Properties

Label 1323.2.f.g.442.4
Level $1323$
Weight $2$
Character 1323.442
Analytic conductor $10.564$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(442,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.442");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 442.4
Root \(1.29589 + 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 1323.442
Dual form 1323.2.f.g.883.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.119562 + 0.207087i) q^{2} +(0.971410 - 1.68253i) q^{4} +(1.29589 - 2.24456i) q^{5} +0.942820 q^{8} +O(q^{10})\) \(q+(0.119562 + 0.207087i) q^{2} +(0.971410 - 1.68253i) q^{4} +(1.29589 - 2.24456i) q^{5} +0.942820 q^{8} +0.619757 q^{10} +(2.09097 + 3.62167i) q^{11} +(1.84155 - 3.18966i) q^{13} +(-1.83009 - 3.16982i) q^{16} +1.71107 q^{17} +7.15561 q^{19} +(-2.51769 - 4.36077i) q^{20} +(-0.500000 + 0.866025i) q^{22} +(-2.56238 + 4.43818i) q^{23} +(-0.858685 - 1.48729i) q^{25} +0.880716 q^{26} +(-1.06238 - 1.84010i) q^{29} +(-3.26793 + 5.66021i) q^{31} +(1.38044 - 2.39099i) q^{32} +(0.204579 + 0.354341i) q^{34} +1.66019 q^{37} +(0.855536 + 1.48183i) q^{38} +(1.22180 - 2.11621i) q^{40} +(5.10948 - 8.84988i) q^{41} +(0.830095 + 1.43777i) q^{43} +8.12476 q^{44} -1.22545 q^{46} +(-4.66912 - 8.08715i) q^{47} +(0.205332 - 0.355645i) q^{50} +(-3.57780 - 6.19694i) q^{52} -10.6465 q^{53} +10.8387 q^{55} +(0.254040 - 0.440011i) q^{58} +(-3.03215 + 5.25183i) q^{59} +(-3.99298 - 6.91605i) q^{61} -1.56287 q^{62} -6.66019 q^{64} +(-4.77292 - 8.26693i) q^{65} +(-4.13160 + 7.15614i) q^{67} +(1.66215 - 2.87893i) q^{68} -6.23912 q^{71} -7.15561 q^{73} +(0.198495 + 0.343803i) q^{74} +(6.95103 - 12.0395i) q^{76} +(4.91423 + 8.51170i) q^{79} -9.48644 q^{80} +2.44359 q^{82} +(-3.44733 - 5.97094i) q^{83} +(2.21737 - 3.84060i) q^{85} +(-0.198495 + 0.343803i) q^{86} +(1.97141 + 3.41458i) q^{88} -5.03538 q^{89} +(4.97825 + 8.62258i) q^{92} +(1.11650 - 1.93383i) q^{94} +(9.27292 - 16.0612i) q^{95} +(1.53167 + 2.65294i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 6 q^{4} - 24 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} - 6 q^{4} - 24 q^{8} + 8 q^{11} - 6 q^{16} - 6 q^{22} + 4 q^{23} - 12 q^{25} + 22 q^{29} + 16 q^{32} - 12 q^{37} - 6 q^{43} + 28 q^{44} + 24 q^{46} + 56 q^{50} - 56 q^{53} - 18 q^{58} - 48 q^{64} - 6 q^{65} - 76 q^{71} + 36 q^{74} + 6 q^{79} + 30 q^{85} - 36 q^{86} + 6 q^{88} + 62 q^{92} + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.119562 + 0.207087i 0.0845428 + 0.146433i 0.905196 0.424994i \(-0.139724\pi\)
−0.820653 + 0.571426i \(0.806390\pi\)
\(3\) 0 0
\(4\) 0.971410 1.68253i 0.485705 0.841266i
\(5\) 1.29589 2.24456i 0.579542 1.00380i −0.415990 0.909369i \(-0.636565\pi\)
0.995532 0.0944264i \(-0.0301017\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.942820 0.333337
\(9\) 0 0
\(10\) 0.619757 0.195984
\(11\) 2.09097 + 3.62167i 0.630452 + 1.09197i 0.987459 + 0.157873i \(0.0504636\pi\)
−0.357008 + 0.934101i \(0.616203\pi\)
\(12\) 0 0
\(13\) 1.84155 3.18966i 0.510755 0.884653i −0.489168 0.872190i \(-0.662699\pi\)
0.999922 0.0124633i \(-0.00396730\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.83009 3.16982i −0.457524 0.792454i
\(17\) 1.71107 0.414996 0.207498 0.978235i \(-0.433468\pi\)
0.207498 + 0.978235i \(0.433468\pi\)
\(18\) 0 0
\(19\) 7.15561 1.64161 0.820805 0.571209i \(-0.193525\pi\)
0.820805 + 0.571209i \(0.193525\pi\)
\(20\) −2.51769 4.36077i −0.562973 0.975097i
\(21\) 0 0
\(22\) −0.500000 + 0.866025i −0.106600 + 0.184637i
\(23\) −2.56238 + 4.43818i −0.534294 + 0.925424i 0.464904 + 0.885361i \(0.346089\pi\)
−0.999197 + 0.0400622i \(0.987244\pi\)
\(24\) 0 0
\(25\) −0.858685 1.48729i −0.171737 0.297457i
\(26\) 0.880716 0.172723
\(27\) 0 0
\(28\) 0 0
\(29\) −1.06238 1.84010i −0.197279 0.341698i 0.750366 0.661023i \(-0.229877\pi\)
−0.947645 + 0.319325i \(0.896544\pi\)
\(30\) 0 0
\(31\) −3.26793 + 5.66021i −0.586937 + 1.01660i 0.407694 + 0.913119i \(0.366333\pi\)
−0.994631 + 0.103486i \(0.967000\pi\)
\(32\) 1.38044 2.39099i 0.244029 0.422671i
\(33\) 0 0
\(34\) 0.204579 + 0.354341i 0.0350850 + 0.0607689i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.66019 0.272934 0.136467 0.990645i \(-0.456425\pi\)
0.136467 + 0.990645i \(0.456425\pi\)
\(38\) 0.855536 + 1.48183i 0.138786 + 0.240385i
\(39\) 0 0
\(40\) 1.22180 2.11621i 0.193183 0.334602i
\(41\) 5.10948 8.84988i 0.797967 1.38212i −0.122972 0.992410i \(-0.539242\pi\)
0.920938 0.389708i \(-0.127424\pi\)
\(42\) 0 0
\(43\) 0.830095 + 1.43777i 0.126588 + 0.219257i 0.922353 0.386349i \(-0.126264\pi\)
−0.795764 + 0.605606i \(0.792931\pi\)
\(44\) 8.12476 1.22485
\(45\) 0 0
\(46\) −1.22545 −0.180683
\(47\) −4.66912 8.08715i −0.681061 1.17963i −0.974657 0.223703i \(-0.928185\pi\)
0.293596 0.955930i \(-0.405148\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.205332 0.355645i 0.0290383 0.0502958i
\(51\) 0 0
\(52\) −3.57780 6.19694i −0.496152 0.859361i
\(53\) −10.6465 −1.46241 −0.731206 0.682157i \(-0.761042\pi\)
−0.731206 + 0.682157i \(0.761042\pi\)
\(54\) 0 0
\(55\) 10.8387 1.46149
\(56\) 0 0
\(57\) 0 0
\(58\) 0.254040 0.440011i 0.0333571 0.0577762i
\(59\) −3.03215 + 5.25183i −0.394752 + 0.683730i −0.993069 0.117529i \(-0.962503\pi\)
0.598318 + 0.801259i \(0.295836\pi\)
\(60\) 0 0
\(61\) −3.99298 6.91605i −0.511249 0.885509i −0.999915 0.0130384i \(-0.995850\pi\)
0.488666 0.872471i \(-0.337484\pi\)
\(62\) −1.56287 −0.198485
\(63\) 0 0
\(64\) −6.66019 −0.832524
\(65\) −4.77292 8.26693i −0.592007 1.02539i
\(66\) 0 0
\(67\) −4.13160 + 7.15614i −0.504755 + 0.874262i 0.495230 + 0.868762i \(0.335084\pi\)
−0.999985 + 0.00549964i \(0.998249\pi\)
\(68\) 1.66215 2.87893i 0.201566 0.349122i
\(69\) 0 0
\(70\) 0 0
\(71\) −6.23912 −0.740448 −0.370224 0.928943i \(-0.620719\pi\)
