Properties

Label 441.2.g.g.67.4
Level $441$
Weight $2$
Character 441.67
Analytic conductor $3.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(67,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.4
Root \(-1.29589 - 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 441.67
Dual form 441.2.g.g.79.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.119562 + 0.207087i) q^{2} +(0.578751 + 1.63250i) q^{3} +(0.971410 + 1.68253i) q^{4} +2.59179 q^{5} +(-0.407265 - 0.0753324i) q^{6} -0.942820 q^{8} +(-2.33009 + 1.88962i) q^{9} +(-0.309879 + 0.536725i) q^{10} +4.18194 q^{11} +(-2.18452 + 2.55959i) q^{12} +(1.84155 - 3.18966i) q^{13} +(1.50000 + 4.23109i) q^{15} +(-1.83009 + 3.16982i) q^{16} +(0.855536 - 1.48183i) q^{17} +(-0.112725 - 0.708458i) q^{18} +(-3.57780 - 6.19694i) q^{19} +(2.51769 + 4.36077i) q^{20} +(-0.500000 + 0.866025i) q^{22} -5.12476 q^{23} +(-0.545658 - 1.53915i) q^{24} +1.71737 q^{25} +(0.440358 + 0.762722i) q^{26} +(-4.43334 - 2.71026i) q^{27} +(1.06238 + 1.84010i) q^{29} +(-1.05555 - 0.195246i) q^{30} +(-3.26793 - 5.66021i) q^{31} +(-1.38044 - 2.39099i) q^{32} +(2.42030 + 6.82701i) q^{33} +(0.204579 + 0.354341i) q^{34} +(-5.44282 - 2.08486i) q^{36} +(-0.830095 - 1.43777i) q^{37} +1.71107 q^{38} +(6.27292 + 1.16031i) q^{39} -2.44359 q^{40} +(-5.10948 + 8.84988i) q^{41} +(0.830095 + 1.43777i) q^{43} +(4.06238 + 7.03625i) q^{44} +(-6.03911 + 4.89749i) q^{45} +(0.612725 - 1.06127i) q^{46} +(4.66912 - 8.08715i) q^{47} +(-6.23389 - 1.15309i) q^{48} +(-0.205332 + 0.355645i) q^{50} +(2.91423 + 0.539049i) q^{51} +7.15561 q^{52} +(-5.32326 + 9.22015i) q^{53} +(1.09132 - 0.594044i) q^{54} +10.8387 q^{55} +(8.04583 - 9.42724i) q^{57} -0.508080 q^{58} +(3.03215 + 5.25183i) q^{59} +(-5.66182 + 6.63392i) q^{60} +(-3.99298 + 6.91605i) q^{61} +1.56287 q^{62} -6.66019 q^{64} +(4.77292 - 8.26693i) q^{65} +(-1.70316 - 0.315036i) q^{66} +(-4.13160 - 7.15614i) q^{67} +3.32431 q^{68} +(-2.96596 - 8.36616i) q^{69} +6.23912 q^{71} +(2.19686 - 1.78157i) q^{72} +(3.57780 - 6.19694i) q^{73} +0.396990 q^{74} +(0.993929 + 2.80360i) q^{75} +(6.95103 - 12.0395i) q^{76} +(-0.990285 + 1.16031i) q^{78} +(4.91423 - 8.51170i) q^{79} +(-4.74322 + 8.21550i) q^{80} +(1.85868 - 8.80598i) q^{81} +(-1.22180 - 2.11621i) q^{82} +(3.44733 + 5.97094i) q^{83} +(2.21737 - 3.84060i) q^{85} -0.396990 q^{86} +(-2.38910 + 2.79929i) q^{87} -3.94282 q^{88} +(-2.51769 - 4.36077i) q^{89} +(-0.292160 - 1.83617i) q^{90} +(-4.97825 - 8.62258i) q^{92} +(7.34897 - 8.61073i) q^{93} +(1.11650 + 1.93383i) q^{94} +(-9.27292 - 16.0612i) q^{95} +(3.10435 - 3.63735i) q^{96} +(1.53167 + 2.65294i) q^{97} +(-9.74433 + 7.90228i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 6 q^{4} + 24 q^{8} - 12 q^{9} + 16 q^{11} + 18 q^{15} - 6 q^{16} + 18 q^{18} - 6 q^{22} + 8 q^{23} + 24 q^{25} - 22 q^{29} + 42 q^{30} - 16 q^{32} - 30 q^{36} + 6 q^{37} + 24 q^{39} - 6 q^{43}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.119562 + 0.207087i −0.0845428 + 0.146433i −0.905196 0.424994i \(-0.860276\pi\)
0.820653 + 0.571426i \(0.193610\pi\)
\(3\) 0.578751 + 1.63250i 0.334142 + 0.942523i
\(4\) 0.971410 + 1.68253i 0.485705 + 0.841266i
\(5\) 2.59179 1.15908 0.579542 0.814943i \(-0.303232\pi\)
0.579542 + 0.814943i \(0.303232\pi\)
\(6\) −0.407265 0.0753324i −0.166265 0.0307543i
\(7\) 0 0
\(8\) −0.942820 −0.333337
\(9\) −2.33009 + 1.88962i −0.776698 + 0.629873i
\(10\) −0.309879 + 0.536725i −0.0979922 + 0.169727i
\(11\) 4.18194 1.26090 0.630452 0.776228i \(-0.282870\pi\)
0.630452 + 0.776228i \(0.282870\pi\)
\(12\) −2.18452 + 2.55959i −0.630618 + 0.738890i
\(13\) 1.84155 3.18966i 0.510755 0.884653i −0.489168 0.872190i \(-0.662699\pi\)
0.999922 0.0124633i \(-0.00396730\pi\)
\(14\) 0 0
\(15\) 1.50000 + 4.23109i 0.387298 + 1.09246i
\(16\) −1.83009 + 3.16982i −0.457524 + 0.792454i
\(17\) 0.855536 1.48183i 0.207498 0.359397i −0.743428 0.668816i \(-0.766801\pi\)
0.950926 + 0.309419i \(0.100135\pi\)
\(18\) −0.112725 0.708458i −0.0265696 0.166985i
\(19\) −3.57780 6.19694i −0.820805 1.42168i −0.905084 0.425233i \(-0.860192\pi\)
0.0842790 0.996442i \(-0.473141\pi\)
\(20\) 2.51769 + 4.36077i 0.562973 + 0.975097i
\(21\) 0 0
\(22\) −0.500000 + 0.866025i −0.106600 + 0.184637i
\(23\) −5.12476 −1.06859 −0.534294 0.845299i \(-0.679422\pi\)
−0.534294 + 0.845299i \(0.679422\pi\)
\(24\) −0.545658 1.53915i −0.111382 0.314178i
\(25\) 1.71737 0.343474
\(26\) 0.440358 + 0.762722i 0.0863613 + 0.149582i
\(27\) −4.43334 2.71026i −0.853197 0.521589i
\(28\) 0 0
\(29\) 1.06238 + 1.84010i 0.197279 + 0.341698i 0.947645 0.319325i \(-0.103456\pi\)
−0.750366 + 0.661023i \(0.770123\pi\)
\(30\) −1.05555 0.195246i −0.192715 0.0356468i
\(31\) −3.26793 5.66021i −0.586937 1.01660i −0.994631 0.103486i \(-0.967000\pi\)
0.407694 0.913119i \(-0.366333\pi\)
\(32\) −1.38044 2.39099i −0.244029 0.422671i
\(33\) 2.42030 + 6.82701i 0.421321 + 1.18843i
\(34\) 0.204579 + 0.354341i 0.0350850 + 0.0607689i
\(35\) 0 0
\(36\) −5.44282 2.08486i −0.907137 0.347477i
\(37\) −0.830095 1.43777i −0.136467 0.236367i 0.789690 0.613506i \(-0.210241\pi\)
−0.926157 + 0.377139i \(0.876908\pi\)
\(38\) 1.71107 0.277573
\(39\) 6.27292 + 1.16031i 1.00447 + 0.185798i
\(40\) −2.44359 −0.386366
\(41\) −5.10948 + 8.84988i −0.797967 + 1.38212i 0.122972 + 0.992410i \(0.460758\pi\)
−0.920938 + 0.389708i \(0.872576\pi\)
\(42\) 0 0
\(43\) 0.830095 + 1.43777i 0.126588 + 0.219257i 0.922353 0.386349i \(-0.126264\pi\)
−0.795764 + 0.605606i \(0.792931\pi\)
\(44\) 4.06238 + 7.03625i 0.612427 + 1.06075i
\(45\) −6.03911 + 4.89749i −0.900258 + 0.730075i
\(46\) 0.612725 1.06127i 0.0903414 0.156476i
\(47\) 4.66912 8.08715i 0.681061 1.17963i −0.293596 0.955930i \(-0.594852\pi\)
0.974657 0.223703i \(-0.0718146\pi\)
\(48\) −6.23389 1.15309i −0.899784 0.166434i
\(49\) 0 0
\(50\) −0.205332 + 0.355645i −0.0290383 + 0.0502958i
\(51\) 2.91423 + 0.539049i 0.408074 + 0.0754820i
\(52\) 7.15561 0.992305
\(53\) −5.32326 + 9.22015i −0.731206 + 1.26649i 0.225162 + 0.974321i \(0.427709\pi\)
−0.956368 + 0.292164i \(0.905625\pi\)
\(54\) 1.09132 0.594044i 0.148509 0.0808392i
