −3.91286 6.77728i −0.228592 0.395933i 0.728799 0.684728i \(-0.240079\pi\)
−0.957391 + 0.288795i \(0.906745\pi\)
\(294\) 0 0
\(295\) 7.85868 13.6116i 0.457550 0.792500i
\(296\) −0.782630 + 1.35556i −0.0454895 + 0.0787900i
\(297\) 0 0
\(298\) −0.725450 1.25652i −0.0420242 0.0727881i
\(299\) 9.43752 + 16.3463i 0.545786 + 0.945329i
\(300\) 0 0
\(301\) 0 0
\(302\) 0.536670 + 0.929540i 0.0308819 + 0.0534890i
\(303\) 0 0
\(304\) 26.1909 1.50215
\(305\) 10.3490 + 17.9249i 0.592580 + 1.02638i
\(306\) 0 0
\(307\) −22.6709 −1.29390 −0.646948 0.762534i \(-0.723955\pi\)
−0.646948 + 0.762534i \(0.723955\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.05064 0.230061
\(311\) 16.1588 27.9879i 0.916281 1.58705i 0.111266 0.993791i \(-0.464509\pi\)
0.805015 0.593255i \(-0.202157\pi\)
\(312\) 0 0
\(313\) −12.1598 21.0614i −0.687312 1.19046i −0.972704 0.232048i \(-0.925457\pi\)
0.285392 0.958411i \(-0.407876\pi\)
\(314\) 0.246037 0.0138847
\(315\) 0 0
\(316\) 19.0949 1.07417
\(317\) 2.56922 + 4.45002i 0.144302 + 0.249938i 0.929112 0.369798i \(-0.120573\pi\)
−0.784811 + 0.619736i \(0.787240\pi\)
\(318\) 0 0
\(319\) 4.44282 7.69519i 0.248750 0.430848i
\(320\) 17.2618 0.964964
\(321\) 0 0
\(322\) 0 0
\(323\) 12.2438 0.681262
\(324\) 0 0
\(325\) 3.16263 + 5.47783i 0.175431 + 0.303855i
\(326\) −1.63284 −0.0904349
\(327\) 0 0
\(328\) 4.81732 + 8.34384i 0.265992 + 0.460712i
\(329\) 0 0
\(330\) 0 0
\(331\) 5.84897 + 10.1307i 0.321488 + 0.556834i 0.980795 0.195040i \(-0.0624835\pi\)
−0.659307 + 0.751874i \(0.729150\pi\)
\(332\) 6.69753 + 11.6005i 0.367575 + 0.636658i
\(333\) 0 0
\(334\) 2.15143 3.72639i 0.117721 0.203899i
\(335\) 10.7082 18.5472i 0.585053 1.01334i
\(336\) 0 0
\(337\) 16.8473 + 29.1804i 0.917733 + 1.58956i 0.802850 + 0.596181i \(0.203316\pi\)
0.114883 + 0.993379i \(0.463351\pi\)
\(338\) −0.135167 −0.00735211
\(339\) 0 0
\(340\) 8.61590 0.467263
\(341\) 13.6663 23.6707i 0.740071 1.28184i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.782630 1.35556i 0.0421966 0.0730866i
\(345\) 0 0
\(346\) −0.0992788 + 0.171956i −0.00533726 + 0.00924441i
\(347\) 13.6557 23.6523i 0.733075 1.26972i −0.222488 0.974936i \(-0.571418\pi\)
0.955563 0.294788i \(-0.0952490\pi\)
\(348\) 0 0
\(349\) 11.4585 19.8467i 0.613358 1.06237i −0.377312 0.926086i \(-0.623152\pi\)
0.990670 0.136281i \(-0.0435150\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.77292 + 9.99898i −0.307697 + 0.532948i
\(353\) 10.2693 0.546581 0.273290 0.961932i \(-0.411888\pi\)
0.273290 + 0.961932i \(0.411888\pi\)
\(354\) 0 0
\(355\) 16.1705 0.858241
\(356\) −4.89142 8.47218i −0.259245 0.449025i
\(357\) 0 0
\(358\) −0.906150 + 1.56950i −0.0478915 + 0.0829505i
\(359\) 5.05034 8.74745i 0.266547 0.461673i −0.701421 0.712747i \(-0.747451\pi\)
0.967968 + 0.251075i \(0.0807839\pi\)
\(360\) 0 0
\(361\) −16.1014 27.8884i −0.847441 1.46781i
\(362\) −0.0489195 0.0847311i −0.00257115 0.00445337i
\(363\) 0 0
\(364\) 0 0
\(365\) −9.27292 16.0612i −0.485367 0.840680i
\(366\) 0 0
\(367\) 7.77537 0.405871 0.202935 0.979192i \(-0.434952\pi\)
0.202935 + 0.979192i \(0.434952\pi\)
\(368\) −9.37880 16.2446i −0.488904 0.846806i
\(369\) 0 0
\(370\) 1.02891 0.0534907
\(371\) 0 0
\(372\) 0 0
\(373\) 24.1111 1.24842 0.624212 0.781255i \(-0.285420\pi\)
0.624212 + 0.781255i \(0.285420\pi\)
\(374\) −0.855536 + 1.48183i −0.0442387 + 0.0766237i
\(375\) 0 0
\(376\) −4.40214 7.62473i −0.227023 0.393215i
\(377\) −7.82573 −0.403045
\(378\) 0 0
\(379\) −13.3581 −0.686161 −0.343081 0.939306i \(-0.611470\pi\)
−0.343081 + 0.939306i \(0.611470\pi\)
\(380\) −18.0156 31.2039i −0.924181 1.60073i
\(381\) 0 0
\(382\) −1.91586 + 3.31838i −0.0980242 + 0.169783i
\(383\) −9.24040 −0.472162 −0.236081 0.971733i \(-0.575863\pi\)
−0.236081 + 0.971733i \(0.575863\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.95898 0.150608