−0.370224 + 0.928943i \(0.620719\pi\)
\(72\) 0 0
\(73\) −7.15561 −0.837501 −0.418750 0.908101i \(-0.637532\pi\)
−0.418750 + 0.908101i \(0.637532\pi\)
\(74\) 0.198495 + 0.343803i 0.0230746 + 0.0399663i
\(75\) 0 0
\(76\) 6.95103 12.0395i 0.797338 1.38103i
\(77\) 0 0
\(78\) 0 0
\(79\) 4.91423 + 8.51170i 0.552894 + 0.957641i 0.998064 + 0.0621945i \(0.0198099\pi\)
−0.445170 + 0.895446i \(0.646857\pi\)
\(80\) −9.48644 −1.06062
\(81\) 0 0
\(82\) 2.44359 0.269849
\(83\) −3.44733 5.97094i −0.378393 0.655396i 0.612436 0.790521i \(-0.290190\pi\)
−0.990829 + 0.135124i \(0.956857\pi\)
\(84\) 0 0
\(85\) 2.21737 3.84060i 0.240508 0.416571i
\(86\) −0.198495 + 0.343803i −0.0214043 + 0.0370733i
\(87\) 0 0
\(88\) 1.97141 + 3.41458i 0.210153 + 0.363996i
\(89\) −5.03538 −0.533749 −0.266875 0.963731i \(-0.585991\pi\)
−0.266875 + 0.963731i \(0.585991\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.97825 + 8.62258i 0.519018 + 0.898966i
\(93\) 0 0
\(94\) 1.11650 1.93383i 0.115158 0.199459i
\(95\) 9.27292 16.0612i 0.951381 1.64784i
\(96\) 0 0
\(97\) 1.53167 + 2.65294i 0.155518 + 0.269365i 0.933247 0.359234i \(-0.116962\pi\)
−0.777730 + 0.628599i \(0.783629\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.33654 −0.333654
\(101\) 5.54984 + 9.61260i 0.552229 + 0.956489i 0.998113 + 0.0613986i \(0.0195561\pi\)
−0.445884 + 0.895091i \(0.647111\pi\)
\(102\) 0 0
\(103\) 3.99298 6.91605i 0.393440 0.681459i −0.599460 0.800404i \(-0.704618\pi\)
0.992901 + 0.118946i \(0.0379515\pi\)
\(104\) 1.73625 3.00728i 0.170254 0.294888i
\(105\) 0 0
\(106\) −1.27292 2.20475i −0.123636 0.214145i
\(107\) −3.95649 −0.382489 −0.191244 0.981542i \(-0.561252\pi\)
−0.191244 + 0.981542i \(0.561252\pi\)
\(108\) 0 0
\(109\) 7.26320 0.695688 0.347844 0.937552i \(-0.386914\pi\)
0.347844 + 0.937552i \(0.386914\pi\)
\(110\) 1.29589 + 2.24456i 0.123559 + 0.214010i
\(111\) 0 0
\(112\) 0 0
\(113\) 3.46457 6.00082i 0.325920 0.564509i −0.655778 0.754953i \(-0.727659\pi\)
0.981698 + 0.190444i \(0.0609928\pi\)
\(114\) 0 0
\(115\) 6.64115 + 11.5028i 0.619291 + 1.07264i
\(116\) −4.12803 −0.383278
\(117\) 0 0
\(118\) −1.45011 −0.133494
\(119\) 0 0
\(120\) 0 0
\(121\) −3.24433 + 5.61934i −0.294939 + 0.510849i
\(122\) 0.954815 1.65379i 0.0864449 0.149727i
\(123\) 0 0
\(124\) 6.34899 + 10.9968i 0.570156 + 0.987540i
\(125\) 8.50788 0.760968
\(126\) 0 0
\(127\) 9.11109 0.808479 0.404239 0.914653i \(-0.367536\pi\)
0.404239 + 0.914653i \(0.367536\pi\)
\(128\) −3.55718 6.16122i −0.314413 0.544580i
\(129\) 0 0
\(130\) 1.14132 1.97682i 0.100100 0.173378i
\(131\) 2.15143 3.72639i 0.187971 0.325576i −0.756602 0.653875i \(-0.773142\pi\)
0.944574 + 0.328299i \(0.106475\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.97592 −0.170694
\(135\) 0 0
\(136\) 1.61323 0.138334
\(137\) 10.2947 + 17.8309i 0.879533 + 1.52340i 0.851854 + 0.523779i \(0.175478\pi\)
0.0276785 + 0.999617i \(0.491189\pi\)
\(138\) 0 0
\(139\) −7.88067 + 13.6497i −0.668429 + 1.15775i 0.309914 + 0.950765i \(0.399700\pi\)
−0.978343 + 0.206989i \(0.933634\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.745960 1.29204i −0.0625996 0.108426i
\(143\) 15.4025 1.28802
\(144\) 0 0
\(145\) −5.50694 −0.457326
\(146\) −0.855536 1.48183i −0.0708047 0.122637i
\(147\) 0 0
\(148\) 1.61273 2.79332i 0.132565 0.229610i
\(149\) 3.03379 5.25468i 0.248538 0.430480i −0.714582 0.699551i \(-0.753383\pi\)
0.963120 + 0.269071i \(0.0867166\pi\)
\(150\) 0 0
\(151\) −2.24433 3.88728i −0.182641 0.316343i 0.760138 0.649761i \(-0.225131\pi\)
−0.942779 + 0.333418i \(0.891798\pi\)
\(152\) 6.74645 0.547210
\(153\) 0 0
\(154\) 0 0
\(155\) 8.46978 + 14.6701i 0.680309 + 1.17833i
\(156\) 0 0
\(157\) 0.514457 0.891066i 0.0410582 0.0711148i −0.844766 0.535136i \(-0.820260\pi\)
0.885824 + 0.464021i \(0.153594\pi\)
\(158\) −1.17511 + 2.03534i −0.0934865 + 0.161923i
\(159\) 0 0
\(160\) −3.57780 6.19694i −0.282850 0.489911i
\(161\) 0 0
\(162\) 0 0
\(163\) 6.82846 0.534846 0.267423 0.963579i \(-0.413828\pi\)
0.267423 + 0.963579i \(0.413828\pi\)
\(164\) −9.92680 17.1937i −0.775153 1.34260i
\(165\) 0 0
\(166\) 0.824336 1.42779i 0.0639809 0.110818i
\(167\) −8.99716 + 15.5835i −0.696221 + 1.20589i 0.273546 + 0.961859i \(0.411803\pi\)
−0.969767 + 0.244032i \(0.921530\pi\)
\(168\) 0 0
\(169\) −0.282630 0.489530i −0.0217408 0.0376561i
\(170\) 1.06045 0.0813328
\(171\) 0 0
\(172\) 3.22545 0.245938
\(173\) 0.415178 + 0.719110i 0.0315654 + 0.0546729i 0.881377 0.472414i \(-0.156617\pi\)
−0.849811 + 0.527087i \(0.823284\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 7.65335 13.2560i 0.576893 0.999208i
\(177\) 0 0
\(178\) −0.602038 1.04276i −0.0451247 0.0781582i
\(179\) −7.57893 −0.566476 −0.283238 0.959050i \(-0.591409\pi\)
−0.283238 + 0.959050i \(0.591409\pi\)
\(180\) 0 0
\(181\) −0.409157 −0.0304124 −0.0152062 0.999884i \(-0.504840\pi\)
−0.0152062 + 0.999884i \(0.504840\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2.41586 + 4.18440i −0.178100 + 0.308478i
\(185\) 2.15143 3.72639i 0.158176 0.273969i
\(186\) 0 0
\(187\) 3.57780 + 6.19694i 0.261635 + 0.453165i
\(188\) −18.1425 −1.32318
\(189\) 0 0
\(190\) 4.43474 0.321730
\(191\) 8.01204 + 13.8773i 0.579731 + 1.00412i 0.995510 + 0.0946575i \(0.0301756\pi\)
−0.415779 + 0.909466i \(0.636491\pi\)
\(192\) 0 0
\(193\) 6.18715 10.7164i 0.445360 0.771387i −0.552717 0.833369i \(-0.686409\pi\)
0.998077 + 0.0619822i \(0.0197422\pi\)
\(194\) −0.366259 + 0.634379i −0.0262959 + 0.0455458i
\(195\) 0 0
\(196\) 0 0
\(197\) −23.1021 −1.64595 −0.822977 0.568075i \(-0.807688\pi\)
−0.822977 + 0.568075i \(0.807688\pi\)
\(198\) 0 0
\(199\) 6.74645 0.478243 0.239122 0.970990i \(-0.423141\pi\)
0.239122 + 0.970990i \(0.423141\pi\)