\(55\) 10.8387 1.46149
\(56\) 0 0
\(57\) 8.04583 9.42724i 1.06570 1.24867i
\(58\) −0.508080 −0.0667142
\(59\) 3.03215 + 5.25183i 0.394752 + 0.683730i 0.993069 0.117529i \(-0.0374972\pi\)
−0.598318 + 0.801259i \(0.704164\pi\)
\(60\) −5.66182 + 6.63392i −0.730938 + 0.856435i
\(61\) −3.99298 + 6.91605i −0.511249 + 0.885509i 0.488666 + 0.872471i \(0.337484\pi\)
−0.999915 + 0.0130384i \(0.995850\pi\)
\(62\) 1.56287 0.198485
\(63\) 0 0
\(64\) −6.66019 −0.832524
\(65\) 4.77292 8.26693i 0.592007 1.02539i
\(66\) −1.70316 0.315036i −0.209644 0.0387782i
\(67\) −4.13160 7.15614i −0.504755 0.874262i −0.999985 0.00549964i \(-0.998249\pi\)
0.495230 0.868762i \(-0.335084\pi\)
\(68\) 3.32431 0.403131
\(69\) −2.96596 8.36616i −0.357060 1.00717i
\(70\) 0 0
\(71\) 6.23912 0.740448 0.370224 0.928943i \(-0.379281\pi\)
0.370224 + 0.928943i \(0.379281\pi\)
\(72\) 2.19686 1.78157i 0.258902 0.209960i
\(73\) 3.57780 6.19694i 0.418750 0.725297i −0.577064 0.816699i \(-0.695802\pi\)
0.995814 + 0.0914022i \(0.0291349\pi\)
\(74\) 0.396990 0.0461492
\(75\) 0.993929 + 2.80360i 0.114769 + 0.323732i
\(76\) 6.95103 12.0395i 0.797338 1.38103i
\(77\) 0 0
\(78\) −0.990285 + 1.16031i −0.112128 + 0.131379i
\(79\) 4.91423 8.51170i 0.552894 0.957641i −0.445170 0.895446i \(-0.646857\pi\)
0.998064 0.0621945i \(-0.0198099\pi\)
\(80\) −4.74322 + 8.21550i −0.530308 + 0.918521i
\(81\) 1.85868 8.80598i 0.206521 0.978442i
\(82\) −1.22180 2.11621i −0.134925 0.233696i
\(83\) 3.44733 + 5.97094i 0.378393 + 0.655396i 0.990829 0.135124i \(-0.0431434\pi\)
−0.612436 + 0.790521i \(0.709810\pi\)
\(84\) 0 0
\(85\) 2.21737 3.84060i 0.240508 0.416571i
\(86\) −0.396990 −0.0428085
\(87\) −2.38910 + 2.79929i −0.256139 + 0.300116i
\(88\) −3.94282 −0.420306
\(89\) −2.51769 4.36077i −0.266875 0.462240i 0.701178 0.712986i \(-0.252658\pi\)
−0.968053 + 0.250745i \(0.919324\pi\)
\(90\) −0.292160 1.83617i −0.0307963 0.193550i
\(91\) 0 0
\(92\) −4.97825 8.62258i −0.519018 0.898966i
\(93\) 7.34897 8.61073i 0.762053 0.892892i
\(94\) 1.11650 + 1.93383i 0.115158 + 0.199459i
\(95\) −9.27292 16.0612i −0.951381 1.64784i
\(96\) 3.10435 3.63735i 0.316837 0.371235i
\(97\) 1.53167 + 2.65294i 0.155518 + 0.269365i 0.933247 0.359234i \(-0.116962\pi\)
−0.777730 + 0.628599i \(0.783629\pi\)
\(98\) 0 0
\(99\) −9.74433 + 7.90228i −0.979342 + 0.794209i
\(100\) 1.66827 + 2.88953i 0.166827 + 0.288953i
\(101\) 11.0997 1.10446 0.552229 0.833692i \(-0.313777\pi\)
0.552229 + 0.833692i \(0.313777\pi\)
\(102\) −0.460060 + 0.539049i −0.0455527 + 0.0533738i
\(103\) −7.98597 −0.786881 −0.393440 0.919350i \(-0.628715\pi\)
−0.393440 + 0.919350i \(0.628715\pi\)
\(104\) −1.73625 + 3.00728i −0.170254 + 0.294888i
\(105\) 0 0
\(106\) −1.27292 2.20475i −0.123636 0.214145i
\(107\) −1.97825 3.42642i −0.191244 0.331245i 0.754419 0.656394i \(-0.227919\pi\)
−0.945663 + 0.325149i \(0.894586\pi\)
\(108\) 0.253498 10.0920i 0.0243929 0.971104i
\(109\) −3.63160 + 6.29012i −0.347844 + 0.602484i −0.985866 0.167534i \(-0.946420\pi\)
0.638022 + 0.770018i \(0.279753\pi\)
\(110\) −1.29589 + 2.24456i −0.123559 + 0.214010i
\(111\) 1.86673 2.18724i 0.177182 0.207603i
\(112\) 0 0
\(113\) −3.46457 + 6.00082i −0.325920 + 0.564509i −0.981698 0.190444i \(-0.939007\pi\)
0.655778 + 0.754953i \(0.272341\pi\)
\(114\) 0.990285 + 2.79332i 0.0927487 + 0.261619i
\(115\) −13.2823 −1.23858
\(116\) −2.06402 + 3.57498i −0.191639 + 0.331929i
\(117\) 1.73625 + 10.9120i 0.160517 + 1.00882i
\(118\) −1.45011 −0.133494
\(119\) 0 0
\(120\) −1.41423 3.98916i −0.129101 0.364158i
\(121\) 6.48865 0.589877
\(122\) −0.954815 1.65379i −0.0864449 0.149727i
\(123\) −17.4045 3.21934i −1.56931 0.290278i
\(124\) 6.34899 10.9968i 0.570156 0.987540i
\(125\) −8.50788 −0.760968
\(126\) 0 0
\(127\) 9.11109 0.808479 0.404239 0.914653i \(-0.367536\pi\)
0.404239 + 0.914653i \(0.367536\pi\)
\(128\) 3.55718 6.16122i 0.314413 0.544580i
\(129\) −1.86673 + 2.18724i −0.164357 + 0.192575i
\(130\) 1.14132 + 1.97682i 0.100100 + 0.173378i
\(131\) 4.30286 0.375943 0.187971 0.982175i \(-0.439809\pi\)
0.187971 + 0.982175i \(0.439809\pi\)
\(132\) −9.13555 + 10.7041i −0.795148 + 0.931669i
\(133\) 0 0
\(134\) 1.97592 0.170694
\(135\) −11.4903 7.02441i −0.988926 0.604565i
\(136\) −0.806617 + 1.39710i −0.0691668 + 0.119800i
\(137\) 20.5893 1.75907 0.879533 0.475838i \(-0.157855\pi\)
0.879533 + 0.475838i \(0.157855\pi\)
\(138\) 2.08714 + 0.386061i 0.177669 + 0.0328637i
\(139\) −7.88067 + 13.6497i −0.668429 + 1.15775i 0.309914 + 0.950765i \(0.399700\pi\)
−0.978343 + 0.206989i \(0.933634\pi\)
\(140\) 0 0
\(141\) 15.9045 + 2.94188i 1.33940 + 0.247751i
\(142\) −0.745960 + 1.29204i −0.0625996 + 0.108426i
\(143\) 7.70127 13.3390i 0.644012 1.11546i
\(144\) −1.72545 10.8442i −0.143788 0.903680i
\(145\) 2.75347 + 4.76915i 0.228663 + 0.396056i
\(146\) 0.855536 + 1.48183i 0.0708047 + 0.122637i
\(147\) 0 0
\(148\) 1.61273 2.79332i 0.132565 0.229610i
\(149\) 6.06758 0.497076 0.248538 0.968622i \(-0.420050\pi\)
0.248538 + 0.968622i \(0.420050\pi\)
\(150\) −0.699425 0.129374i −0.0571078 0.0105633i
\(151\) 4.48865 0.365281 0.182641 0.983180i \(-0.441536\pi\)
0.182641 + 0.983180i \(0.441536\pi\)
\(152\) 3.37323 + 5.84260i 0.273605 + 0.473897i
\(153\) 0.806617 + 5.06945i 0.0652111 + 0.409841i
\(154\) 0 0
\(155\) −8.46978 14.6701i −0.680309 1.17833i
\(156\) 4.14132 + 11.6815i 0.331571 + 0.935270i
\(157\) 0.514457 + 0.891066i 0.0410582 + 0.0711148i 0.885824 0.464021i \(-0.153594\pi\)
−0.844766 + 0.535136i \(0.820260\pi\)
\(158\) 1.17511 + 2.03534i 0.0934865 + 0.161923i
\(159\) −18.1327 3.35403i −1.43802 0.265992i
\(160\) −3.57780 6.19694i −0.282850 0.489911i
\(161\) 0 0
\(162\) 1.60138 + 1.43777i 0.125816 + 0.112962i
\(163\) −3.41423 5.91362i −0.267423 0.463190i 0.700772 0.713385i \(-0.252839\pi\)
−0.968196 + 0.250194i \(0.919505\pi\)
\(164\) −19.8536 −1.55031
\(165\) 6.27292 + 17.6942i 0.488346 + 1.37749i
\(166\) −1.64867 −0.127962
\(167\) 8.99716 15.5835i 0.696221 1.20589i −0.273546 0.961859i \(-0.588197\pi\)
0.969767 0.244032i \(-0.0784701\pi\)
\(168\) 0 0
\(169\) −0.282630 0.489530i −0.0217408 0.0376561i