\(387\) 0 0
\(388\) −2.97577 5.15418i −0.151072 0.261664i
\(389\) −10.4484 −0.529756 −0.264878 0.964282i \(-0.585332\pi\)
−0.264878 + 0.964282i \(0.585332\pi\)
\(390\) 0 0
\(391\) −4.38442 7.59404i −0.221730 0.384047i
\(392\) 0 0
\(393\) 0 0
\(394\) −2.76212 4.78413i −0.139154 0.241021i
\(395\) −12.7366 22.0605i −0.640850 1.10999i
\(396\) 0 0
\(397\) −0.204579 + 0.354341i −0.0102675 + 0.0177838i −0.871114 0.491082i \(-0.836602\pi\)
0.860846 + 0.508866i \(0.169935\pi\)
\(398\) 0.806617 1.39710i 0.0404321 0.0700304i
\(399\) 0 0
\(400\) −3.14295 5.44375i −0.157147 0.272187i
\(401\) −15.2528 −0.761688 −0.380844 0.924639i \(-0.624367\pi\)
−0.380844 + 0.924639i \(0.624367\pi\)
\(402\) 0 0
\(403\) −24.0722 −1.19912
\(404\) −10.7823 + 18.6756i −0.536441 + 0.929143i
\(405\) 0 0
\(406\) 0 0
\(407\) 3.47141 6.01266i 0.172071 0.298036i
\(408\) 0 0
\(409\) −3.06335 + 5.30587i −0.151473 + 0.262359i −0.931769 0.363051i \(-0.881735\pi\)
0.780296 + 0.625410i \(0.215068\pi\)
\(410\) 3.16664 5.48477i 0.156389 0.270874i
\(411\) 0 0
\(412\) −7.75765 + 13.4366i −0.382192 + 0.661976i
\(413\) 0 0
\(414\) 0 0
\(415\) 8.93474 15.4754i 0.438589 0.759659i
\(416\) 10.1686 0.498557
\(417\) 0 0
\(418\) 7.15561 0.349992
\(419\) −0.781437 1.35349i −0.0381757 0.0661223i 0.846306 0.532697i \(-0.178821\pi\)
−0.884482 + 0.466574i \(0.845488\pi\)
\(420\) 0 0
\(421\) −11.6316 + 20.1465i −0.566889 + 0.981881i 0.429982 + 0.902838i \(0.358520\pi\)
−0.996871 + 0.0790438i \(0.974813\pi\)
\(422\) 2.01887 3.49679i 0.0982773 0.170221i
\(423\) 0 0
\(424\) 5.01887 + 8.69295i 0.243738 + 0.422167i
\(425\) −1.46927 2.54485i −0.0712702 0.123444i
\(426\) 0 0
\(427\) 0 0
\(428\) −3.84338 6.65692i −0.185777 0.321775i
\(429\) 0 0
\(430\) −1.02891 −0.0496187
\(431\) 0.502879 + 0.871011i 0.0242228 + 0.0419551i 0.877883 0.478876i \(-0.158956\pi\)
−0.853660 + 0.520831i \(0.825622\pi\)
\(432\) 0 0
\(433\) −13.1071 −0.629889 −0.314945 0.949110i \(-0.601986\pi\)
−0.314945 + 0.949110i \(0.601986\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −14.1111 −0.675799
\(437\) −18.3354 + 31.7579i −0.877101 + 1.51918i
\(438\) 0 0
\(439\) 9.30704 + 16.1203i 0.444201 + 0.769378i 0.997996 0.0632744i \(-0.0201543\pi\)
−0.553795 + 0.832653i \(0.686821\pi\)
\(440\) 10.2190 0.487170
\(441\) 0 0
\(442\) 1.50697 0.0716792
\(443\) −0.559503 0.969088i −0.0265828 0.0460427i 0.852428 0.522845i \(-0.175129\pi\)
−0.879011 + 0.476802i \(0.841796\pi\)
\(444\) 0 0
\(445\) −6.52532 + 11.3022i −0.309330 + 0.535775i
\(446\) −1.07639 −0.0509687
\(447\) 0 0
\(448\) 0 0
\(449\) 39.4419 1.86138 0.930689 0.365813i \(-0.119209\pi\)
0.930689 + 0.365813i \(0.119209\pi\)
\(450\) 0 0
\(451\) −21.3676 37.0097i −1.00616 1.74272i
\(452\) 13.4621 0.633203
\(453\) 0 0
\(454\) −0.725057 1.25584i −0.0340286 0.0589393i
\(455\) 0 0
\(456\) 0 0
\(457\) 17.1202 + 29.6531i 0.800852 + 1.38712i 0.919056 + 0.394126i \(0.128953\pi\)
−0.118205 + 0.992989i \(0.537714\pi\)
\(458\) 1.32107 + 2.28817i 0.0617297 + 0.106919i
\(459\) 0 0
\(460\) −12.9026 + 22.3479i −0.601585 + 1.04198i
\(461\) −10.1938 + 17.6561i −0.474772 + 0.822328i −0.999583 0.0288903i \(-0.990803\pi\)
0.524811 + 0.851219i \(0.324136\pi\)
\(462\) 0 0
\(463\) −3.40451 5.89679i −0.158221 0.274047i 0.776006 0.630725i \(-0.217243\pi\)
−0.934227 + 0.356678i \(0.883909\pi\)
\(464\) 7.77704 0.361040
\(465\) 0 0
\(466\) −1.94609 −0.0901509
\(467\) −12.3956 + 21.4698i −0.573598 + 0.993502i 0.422594 + 0.906319i \(0.361120\pi\)
−0.996192 + 0.0871825i \(0.972214\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.89372 + 5.01207i −0.133477 + 0.231190i
\(471\) 0 0
\(472\) −2.85877 + 4.95153i −0.131586 + 0.227913i
\(473\) −3.47141 + 6.01266i −0.159616 + 0.276462i
\(474\) 0 0
\(475\) −6.14441 + 10.6424i −0.281925 + 0.488309i
\(476\) 0 0