\(200\) −0.809585 1.40224i −0.0572463 0.0991536i
\(201\) 0 0
\(202\) −1.32710 + 2.29860i −0.0933741 + 0.161729i
\(203\) 0 0
\(204\) 0 0
\(205\) −13.2427 22.9370i −0.924910 1.60199i
\(206\) 1.90963 0.133050
\(207\) 0 0
\(208\) −13.4809 −0.934730
\(209\) 14.9622 + 25.9153i 1.03496 + 1.79260i
\(210\) 0 0
\(211\) −8.44282 + 14.6234i −0.581228 + 1.00672i 0.414106 + 0.910228i \(0.364094\pi\)
−0.995334 + 0.0964875i \(0.969239\pi\)
\(212\) −10.3421 + 17.9131i −0.710301 + 1.23028i
\(213\) 0 0
\(214\) −0.473045 0.819338i −0.0323367 0.0560088i
\(215\) 4.30286 0.293453
\(216\) 0 0
\(217\) 0 0
\(218\) 0.868400 + 1.50411i 0.0588155 + 0.101871i
\(219\) 0 0
\(220\) 10.5288 18.2365i 0.709854 1.22950i
\(221\) 3.15103 5.45774i 0.211961 0.367128i
\(222\) 0 0
\(223\) −2.25071 3.89834i −0.150719 0.261052i 0.780773 0.624815i \(-0.214825\pi\)
−0.931492 + 0.363762i \(0.881492\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.65692 0.110217
\(227\) 3.03215 + 5.25183i 0.201251 + 0.348576i 0.948932 0.315482i \(-0.102166\pi\)
−0.747681 + 0.664058i \(0.768833\pi\)
\(228\) 0 0
\(229\) −5.52466 + 9.56899i −0.365080 + 0.632336i −0.988789 0.149320i \(-0.952292\pi\)
0.623709 + 0.781656i \(0.285625\pi\)
\(230\) −1.58805 + 2.75059i −0.104713 + 0.181369i
\(231\) 0 0
\(232\) −1.00163 1.73488i −0.0657605 0.113901i
\(233\) 8.13844 0.533167 0.266583 0.963812i \(-0.414105\pi\)
0.266583 + 0.963812i \(0.414105\pi\)
\(234\) 0 0
\(235\) −24.2028 −1.57881
\(236\) 5.89092 + 10.2034i 0.383466 + 0.664183i
\(237\) 0 0
\(238\) 0 0
\(239\) 10.5813 18.3273i 0.684445 1.18549i −0.289166 0.957279i \(-0.593378\pi\)
0.973611 0.228214i \(-0.0732886\pi\)
\(240\) 0 0
\(241\) 6.84573 + 11.8572i 0.440972 + 0.763786i 0.997762 0.0668671i \(-0.0213004\pi\)
−0.556790 + 0.830654i \(0.687967\pi\)
\(242\) −1.55159 −0.0997398
\(243\) 0 0
\(244\) −15.5153 −0.993265
\(245\) 0 0
\(246\) 0 0
\(247\) 13.1774 22.8240i 0.838460 1.45225i
\(248\) −3.08107 + 5.33656i −0.195648 + 0.338872i
\(249\) 0 0
\(250\) 1.01722 + 1.76187i 0.0643344 + 0.111430i
\(251\) 15.2040 0.959667 0.479833 0.877360i \(-0.340697\pi\)
0.479833 + 0.877360i \(0.340697\pi\)
\(252\) 0 0
\(253\) −21.4315 −1.34738
\(254\) 1.08934 + 1.88679i 0.0683511 + 0.118388i
\(255\) 0 0
\(256\) −5.80959 + 10.0625i −0.363099 + 0.628906i
\(257\) −12.8107 + 22.1889i −0.799112 + 1.38410i 0.121082 + 0.992642i \(0.461363\pi\)
−0.920195 + 0.391461i \(0.871970\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −18.5458 −1.15016
\(261\) 0 0
\(262\) 1.02891 0.0635665
\(263\) 3.55034 + 6.14938i 0.218924 + 0.379187i 0.954479 0.298278i \(-0.0964121\pi\)
−0.735556 + 0.677464i \(0.763079\pi\)
\(264\) 0 0
\(265\) −13.7968 + 23.8967i −0.847528 + 1.46796i
\(266\) 0 0
\(267\) 0 0
\(268\) 8.02696 + 13.9031i 0.490324 + 0.849267i
\(269\) −16.4314 −1.00184 −0.500922 0.865493i \(-0.667006\pi\)
−0.500922 + 0.865493i \(0.667006\pi\)
\(270\) 0 0
\(271\) −12.6980 −0.771348 −0.385674 0.922635i \(-0.626031\pi\)
−0.385674 + 0.922635i \(0.626031\pi\)
\(272\) −3.13143 5.42379i −0.189871 0.328865i
\(273\) 0 0
\(274\) −2.46169 + 4.26378i −0.148716 + 0.257584i
\(275\) 3.59097 6.21975i 0.216544 0.375065i
\(276\) 0 0
\(277\) 0.414230 + 0.717468i 0.0248887 + 0.0431084i 0.878201 0.478291i \(-0.158744\pi\)
−0.853313 + 0.521399i \(0.825410\pi\)
\(278\) −3.76890 −0.226044
\(279\) 0 0
\(280\) 0 0
\(281\) 2.60985 + 4.52039i 0.155690 + 0.269664i 0.933310 0.359071i \(-0.116906\pi\)
−0.777620 + 0.628735i \(0.783573\pi\)
\(282\) 0 0
\(283\) −3.67708 + 6.36890i −0.218580 + 0.378592i −0.954374 0.298614i \(-0.903476\pi\)
0.735794 + 0.677205i \(0.236809\pi\)
\(284\) −6.06075 + 10.4975i −0.359639 + 0.622913i
\(285\) 0 0
\(286\) 1.84155 + 3.18966i 0.108893 + 0.188609i
\(287\) 0 0
\(288\) 0 0
\(289\) −14.0722 −0.827778
\(290\) −0.658419 1.14041i −0.0386637 0.0669674i
\(291\) 0 0
\(292\) −6.95103 + 12.0395i −0.406778 + 0.704561i
\(293\) −3.91286 + 6.77728i −0.228592 + 0.395933i −0.957391 0.288795i \(-0.906745\pi\)
0.728799 + 0.684728i \(0.240079\pi\)
\(294\) 0 0
\(295\) 7.85868 + 13.6116i 0.457550 + 0.792500i
\(296\) 1.56526 0.0909789
\(297\) 0 0
\(298\) 1.45090 0.0840484
\(299\) 9.43752 + 16.3463i 0.545786 + 0.945329i
\(300\) 0 0
\(301\) 0 0
\(302\) 0.536670 0.929540i 0.0308819 0.0534890i
\(303\) 0 0
\(304\) −13.0954 22.6820i −0.751075 1.30090i
\(305\) −20.6979 −1.18516
\(306\) 0 0
\(307\) −22.6709 −1.29390 −0.646948 0.762534i \(-0.723955\pi\)
−0.646948 + 0.762534i \(0.723955\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.02532 + 3.50796i −0.115030 + 0.199239i
\(311\) 16.1588 27.9879i 0.916281 1.58705i 0.111266 0.993791i \(-0.464509\pi\)
0.805015 0.593255i \(-0.202157\pi\)
\(312\) 0 0
\(313\) −12.1598 21.0614i −0.687312 1.19046i −0.972704 0.232048i \(-0.925457\pi\)
0.285392 0.958411i \(-0.407876\pi\)
\(314\) 0.246037 0.0138847
\(315\) 0 0
\(316\) 19.0949 1.07417
\(317\) 2.56922 + 4.45002i 0.144302 + 0.249938i 0.929112 0.369798i \(-0.120573\pi\)
−0.784811 + 0.619736i \(0.787240\pi\)
\(318\) 0 0
\(319\) 4.44282 7.69519i 0.248750 0.430848i
\(320\) −8.63090 + 14.9492i −0.482482 + 0.835684i
\(321\) 0 0
\(322\) 0 0
\(323\) 12.2438 0.681262
\(324\) 0 0
\(325\) −6.32525 −0.350862
\(326\) 0.816422 + 1.41408i 0.0452174 + 0.0783189i
\(327\) 0 0
\(328\) 4.81732 8.34384i 0.265992 0.460712i
\(329\) 0 0
\(330\) 0 0
\(331\) 5.84897 + 10.1307i 0.321488 + 0.556834i 0.980795 0.195040i \(-0.0624835\pi\)
−0.659307 + 0.751874i \(0.729150\pi\)
\(332\) −13.3951 −0.735150
\(333\) 0 0
\(334\) −4.30286 −0.235442
\(335\) 10.7082 + 18.5472i 0.585053 + 1.01334i
\(336\) 0 0
\(337\) 16.8473 29.1804i 0.917733 1.58956i 0.114883 0.993379i \(-0.463351\pi\)
0.802850 0.596181i \(-0.203316\pi\)
\(338\) 0.0675835 0.117058i 0.00367606 0.00636711i