\(170\) 0.530225 + 0.918376i 0.0406664 + 0.0704362i
\(171\) 20.0465 + 7.67877i 1.53299 + 0.587210i
\(172\) −1.61273 + 2.79332i −0.122969 + 0.212989i
\(173\) −0.415178 + 0.719110i −0.0315654 + 0.0546729i −0.881377 0.472414i \(-0.843383\pi\)
0.849811 + 0.527087i \(0.176716\pi\)
\(174\) −0.294052 0.829440i −0.0222920 0.0628797i
\(175\) 0 0
\(176\) −7.65335 + 13.2560i −0.576893 + 0.999208i
\(177\) −6.81875 + 7.98947i −0.512528 + 0.600526i
\(178\) 1.20408 0.0902493
\(179\) −3.78947 + 6.56355i −0.283238 + 0.490583i −0.972180 0.234233i \(-0.924742\pi\)
0.688942 + 0.724816i \(0.258075\pi\)
\(180\) −14.1066 5.40353i −1.05145 0.402755i
\(181\) −0.409157 −0.0304124 −0.0152062 0.999884i \(-0.504840\pi\)
−0.0152062 + 0.999884i \(0.504840\pi\)
\(182\) 0 0
\(183\) −13.6014 2.51586i −1.00544 0.185978i
\(184\) 4.83173 0.356200
\(185\) −2.15143 3.72639i −0.158176 0.273969i
\(186\) 0.904515 + 2.55139i 0.0663223 + 0.187077i
\(187\) 3.57780 6.19694i 0.261635 0.453165i
\(188\) 18.1425 1.32318
\(189\) 0 0
\(190\) 4.43474 0.321730
\(191\) −8.01204 + 13.8773i −0.579731 + 1.00412i 0.415779 + 0.909466i \(0.363509\pi\)
−0.995510 + 0.0946575i \(0.969824\pi\)
\(192\) −3.85459 10.8727i −0.278181 0.784673i
\(193\) 6.18715 + 10.7164i 0.445360 + 0.771387i 0.998077 0.0619822i \(-0.0197422\pi\)
−0.552717 + 0.833369i \(0.686409\pi\)
\(194\) −0.732518 −0.0525917
\(195\) 16.2581 + 3.00728i 1.16426 + 0.215356i
\(196\) 0 0
\(197\) 23.1021 1.64595 0.822977 0.568075i \(-0.192312\pi\)
0.822977 + 0.568075i \(0.192312\pi\)
\(198\) −0.471410 2.96273i −0.0335017 0.210552i
\(199\) −3.37323 + 5.84260i −0.239122 + 0.414171i −0.960463 0.278409i \(-0.910193\pi\)
0.721341 + 0.692580i \(0.243526\pi\)
\(200\) −1.61917 −0.114493
\(201\) 9.29121 10.8864i 0.655352 0.767871i
\(202\) −1.32710 + 2.29860i −0.0933741 + 0.161729i
\(203\) 0 0
\(204\) 1.92395 + 5.42692i 0.134703 + 0.379961i
\(205\) −13.2427 + 22.9370i −0.924910 + 1.60199i
\(206\) 0.954815 1.65379i 0.0665251 0.115225i
\(207\) 11.9412 9.68385i 0.829970 0.673074i
\(208\) 6.74043 + 11.6748i 0.467365 + 0.809500i
\(209\) −14.9622 25.9153i −1.03496 1.79260i
\(210\) 0 0
\(211\) −8.44282 + 14.6234i −0.581228 + 1.00672i 0.414106 + 0.910228i \(0.364094\pi\)
−0.995334 + 0.0964875i \(0.969239\pi\)
\(212\) −20.6843 −1.42060
\(213\) 3.61090 + 10.1854i 0.247415 + 0.697889i
\(214\) 0.946090 0.0646734
\(215\) 2.15143 + 3.72639i 0.146726 + 0.254138i
\(216\) 4.17984 + 2.55528i 0.284402 + 0.173865i
\(217\) 0 0
\(218\) −0.868400 1.50411i −0.0588155 0.101871i
\(219\) 12.1871 + 2.25427i 0.823531 + 0.152330i
\(220\) 10.5288 + 18.2365i 0.709854 + 1.22950i
\(221\) −3.15103 5.45774i −0.211961 0.367128i
\(222\) 0.229758 + 0.648085i 0.0154204 + 0.0434966i
\(223\) −2.25071 3.89834i −0.150719 0.261052i 0.780773 0.624815i \(-0.214825\pi\)
−0.931492 + 0.363762i \(0.881492\pi\)
\(224\) 0 0
\(225\) −4.00163 + 3.24517i −0.266776 + 0.216345i
\(226\) −0.828460 1.43494i −0.0551084 0.0954505i
\(227\) 6.06429 0.402501 0.201251 0.979540i \(-0.435499\pi\)
0.201251 + 0.979540i \(0.435499\pi\)
\(228\) 23.6774 + 4.37965i 1.56808 + 0.290049i
\(229\) 11.0493 0.730159 0.365080 0.930976i \(-0.381042\pi\)
0.365080 + 0.930976i \(0.381042\pi\)
\(230\) 1.58805 2.75059i 0.104713 0.181369i
\(231\) 0 0
\(232\) −1.00163 1.73488i −0.0657605 0.113901i
\(233\) 4.06922 + 7.04809i 0.266583 + 0.461736i 0.967977 0.251038i \(-0.0807719\pi\)
−0.701394 + 0.712774i \(0.747439\pi\)
\(234\) −2.46733 0.945107i −0.161294 0.0617836i
\(235\) 12.1014 20.9602i 0.789407 1.36729i
\(236\) −5.89092 + 10.2034i −0.383466 + 0.664183i
\(237\) 16.7394 + 3.09632i 1.08734 + 0.201127i
\(238\) 0 0
\(239\) −10.5813 + 18.3273i −0.684445 + 1.18549i 0.289166 + 0.957279i \(0.406622\pi\)
−0.973611 + 0.228214i \(0.926711\pi\)
\(240\) −16.1569 2.98857i −1.04292 0.192911i
\(241\) −13.6915 −0.881945 −0.440972 0.897521i \(-0.645366\pi\)
−0.440972 + 0.897521i \(0.645366\pi\)
\(242\) −0.775794 + 1.34371i −0.0498699 + 0.0863772i
\(243\) 15.4515 2.06217i 0.991211 0.132288i
\(244\) −15.5153 −0.993265
\(245\) 0 0
\(246\) 2.74759 3.21934i 0.175180 0.205257i
\(247\) −26.3549 −1.67692
\(248\) 3.08107 + 5.33656i 0.195648 + 0.338872i
\(249\) −7.75241 + 9.08344i −0.491289 + 0.575639i
\(250\) 1.01722 1.76187i 0.0643344 0.111430i
\(251\) −15.2040 −0.959667 −0.479833 0.877360i \(-0.659303\pi\)
−0.479833 + 0.877360i \(0.659303\pi\)
\(252\) 0 0
\(253\) −21.4315 −1.34738
\(254\) −1.08934 + 1.88679i −0.0683511 + 0.118388i
\(255\) 7.55307 + 1.39710i 0.472992 + 0.0874899i
\(256\) −5.80959 10.0625i −0.363099 0.628906i
\(257\) −25.6215 −1.59822 −0.799112 0.601182i \(-0.794697\pi\)
−0.799112 + 0.601182i \(0.794697\pi\)
\(258\) −0.229758 0.648085i −0.0143041 0.0403480i
\(259\) 0 0
\(260\) 18.5458 1.15016
\(261\) −5.95254 2.28011i −0.368453 0.141135i
\(262\) −0.514457 + 0.891066i −0.0317833 + 0.0550502i
\(263\) 7.10069 0.437847 0.218924 0.975742i \(-0.429745\pi\)
0.218924 + 0.975742i \(0.429745\pi\)
\(264\) −2.28191 6.43664i −0.140442 0.396148i
\(265\) −13.7968 + 23.8967i −0.847528 + 1.46796i
\(266\) 0 0
\(267\) 5.66182 6.63392i 0.346498 0.405989i
\(268\) 8.02696 13.9031i 0.490324 0.849267i
\(269\) −8.21572 + 14.2301i −0.500922 + 0.867622i 0.499078 + 0.866557i \(0.333672\pi\)
−0.999999 + 0.00106448i \(0.999661\pi\)
\(270\) 2.82846 1.53964i 0.172135 0.0936993i
\(271\) 6.34899 + 10.9968i 0.385674 + 0.668007i 0.991862 0.127314i \(-0.0406357\pi\)
−0.606189 + 0.795321i \(0.707302\pi\)
\(272\) 3.13143 + 5.42379i 0.189871 + 0.328865i
\(273\) 0 0
\(274\) −2.46169 + 4.26378i −0.148716 + 0.257584i
\(275\) 7.18194 0.433087
\(276\) 11.1952 13.1173i 0.673870 0.789569i
\(277\) −0.828460 −0.0497773 −0.0248887 0.999690i \(-0.507923\pi\)
−0.0248887 + 0.999690i \(0.507923\pi\)
\(278\) −1.88445 3.26396i −0.113022 0.195760i
\(279\) 18.3102 + 7.01370i 1.09620 + 0.419899i
\(280\) 0 0
\(281\) −2.60985 4.52039i −0.155690 0.269664i 0.777620 0.628735i \(-0.216427\pi\)
−0.933310 + 0.359071i \(0.883094\pi\)
\(282\) −2.51079 + 2.94188i −0.149516 + 0.175186i
\(283\) −3.67708 6.36890i −0.218580 0.378592i 0.735794 0.677205i \(-0.236809\pi\)