\(477\) 0 0
\(478\) −2.53022 + 4.38248i −0.115730 + 0.200450i
\(479\) −11.0997 −0.507157 −0.253579 0.967315i \(-0.581608\pi\)
−0.253579 + 0.967315i \(0.581608\pi\)
\(480\) 0 0
\(481\) −6.11465 −0.278804
\(482\) −1.63697 2.83532i −0.0745621 0.129145i
\(483\) 0 0
\(484\) 6.30314 10.9174i 0.286506 0.496244i
\(485\) −3.96978 + 6.87585i −0.180258 + 0.312216i
\(486\) 0 0
\(487\) 5.01887 + 8.69295i 0.227427 + 0.393915i 0.957045 0.289940i \(-0.0936354\pi\)
−0.729618 + 0.683855i \(0.760302\pi\)
\(488\) −3.76466 6.52059i −0.170418 0.295173i
\(489\) 0 0
\(490\) 0 0
\(491\) −6.19398 10.7283i −0.279530 0.484161i 0.691738 0.722149i \(-0.256845\pi\)
−0.971268 + 0.237988i \(0.923512\pi\)
\(492\) 0 0
\(493\) 3.63562 0.163740
\(494\) −3.15103 5.45774i −0.141772 0.245556i
\(495\) 0 0
\(496\) 23.9225 1.07415
\(497\) 0 0
\(498\) 0 0
\(499\) 10.2222 0.457608 0.228804 0.973473i \(-0.426519\pi\)
0.228804 + 0.973473i \(0.426519\pi\)
\(500\) 8.26464 14.3148i 0.369606 0.640177i
\(501\) 0 0
\(502\) 1.81781 + 3.14854i 0.0811329 + 0.140526i
\(503\) −8.45753 −0.377102 −0.188551 0.982063i \(-0.560379\pi\)
−0.188551 + 0.982063i \(0.560379\pi\)
\(504\) 0 0
\(505\) 28.7680 1.28016
\(506\) −2.56238 4.43818i −0.113912 0.197301i
\(507\) 0 0
\(508\) 8.85060 15.3297i 0.392682 0.680145i
\(509\) −10.5657 −0.468317 −0.234159 0.972198i \(-0.575233\pi\)
−0.234159 + 0.972198i \(0.575233\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −17.0071 −0.751616
\(513\) 0 0
\(514\) 3.06335 + 5.30587i 0.135118 + 0.234032i
\(515\) 20.6979 0.912060
\(516\) 0 0
\(517\) 19.5260 + 33.8200i 0.858752 + 1.48740i
\(518\) 0 0
\(519\) 0 0
\(520\) −4.50000 7.79423i −0.197338 0.341800i
\(521\) −9.87788 17.1090i −0.432758 0.749558i 0.564352 0.825534i \(-0.309126\pi\)
−0.997110 + 0.0759760i \(0.975793\pi\)
\(522\) 0 0
\(523\) −16.2641 + 28.1702i −0.711179 + 1.23180i 0.253236 + 0.967405i \(0.418505\pi\)
−0.964415 + 0.264394i \(0.914828\pi\)
\(524\) −4.17984 + 7.23970i −0.182597 + 0.316268i
\(525\) 0 0
\(526\) −0.848970 1.47046i −0.0370168 0.0641150i
\(527\) 11.1833 0.487153
\(528\) 0 0
\(529\) 3.26320 0.141878
\(530\) 3.29913 5.71426i 0.143305 0.248211i
\(531\) 0 0
\(532\) 0 0
\(533\) −18.8187 + 32.5950i −0.815130 + 1.41185i
\(534\) 0 0
\(535\) −5.12720 + 8.88057i −0.221668 + 0.383940i
\(536\) −3.89536 + 6.74695i −0.168254 + 0.291424i
\(537\) 0 0
\(538\) −1.96457 + 3.40274i −0.0846987 + 0.146702i
\(539\) 0 0
\(540\) 0 0
\(541\) −7.61109 + 13.1828i −0.327226 + 0.566773i −0.981960 0.189087i \(-0.939447\pi\)
0.654734 + 0.755859i \(0.272781\pi\)
\(542\) 3.03638 0.130424
\(543\) 0 0
\(544\) −4.72406 −0.202542
\(545\) 9.41234 + 16.3027i 0.403180 + 0.698329i
\(546\) 0 0
\(547\) −11.6871 + 20.2427i −0.499706 + 0.865517i −1.00000 0.000339172i \(-0.999892\pi\)
0.500294 + 0.865856i \(0.333225\pi\)
\(548\) −20.0007 + 34.6422i −0.854387 + 1.47984i
\(549\) 0 0
\(550\) −0.858685 1.48729i −0.0366144 0.0634181i
\(551\) −7.60199 13.1670i −0.323856 0.560934i
\(552\) 0 0
\(553\) 0 0
\(554\) −0.0990521 0.171563i −0.00420832 0.00728902i
\(555\) 0 0
\(556\) −30.6214 −1.29864
\(557\) 13.8337 + 23.9606i 0.586151 + 1.01524i 0.994731 + 0.102521i \(0.0326908\pi\)
−0.408580 + 0.912723i \(0.633976\pi\)
\(558\) 0 0
\(559\) 6.11465 0.258622
\(560\) 0 0
\(561\) 0 0
\(562\) 1.24815 0.0526500
\(563\) 4.27912 7.41166i 0.180343 0.312364i −0.761654 0.647984i \(-0.775612\pi\)
0.941998 + 0.335620i \(0.108946\pi\)
\(564\) 0 0
\(565\) −8.97944 15.5529i −0.377768 0.654313i
\(566\) −1.75855 −0.0739175
\(567\) 0 0
\(568\) −5.88237 −0.246819
\(569\) 6.86389 + 11.8886i 0.287749 + 0.498396i 0.973272 0.229655i \(-0.0737597\pi\)
−0.685523 + 0.728051i \(0.740426\pi\)
\(570\) 0 0
\(571\) −5.35868 + 9.28151i −0.224254 + 0.388419i −0.956095 0.293056i \(-0.905328\pi\)
0.731841 + 0.681475i \(0.238661\pi\)