\(339\) 0 0
\(340\) −4.30795 7.46159i −0.233631 0.404661i
\(341\) −27.3326 −1.48014
\(342\) 0 0
\(343\) 0 0
\(344\) 0.782630 + 1.35556i 0.0421966 + 0.0730866i
\(345\) 0 0
\(346\) −0.0992788 + 0.171956i −0.00533726 + 0.00924441i
\(347\) 13.6557 23.6523i 0.733075 1.26972i −0.222488 0.974936i \(-0.571418\pi\)
0.955563 0.294788i \(-0.0952490\pi\)
\(348\) 0 0
\(349\) 11.4585 + 19.8467i 0.613358 + 1.06237i 0.990670 + 0.136281i \(0.0435150\pi\)
−0.377312 + 0.926086i \(0.623152\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 11.5458 0.615395
\(353\) −5.13466 8.89349i −0.273290 0.473353i 0.696412 0.717642i \(-0.254779\pi\)
−0.969702 + 0.244289i \(0.921445\pi\)
\(354\) 0 0
\(355\) −8.08525 + 14.0041i −0.429120 + 0.743258i
\(356\) −4.89142 + 8.47218i −0.259245 + 0.449025i
\(357\) 0 0
\(358\) −0.906150 1.56950i −0.0478915 0.0829505i
\(359\) −10.1007 −0.533094 −0.266547 0.963822i \(-0.585883\pi\)
−0.266547 + 0.963822i \(0.585883\pi\)
\(360\) 0 0
\(361\) 32.2028 1.69488
\(362\) −0.0489195 0.0847311i −0.00257115 0.00445337i
\(363\) 0 0
\(364\) 0 0
\(365\) −9.27292 + 16.0612i −0.485367 + 0.840680i
\(366\) 0 0
\(367\) −3.88768 6.73367i −0.202935 0.351494i 0.746538 0.665343i \(-0.231715\pi\)
−0.949473 + 0.313849i \(0.898381\pi\)
\(368\) 18.7576 0.977808
\(369\) 0 0
\(370\) 1.02891 0.0534907
\(371\) 0 0
\(372\) 0 0
\(373\) −12.0555 + 20.8808i −0.624212 + 1.08117i 0.364480 + 0.931211i \(0.381247\pi\)
−0.988693 + 0.149957i \(0.952087\pi\)
\(374\) −0.855536 + 1.48183i −0.0442387 + 0.0766237i
\(375\) 0 0
\(376\) −4.40214 7.62473i −0.227023 0.393215i
\(377\) −7.82573 −0.403045
\(378\) 0 0
\(379\) −13.3581 −0.686161 −0.343081 0.939306i \(-0.611470\pi\)
−0.343081 + 0.939306i \(0.611470\pi\)
\(380\) −18.0156 31.2039i −0.924181 1.60073i
\(381\) 0 0
\(382\) −1.91586 + 3.31838i −0.0980242 + 0.169783i
\(383\) 4.62020 8.00242i 0.236081 0.408905i −0.723505 0.690319i \(-0.757470\pi\)
0.959586 + 0.281414i \(0.0908035\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.95898 0.150608
\(387\) 0 0
\(388\) 5.95153 0.302143
\(389\) 5.22421 + 9.04859i 0.264878 + 0.458782i 0.967532 0.252750i \(-0.0813351\pi\)
−0.702654 + 0.711532i \(0.748002\pi\)
\(390\) 0 0
\(391\) −4.38442 + 7.59404i −0.221730 + 0.384047i
\(392\) 0 0
\(393\) 0 0
\(394\) −2.76212 4.78413i −0.139154 0.241021i
\(395\) 25.4733 1.28170
\(396\) 0 0
\(397\) 0.409157 0.0205350 0.0102675 0.999947i \(-0.496732\pi\)
0.0102675 + 0.999947i \(0.496732\pi\)
\(398\) 0.806617 + 1.39710i 0.0404321 + 0.0700304i
\(399\) 0 0
\(400\) −3.14295 + 5.44375i −0.157147 + 0.272187i
\(401\) 7.62640 13.2093i 0.380844 0.659641i −0.610339 0.792140i \(-0.708967\pi\)
0.991183 + 0.132499i \(0.0423001\pi\)
\(402\) 0 0
\(403\) 12.0361 + 20.8472i 0.599562 + 1.03847i
\(404\) 21.5647 1.07288
\(405\) 0 0
\(406\) 0 0
\(407\) 3.47141 + 6.01266i 0.172071 + 0.298036i
\(408\) 0 0
\(409\) −3.06335 + 5.30587i −0.151473 + 0.262359i −0.931769 0.363051i \(-0.881735\pi\)
0.780296 + 0.625410i \(0.215068\pi\)
\(410\) 3.16664 5.48477i 0.156389 0.270874i
\(411\) 0 0
\(412\) −7.75765 13.4366i −0.382192 0.661976i
\(413\) 0 0
\(414\) 0 0
\(415\) −17.8695 −0.877178
\(416\) −5.08430 8.80626i −0.249278 0.431763i
\(417\) 0 0
\(418\) −3.57780 + 6.19694i −0.174996 + 0.303102i
\(419\) −0.781437 + 1.35349i −0.0381757 + 0.0661223i −0.884482 0.466574i \(-0.845488\pi\)
0.846306 + 0.532697i \(0.178821\pi\)
\(420\) 0 0
\(421\) −11.6316 20.1465i −0.566889 0.981881i −0.996871 0.0790438i \(-0.974813\pi\)
0.429982 0.902838i \(-0.358520\pi\)
\(422\) −4.03775 −0.196555
\(423\) 0 0
\(424\) −10.0377 −0.487476
\(425\) −1.46927 2.54485i −0.0712702 0.123444i
\(426\) 0 0
\(427\) 0 0
\(428\) −3.84338 + 6.65692i −0.185777 + 0.321775i
\(429\) 0 0
\(430\) 0.514457 + 0.891066i 0.0248093 + 0.0429710i
\(431\) −1.00576 −0.0484456 −0.0242228 0.999707i \(-0.507711\pi\)
−0.0242228 + 0.999707i \(0.507711\pi\)
\(432\) 0 0
\(433\) −13.1071 −0.629889 −0.314945 0.949110i \(-0.601986\pi\)
−0.314945 + 0.949110i \(0.601986\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7.05555 12.2206i 0.337899 0.585259i
\(437\) −18.3354 + 31.7579i −0.877101 + 1.51918i
\(438\) 0 0
\(439\) 9.30704 + 16.1203i 0.444201 + 0.769378i 0.997996 0.0632744i \(-0.0201543\pi\)
−0.553795 + 0.832653i \(0.686821\pi\)
\(440\) 10.2190 0.487170
\(441\) 0 0
\(442\) 1.50697 0.0716792
\(443\) −0.559503 0.969088i −0.0265828 0.0460427i 0.852428 0.522845i \(-0.175129\pi\)
−0.879011 + 0.476802i \(0.841796\pi\)
\(444\) 0 0
\(445\) −6.52532 + 11.3022i −0.309330 + 0.535775i
\(446\) 0.538197 0.932185i 0.0254844 0.0441402i
\(447\) 0 0
\(448\) 0 0
\(449\) 39.4419 1.86138 0.930689 0.365813i \(-0.119209\pi\)
0.930689 + 0.365813i \(0.119209\pi\)
\(450\) 0 0
\(451\) 42.7351 2.01232
\(452\) −6.73104 11.6585i −0.316602 0.548370i
\(453\) 0 0
\(454\) −0.725057 + 1.25584i −0.0340286 + 0.0589393i
\(455\) 0 0
\(456\) 0 0
\(457\) 17.1202 + 29.6531i 0.800852 + 1.38712i 0.919056 + 0.394126i \(0.128953\pi\)
−0.118205 + 0.992989i \(0.537714\pi\)
\(458\) −2.64215 −0.123459
\(459\) 0 0
\(460\) 25.8051 1.20317
\(461\) −10.1938 17.6561i −0.474772 0.822328i 0.524811 0.851219i \(-0.324136\pi\)
−0.999583 + 0.0288903i \(0.990803\pi\)
\(462\) 0 0
\(463\) −3.40451 + 5.89679i −0.158221 + 0.274047i −0.934227 0.356678i \(-0.883909\pi\)
0.776006 + 0.630725i \(0.217243\pi\)
\(464\) −3.88852 + 6.73511i −0.180520 + 0.312670i
\(465\) 0 0
\(466\) 0.973045 + 1.68536i 0.0450754 + 0.0780729i
\(467\) 24.7911 1.14720 0.573598 0.819137i \(-0.305547\pi\)
0.573598 + 0.819137i \(0.305547\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.89372 5.01207i −0.133477 0.231190i
\(471\) 0 0
\(472\) −2.85877 + 4.95153i −0.131586 + 0.227913i
\(473\) −3.47141 + 6.01266i −0.159616 + 0.276462i
\(474\) 0 0