−0.954374 + 0.298614i \(0.903476\pi\)
\(284\) 6.06075 + 10.4975i 0.359639 + 0.622913i
\(285\) 20.8531 24.4334i 1.23523 1.44731i
\(286\) 1.84155 + 3.18966i 0.108893 + 0.188609i
\(287\) 0 0
\(288\) 7.73461 + 2.96273i 0.455766 + 0.174581i
\(289\) 7.03611 + 12.1869i 0.413889 + 0.716877i
\(290\) −1.31684 −0.0773273
\(291\) −3.44445 + 4.03584i −0.201918 + 0.236585i
\(292\) 13.9021 0.813557
\(293\) 3.91286 6.77728i 0.228592 0.395933i −0.728799 0.684728i \(-0.759921\pi\)
0.957391 + 0.288795i \(0.0932545\pi\)
\(294\) 0 0
\(295\) 7.85868 + 13.6116i 0.457550 + 0.792500i
\(296\) 0.782630 + 1.35556i 0.0454895 + 0.0787900i
\(297\) −18.5400 11.3341i −1.07580 0.657673i
\(298\) −0.725450 + 1.25652i −0.0420242 + 0.0727881i
\(299\) −9.43752 + 16.3463i −0.545786 + 0.945329i
\(300\) −3.75164 + 4.39576i −0.216601 + 0.253790i
\(301\) 0 0
\(302\) −0.536670 + 0.929540i −0.0308819 + 0.0534890i
\(303\) 6.42395 + 18.1202i 0.369046 + 1.04098i
\(304\) 26.1909 1.50215
\(305\) −10.3490 + 17.9249i −0.592580 + 1.02638i
\(306\) −1.14626 0.439072i −0.0655271 0.0251001i
\(307\) −22.6709 −1.29390 −0.646948 0.762534i \(-0.723955\pi\)
−0.646948 + 0.762534i \(0.723955\pi\)
\(308\) 0 0
\(309\) −4.62188 13.0371i −0.262930 0.741653i
\(310\) 4.05064 0.230061
\(311\) −16.1588 27.9879i −0.916281 1.58705i −0.805015 0.593255i \(-0.797843\pi\)
−0.111266 0.993791i \(-0.535491\pi\)
\(312\) −5.91423 1.09396i −0.334827 0.0619335i
\(313\) −12.1598 + 21.0614i −0.687312 + 1.19046i 0.285392 + 0.958411i \(0.407876\pi\)
−0.972704 + 0.232048i \(0.925457\pi\)
\(314\) −0.246037 −0.0138847
\(315\) 0 0
\(316\) 19.0949 1.07417
\(317\) −2.56922 + 4.45002i −0.144302 + 0.249938i −0.929112 0.369798i \(-0.879427\pi\)
0.784811 + 0.619736i \(0.212760\pi\)
\(318\) 2.86255 3.35403i 0.160524 0.188085i
\(319\) 4.44282 + 7.69519i 0.248750 + 0.430848i
\(320\) −17.2618 −0.964964
\(321\) 4.44872 5.21253i 0.248303 0.290935i
\(322\) 0 0
\(323\) −12.2438 −0.681262
\(324\) 16.6219 5.42692i 0.923438 0.301496i
\(325\) 3.16263 5.47783i 0.175431 0.303855i
\(326\) 1.63284 0.0904349
\(327\) −12.3704 2.28817i −0.684084 0.126536i
\(328\) 4.81732 8.34384i 0.265992 0.460712i
\(329\) 0 0
\(330\) −4.41423 0.816506i −0.242995 0.0449472i
\(331\) 5.84897 10.1307i 0.321488 0.556834i −0.659307 0.751874i \(-0.729150\pi\)
0.980795 + 0.195040i \(0.0624835\pi\)
\(332\) −6.69753 + 11.6005i −0.367575 + 0.636658i
\(333\) 4.65103 + 1.78157i 0.254875 + 0.0976294i
\(334\) 2.15143 + 3.72639i 0.117721 + 0.203899i
\(335\) −10.7082 18.5472i −0.585053 1.01334i
\(336\) 0 0
\(337\) 16.8473 29.1804i 0.917733 1.58956i 0.114883 0.993379i \(-0.463351\pi\)
0.802850 0.596181i \(-0.203316\pi\)
\(338\) 0.135167 0.00735211
\(339\) −11.8014 2.18293i −0.640966 0.118560i
\(340\) 8.61590 0.467263
\(341\) −13.6663 23.6707i −0.740071 1.28184i
\(342\) −3.98696 + 3.23327i −0.215590 + 0.174835i
\(343\) 0 0
\(344\) −0.782630 1.35556i −0.0421966 0.0730866i
\(345\) −7.68715 21.6833i −0.413862 1.16739i
\(346\) −0.0992788 0.171956i −0.00533726 0.00924441i
\(347\) −13.6557 23.6523i −0.733075 1.26972i −0.955563 0.294788i \(-0.904751\pi\)
0.222488 0.974936i \(-0.428582\pi\)
\(348\) −7.03070 1.30048i −0.376885 0.0697129i
\(349\) 11.4585 + 19.8467i 0.613358 + 1.06237i 0.990670 + 0.136281i \(0.0435150\pi\)
−0.377312 + 0.926086i \(0.623152\pi\)
\(350\) 0 0
\(351\) −16.8090 + 9.14978i −0.897200 + 0.488379i
\(352\) −5.77292 9.99898i −0.307697 0.532948i
\(353\) −10.2693 −0.546581 −0.273290 0.961932i \(-0.588112\pi\)
−0.273290 + 0.961932i \(0.588112\pi\)
\(354\) −0.839255 2.36731i −0.0446059 0.125821i
\(355\) 16.1705 0.858241
\(356\) 4.89142 8.47218i 0.259245 0.449025i
\(357\) 0 0
\(358\) −0.906150 1.56950i −0.0478915 0.0829505i
\(359\) −5.05034 8.74745i −0.266547 0.461673i 0.701421 0.712747i \(-0.252549\pi\)
−0.967968 + 0.251075i \(0.919216\pi\)
\(360\) 5.69380 4.61745i 0.300090 0.243361i
\(361\) −16.1014 + 27.8884i −0.847441 + 1.46781i
\(362\) 0.0489195 0.0847311i 0.00257115 0.00445337i
\(363\) 3.75531 + 10.5927i 0.197103 + 0.555973i
\(364\) 0 0
\(365\) 9.27292 16.0612i 0.485367 0.840680i
\(366\) 2.14721 2.51586i 0.112236 0.131506i
\(367\) 7.77537 0.405871 0.202935 0.979192i \(-0.434952\pi\)
0.202935 + 0.979192i \(0.434952\pi\)
\(368\) 9.37880 16.2446i 0.488904 0.846806i
\(369\) −4.81732 30.2760i −0.250780 1.57611i
\(370\) 1.02891 0.0534907
\(371\) 0 0
\(372\) 21.6267 + 4.00032i 1.12129 + 0.207407i
\(373\) 24.1111 1.24842 0.624212 0.781255i \(-0.285420\pi\)
0.624212 + 0.781255i \(0.285420\pi\)
\(374\) 0.855536 + 1.48183i 0.0442387 + 0.0766237i
\(375\) −4.92395 13.8891i −0.254271 0.717230i
\(376\) −4.40214 + 7.62473i −0.227023 + 0.393215i
\(377\) 7.82573 0.403045
\(378\) 0 0
\(379\) −13.3581 −0.686161 −0.343081 0.939306i \(-0.611470\pi\)
−0.343081 + 0.939306i \(0.611470\pi\)
\(380\) 18.0156 31.2039i 0.924181 1.60073i
\(381\) 5.27305 + 14.8738i 0.270147 + 0.762009i
\(382\) −1.91586 3.31838i −0.0980242 0.169783i
\(383\) 9.24040 0.472162 0.236081 0.971733i \(-0.424137\pi\)
0.236081 + 0.971733i \(0.424137\pi\)
\(384\) 12.1169 + 2.24128i 0.618337 + 0.114375i
\(385\) 0 0
\(386\) −2.95898 −0.150608
\(387\) −4.65103 1.78157i −0.236425 0.0905623i
\(388\) −2.97577 + 5.15418i −0.151072 + 0.261664i
\(389\) 10.4484 0.529756 0.264878 0.964282i \(-0.414668\pi\)
0.264878 + 0.964282i \(0.414668\pi\)
\(390\) −2.56661 + 3.00728i −0.129965 + 0.152279i
\(391\) −4.38442 + 7.59404i −0.221730 + 0.384047i
\(392\) 0 0
\(393\) 2.49028 + 7.02441i 0.125618 + 0.354335i
\(394\) −2.76212 + 4.78413i −0.139154 + 0.241021i
\(395\) 12.7366 22.0605i 0.640850 1.10999i
\(396\) −22.7616 8.71878i −1.14381 0.438135i
\(397\) −0.204579 0.354341i −0.0102675 0.0177838i 0.860846 0.508866i \(-0.169935\pi\)
−0.871114 + 0.491082i \(0.836602\pi\)
\(398\) −0.806617 1.39710i −0.0404321 0.0700304i
\(399\) 0 0
\(400\) −3.14295 + 5.44375i −0.157147 + 0.272187i
\(401\) 15.2528 0.761688 0.380844 0.924639i \(-0.375633\pi\)
0.380844 + 0.924639i \(0.375633\pi\)
\(402\) 1.14357 + 3.22569i 0.0570360 + 0.160883i
\(403\) −24.0722 −1.19912
\(404\) 10.7823 + 18.6756i 0.536441 + 0.929143i
\(405\) 4.81732 22.8232i 0.239375 1.13410i