\(572\) −29.9244 −1.25120
\(573\) 0 0
\(574\) 0 0
\(575\) 8.80111 0.367032
\(576\) 0 0
\(577\) 22.8177 + 39.5214i 0.949912 + 1.64530i 0.745605 + 0.666389i \(0.232161\pi\)
0.204307 + 0.978907i \(0.434506\pi\)
\(578\) 3.36500 0.139965
\(579\) 0 0
\(580\) −5.34950 9.26560i −0.222126 0.384733i
\(581\) 0 0
\(582\) 0 0
\(583\) −22.2616 38.5582i −0.921980 1.59692i
\(584\) 3.37323 + 5.84260i 0.139585 + 0.241768i
\(585\) 0 0
\(586\) 0.935657 1.62060i 0.0386516 0.0669466i
\(587\) −5.10948 + 8.84988i −0.210891 + 0.365274i −0.951994 0.306118i \(-0.900970\pi\)
0.741103 + 0.671392i \(0.234303\pi\)
\(588\) 0 0
\(589\) −23.3840 40.5023i −0.963521 1.66887i
\(590\) 3.75839 0.154730
\(591\) 0 0
\(592\) 6.07661 0.249747
\(593\) 5.69804 9.86929i 0.233990 0.405283i −0.724988 0.688761i \(-0.758155\pi\)
0.958979 + 0.283478i \(0.0914883\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.89411 + 10.2089i −0.241432 + 0.418173i
\(597\) 0 0
\(598\) −2.25673 + 3.90877i −0.0922846 + 0.159842i
\(599\) −17.2873 + 29.9424i −0.706339 + 1.22341i 0.259867 + 0.965644i \(0.416321\pi\)
−0.966206 + 0.257771i \(0.917012\pi\)
\(600\) 0 0
\(601\) 19.4207 33.6376i 0.792187 1.37211i −0.132423 0.991193i \(-0.542276\pi\)
0.924610 0.380915i \(-0.124391\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4.36032 7.55230i 0.177419 0.307299i
\(605\) −16.8172 −0.683717
\(606\) 0 0
\(607\) −41.3325 −1.67763 −0.838817 0.544414i \(-0.816752\pi\)
−0.838817 + 0.544414i \(0.816752\pi\)
\(608\) 9.87788 + 17.1090i 0.400601 + 0.693861i
\(609\) 0 0
\(610\) −2.47468 + 4.28627i −0.100197 + 0.173546i
\(611\) 17.1969 29.7858i 0.695710 1.20501i
\(612\) 0 0
\(613\) 14.3285 + 24.8176i 0.578721 + 1.00237i 0.995626 + 0.0934244i \(0.0297813\pi\)
−0.416905 + 0.908950i \(0.636885\pi\)
\(614\) −2.71057 4.69485i −0.109390 0.189469i
\(615\) 0 0
\(616\) 0 0
\(617\) −16.8518 29.1883i −0.678430 1.17508i −0.975454 0.220205i \(-0.929327\pi\)
0.297024 0.954870i \(-0.404006\pi\)
\(618\) 0 0
\(619\) 1.43807 0.0578010 0.0289005 0.999582i \(-0.490799\pi\)
0.0289005 + 0.999582i \(0.490799\pi\)
\(620\) −16.4552 28.5013i −0.660859 1.14464i
\(621\) 0 0
\(622\) 7.72789 0.309860
\(623\) 0 0
\(624\) 0 0
\(625\) −30.6375 −1.22550
\(626\) 2.90769 5.03626i 0.116215 0.201290i
\(627\) 0 0
\(628\) −0.999498 1.73118i −0.0398843 0.0690816i
\(629\) 2.84071 0.113266
\(630\) 0 0
\(631\) −30.7680 −1.22486 −0.612428 0.790527i \(-0.709807\pi\)
−0.612428 + 0.790527i \(0.709807\pi\)
\(632\) 4.63323 + 8.02500i 0.184300 + 0.319217i
\(633\) 0 0
\(634\) −0.614360 + 1.06410i −0.0243993 + 0.0422609i
\(635\) −23.6140 −0.937094
\(636\) 0 0
\(637\) 0 0
\(638\) 2.12476 0.0841202
\(639\) 0 0
\(640\) 9.21946 + 15.9686i 0.364431 + 0.631213i
\(641\) −9.23912 −0.364923 −0.182462 0.983213i \(-0.558407\pi\)
−0.182462 + 0.983213i \(0.558407\pi\)
\(642\) 0 0
\(643\) 12.7795 + 22.1348i 0.503976 + 0.872912i 0.999989 + 0.00459728i \(0.00146337\pi\)
−0.496013 + 0.868315i \(0.665203\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.46389 + 2.53552i 0.0575958 + 0.0997588i
\(647\) 14.1556 + 24.5181i 0.556512 + 0.963908i 0.997784 + 0.0665343i \(0.0211942\pi\)
−0.441272 + 0.897374i \(0.645472\pi\)
\(648\) 0 0
\(649\) 12.6803 21.9629i 0.497744 0.862118i
\(650\) −0.756258 + 1.30988i −0.0296629 + 0.0513776i
\(651\) 0 0
\(652\) 6.63323 + 11.4891i 0.259778 + 0.449948i
\(653\) 8.35021 0.326769 0.163385 0.986562i \(-0.447759\pi\)
0.163385 + 0.986562i \(0.447759\pi\)
\(654\) 0 0
\(655\) 11.1521 0.435749
\(656\) 18.7017 32.3922i 0.730177 1.26470i
\(657\) 0 0
\(658\) 0 0
\(659\) −16.7862 + 29.0745i −0.653897 + 1.13258i 0.328272 + 0.944583i \(0.393534\pi\)
−0.982169 + 0.188000i \(0.939799\pi\)
\(660\) 0 0
\(661\) 8.47668 14.6820i 0.329705 0.571065i −0.652748 0.757575i \(-0.726384\pi\)
0.982453 + 0.186509i \(0.0597175\pi\)