\(475\) −6.14441 10.6424i −0.281925 0.488309i
\(476\) 0 0
\(477\) 0 0
\(478\) 5.06045 0.231460
\(479\) 5.54984 + 9.61260i 0.253579 + 0.439211i 0.964508 0.264052i \(-0.0850590\pi\)
−0.710930 + 0.703263i \(0.751726\pi\)
\(480\) 0 0
\(481\) 3.05733 5.29545i 0.139402 0.241452i
\(482\) −1.63697 + 2.83532i −0.0745621 + 0.129145i
\(483\) 0 0
\(484\) 6.30314 + 10.9174i 0.286506 + 0.496244i
\(485\) 7.93955 0.360516
\(486\) 0 0
\(487\) −10.0377 −0.454854 −0.227427 0.973795i \(-0.573031\pi\)
−0.227427 + 0.973795i \(0.573031\pi\)
\(488\) −3.76466 6.52059i −0.170418 0.295173i
\(489\) 0 0
\(490\) 0 0
\(491\) −6.19398 + 10.7283i −0.279530 + 0.484161i −0.971268 0.237988i \(-0.923512\pi\)
0.691738 + 0.722149i \(0.256845\pi\)
\(492\) 0 0
\(493\) −1.81781 3.14854i −0.0818702 0.141803i
\(494\) 6.30206 0.283543
\(495\) 0 0
\(496\) 23.9225 1.07415
\(497\) 0 0
\(498\) 0 0
\(499\) −5.11109 + 8.85267i −0.228804 + 0.396300i −0.957454 0.288586i \(-0.906815\pi\)
0.728650 + 0.684886i \(0.240148\pi\)
\(500\) 8.26464 14.3148i 0.369606 0.640177i
\(501\) 0 0
\(502\) 1.81781 + 3.14854i 0.0811329 + 0.140526i
\(503\) −8.45753 −0.377102 −0.188551 0.982063i \(-0.560379\pi\)
−0.188551 + 0.982063i \(0.560379\pi\)
\(504\) 0 0
\(505\) 28.7680 1.28016
\(506\) −2.56238 4.43818i −0.113912 0.197301i
\(507\) 0 0
\(508\) 8.85060 15.3297i 0.392682 0.680145i
\(509\) 5.28286 9.15018i 0.234159 0.405574i −0.724869 0.688886i \(-0.758100\pi\)
0.959028 + 0.283312i \(0.0914332\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −17.0071 −0.751616
\(513\) 0 0
\(514\) −6.12670 −0.270237
\(515\) −10.3490 17.9249i −0.456030 0.789867i
\(516\) 0 0
\(517\) 19.5260 33.8200i 0.858752 1.48740i
\(518\) 0 0
\(519\) 0 0
\(520\) −4.50000 7.79423i −0.197338 0.341800i
\(521\) 19.7558 0.865515 0.432758 0.901510i \(-0.357541\pi\)
0.432758 + 0.901510i \(0.357541\pi\)
\(522\) 0 0
\(523\) 32.5282 1.42236 0.711179 0.703011i \(-0.248161\pi\)
0.711179 + 0.703011i \(0.248161\pi\)
\(524\) −4.17984 7.23970i −0.182597 0.316268i
\(525\) 0 0
\(526\) −0.848970 + 1.47046i −0.0370168 + 0.0641150i
\(527\) −5.59166 + 9.68504i −0.243577 + 0.421887i
\(528\) 0 0
\(529\) −1.63160 2.82601i −0.0709391 0.122870i
\(530\) −6.59825 −0.286610
\(531\) 0 0
\(532\) 0 0
\(533\) −18.8187 32.5950i −0.815130 1.41185i
\(534\) 0 0
\(535\) −5.12720 + 8.88057i −0.221668 + 0.383940i
\(536\) −3.89536 + 6.74695i −0.168254 + 0.291424i
\(537\) 0 0
\(538\) −1.96457 3.40274i −0.0846987 0.146702i
\(539\) 0 0
\(540\) 0 0
\(541\) 15.2222 0.654453 0.327226 0.944946i \(-0.393886\pi\)
0.327226 + 0.944946i \(0.393886\pi\)
\(542\) −1.51819 2.62959i −0.0652119 0.112950i
\(543\) 0 0
\(544\) 2.36203 4.09116i 0.101271 0.175407i
\(545\) 9.41234 16.3027i 0.403180 0.698329i
\(546\) 0 0
\(547\) −11.6871 20.2427i −0.499706 0.865517i 0.500294 0.865856i \(-0.333225\pi\)
−1.00000 0.000339172i \(0.999892\pi\)
\(548\) 40.0014 1.70877
\(549\) 0 0
\(550\) 1.71737 0.0732289
\(551\) −7.60199 13.1670i −0.323856 0.560934i
\(552\) 0 0
\(553\) 0 0
\(554\) −0.0990521 + 0.171563i −0.00420832 + 0.00728902i
\(555\) 0 0
\(556\) 15.3107 + 26.5189i 0.649319 + 1.12465i
\(557\) −27.6673 −1.17230 −0.586151 0.810202i \(-0.699357\pi\)
−0.586151 + 0.810202i \(0.699357\pi\)
\(558\) 0 0
\(559\) 6.11465 0.258622
\(560\) 0 0
\(561\) 0 0
\(562\) −0.624075 + 1.08093i −0.0263250 + 0.0455963i
\(563\) 4.27912 7.41166i 0.180343 0.312364i −0.761654 0.647984i \(-0.775612\pi\)
0.941998 + 0.335620i \(0.108946\pi\)
\(564\) 0 0
\(565\) −8.97944 15.5529i −0.377768 0.654313i
\(566\) −1.75855 −0.0739175
\(567\) 0 0
\(568\) −5.88237 −0.246819
\(569\) 6.86389 + 11.8886i 0.287749 + 0.498396i 0.973272 0.229655i \(-0.0737597\pi\)
−0.685523 + 0.728051i \(0.740426\pi\)
\(570\) 0 0
\(571\) −5.35868 + 9.28151i −0.224254 + 0.388419i −0.956095 0.293056i \(-0.905328\pi\)
0.731841 + 0.681475i \(0.238661\pi\)
\(572\) 14.9622 25.9153i 0.625600 1.08357i
\(573\) 0 0
\(574\) 0 0
\(575\) 8.80111 0.367032
\(576\) 0 0
\(577\) −45.6353 −1.89982 −0.949912 0.312518i \(-0.898827\pi\)
−0.949912 + 0.312518i \(0.898827\pi\)
\(578\) −1.68250 2.91417i −0.0699827 0.121214i
\(579\) 0 0
\(580\) −5.34950 + 9.26560i −0.222126 + 0.384733i
\(581\) 0 0
\(582\) 0 0
\(583\) −22.2616 38.5582i −0.921980 1.59692i
\(584\) −6.74645 −0.279170
\(585\) 0 0
\(586\) −1.87131 −0.0773032
\(587\) −5.10948 8.84988i −0.210891 0.365274i 0.741103 0.671392i \(-0.234303\pi\)
−0.951994 + 0.306118i \(0.900970\pi\)
\(588\) 0 0
\(589\) −23.3840 + 40.5023i −0.963521 + 1.66887i
\(590\) −1.87919 + 3.25486i −0.0773652 + 0.134000i
\(591\) 0 0
\(592\) −3.03831 5.26250i −0.124874 0.216287i
\(593\) −11.3961 −0.467981 −0.233990 0.972239i \(-0.575178\pi\)
−0.233990 + 0.972239i \(0.575178\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.89411 10.2089i −0.241432 0.418173i
\(597\) 0 0
\(598\) −2.25673 + 3.90877i −0.0922846 + 0.159842i
\(599\) −17.2873 + 29.9424i −0.706339 + 1.22341i 0.259867 + 0.965644i \(0.416321\pi\)
−0.966206 + 0.257771i \(0.917012\pi\)
\(600\) 0 0
\(601\) 19.4207 + 33.6376i 0.792187 + 1.37211i 0.924610 + 0.380915i \(0.124391\pi\)
−0.132423 + 0.991193i \(0.542276\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.72064 −0.354838
\(605\) 8.40861 + 14.5641i 0.341858 + 0.592116i
\(606\) 0 0
\(607\) 20.6662 35.7950i 0.838817 1.45287i −0.0520683 0.998644i \(-0.516581\pi\)
0.890885 0.454229i \(-0.150085\pi\)
\(608\) 9.87788 17.1090i 0.400601 0.693861i
\(609\) 0 0
\(610\) −2.47468 4.28627i −0.100197 0.173546i
\(611\) −34.3937 −1.39142
\(612\) 0 0
\(613\) −28.6569 −1.15744 −0.578721 0.815526i \(-0.696448\pi\)
−0.578721 + 0.815526i \(0.696448\pi\)
\(614\) −2.71057 4.69485i −0.109390 0.189469i
\(615\) 0 0
\(616\) 0 0
\(617\) −16.8518 + 29.1883i −0.678430 + 1.17508i 0.297024 + 0.954870i \(0.404006\pi\)