\(406\) 0 0
\(407\) −3.47141 6.01266i −0.172071 0.298036i
\(408\) −2.74759 0.508226i −0.136026 0.0251610i
\(409\) −3.06335 5.30587i −0.151473 0.262359i 0.780296 0.625410i \(-0.215068\pi\)
−0.931769 + 0.363051i \(0.881735\pi\)
\(410\) −3.16664 5.48477i −0.156389 0.270874i
\(411\) 11.9161 + 33.6120i 0.587778 + 1.65796i
\(412\) −7.75765 13.4366i −0.382192 0.661976i
\(413\) 0 0
\(414\) 0.577690 + 3.63068i 0.0283919 + 0.178438i
\(415\) 8.93474 + 15.4754i 0.438589 + 0.759659i
\(416\) −10.1686 −0.498557
\(417\) −26.8441 4.96538i −1.31456 0.243156i
\(418\) 7.15561 0.349992
\(419\) 0.781437 1.35349i 0.0381757 0.0661223i −0.846306 0.532697i \(-0.821179\pi\)
0.884482 + 0.466574i \(0.154512\pi\)
\(420\) 0 0
\(421\) −11.6316 20.1465i −0.566889 0.981881i −0.996871 0.0790438i \(-0.974813\pi\)
0.429982 0.902838i \(-0.358520\pi\)
\(422\) −2.01887 3.49679i −0.0982773 0.170221i
\(423\) 4.40214 + 27.6667i 0.214039 + 1.34520i
\(424\) 5.01887 8.69295i 0.243738 0.422167i
\(425\) 1.46927 2.54485i 0.0712702 0.123444i
\(426\) −2.54098 0.470008i −0.123111 0.0227720i
\(427\) 0 0
\(428\) 3.84338 6.65692i 0.185777 0.321775i
\(429\) 26.2330 + 4.85235i 1.26654 + 0.234274i
\(430\) −1.02891 −0.0496187
\(431\) −0.502879 + 0.871011i −0.0242228 + 0.0419551i −0.877883 0.478876i \(-0.841044\pi\)
0.853660 + 0.520831i \(0.174378\pi\)
\(432\) 16.7045 9.09286i 0.803693 0.437480i
\(433\) −13.1071 −0.629889 −0.314945 0.949110i \(-0.601986\pi\)
−0.314945 + 0.949110i \(0.601986\pi\)
\(434\) 0 0
\(435\) −6.19205 + 7.25518i −0.296886 + 0.347859i
\(436\) −14.1111 −0.675799
\(437\) 18.3354 + 31.7579i 0.877101 + 1.51918i
\(438\) −1.92395 + 2.25427i −0.0919297 + 0.107713i
\(439\) 9.30704 16.1203i 0.444201 0.769378i −0.553795 0.832653i \(-0.686821\pi\)
0.997996 + 0.0632744i \(0.0201543\pi\)
\(440\) −10.2190 −0.487170
\(441\) 0 0
\(442\) 1.50697 0.0716792
\(443\) 0.559503 0.969088i 0.0265828 0.0460427i −0.852428 0.522845i \(-0.824871\pi\)
0.879011 + 0.476802i \(0.158204\pi\)
\(444\) 5.49346 + 1.01613i 0.260708 + 0.0482235i
\(445\) −6.52532 11.3022i −0.309330 0.535775i
\(446\) 1.07639 0.0509687
\(447\) 3.51162 + 9.90531i 0.166094 + 0.468505i
\(448\) 0 0
\(449\) −39.4419 −1.86138 −0.930689 0.365813i \(-0.880791\pi\)
−0.930689 + 0.365813i \(0.880791\pi\)
\(450\) −0.193591 1.21668i −0.00912595 0.0573550i
\(451\) −21.3676 + 37.0097i −1.00616 + 1.74272i
\(452\) −13.4621 −0.633203
\(453\) 2.59781 + 7.32771i 0.122056 + 0.344286i
\(454\) −0.725057 + 1.25584i −0.0340286 + 0.0589393i
\(455\) 0 0
\(456\) −7.58577 + 8.88819i −0.355236 + 0.416228i
\(457\) 17.1202 29.6531i 0.800852 1.38712i −0.118205 0.992989i \(-0.537714\pi\)
0.919056 0.394126i \(-0.128953\pi\)
\(458\) −1.32107 + 2.28817i −0.0617297 + 0.106919i
\(459\) −7.80903 + 4.25075i −0.364494 + 0.198408i
\(460\) −12.9026 22.3479i −0.601585 1.04198i
\(461\) 10.1938 + 17.6561i 0.474772 + 0.822328i 0.999583 0.0288903i \(-0.00919735\pi\)
−0.524811 + 0.851219i \(0.675864\pi\)
\(462\) 0 0
\(463\) −3.40451 + 5.89679i −0.158221 + 0.274047i −0.934227 0.356678i \(-0.883909\pi\)
0.776006 + 0.630725i \(0.217243\pi\)
\(464\) −7.77704 −0.361040
\(465\) 19.0470 22.3172i 0.883282 1.03494i
\(466\) −1.94609 −0.0901509
\(467\) 12.3956 + 21.4698i 0.573598 + 0.993502i 0.996192 + 0.0871825i \(0.0277863\pi\)
−0.422594 + 0.906319i \(0.638880\pi\)
\(468\) −16.6733 + 13.5214i −0.770721 + 0.625026i
\(469\) 0 0
\(470\) 2.89372 + 5.01207i 0.133477 + 0.231190i
\(471\) −1.15692 + 1.35556i −0.0533081 + 0.0624607i
\(472\) −2.85877 4.95153i −0.131586 0.227913i
\(473\) 3.47141 + 6.01266i 0.159616 + 0.276462i
\(474\) −2.64260 + 3.09632i −0.121379 + 0.142219i
\(475\) −6.14441 10.6424i −0.281925 0.488309i
\(476\) 0 0
\(477\) −5.01887 31.5428i −0.229798 1.44424i
\(478\) −2.53022 4.38248i −0.115730 0.200450i
\(479\) 11.0997 0.507157 0.253579 0.967315i \(-0.418392\pi\)
0.253579 + 0.967315i \(0.418392\pi\)
\(480\) 8.04583 9.42724i 0.367240 0.430293i
\(481\) −6.11465 −0.278804
\(482\) 1.63697 2.83532i 0.0745621 0.129145i
\(483\) 0 0
\(484\) 6.30314 + 10.9174i 0.286506 + 0.496244i
\(485\) 3.96978 + 6.87585i 0.180258 + 0.312216i
\(486\) −1.42035 + 3.44635i −0.0644285 + 0.156330i
\(487\) 5.01887 8.69295i 0.227427 0.393915i −0.729618 0.683855i \(-0.760302\pi\)
0.957045 + 0.289940i \(0.0936354\pi\)
\(488\) 3.76466 6.52059i 0.170418 0.295173i
\(489\) 7.67798 8.99623i 0.347210 0.406824i
\(490\) 0 0
\(491\) 6.19398 10.7283i 0.279530 0.484161i −0.691738 0.722149i \(-0.743155\pi\)
0.971268 + 0.237988i \(0.0764879\pi\)
\(492\) −11.4903 32.4109i −0.518022 1.46120i
\(493\) 3.63562 0.163740
\(494\) 3.15103 5.45774i 0.141772 0.245556i
\(495\) −25.2552 + 20.4810i −1.13514 + 0.920554i
\(496\) 23.9225 1.07415
\(497\) 0 0
\(498\) −0.954170 2.69145i −0.0427574 0.120607i
\(499\) 10.2222 0.457608 0.228804 0.973473i \(-0.426519\pi\)
0.228804 + 0.973473i \(0.426519\pi\)
\(500\) −8.26464 14.3148i −0.369606 0.640177i
\(501\) 30.6472 + 5.66886i 1.36922 + 0.253266i
\(502\) 1.81781 3.14854i 0.0811329 0.140526i
\(503\) 8.45753 0.377102 0.188551 0.982063i \(-0.439621\pi\)
0.188551 + 0.982063i \(0.439621\pi\)
\(504\) 0 0
\(505\) 28.7680 1.28016
\(506\) 2.56238 4.43818i 0.113912 0.197301i
\(507\) 0.635584 0.744709i 0.0282273 0.0330737i
\(508\) 8.85060 + 15.3297i 0.392682 + 0.680145i
\(509\) 10.5657 0.468317 0.234159 0.972198i \(-0.424767\pi\)
0.234159 + 0.972198i \(0.424767\pi\)
\(510\) −1.19238 + 1.39710i −0.0527994 + 0.0618647i
\(511\) 0 0
\(512\) 17.0071 0.751616
\(513\) −0.933660 + 37.1699i −0.0412221 + 1.64109i
\(514\) 3.06335 5.30587i 0.135118 0.234032i
\(515\) −20.6979 −0.912060
\(516\) −5.49346 1.01613i −0.241836 0.0447327i
\(517\) 19.5260 33.8200i 0.858752 1.48740i
\(518\) 0 0
\(519\) −1.41423 0.261592i −0.0620778 0.0114826i
\(520\) −4.50000 + 7.79423i −0.197338 + 0.341800i
\(521\) 9.87788 17.1090i 0.432758 0.749558i −0.564352 0.825534i \(-0.690874\pi\)
0.997110 + 0.0759760i \(0.0242072\pi\)
\(522\) 1.18388 0.960078i 0.0518168 0.0420215i
\(523\) −16.2641 28.1702i −0.711179 1.23180i −0.964415 0.264394i \(-0.914828\pi\)
0.253236 0.967405i \(-0.418505\pi\)
\(524\) 4.17984 + 7.23970i 0.182597 + 0.316268i