\(662\) −1.39862 + 2.42249i −0.0543591 + 0.0941527i
\(663\) 0 0
\(664\) −3.25021 + 5.62952i −0.126133 + 0.218468i
\(665\) 0 0
\(666\) 0 0
\(667\) −5.44445 + 9.43007i −0.210810 + 0.365134i
\(668\) −34.9597 −1.35263
\(669\) 0 0
\(670\) 5.12118 0.197848
\(671\) 16.6984 + 28.9225i 0.644636 + 1.11654i
\(672\) 0 0
\(673\) 22.2157 38.4788i 0.856354 1.48325i −0.0190299 0.999819i \(-0.506058\pi\)
0.875384 0.483429i \(-0.160609\pi\)
\(674\) −4.02859 + 6.97772i −0.155175 + 0.268772i
\(675\) 0 0
\(676\) 0.549100 + 0.951068i 0.0211192 + 0.0365796i
\(677\) −7.18681 12.4479i −0.276212 0.478412i 0.694229 0.719755i \(-0.255746\pi\)
−0.970440 + 0.241342i \(0.922412\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 2.09058 + 3.62099i 0.0801701 + 0.138859i
\(681\) 0 0
\(682\) 6.53585 0.250271
\(683\) −16.1546 27.9806i −0.618138 1.07065i −0.989825 0.142289i \(-0.954554\pi\)
0.371687 0.928358i \(-0.378780\pi\)
\(684\) 0 0
\(685\) 53.3632 2.03890
\(686\) 0 0
\(687\) 0 0
\(688\) −6.07661 −0.231669
\(689\) −19.6061 + 33.9588i −0.746934 + 1.29373i
\(690\) 0 0
\(691\) 14.4981 + 25.1114i 0.551533 + 0.955283i 0.998164 + 0.0605650i \(0.0192902\pi\)
−0.446631 + 0.894718i \(0.647376\pi\)
\(692\) 1.61323 0.0613259
\(693\) 0 0
\(694\) 6.53078 0.247905
\(695\) 20.4250 + 35.3772i 0.774765 + 1.34193i
\(696\) 0 0
\(697\) 8.74269 15.1428i 0.331153 0.573574i
\(698\) 5.47997 0.207420
\(699\) 0 0
\(700\) 0 0
\(701\) 26.3912 0.996783 0.498392 0.866952i \(-0.333924\pi\)
0.498392 + 0.866952i \(0.333924\pi\)
\(702\) 0 0
\(703\) −5.93984 10.2881i −0.224025 0.388023i
\(704\) 27.8525 1.04973
\(705\) 0 0
\(706\) 1.22782 + 2.12664i 0.0462095 + 0.0800372i
\(707\) 0 0
\(708\) 0 0
\(709\) 3.94282 + 6.82916i 0.148076 + 0.256475i 0.930516 0.366251i \(-0.119359\pi\)
−0.782441 + 0.622725i \(0.786025\pi\)
\(710\) 1.93337 + 3.34870i 0.0725581 + 0.125674i
\(711\) 0 0
\(712\) 2.37373 4.11142i 0.0889592 0.154082i
\(713\) −16.7473 + 29.0073i −0.627193 + 1.08633i
\(714\) 0 0
\(715\) 19.9601 + 34.5718i 0.746464 + 1.29291i
\(716\) 14.7245 0.550281
\(717\) 0 0
\(718\) 2.41531 0.0901385
\(719\) −16.5754 + 28.7095i −0.618159 + 1.07068i 0.371663 + 0.928368i \(0.378788\pi\)
−0.989822 + 0.142314i \(0.954546\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.85021 6.66877i 0.143290 0.248186i
\(723\) 0 0
\(724\) −0.397460 + 0.688420i −0.0147715 + 0.0255849i
\(725\) −1.82450 + 3.16013i −0.0677603 + 0.117364i
\(726\) 0 0
\(727\) −16.5502 + 28.6658i −0.613814 + 1.06316i 0.376777 + 0.926304i \(0.377032\pi\)
−0.990591 + 0.136853i \(0.956301\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.21737 3.84060i 0.0820685 0.142147i
\(731\) −2.84071 −0.105067
\(732\) 0 0
\(733\) −44.5589 −1.64582 −0.822911 0.568170i \(-0.807651\pi\)
−0.822911 + 0.568170i \(0.807651\pi\)
\(734\) 0.929636 + 1.61018i 0.0343135 + 0.0594327i
\(735\) 0 0
\(736\) 7.07442 12.2533i 0.260767 0.451661i
\(737\) 17.2781 29.9266i 0.636448 1.10236i
\(738\) 0 0
\(739\) −19.9045 34.4756i −0.732199 1.26821i −0.955941 0.293558i \(-0.905161\pi\)
0.223742 0.974648i \(-0.428173\pi\)
\(740\) −4.17984 7.23970i −0.153654 0.266137i
\(741\) 0 0
\(742\) 0 0
\(743\) 5.37072 + 9.30237i 0.197033 + 0.341271i 0.947565 0.319563i \(-0.103536\pi\)
−0.750532 + 0.660834i \(0.770203\pi\)
\(744\) 0 0
\(745\) 15.7259 0.576152
\(746\) 2.88276 + 4.99309i 0.105545 + 0.182810i
\(747\) 0 0
\(748\) 13.9021 0.508310
\(749\) 0 0
\(750\) 0 0
\(751\) 19.7141 0.719378 0.359689 0.933072i \(-0.382883\pi\)
0.359689 + 0.933072i \(0.382883\pi\)
\(752\) −17.0899 + 29.6005i −0.623203 + 1.07942i
\(753\) 0 0
\(754\) −0.935657 1.62060i −0.0340746 0.0590189i
\(755\) −11.6336 −0.423391
\(756\) 0 0
\(757\) 35.3549 1.28499 0.642497 0.766288i \(-0.277898\pi\)
0.642497 + 0.766288i \(0.277898\pi\)
\(758\) −1.59712 2.76629i −0.0580100 0.100476i
\(759\) 0 0
\(760\) 8.74269 15.1428i 0.317131 0.549286i