−0.975454 + 0.220205i \(0.929327\pi\)
\(618\) 0 0
\(619\) −0.719036 1.24541i −0.0289005 0.0500571i 0.851213 0.524820i \(-0.175867\pi\)
−0.880114 + 0.474763i \(0.842534\pi\)
\(620\) 32.9105 1.32172
\(621\) 0 0
\(622\) 7.72789 0.309860
\(623\) 0 0
\(624\) 0 0
\(625\) 15.3187 26.5328i 0.612750 1.06131i
\(626\) 2.90769 5.03626i 0.116215 0.201290i
\(627\) 0 0
\(628\) −0.999498 1.73118i −0.0398843 0.0690816i
\(629\) 2.84071 0.113266
\(630\) 0 0
\(631\) −30.7680 −1.22486 −0.612428 0.790527i \(-0.709807\pi\)
−0.612428 + 0.790527i \(0.709807\pi\)
\(632\) 4.63323 + 8.02500i 0.184300 + 0.319217i
\(633\) 0 0
\(634\) −0.614360 + 1.06410i −0.0243993 + 0.0422609i
\(635\) 11.8070 20.4503i 0.468547 0.811547i
\(636\) 0 0
\(637\) 0 0
\(638\) 2.12476 0.0841202
\(639\) 0 0
\(640\) −18.4389 −0.728862
\(641\) 4.61956 + 8.00132i 0.182462 + 0.316033i 0.942718 0.333590i \(-0.108260\pi\)
−0.760257 + 0.649623i \(0.774927\pi\)
\(642\) 0 0
\(643\) 12.7795 22.1348i 0.503976 0.872912i −0.496013 0.868315i \(-0.665203\pi\)
0.999989 0.00459728i \(-0.00146337\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.46389 + 2.53552i 0.0575958 + 0.0997588i
\(647\) −28.3111 −1.11302 −0.556512 0.830839i \(-0.687861\pi\)
−0.556512 + 0.830839i \(0.687861\pi\)
\(648\) 0 0
\(649\) −25.3605 −0.995488
\(650\) −0.756258 1.30988i −0.0296629 0.0513776i
\(651\) 0 0
\(652\) 6.63323 11.4891i 0.259778 0.449948i
\(653\) −4.17511 + 7.23150i −0.163385 + 0.282990i −0.936080 0.351786i \(-0.885574\pi\)
0.772696 + 0.634776i \(0.218908\pi\)
\(654\) 0 0
\(655\) −5.57605 9.65801i −0.217874 0.377370i
\(656\) −37.4033 −1.46035
\(657\) 0 0
\(658\) 0 0
\(659\) −16.7862 29.0745i −0.653897 1.13258i −0.982169 0.188000i \(-0.939799\pi\)
0.328272 0.944583i \(-0.393534\pi\)
\(660\) 0 0
\(661\) 8.47668 14.6820i 0.329705 0.571065i −0.652748 0.757575i \(-0.726384\pi\)
0.982453 + 0.186509i \(0.0597175\pi\)
\(662\) −1.39862 + 2.42249i −0.0543591 + 0.0941527i
\(663\) 0 0
\(664\) −3.25021 5.62952i −0.126133 0.218468i
\(665\) 0 0
\(666\) 0 0
\(667\) 10.8889 0.421620
\(668\) 17.4799 + 30.2760i 0.676316 + 1.17141i
\(669\) 0 0
\(670\) −2.56059 + 4.43507i −0.0989242 + 0.171342i
\(671\) 16.6984 28.9225i 0.644636 1.11654i
\(672\) 0 0
\(673\) 22.2157 + 38.4788i 0.856354 + 1.48325i 0.875384 + 0.483429i \(0.160609\pi\)
−0.0190299 + 0.999819i \(0.506058\pi\)
\(674\) 8.05718 0.310351
\(675\) 0 0
\(676\) −1.09820 −0.0422384
\(677\) −7.18681 12.4479i −0.276212 0.478412i 0.694229 0.719755i \(-0.255746\pi\)
−0.970440 + 0.241342i \(0.922412\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 2.09058 3.62099i 0.0801701 0.138859i
\(681\) 0 0
\(682\) −3.26793 5.66021i −0.125135 0.216741i
\(683\) 32.3092 1.23628 0.618138 0.786069i \(-0.287887\pi\)
0.618138 + 0.786069i \(0.287887\pi\)
\(684\) 0 0
\(685\) 53.3632 2.03890
\(686\) 0 0
\(687\) 0 0
\(688\) 3.03831 5.26250i 0.115834 0.200631i
\(689\) −19.6061 + 33.9588i −0.746934 + 1.29373i
\(690\) 0 0
\(691\) 14.4981 + 25.1114i 0.551533 + 0.955283i 0.998164 + 0.0605650i \(0.0192902\pi\)
−0.446631 + 0.894718i \(0.647376\pi\)
\(692\) 1.61323 0.0613259
\(693\) 0 0
\(694\) 6.53078 0.247905
\(695\) 20.4250 + 35.3772i 0.774765 + 1.34193i
\(696\) 0 0
\(697\) 8.74269 15.1428i 0.331153 0.573574i
\(698\) −2.73999 + 4.74580i −0.103710 + 0.179631i
\(699\) 0 0
\(700\) 0 0
\(701\) 26.3912 0.996783 0.498392 0.866952i \(-0.333924\pi\)
0.498392 + 0.866952i \(0.333924\pi\)
\(702\) 0 0
\(703\) 11.8797 0.448050
\(704\) −13.9263 24.1210i −0.524866 0.909095i
\(705\) 0 0
\(706\) 1.22782 2.12664i 0.0462095 0.0800372i
\(707\) 0 0
\(708\) 0 0
\(709\) 3.94282 + 6.82916i 0.148076 + 0.256475i 0.930516 0.366251i \(-0.119359\pi\)
−0.782441 + 0.622725i \(0.786025\pi\)
\(710\) −3.86674 −0.145116
\(711\) 0 0
\(712\) −4.74746 −0.177918
\(713\) −16.7473 29.0073i −0.627193 1.08633i
\(714\) 0 0
\(715\) 19.9601 34.5718i 0.746464 1.29291i
\(716\) −7.36225 + 12.7518i −0.275140 + 0.476557i
\(717\) 0 0
\(718\) −1.20765 2.09172i −0.0450693 0.0780623i
\(719\) 33.1508 1.23632 0.618159 0.786053i \(-0.287879\pi\)
0.618159 + 0.786053i \(0.287879\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.85021 + 6.66877i 0.143290 + 0.248186i
\(723\) 0 0
\(724\) −0.397460 + 0.688420i −0.0147715 + 0.0255849i
\(725\) −1.82450 + 3.16013i −0.0677603 + 0.117364i
\(726\) 0 0
\(727\) −16.5502 28.6658i −0.613814 1.06316i −0.990591 0.136853i \(-0.956301\pi\)
0.376777 0.926304i \(-0.377032\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −4.43474 −0.164137
\(731\) 1.42035 + 2.46012i 0.0525337 + 0.0909910i
\(732\) 0 0
\(733\) 22.2795 38.5892i 0.822911 1.42532i −0.0805946 0.996747i \(-0.525682\pi\)
0.903505 0.428577i \(-0.140985\pi\)
\(734\) 0.929636 1.61018i 0.0343135 0.0594327i
\(735\) 0 0
\(736\) 7.07442 + 12.2533i 0.260767 + 0.451661i
\(737\) −34.5562 −1.27290
\(738\) 0 0
\(739\) 39.8090 1.46440 0.732199 0.681090i \(-0.238494\pi\)
0.732199 + 0.681090i \(0.238494\pi\)
\(740\) −4.17984 7.23970i −0.153654 0.266137i
\(741\) 0 0
\(742\) 0 0
\(743\) 5.37072 9.30237i 0.197033 0.341271i −0.750532 0.660834i \(-0.770203\pi\)
0.947565 + 0.319563i \(0.103536\pi\)
\(744\) 0 0
\(745\) −7.86295 13.6190i −0.288076 0.498962i
\(746\) −5.76552 −0.211091
\(747\) 0 0
\(748\) 13.9021 0.508310
\(749\) 0 0
\(750\) 0 0
\(751\) −9.85705 + 17.0729i −0.359689 + 0.622999i −0.987909 0.155036i \(-0.950450\pi\)
0.628220 + 0.778036i \(0.283784\pi\)
\(752\) −17.0899 + 29.6005i −0.623203 + 1.07942i
\(753\) 0 0
\(754\) −0.935657 1.62060i −0.0340746 0.0590189i
\(755\) −11.6336 −0.423391
\(756\) 0 0
\(757\) 35.3549 1.28499 0.642497 0.766288i \(-0.277898\pi\)
0.642497 + 0.766288i \(0.277898\pi\)
\(758\) −1.59712 2.76629i −0.0580100 0.100476i
\(759\) 0 0