\(525\) 0 0
\(526\) −0.848970 + 1.47046i −0.0370168 + 0.0641150i
\(527\) −11.1833 −0.487153
\(528\) −26.0698 4.82216i −1.13454 0.209858i
\(529\) 3.26320 0.141878
\(530\) −3.29913 5.71426i −0.143305 0.248211i
\(531\) −16.9891 6.50767i −0.737266 0.282409i
\(532\) 0 0
\(533\) 18.8187 + 32.5950i 0.815130 + 1.41185i
\(534\) 0.696860 + 1.96565i 0.0301561 + 0.0850621i
\(535\) −5.12720 8.88057i −0.221668 0.383940i
\(536\) 3.89536 + 6.74695i 0.168254 + 0.291424i
\(537\) −12.9081 2.38763i −0.557027 0.103034i
\(538\) −1.96457 3.40274i −0.0846987 0.146702i
\(539\) 0 0
\(540\) 0.657014 26.1563i 0.0282734 1.12559i
\(541\) −7.61109 13.1828i −0.327226 0.566773i 0.654734 0.755859i \(-0.272781\pi\)
−0.981960 + 0.189087i \(0.939447\pi\)
\(542\) −3.03638 −0.130424
\(543\) −0.236800 0.667948i −0.0101621 0.0286644i
\(544\) −4.72406 −0.202542
\(545\) −9.41234 + 16.3027i −0.403180 + 0.698329i
\(546\) 0 0
\(547\) −11.6871 20.2427i −0.499706 0.865517i 0.500294 0.865856i \(-0.333225\pi\)
−1.00000 0.000339172i \(0.999892\pi\)
\(548\) 20.0007 + 34.6422i 0.854387 + 1.47984i
\(549\) −3.76466 23.6603i −0.160672 1.00980i
\(550\) −0.858685 + 1.48729i −0.0366144 + 0.0634181i
\(551\) 7.60199 13.1670i 0.323856 0.560934i
\(552\) 2.79637 + 7.88779i 0.119021 + 0.335726i
\(553\) 0 0
\(554\) 0.0990521 0.171563i 0.00420832 0.00728902i
\(555\) 4.83818 5.66886i 0.205369 0.240629i
\(556\) −30.6214 −1.29864
\(557\) −13.8337 + 23.9606i −0.586151 + 1.01524i 0.408580 + 0.912723i \(0.366024\pi\)
−0.994731 + 0.102521i \(0.967309\pi\)
\(558\) −3.64165 + 2.95324i −0.154163 + 0.125020i
\(559\) 6.11465 0.258622
\(560\) 0 0
\(561\) 12.1871 + 2.25427i 0.514542 + 0.0951755i
\(562\) 1.24815 0.0526500
\(563\) −4.27912 7.41166i −0.180343 0.312364i 0.761654 0.647984i \(-0.224388\pi\)
−0.941998 + 0.335620i \(0.891054\pi\)
\(564\) 10.5000 + 29.6176i 0.442130 + 1.24713i
\(565\) −8.97944 + 15.5529i −0.377768 + 0.654313i
\(566\) 1.75855 0.0739175
\(567\) 0 0
\(568\) −5.88237 −0.246819
\(569\) −6.86389 + 11.8886i −0.287749 + 0.498396i −0.973272 0.229655i \(-0.926240\pi\)
0.685523 + 0.728051i \(0.259574\pi\)
\(570\) 2.56661 + 7.23970i 0.107503 + 0.303238i
\(571\) −5.35868 9.28151i −0.224254 0.388419i 0.731841 0.681475i \(-0.238661\pi\)
−0.956095 + 0.293056i \(0.905328\pi\)
\(572\) 29.9244 1.25120
\(573\) −27.2916 5.04816i −1.14012 0.210890i
\(574\) 0 0
\(575\) −8.80111 −0.367032
\(576\) 15.5189 12.5852i 0.646620 0.524384i
\(577\) 22.8177 39.5214i 0.949912 1.64530i 0.204307 0.978907i \(-0.434506\pi\)
0.745605 0.666389i \(-0.232161\pi\)
\(578\) −3.36500 −0.139965
\(579\) −13.9138 + 16.3027i −0.578236 + 0.677515i
\(580\) −5.34950 + 9.26560i −0.222126 + 0.384733i
\(581\) 0 0
\(582\) −0.423945 1.19583i −0.0175731 0.0495689i
\(583\) −22.2616 + 38.5582i −0.921980 + 1.59692i
\(584\) −3.37323 + 5.84260i −0.139585 + 0.241768i
\(585\) 4.50000 + 28.2817i 0.186052 + 1.16931i
\(586\) 0.935657 + 1.62060i 0.0386516 + 0.0669466i
\(587\) 5.10948 + 8.84988i 0.210891 + 0.365274i 0.951994 0.306118i \(-0.0990302\pi\)
−0.741103 + 0.671392i \(0.765697\pi\)
\(588\) 0 0
\(589\) −23.3840 + 40.5023i −0.963521 + 1.66887i
\(590\) −3.75839 −0.154730
\(591\) 13.3703 + 37.7141i 0.549982 + 1.55135i
\(592\) 6.07661 0.249747
\(593\) −5.69804 9.86929i −0.233990 0.405283i 0.724988 0.688761i \(-0.241845\pi\)
−0.958979 + 0.283478i \(0.908512\pi\)
\(594\) 4.56382 2.48426i 0.187256 0.101930i
\(595\) 0 0
\(596\) 5.89411 + 10.2089i 0.241432 + 0.418173i
\(597\) −11.4903 2.12537i −0.470266 0.0869857i
\(598\) −2.25673 3.90877i −0.0922846 0.159842i
\(599\) 17.2873 + 29.9424i 0.706339 + 1.22341i 0.966206 + 0.257771i \(0.0829879\pi\)
−0.259867 + 0.965644i \(0.583679\pi\)
\(600\) −0.937096 2.64329i −0.0382568 0.107912i
\(601\) 19.4207 + 33.6376i 0.792187 + 1.37211i 0.924610 + 0.380915i \(0.124391\pi\)
−0.132423 + 0.991193i \(0.542276\pi\)
\(602\) 0 0
\(603\) 23.1494 + 8.86734i 0.942716 + 0.361106i
\(604\) 4.36032 + 7.55230i 0.177419 + 0.307299i
\(605\) 16.8172 0.683717
\(606\) −4.52051 0.836165i −0.183633 0.0339669i
\(607\) −41.3325 −1.67763 −0.838817 0.544414i \(-0.816752\pi\)
−0.838817 + 0.544414i \(0.816752\pi\)
\(608\) −9.87788 + 17.1090i −0.400601 + 0.693861i
\(609\) 0 0
\(610\) −2.47468 4.28627i −0.100197 0.173546i
\(611\) −17.1969 29.7858i −0.695710 1.20501i
\(612\) −7.74595 + 6.28167i −0.313111 + 0.253921i
\(613\) 14.3285 24.8176i 0.578721 1.00237i −0.416905 0.908950i \(-0.636885\pi\)
0.995626 0.0934244i \(-0.0297813\pi\)
\(614\) 2.71057 4.69485i 0.109390 0.189469i
\(615\) −45.1088 8.34384i −1.81896 0.336456i
\(616\) 0 0
\(617\) 16.8518 29.1883i 0.678430 1.17508i −0.297024 0.954870i \(-0.595994\pi\)
0.975454 0.220205i \(-0.0706726\pi\)
\(618\) 3.25241 + 0.601602i 0.130831 + 0.0242000i
\(619\) 1.43807 0.0578010 0.0289005 0.999582i \(-0.490799\pi\)
0.0289005 + 0.999582i \(0.490799\pi\)
\(620\) 16.4552 28.5013i 0.660859 1.14464i
\(621\) 22.7198 + 13.8894i 0.911715 + 0.557363i
\(622\) 7.72789 0.309860
\(623\) 0 0
\(624\) −15.1580 + 17.7605i −0.606806 + 0.710990i
\(625\) −30.6375 −1.22550
\(626\) −2.90769 5.03626i −0.116215 0.201290i
\(627\) 33.6472 39.4242i 1.34374 1.57445i
\(628\) −0.999498 + 1.73118i −0.0398843 + 0.0690816i
\(629\) −2.84071 −0.113266
\(630\) 0 0
\(631\) −30.7680 −1.22486 −0.612428 0.790527i \(-0.709807\pi\)
−0.612428 + 0.790527i \(0.709807\pi\)
\(632\) −4.63323 + 8.02500i −0.184300 + 0.319217i
\(633\) −28.7589 5.31958i −1.14307 0.211434i
\(634\) −0.614360 1.06410i −0.0243993 0.0422609i
\(635\) 23.6140 0.937094
\(636\) −11.9710 33.7670i −0.474682 1.33895i
\(637\) 0 0
\(638\) −2.12476 −0.0841202
\(639\) −14.5377 + 11.7896i −0.575104 + 0.466388i
\(640\) 9.21946 15.9686i 0.364431 0.631213i
\(641\) 9.23912 0.364923 0.182462 0.983213i \(-0.441593\pi\)
0.182462 + 0.983213i \(0.441593\pi\)
\(642\) 0.547550 + 1.54449i 0.0216101 + 0.0609561i
\(643\) 12.7795 22.1348i 0.503976 0.872912i −0.496013 0.868315i \(-0.665203\pi\)
0.999989 0.00459728i \(-0.00146337\pi\)
\(644\) 0 0
\(645\) −4.83818 + 5.66886i −0.190503 + 0.223211i
\(646\) 1.46389 2.53552i 0.0575958 0.0997588i