\(761\) 39.1144 1.41790 0.708948 0.705261i \(-0.249170\pi\)
0.708948 + 0.705261i \(0.249170\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 31.1319 1.12631
\(765\) 0 0
\(766\) −1.10480 1.91357i −0.0399180 0.0691399i
\(767\) −22.3354 −0.806486
\(768\) 0 0
\(769\) 18.9240 + 32.7773i 0.682415 + 1.18198i 0.974242 + 0.225507i \(0.0724038\pi\)
−0.291826 + 0.956471i \(0.594263\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −12.0205 20.8201i −0.432628 0.749333i
\(773\) 14.9133 + 25.8305i 0.536393 + 0.929059i 0.999095 + 0.0425453i \(0.0135467\pi\)
−0.462702 + 0.886514i \(0.653120\pi\)
\(774\) 0 0
\(775\) −5.61224 + 9.72068i −0.201598 + 0.349177i
\(776\) 1.44409 2.50124i 0.0518399 0.0897894i
\(777\) 0 0
\(778\) −1.24923 2.16373i −0.0447870 0.0775734i
\(779\) −73.1229 −2.61990
\(780\) 0 0
\(781\) 26.0917 0.933633
\(782\) 1.04842 1.81591i 0.0374913 0.0649369i
\(783\) 0 0
\(784\) 0 0
\(785\) −1.33336 + 2.30946i −0.0475898 + 0.0824280i
\(786\) 0 0
\(787\) −8.81030 + 15.2599i −0.314053 + 0.543956i −0.979236 0.202724i \(-0.935020\pi\)
0.665182 + 0.746681i \(0.268354\pi\)
\(788\) −22.4416 + 38.8700i −0.799448 + 1.38468i
\(789\) 0 0
\(790\) 3.04563 5.27518i 0.108359 0.187683i
\(791\) 0 0
\(792\) 0 0
\(793\) 14.7066 25.4725i 0.522246 0.904556i
\(794\) −0.0978390 −0.00347218
\(795\) 0 0
\(796\) −13.1071 −0.464570
\(797\) 5.06056 + 8.76515i 0.179254 + 0.310477i 0.941625 0.336663i \(-0.109298\pi\)
−0.762371 + 0.647140i \(0.775965\pi\)
\(798\) 0 0
\(799\) −7.98921 + 13.8377i −0.282638 + 0.489543i
\(800\) 2.37072 4.10621i 0.0838177 0.145177i
\(801\) 0 0
\(802\) −1.82365 3.15865i −0.0643953 0.111536i
\(803\) −14.9622 25.9153i −0.528004 0.914529i
\(804\) 0 0
\(805\) 0 0
\(806\) −2.87812 4.98504i −0.101377 0.175591i
\(807\) 0 0
\(808\) −10.4650 −0.368157
\(809\) −23.5735 40.8305i −0.828799 1.43552i −0.898981 0.437988i \(-0.855691\pi\)
0.0701816 0.997534i \(-0.477642\pi\)
\(810\) 0 0
\(811\) 21.0577 0.739435 0.369717 0.929144i \(-0.379454\pi\)
0.369717 + 0.929144i \(0.379454\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.66019 0.0581896
\(815\) 8.84896 15.3269i 0.309966 0.536876i
\(816\) 0 0
\(817\) 5.93984 + 10.2881i 0.207809 + 0.359935i
\(818\) −1.46504 −0.0512238
\(819\) 0 0
\(820\) −51.4563 −1.79693
\(821\) 5.58018 + 9.66515i 0.194750 + 0.337316i 0.946818 0.321768i \(-0.104277\pi\)
−0.752069 + 0.659085i \(0.770944\pi\)
\(822\) 0 0
\(823\) −4.71737 + 8.17072i −0.164437 + 0.284814i −0.936455 0.350787i \(-0.885914\pi\)
0.772018 + 0.635601i \(0.219247\pi\)
\(824\) −7.52933 −0.262297
\(825\) 0 0
\(826\) 0 0
\(827\) −17.2646 −0.600348 −0.300174 0.953884i \(-0.597045\pi\)
−0.300174 + 0.953884i \(0.597045\pi\)
\(828\) 0 0
\(829\) 24.2263 + 41.9612i 0.841415 + 1.45737i 0.888699 + 0.458492i \(0.151610\pi\)
−0.0472838 + 0.998881i \(0.515057\pi\)
\(830\) 4.27301 0.148318
\(831\) 0 0
\(832\) −12.2651 21.2438i −0.425215 0.736495i
\(833\) 0 0
\(834\) 0 0
\(835\) 23.3187 + 40.3893i 0.806978 + 1.39773i
\(836\) −29.0688 50.3487i −1.00537 1.74135i
\(837\) 0 0
\(838\) 0.186860 0.323651i 0.00645497 0.0111803i
\(839\) −7.43429 + 12.8766i −0.256660 + 0.444548i −0.965345 0.260977i \(-0.915955\pi\)
0.708685 + 0.705525i \(0.249289\pi\)
\(840\) 0 0
\(841\) 12.2427 + 21.2050i 0.422162 + 0.731206i
\(842\) −5.56277 −0.191706
\(843\) 0 0
\(844\) −32.8058 −1.12922
\(845\) 0.732518 1.26876i 0.0251994 0.0436466i
\(846\) 0 0
\(847\) 0 0
\(848\) 19.4841 33.7475i 0.669088 1.15889i
\(849\) 0 0
\(850\) 0.351337 0.608534i 0.0120508 0.0208725i
\(851\) −4.25404 + 7.36821i −0.145827 + 0.252579i
\(852\) 0 0
\(853\) −3.99900 + 6.92648i −0.136923 + 0.237158i −0.926331 0.376712i \(-0.877055\pi\)
0.789407 + 0.613870i \(0.210388\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.86513 3.23050i 0.0637488 0.110416i