\(760\) 8.74269 15.1428i 0.317131 0.549286i
\(761\) −19.5572 + 33.8741i −0.708948 + 1.22793i 0.256300 + 0.966597i \(0.417497\pi\)
−0.965248 + 0.261336i \(0.915837\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 31.1319 1.12631
\(765\) 0 0
\(766\) 2.20960 0.0798359
\(767\) 11.1677 + 19.3430i 0.403243 + 0.698437i
\(768\) 0 0
\(769\) 18.9240 32.7773i 0.682415 1.18198i −0.291826 0.956471i \(-0.594263\pi\)
0.974242 0.225507i \(-0.0724038\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −12.0205 20.8201i −0.432628 0.749333i
\(773\) −29.8265 −1.07279 −0.536393 0.843969i \(-0.680213\pi\)
−0.536393 + 0.843969i \(0.680213\pi\)
\(774\) 0 0
\(775\) 11.2245 0.403195
\(776\) 1.44409 + 2.50124i 0.0518399 + 0.0897894i
\(777\) 0 0
\(778\) −1.24923 + 2.16373i −0.0447870 + 0.0775734i
\(779\) 36.5614 63.3263i 1.30995 2.26890i
\(780\) 0 0
\(781\) −13.0458 22.5960i −0.466817 0.808550i
\(782\) −2.09683 −0.0749827
\(783\) 0 0
\(784\) 0 0
\(785\) −1.33336 2.30946i −0.0475898 0.0824280i
\(786\) 0 0
\(787\) −8.81030 + 15.2599i −0.314053 + 0.543956i −0.979236 0.202724i \(-0.935020\pi\)
0.665182 + 0.746681i \(0.268354\pi\)
\(788\) −22.4416 + 38.8700i −0.799448 + 1.38468i
\(789\) 0 0
\(790\) 3.04563 + 5.27518i 0.108359 + 0.187683i
\(791\) 0 0
\(792\) 0 0
\(793\) −29.4132 −1.04449
\(794\) 0.0489195 + 0.0847311i 0.00173609 + 0.00300699i
\(795\) 0 0
\(796\) 6.55357 11.3511i 0.232285 0.402330i
\(797\) 5.06056 8.76515i 0.179254 0.310477i −0.762371 0.647140i \(-0.775965\pi\)
0.941625 + 0.336663i \(0.109298\pi\)
\(798\) 0 0
\(799\) −7.98921 13.8377i −0.282638 0.489543i
\(800\) −4.74145 −0.167635
\(801\) 0 0
\(802\) 3.64730 0.128791
\(803\) −14.9622 25.9153i −0.528004 0.914529i
\(804\) 0 0
\(805\) 0 0
\(806\) −2.87812 + 4.98504i −0.101377 + 0.175591i
\(807\) 0 0
\(808\) 5.23250 + 9.06295i 0.184079 + 0.318834i
\(809\) 47.1469 1.65760 0.828799 0.559546i \(-0.189025\pi\)
0.828799 + 0.559546i \(0.189025\pi\)
\(810\) 0 0
\(811\) 21.0577 0.739435 0.369717 0.929144i \(-0.379454\pi\)
0.369717 + 0.929144i \(0.379454\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.830095 + 1.43777i −0.0290948 + 0.0503937i
\(815\) 8.84896 15.3269i 0.309966 0.536876i
\(816\) 0 0
\(817\) 5.93984 + 10.2881i 0.207809 + 0.359935i
\(818\) −1.46504 −0.0512238
\(819\) 0 0
\(820\) −51.4563 −1.79693
\(821\) 5.58018 + 9.66515i 0.194750 + 0.337316i 0.946818 0.321768i \(-0.104277\pi\)
−0.752069 + 0.659085i \(0.770944\pi\)
\(822\) 0 0
\(823\) −4.71737 + 8.17072i −0.164437 + 0.284814i −0.936455 0.350787i \(-0.885914\pi\)
0.772018 + 0.635601i \(0.219247\pi\)
\(824\) 3.76466 6.52059i 0.131148 0.227156i
\(825\) 0 0
\(826\) 0 0
\(827\) −17.2646 −0.600348 −0.300174 0.953884i \(-0.597045\pi\)
−0.300174 + 0.953884i \(0.597045\pi\)
\(828\) 0 0
\(829\) −48.4526 −1.68283 −0.841415 0.540390i \(-0.818277\pi\)
−0.841415 + 0.540390i \(0.818277\pi\)
\(830\) −2.13650 3.70053i −0.0741591 0.128447i
\(831\) 0 0
\(832\) −12.2651 + 21.2438i −0.425215 + 0.736495i
\(833\) 0 0
\(834\) 0 0
\(835\) 23.3187 + 40.3893i 0.806978 + 1.39773i
\(836\) 58.1376 2.01073
\(837\) 0 0
\(838\) −0.373720 −0.0129099
\(839\) −7.43429 12.8766i −0.256660 0.444548i 0.708685 0.705525i \(-0.249289\pi\)
−0.965345 + 0.260977i \(0.915955\pi\)
\(840\) 0 0
\(841\) 12.2427 21.2050i 0.422162 0.731206i
\(842\) 2.78139 4.81750i 0.0958529 0.166022i
\(843\) 0 0
\(844\) 16.4029 + 28.4106i 0.564610 + 0.977934i
\(845\) −1.46504 −0.0503988
\(846\) 0 0
\(847\) 0 0
\(848\) 19.4841 + 33.7475i 0.669088 + 1.15889i
\(849\) 0 0
\(850\) 0.351337 0.608534i 0.0120508 0.0208725i
\(851\) −4.25404 + 7.36821i −0.145827 + 0.252579i
\(852\) 0 0
\(853\) −3.99900 6.92648i −0.136923 0.237158i 0.789407 0.613870i \(-0.210388\pi\)
−0.926331 + 0.376712i \(0.877055\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −3.73026 −0.127498
\(857\) −21.5661 37.3536i −0.736684 1.27597i −0.953980 0.299869i \(-0.903057\pi\)
0.217296 0.976106i \(-0.430276\pi\)
\(858\) 0 0
\(859\) 1.22180 2.11621i 0.0416871 0.0722042i −0.844429 0.535667i \(-0.820060\pi\)
0.886116 + 0.463463i \(0.153393\pi\)
\(860\) 4.17984 7.23970i 0.142531 0.246872i
\(861\) 0 0
\(862\) −0.120250 0.208279i −0.00409573 0.00709401i
\(863\) −25.7187 −0.875476 −0.437738 0.899103i \(-0.644220\pi\)
−0.437738 + 0.899103i \(0.644220\pi\)
\(864\) 0 0
\(865\) 2.15211 0.0731739
\(866\) −1.56711 2.71432i −0.0532526 0.0922362i
\(867\) 0 0
\(868\) 0 0
\(869\) −20.5510 + 35.5954i −0.697146 + 1.20749i
\(870\) 0 0
\(871\) 15.2171 + 26.3568i 0.515612 + 0.893067i
\(872\) 6.84789 0.231899
\(873\) 0 0
\(874\) −8.76884 −0.296611
\(875\) 0 0
\(876\) 0 0
\(877\) 10.9795 19.0170i 0.370751 0.642160i −0.618930 0.785446i \(-0.712434\pi\)
0.989681 + 0.143286i \(0.0457670\pi\)
\(878\) −2.22553 + 3.85473i −0.0751080 + 0.130091i
\(879\) 0 0
\(880\) −19.8359 34.3567i −0.668667 1.15817i
\(881\) 35.0576 1.18112 0.590560 0.806994i \(-0.298907\pi\)
0.590560 + 0.806994i \(0.298907\pi\)
\(882\) 0 0
\(883\) 26.3009 0.885097 0.442549 0.896744i \(-0.354074\pi\)
0.442549 + 0.896744i \(0.354074\pi\)
\(884\) −6.12188 10.6034i −0.205901 0.356631i
\(885\) 0 0
\(886\) 0.133790 0.231731i 0.00449477 0.00778517i
\(887\) 23.9090 41.4116i 0.802785 1.39046i −0.114991 0.993366i \(-0.536684\pi\)
0.917776 0.397098i \(-0.129983\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −3.12071 −0.104607
\(891\) 0 0
\(892\) −8.74545 −0.292819
\(893\) −33.4104 57.8685i −1.11804 1.93650i
\(894\) 0 0
\(895\) −9.82150 + 17.0113i −0.328296 + 0.568626i
\(896\) 0 0
\(897\) 0 0
\(898\) 4.71574 + 8.16789i 0.157366 + 0.272566i
\(899\) 13.8871 0.463162
\(900\) 0 0
\(901\) −18.2170 −0.606895
\(902\) 5.10948 + 8.84988i 0.170127 + 0.294669i
\(903\) 0 0
\(904\) 3.26647 5.65769i 0.108641 0.188172i