\(647\) −14.1556 + 24.5181i −0.556512 + 0.963908i 0.441272 + 0.897374i \(0.354528\pi\)
−0.997784 + 0.0665343i \(0.978806\pi\)
\(648\) −1.75241 + 8.30245i −0.0688410 + 0.326151i
\(649\) 12.6803 + 21.9629i 0.497744 + 0.862118i
\(650\) 0.756258 + 1.30988i 0.0296629 + 0.0513776i
\(651\) 0 0
\(652\) 6.63323 11.4891i 0.259778 0.449948i
\(653\) −8.35021 −0.326769 −0.163385 0.986562i \(-0.552241\pi\)
−0.163385 + 0.986562i \(0.552241\pi\)
\(654\) 1.95287 2.28817i 0.0763634 0.0894744i
\(655\) 11.1521 0.435749
\(656\) −18.7017 32.3922i −0.730177 1.26470i
\(657\) 3.37323 + 21.2001i 0.131602 + 0.827096i
\(658\) 0 0
\(659\) 16.7862 + 29.0745i 0.653897 + 1.13258i 0.982169 + 0.188000i \(0.0602005\pi\)
−0.328272 + 0.944583i \(0.606466\pi\)
\(660\) −23.6774 + 27.7427i −0.921643 + 1.07988i
\(661\) 8.47668 + 14.6820i 0.329705 + 0.571065i 0.982453 0.186509i \(-0.0597175\pi\)
−0.652748 + 0.757575i \(0.726384\pi\)
\(662\) 1.39862 + 2.42249i 0.0543591 + 0.0941527i
\(663\) 7.08609 8.30272i 0.275201 0.322451i
\(664\) −3.25021 5.62952i −0.126133 0.218468i
\(665\) 0 0
\(666\) −0.925025 + 0.750160i −0.0358440 + 0.0290681i
\(667\) −5.44445 9.43007i −0.210810 0.365134i
\(668\) 34.9597 1.35263
\(669\) 5.06144 5.93045i 0.195686 0.229284i
\(670\) 5.12118 0.197848
\(671\) −16.6984 + 28.9225i −0.644636 + 1.11654i
\(672\) 0 0
\(673\) 22.2157 + 38.4788i 0.856354 + 1.48325i 0.875384 + 0.483429i \(0.160609\pi\)
−0.0190299 + 0.999819i \(0.506058\pi\)
\(674\) 4.02859 + 6.97772i 0.155175 + 0.268772i
\(675\) −7.61369 4.65451i −0.293051 0.179152i
\(676\) 0.549100 0.951068i 0.0211192 0.0365796i
\(677\) 7.18681 12.4479i 0.276212 0.478412i −0.694229 0.719755i \(-0.744254\pi\)
0.970440 + 0.241342i \(0.0775876\pi\)
\(678\) 1.86306 2.18293i 0.0715502 0.0838349i
\(679\) 0 0
\(680\) −2.09058 + 3.62099i −0.0801701 + 0.138859i
\(681\) 3.50972 + 9.89994i 0.134493 + 0.379367i
\(682\) 6.53585 0.250271
\(683\) 16.1546 27.9806i 0.618138 1.07065i −0.371687 0.928358i \(-0.621220\pi\)
0.989825 0.142289i \(-0.0454462\pi\)
\(684\) 6.55357 + 41.1881i 0.250582 + 1.57487i
\(685\) 53.3632 2.03890
\(686\) 0 0
\(687\) 6.39480 + 18.0380i 0.243977 + 0.688192i
\(688\) −6.07661 −0.231669
\(689\) 19.6061 + 33.9588i 0.746934 + 1.29373i
\(690\) 5.40942 + 1.00059i 0.205933 + 0.0380917i
\(691\) 14.4981 25.1114i 0.551533 0.955283i −0.446631 0.894718i \(-0.647376\pi\)
0.998164 0.0605650i \(-0.0192902\pi\)
\(692\) −1.61323 −0.0613259
\(693\) 0 0
\(694\) 6.53078 0.247905
\(695\) −20.4250 + 35.3772i −0.774765 + 1.34193i
\(696\) 2.25249 2.63923i 0.0853806 0.100040i
\(697\) 8.74269 + 15.1428i 0.331153 + 0.573574i
\(698\) −5.47997 −0.207420
\(699\) −9.15093 + 10.7221i −0.346120 + 0.405546i
\(700\) 0 0
\(701\) −26.3912 −0.996783 −0.498392 0.866952i \(-0.666076\pi\)
−0.498392 + 0.866952i \(0.666076\pi\)
\(702\) 0.114915 4.57489i 0.00433720 0.172668i
\(703\) −5.93984 + 10.2881i −0.224025 + 0.388023i
\(704\) −27.8525 −1.04973
\(705\) 41.2211 + 7.62473i 1.55248 + 0.287164i
\(706\) 1.22782 2.12664i 0.0462095 0.0800372i
\(707\) 0 0
\(708\) −20.0663 3.71170i −0.754139 0.139494i
\(709\) 3.94282 6.82916i 0.148076 0.256475i −0.782441 0.622725i \(-0.786025\pi\)
0.930516 + 0.366251i \(0.119359\pi\)
\(710\) −1.93337 + 3.34870i −0.0725581 + 0.125674i
\(711\) 4.63323 + 29.1191i 0.173760 + 1.09205i
\(712\) 2.37373 + 4.11142i 0.0889592 + 0.154082i
\(713\) 16.7473 + 29.0073i 0.627193 + 1.08633i
\(714\) 0 0
\(715\) 19.9601 34.5718i 0.746464 1.29291i
\(716\) −14.7245 −0.550281
\(717\) −36.0431 6.66695i −1.34606 0.248982i
\(718\) 2.41531 0.0901385
\(719\) 16.5754 + 28.7095i 0.618159 + 1.07068i 0.989822 + 0.142314i \(0.0454544\pi\)
−0.371663 + 0.928368i \(0.621212\pi\)
\(720\) −4.47200 28.1058i −0.166662 1.04744i
\(721\) 0 0
\(722\) −3.85021 6.66877i −0.143290 0.248186i
\(723\) −7.92395 22.3513i −0.294695 0.831253i
\(724\) −0.397460 0.688420i −0.0147715 0.0255849i
\(725\) 1.82450 + 3.16013i 0.0677603 + 0.117364i
\(726\) −2.64260 0.488805i −0.0980761 0.0181413i
\(727\) −16.5502 28.6658i −0.613814 1.06316i −0.990591 0.136853i \(-0.956301\pi\)
0.376777 0.926304i \(-0.377032\pi\)
\(728\) 0 0
\(729\) 12.3090 + 24.0310i 0.455890 + 0.890036i
\(730\) 2.21737 + 3.84060i 0.0820685 + 0.142147i
\(731\) 2.84071 0.105067
\(732\) −8.97949 25.3287i −0.331892 0.936175i
\(733\) −44.5589 −1.64582 −0.822911 0.568170i \(-0.807651\pi\)
−0.822911 + 0.568170i \(0.807651\pi\)
\(734\) −0.929636 + 1.61018i −0.0343135 + 0.0594327i
\(735\) 0 0
\(736\) 7.07442 + 12.2533i 0.260767 + 0.451661i
\(737\) −17.2781 29.9266i −0.636448 1.10236i
\(738\) 6.84573 + 2.62225i 0.251995 + 0.0965262i
\(739\) −19.9045 + 34.4756i −0.732199 + 1.26821i 0.223742 + 0.974648i \(0.428173\pi\)
−0.955941 + 0.293558i \(0.905161\pi\)
\(740\) 4.17984 7.23970i 0.153654 0.266137i
\(741\) −15.2529 43.0242i −0.560329 1.58053i
\(742\) 0 0
\(743\) −5.37072 + 9.30237i −0.197033 + 0.341271i −0.947565 0.319563i \(-0.896464\pi\)
0.750532 + 0.660834i \(0.229797\pi\)
\(744\) −6.92876 + 8.11837i −0.254021 + 0.297634i
\(745\) 15.7259 0.576152
\(746\) −2.88276 + 4.99309i −0.105545 + 0.182810i
\(747\) −19.3154 7.39873i −0.706713 0.270706i
\(748\) 13.9021 0.508310
\(749\) 0 0
\(750\) 3.46496 + 0.640919i 0.126523 + 0.0234031i
\(751\) 19.7141 0.719378 0.359689 0.933072i \(-0.382883\pi\)
0.359689 + 0.933072i \(0.382883\pi\)
\(752\) 17.0899 + 29.6005i 0.623203 + 1.07942i
\(753\) −8.79931 24.8205i −0.320665 0.904508i
\(754\) −0.935657 + 1.62060i −0.0340746 + 0.0590189i
\(755\) 11.6336 0.423391
\(756\) 0 0
\(757\) 35.3549 1.28499 0.642497 0.766288i \(-0.277898\pi\)
0.642497 + 0.766288i \(0.277898\pi\)
\(758\) 1.59712 2.76629i 0.0580100 0.100476i
\(759\) −12.4035 34.9868i −0.450218 1.26994i
\(760\) 8.74269 + 15.1428i 0.317131 + 0.549286i
\(761\) −39.1144 −1.41790 −0.708948 0.705261i \(-0.750830\pi\)
−0.708948 + 0.705261i \(0.750830\pi\)
\(762\) −3.71063 0.686360i −0.134422 0.0248642i
\(763\) 0 0
\(764\) −31.1319 −1.12631
\(765\) 2.09058 + 13.1389i 0.0755851 + 0.475039i
\(766\) −1.10480 + 1.91357i −0.0399180 + 0.0691399i
\(767\) 22.3354 0.806486
\(768\) 13.0647 15.3078i 0.471432 0.552373i