\(857\) 43.1322 1.47337 0.736684 0.676237i \(-0.236390\pi\)
0.736684 + 0.676237i \(0.236390\pi\)
\(858\) 0 0
\(859\) −2.44359 −0.0833742 −0.0416871 0.999131i \(-0.513273\pi\)
−0.0416871 + 0.999131i \(0.513273\pi\)
\(860\) 4.17984 + 7.23970i 0.142531 + 0.246872i
\(861\) 0 0
\(862\) −0.120250 + 0.208279i −0.00409573 + 0.00709401i
\(863\) 12.8594 22.2731i 0.437738 0.758185i −0.559777 0.828644i \(-0.689113\pi\)
0.997515 + 0.0704589i \(0.0224464\pi\)
\(864\) 0 0
\(865\) −1.07605 1.86378i −0.0365870 0.0633705i
\(866\) −1.56711 2.71432i −0.0532526 0.0922362i
\(867\) 0 0
\(868\) 0 0
\(869\) −20.5510 35.5954i −0.697146 1.20749i
\(870\) 0 0
\(871\) −30.4342 −1.03122
\(872\) −3.42395 5.93045i −0.115949 0.200830i
\(873\) 0 0
\(874\) −8.76884 −0.296611
\(875\) 0 0
\(876\) 0 0
\(877\) −21.9590 −0.741502 −0.370751 0.928732i \(-0.620900\pi\)
−0.370751 + 0.928732i \(0.620900\pi\)
\(878\) −2.22553 + 3.85473i −0.0751080 + 0.130091i
\(879\) 0 0
\(880\) −19.8359 34.3567i −0.668667 1.15817i
\(881\) 35.0576 1.18112 0.590560 0.806994i \(-0.298907\pi\)
0.590560 + 0.806994i \(0.298907\pi\)
\(882\) 0 0
\(883\) 26.3009 0.885097 0.442549 0.896744i \(-0.354074\pi\)
0.442549 + 0.896744i \(0.354074\pi\)
\(884\) −6.12188 10.6034i −0.205901 0.356631i
\(885\) 0 0
\(886\) 0.133790 0.231731i 0.00449477 0.00778517i
\(887\) −47.8180 −1.60557 −0.802785 0.596269i \(-0.796649\pi\)
−0.802785 + 0.596269i \(0.796649\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −3.12071 −0.104607
\(891\) 0 0
\(892\) 4.37272 + 7.57378i 0.146410 + 0.253589i
\(893\) 66.8208 2.23607
\(894\) 0 0
\(895\) −9.82150 17.0113i −0.328296 0.568626i
\(896\) 0 0
\(897\) 0 0
\(898\) 4.71574 + 8.16789i 0.157366 + 0.272566i
\(899\) −6.94357 12.0266i −0.231581 0.401110i
\(900\) 0 0
\(901\) 9.10848 15.7764i 0.303448 0.525587i
\(902\) 5.10948 8.84988i 0.170127 0.294669i
\(903\) 0 0
\(904\) 3.26647 + 5.65769i 0.108641 + 0.188172i
\(905\) 1.06045 0.0352505
\(906\) 0 0
\(907\) −19.1144 −0.634682 −0.317341 0.948312i \(-0.602790\pi\)
−0.317341 + 0.948312i \(0.602790\pi\)
\(908\) −5.89092 + 10.2034i −0.195497 + 0.338611i
\(909\) 0 0
\(910\) 0 0
\(911\) −9.02928 + 15.6392i −0.299153 + 0.518149i −0.975942 0.218028i \(-0.930038\pi\)
0.676789 + 0.736177i \(0.263371\pi\)
\(912\) 0 0
\(913\) 14.4165 24.9701i 0.477117 0.826391i
\(914\) −4.09385 + 7.09076i −0.135413 + 0.234541i
\(915\) 0 0
\(916\) 10.7334 18.5908i 0.354642 0.614258i
\(917\) 0 0
\(918\) 0 0
\(919\) −8.10464 + 14.0377i −0.267348 + 0.463060i −0.968176 0.250270i \(-0.919481\pi\)
0.700828 + 0.713330i \(0.252814\pi\)
\(920\) −12.5228 −0.412865
\(921\) 0 0
\(922\) −4.87514 −0.160554
\(923\) −11.4897 19.9007i −0.378187 0.655039i
\(924\) 0 0
\(925\) −1.42558 + 2.46918i −0.0468728 + 0.0811860i
\(926\) 0.814099 1.41006i 0.0267529 0.0463375i
\(927\) 0 0
\(928\) 2.93310 + 5.08029i 0.0962839 + 0.166769i
\(929\) 11.3415 + 19.6440i 0.372102 + 0.644499i 0.989889 0.141846i \(-0.0453039\pi\)
−0.617787 + 0.786345i \(0.711971\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 7.90576 + 13.6932i 0.258962 + 0.448535i
\(933\) 0 0
\(934\) −5.92814 −0.193975
\(935\) −9.27292 16.0612i −0.303257 0.525256i
\(936\) 0 0
\(937\) −51.2933 −1.67568 −0.837840 0.545915i \(-0.816182\pi\)
−0.837840 + 0.545915i \(0.816182\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 47.0216 1.53368
\(941\) 15.9659 27.6538i 0.520474 0.901487i −0.479243 0.877682i \(-0.659089\pi\)
0.999717 0.0238048i \(-0.00757801\pi\)
\(942\) 0 0
\(943\) 26.1849 + 45.3535i 0.852697 + 1.47691i
\(944\) 22.1965 0.722433
\(945\) 0 0
\(946\) −1.66019 −0.0539774
\(947\) −2.24665 3.89131i −0.0730063 0.126451i 0.827211 0.561891i \(-0.189926\pi\)
−0.900218 + 0.435440i \(0.856593\pi\)
\(948\) 0 0
\(949\) −13.1774 + 22.8240i −0.427757 + 0.740898i
\(950\) −2.93854 −0.0953390
\(951\) 0 0
\(952\) 0 0