\(905\) −0.530225 + 0.918376i −0.0176253 + 0.0305279i
\(906\) 0 0
\(907\) 9.55718 + 16.5535i 0.317341 + 0.549651i 0.979932 0.199330i \(-0.0638767\pi\)
−0.662591 + 0.748981i \(0.730543\pi\)
\(908\) 11.7818 0.390994
\(909\) 0 0
\(910\) 0 0
\(911\) −9.02928 15.6392i −0.299153 0.518149i 0.676789 0.736177i \(-0.263371\pi\)
−0.975942 + 0.218028i \(0.930038\pi\)
\(912\) 0 0
\(913\) 14.4165 24.9701i 0.477117 0.826391i
\(914\) −4.09385 + 7.09076i −0.135413 + 0.234541i
\(915\) 0 0
\(916\) 10.7334 + 18.5908i 0.354642 + 0.614258i
\(917\) 0 0
\(918\) 0 0
\(919\) 16.2093 0.534695 0.267348 0.963600i \(-0.413853\pi\)
0.267348 + 0.963600i \(0.413853\pi\)
\(920\) 6.26141 + 10.8451i 0.206433 + 0.357552i
\(921\) 0 0
\(922\) 2.43757 4.22199i 0.0802771 0.139044i
\(923\) −11.4897 + 19.9007i −0.378187 + 0.655039i
\(924\) 0 0
\(925\) −1.42558 2.46918i −0.0468728 0.0811860i
\(926\) −1.62820 −0.0535059
\(927\) 0 0
\(928\) −5.86621 −0.192568
\(929\) 11.3415 + 19.6440i 0.372102 + 0.644499i 0.989889 0.141846i \(-0.0453039\pi\)
−0.617787 + 0.786345i \(0.711971\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 7.90576 13.6932i 0.258962 0.448535i
\(933\) 0 0
\(934\) 2.96407 + 5.13392i 0.0969873 + 0.167987i
\(935\) 18.5458 0.606513
\(936\) 0 0
\(937\) −51.2933 −1.67568 −0.837840 0.545915i \(-0.816182\pi\)
−0.837840 + 0.545915i \(0.816182\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −23.5108 + 40.7219i −0.766838 + 1.32820i
\(941\) 15.9659 27.6538i 0.520474 0.901487i −0.479243 0.877682i \(-0.659089\pi\)
0.999717 0.0238048i \(-0.00757801\pi\)
\(942\) 0 0
\(943\) 26.1849 + 45.3535i 0.852697 + 1.47691i
\(944\) 22.1965 0.722433
\(945\) 0 0
\(946\) −1.66019 −0.0539774
\(947\) −2.24665 3.89131i −0.0730063 0.126451i 0.827211 0.561891i \(-0.189926\pi\)
−0.900218 + 0.435440i \(0.856593\pi\)
\(948\) 0 0
\(949\) −13.1774 + 22.8240i −0.427757 + 0.740898i
\(950\) 1.46927 2.54485i 0.0476695 0.0825660i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.14635 −0.0371340 −0.0185670 0.999828i \(-0.505910\pi\)
−0.0185670 + 0.999828i \(0.505910\pi\)
\(954\) 0 0
\(955\) 41.5310 1.34391
\(956\) −20.5575 35.6066i −0.664876 1.15160i
\(957\) 0 0
\(958\) −1.32710 + 2.29860i −0.0428765 + 0.0742643i
\(959\) 0 0
\(960\) 0 0
\(961\) −5.85868 10.1475i −0.188990 0.327340i
\(962\) 1.46216 0.0471418
\(963\) 0 0
\(964\) 26.6000 0.856730
\(965\) −16.0358 27.7748i −0.516210 0.894102i
\(966\) 0 0
\(967\) −24.8080 + 42.9686i −0.797770 + 1.38178i 0.123295 + 0.992370i \(0.460654\pi\)
−0.921065 + 0.389408i \(0.872680\pi\)
\(968\) −3.05881 + 5.29802i −0.0983140 + 0.170285i
\(969\) 0 0
\(970\) 0.949266 + 1.64418i 0.0304791 + 0.0527913i
\(971\) −5.13322 −0.164733 −0.0823664 0.996602i \(-0.526248\pi\)
−0.0823664 + 0.996602i \(0.526248\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.20013 2.07869i −0.0384546 0.0666054i
\(975\) 0 0
\(976\) −14.6151 + 25.3141i −0.467817 + 0.810283i
\(977\) 15.5974 27.0155i 0.499006 0.864303i −0.500994 0.865451i \(-0.667032\pi\)
0.999999 + 0.00114787i \(0.000365378\pi\)
\(978\) 0 0
\(979\) −10.5288 18.2365i −0.336503 0.582840i
\(980\) 0 0
\(981\) 0 0
\(982\) −2.96225 −0.0945292
\(983\) −10.1700 17.6150i −0.324374 0.561832i 0.657012 0.753880i \(-0.271820\pi\)
−0.981385 + 0.192049i \(0.938487\pi\)
\(984\) 0 0
\(985\) −29.9378 + 51.8539i −0.953899 + 1.65220i
\(986\) 0.434681 0.752890i 0.0138431 0.0239769i
\(987\) 0 0
\(988\) −25.6014 44.3429i −0.814488 1.41074i
\(989\) −8.50808 −0.270541
\(990\) 0 0
\(991\) −12.9655 −0.411863 −0.205932 0.978566i \(-0.566022\pi\)
−0.205932 + 0.978566i \(0.566022\pi\)
\(992\) 9.02234 + 15.6272i 0.286460 + 0.496163i
\(993\) 0 0
\(994\) 0 0
\(995\) 8.74269 15.1428i 0.277162 0.480059i
\(996\) 0 0
\(997\) −24.7408 42.8523i −0.783548 1.35715i −0.929863 0.367907i \(-0.880074\pi\)
0.146314 0.989238i \(-0.453259\pi\)
\(998\) −2.44436 −0.0773749
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.f.g.442.4 12
3.2 odd 2 441.2.f.g.148.4 yes 12
7.2 even 3 1323.2.g.g.361.3 12
7.3 odd 6 1323.2.h.g.226.3 12
7.4 even 3 1323.2.h.g.226.4 12
7.5 odd 6 1323.2.g.g.361.4 12
7.6 odd 2 inner 1323.2.f.g.442.3 12
9.2 odd 6 441.2.f.g.295.4 yes 12
9.4 even 3 3969.2.a.bd.1.3 6
9.5 odd 6 3969.2.a.be.1.4 6
9.7 even 3 inner 1323.2.f.g.883.4 12
21.2 odd 6 441.2.g.g.67.4 12
21.5 even 6 441.2.g.g.67.3 12
21.11 odd 6 441.2.h.g.373.3 12
21.17 even 6 441.2.h.g.373.4 12
21.20 even 2 441.2.f.g.148.3 12
63.2 odd 6 441.2.h.g.214.3 12
63.11 odd 6 441.2.g.g.79.4 12
63.13 odd 6 3969.2.a.bd.1.4 6
63.16 even 3 1323.2.h.g.802.4 12
63.20 even 6 441.2.f.g.295.3 yes 12
63.25 even 3 1323.2.g.g.667.3 12
63.34 odd 6 inner 1323.2.f.g.883.3 12
63.38 even 6 441.2.g.g.79.3 12
63.41 even 6 3969.2.a.be.1.3 6
63.47 even 6 441.2.h.g.214.4 12
63.52 odd 6 1323.2.g.g.667.4 12
63.61 odd 6 1323.2.h.g.802.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.f.g.148.3 12 21.20 even 2
441.2.f.g.148.4 yes 12 3.2 odd 2
441.2.f.g.295.3 yes 12 63.20 even 6
441.2.f.g.295.4 yes 12 9.2 odd 6
441.2.g.g.67.3 12 21.5 even 6
441.2.g.g.67.4 12 21.2 odd 6
441.2.g.g.79.3 12 63.38 even 6
441.2.g.g.79.4 12 63.11 odd 6
441.2.h.g.214.3 12 63.2 odd 6
441.2.h.g.214.4 12 63.47 even 6
441.2.h.g.373.3 12 21.11 odd 6
441.2.h.g.373.4 12 21.17 even 6
1323.2.f.g.442.3 12 7.6 odd 2 inner
1323.2.f.g.442.4 12 1.1 even 1 trivial
1323.2.f.g.883.3 12 63.34 odd 6 inner
1323.2.f.g.883.4 12 9.7 even 3 inner
1323.2.g.g.361.3 12 7.2 even 3
1323.2.g.g.361.4 12 7.5 odd 6
1323.2.g.g.667.3 12 63.25 even 3
1323.2.g.g.667.4 12 63.52 odd 6
1323.2.h.g.226.3 12 7.3 odd 6
1323.2.h.g.226.4 12 7.4 even 3
1323.2.h.g.802.3 12 63.61 odd 6
1323.2.h.g.802.4 12 63.16 even 3
3969.2.a.bd.1.3 6 9.4 even 3
3969.2.a.bd.1.4 6 63.13 odd 6
3969.2.a.be.1.3 6 63.41 even 6
3969.2.a.be.1.4 6 9.5 odd 6