\(953\) −1.14635 −0.0371340 −0.0185670 0.999828i \(-0.505910\pi\)
−0.0185670 + 0.999828i \(0.505910\pi\)
\(954\) 0 0
\(955\) −20.7655 35.9669i −0.671956 1.16386i
\(956\) 41.1150 1.32975
\(957\) 0 0
\(958\) −1.32710 2.29860i −0.0428765 0.0742643i
\(959\) 0 0
\(960\) 0 0
\(961\) −5.85868 10.1475i −0.188990 0.327340i
\(962\) −0.731078 1.26626i −0.0235709 0.0408260i
\(963\) 0 0
\(964\) −13.3000 + 23.0363i −0.428365 + 0.741950i
\(965\) −16.0358 + 27.7748i −0.516210 + 0.894102i
\(966\) 0 0
\(967\) −24.8080 42.9686i −0.797770 1.38178i −0.921065 0.389408i \(-0.872680\pi\)
0.123295 0.992370i \(-0.460654\pi\)
\(968\) 6.11763 0.196628
\(969\) 0 0
\(970\) −1.89853 −0.0609582
\(971\) 2.56661 4.44550i 0.0823664 0.142663i −0.821900 0.569632i \(-0.807086\pi\)
0.904266 + 0.426970i \(0.140419\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.20013 + 2.07869i −0.0384546 + 0.0666054i
\(975\) 0 0
\(976\) −14.6151 + 25.3141i −0.467817 + 0.810283i
\(977\) 15.5974 27.0155i 0.499006 0.864303i −0.500994 0.865451i \(-0.667032\pi\)
0.999999 + 0.00114787i \(0.000365378\pi\)
\(978\) 0 0
\(979\) −10.5288 + 18.2365i −0.336503 + 0.582840i
\(980\) 0 0
\(981\) 0 0
\(982\) 1.48113 2.56538i 0.0472646 0.0818647i
\(983\) 20.3401 0.648748 0.324374 0.945929i \(-0.394846\pi\)
0.324374 + 0.945929i \(0.394846\pi\)
\(984\) 0 0
\(985\) 59.8757 1.90780
\(986\) 0.434681 + 0.752890i 0.0138431 + 0.0239769i
\(987\) 0 0
\(988\) −25.6014 + 44.3429i −0.814488 + 1.41074i
\(989\) 4.25404 7.36821i 0.135271 0.234296i
\(990\) 0 0
\(991\) 6.48276 + 11.2285i 0.205932 + 0.356684i 0.950429 0.310941i \(-0.100644\pi\)
−0.744498 + 0.667625i \(0.767311\pi\)
\(992\) 9.02234 + 15.6272i 0.286460 + 0.496163i
\(993\) 0 0
\(994\) 0 0
\(995\) 8.74269 + 15.1428i 0.277162 + 0.480059i
\(996\) 0 0
\(997\) 49.4816 1.56710 0.783548 0.621331i \(-0.213408\pi\)
0.783548 + 0.621331i \(0.213408\pi\)
\(998\) 1.22218 + 2.11688i 0.0386875 + 0.0670086i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.g.g.667.3 12
3.2 odd 2 441.2.g.g.79.4 12
7.2 even 3 1323.2.f.g.883.4 12
7.3 odd 6 1323.2.h.g.802.3 12
7.4 even 3 1323.2.h.g.802.4 12
7.5 odd 6 1323.2.f.g.883.3 12
7.6 odd 2 inner 1323.2.g.g.667.4 12
9.4 even 3 1323.2.h.g.226.4 12
9.5 odd 6 441.2.h.g.373.3 12
21.2 odd 6 441.2.f.g.295.4 yes 12
21.5 even 6 441.2.f.g.295.3 yes 12
21.11 odd 6 441.2.h.g.214.3 12
21.17 even 6 441.2.h.g.214.4 12
21.20 even 2 441.2.g.g.79.3 12
63.2 odd 6 3969.2.a.be.1.4 6
63.4 even 3 inner 1323.2.g.g.361.3 12
63.5 even 6 441.2.f.g.148.3 12
63.13 odd 6 1323.2.h.g.226.3 12
63.16 even 3 3969.2.a.bd.1.3 6
63.23 odd 6 441.2.f.g.148.4 yes 12
63.31 odd 6 inner 1323.2.g.g.361.4 12
63.32 odd 6 441.2.g.g.67.4 12
63.40 odd 6 1323.2.f.g.442.3 12
63.41 even 6 441.2.h.g.373.4 12
63.47 even 6 3969.2.a.be.1.3 6
63.58 even 3 1323.2.f.g.442.4 12
63.59 even 6 441.2.g.g.67.3 12
63.61 odd 6 3969.2.a.bd.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.f.g.148.3 12 63.5 even 6
441.2.f.g.148.4 yes 12 63.23 odd 6
441.2.f.g.295.3 yes 12 21.5 even 6
441.2.f.g.295.4 yes 12 21.2 odd 6
441.2.g.g.67.3 12 63.59 even 6
441.2.g.g.67.4 12 63.32 odd 6
441.2.g.g.79.3 12 21.20 even 2
441.2.g.g.79.4 12 3.2 odd 2
441.2.h.g.214.3 12 21.11 odd 6
441.2.h.g.214.4 12 21.17 even 6
441.2.h.g.373.3 12 9.5 odd 6
441.2.h.g.373.4 12 63.41 even 6
1323.2.f.g.442.3 12 63.40 odd 6
1323.2.f.g.442.4 12 63.58 even 3
1323.2.f.g.883.3 12 7.5 odd 6
1323.2.f.g.883.4 12 7.2 even 3
1323.2.g.g.361.3 12 63.4 even 3 inner
1323.2.g.g.361.4 12 63.31 odd 6 inner
1323.2.g.g.667.3 12 1.1 even 1 trivial
1323.2.g.g.667.4 12 7.6 odd 2 inner
1323.2.h.g.226.3 12 63.13 odd 6
1323.2.h.g.226.4 12 9.4 even 3
1323.2.h.g.802.3 12 7.3 odd 6
1323.2.h.g.802.4 12 7.4 even 3
3969.2.a.bd.1.3 6 63.16 even 3
3969.2.a.bd.1.4 6 63.61 odd 6
3969.2.a.be.1.3 6 63.47 even 6
3969.2.a.be.1.4 6 63.2 odd 6