\(769\) 18.9240 32.7773i 0.682415 1.18198i −0.291826 0.956471i \(-0.594263\pi\)
0.974242 0.225507i \(-0.0724038\pi\)
\(770\) 0 0
\(771\) −14.8285 41.8270i −0.534034 1.50636i
\(772\) −12.0205 + 20.8201i −0.432628 + 0.749333i
\(773\) −14.9133 + 25.8305i −0.536393 + 0.929059i 0.462702 + 0.886514i \(0.346880\pi\)
−0.999095 + 0.0425453i \(0.986453\pi\)
\(774\) 0.925025 0.750160i 0.0332493 0.0269639i
\(775\) −5.61224 9.72068i −0.201598 0.349177i
\(776\) −1.44409 2.50124i −0.0518399 0.0897894i
\(777\) 0 0
\(778\) −1.24923 + 2.16373i −0.0447870 + 0.0775734i
\(779\) 73.1229 2.61990
\(780\) 10.7334 + 30.2760i 0.384318 + 1.08406i
\(781\) 26.0917 0.933633
\(782\) −1.04842 1.81591i −0.0374913 0.0649369i
\(783\) 0.277238 11.0371i 0.00990768 0.394434i
\(784\) 0 0
\(785\) 1.33336 + 2.30946i 0.0475898 + 0.0824280i
\(786\) −1.75241 0.324145i −0.0625062 0.0115619i
\(787\) −8.81030 15.2599i −0.314053 0.543956i 0.665182 0.746681i \(-0.268354\pi\)
−0.979236 + 0.202724i \(0.935020\pi\)
\(788\) 22.4416 + 38.8700i 0.799448 + 1.38468i
\(789\) 4.10953 + 11.5919i 0.146303 + 0.412681i
\(790\) 3.04563 + 5.27518i 0.108359 + 0.187683i
\(791\) 0 0
\(792\) 9.18715 7.45043i 0.326451 0.264739i
\(793\) 14.7066 + 25.4725i 0.522246 + 0.904556i
\(794\) 0.0978390 0.00347218
\(795\) −46.9962 8.69295i −1.66678 0.308307i
\(796\) −13.1071 −0.464570
\(797\) −5.06056 + 8.76515i −0.179254 + 0.310477i −0.941625 0.336663i \(-0.890702\pi\)
0.762371 + 0.647140i \(0.224035\pi\)
\(798\) 0 0
\(799\) −7.98921 13.8377i −0.282638 0.489543i
\(800\) −2.37072 4.10621i −0.0838177 0.145177i
\(801\) 14.1066 + 5.40353i 0.498434 + 0.190924i
\(802\) −1.82365 + 3.15865i −0.0643953 + 0.111536i
\(803\) 14.9622 25.9153i 0.528004 0.914529i
\(804\) 27.3424 + 5.05756i 0.964291 + 0.178366i
\(805\) 0 0
\(806\) 2.87812 4.98504i 0.101377 0.175591i
\(807\) −27.9854 5.17649i −0.985132 0.182221i
\(808\) −10.4650 −0.368157
\(809\) 23.5735 40.8305i 0.828799 1.43552i −0.0701816 0.997534i \(-0.522358\pi\)
0.898981 0.437988i \(-0.144309\pi\)
\(810\) 4.15043 + 3.72639i 0.145831 + 0.130932i
\(811\) 21.0577 0.739435 0.369717 0.929144i \(-0.379454\pi\)
0.369717 + 0.929144i \(0.379454\pi\)
\(812\) 0 0
\(813\) −14.2777 + 16.7291i −0.500742 + 0.586715i
\(814\) 1.66019 0.0581896
\(815\) −8.84896 15.3269i −0.309966 0.536876i
\(816\) −7.04200 + 8.25107i −0.246519 + 0.288845i
\(817\) 5.93984 10.2881i 0.207809 0.359935i
\(818\) 1.46504 0.0512238
\(819\) 0 0
\(820\) −51.4563 −1.79693
\(821\) −5.58018 + 9.66515i −0.194750 + 0.337316i −0.946818 0.321768i \(-0.895723\pi\)
0.752069 + 0.659085i \(0.229056\pi\)
\(822\) −8.38532 1.55104i −0.292472 0.0540989i
\(823\) −4.71737 8.17072i −0.164437 0.284814i 0.772018 0.635601i \(-0.219247\pi\)
−0.936455 + 0.350787i \(0.885914\pi\)
\(824\) 7.52933 0.262297
\(825\) 4.15656 + 11.7245i 0.144713 + 0.408195i
\(826\) 0 0
\(827\) 17.2646 0.600348 0.300174 0.953884i \(-0.402955\pi\)
0.300174 + 0.953884i \(0.402955\pi\)
\(828\) 27.8932 + 10.6844i 0.969354 + 0.371310i
\(829\) 24.2263 41.9612i 0.841415 1.45737i −0.0472838 0.998881i \(-0.515057\pi\)
0.888699 0.458492i \(-0.151610\pi\)
\(830\) −4.27301 −0.148318
\(831\) −0.479472 1.35246i −0.0166327 0.0469163i
\(832\) −12.2651 + 21.2438i −0.425215 + 0.736495i
\(833\) 0 0
\(834\) 4.23779 4.96538i 0.146743 0.171937i
\(835\) 23.3187 40.3893i 0.806978 1.39773i
\(836\) 29.0688 50.3487i 1.00537 1.74135i
\(837\) −0.852795 + 33.9506i −0.0294769 + 1.17350i
\(838\) 0.186860 + 0.323651i 0.00645497 + 0.0111803i
\(839\) 7.43429 + 12.8766i 0.256660 + 0.444548i 0.965345 0.260977i \(-0.0840446\pi\)
−0.708685 + 0.705525i \(0.750711\pi\)
\(840\) 0 0
\(841\) 12.2427 21.2050i 0.422162 0.731206i
\(842\) 5.56277 0.191706
\(843\) 5.86907 6.87674i 0.202141 0.236848i
\(844\) −32.8058 −1.12922
\(845\) −0.732518 1.26876i −0.0251994 0.0436466i
\(846\) −6.25574 2.39625i −0.215077 0.0823848i
\(847\) 0 0
\(848\) −19.4841 33.7475i −0.669088 1.15889i
\(849\) 8.26909 9.68883i 0.283794 0.332520i
\(850\) 0.351337 + 0.608534i 0.0120508 + 0.0208725i
\(851\) 4.25404 + 7.36821i 0.145827 + 0.252579i
\(852\) −13.6295 + 15.9696i −0.466939 + 0.547110i
\(853\) −3.99900 6.92648i −0.136923 0.237158i 0.789407 0.613870i \(-0.210388\pi\)
−0.926331 + 0.376712i \(0.877055\pi\)
\(854\) 0 0
\(855\) 51.9562 + 19.9018i 1.77687 + 0.680626i
\(856\) 1.86513 + 3.23050i 0.0637488 + 0.110416i
\(857\) −43.1322 −1.47337 −0.736684 0.676237i \(-0.763610\pi\)
−0.736684 + 0.676237i \(0.763610\pi\)
\(858\) −4.14132 + 4.85235i −0.141382 + 0.165656i
\(859\) −2.44359 −0.0833742 −0.0416871 0.999131i \(-0.513273\pi\)
−0.0416871 + 0.999131i \(0.513273\pi\)
\(860\) −4.17984 + 7.23970i −0.142531 + 0.246872i
\(861\) 0 0
\(862\) −0.120250 0.208279i −0.00409573 0.00709401i
\(863\) −12.8594 22.2731i −0.437738 0.758185i 0.559777 0.828644i \(-0.310887\pi\)
−0.997515 + 0.0704589i \(0.977554\pi\)
\(864\) −0.360238 + 14.3414i −0.0122555 + 0.487905i
\(865\) −1.07605 + 1.86378i −0.0365870 + 0.0633705i
\(866\) 1.56711 2.71432i 0.0532526 0.0922362i
\(867\) −15.8229 + 18.5396i −0.537375 + 0.629639i
\(868\) 0 0
\(869\) 20.5510 35.5954i 0.697146 1.20749i
\(870\) −0.762121 2.14973i −0.0258383 0.0728828i
\(871\) −30.4342 −1.03122
\(872\) 3.42395 5.93045i 0.115949 0.200830i
\(873\) −8.58198 3.28732i −0.290456 0.111259i
\(874\) −8.76884 −0.296611
\(875\) 0 0
\(876\) 8.04583 + 22.6951i 0.271843 + 0.766796i
\(877\) −21.9590 −0.741502 −0.370751 0.928732i \(-0.620900\pi\)
−0.370751 + 0.928732i \(0.620900\pi\)
\(878\) 2.22553 + 3.85473i 0.0751080 + 0.130091i
\(879\) 13.3285 + 2.46538i 0.449558 + 0.0831553i
\(880\) −19.8359 + 34.3567i −0.668667 + 1.15817i
\(881\) −35.0576 −1.18112 −0.590560 0.806994i \(-0.701093\pi\)
−0.590560 + 0.806994i \(0.701093\pi\)
\(882\) 0 0
\(883\) 26.3009 0.885097 0.442549 0.896744i \(-0.354074\pi\)
0.442549 + 0.896744i \(0.354074\pi\)
\(884\) 6.12188 10.6034i 0.205901 0.356631i
\(885\) −17.6727 + 20.7070i −0.594063 + 0.696059i
\(886\) 0.133790 + 0.231731i 0.00449477 + 0.00778517i
\(887\) 47.8180 1.60557 0.802785 0.596269i \(-0.203351\pi\)
0.802785 + 0.596269i \(0.203351\pi\)
\(888\) −1.75999 + 2.06217i −0.0590615 + 0.0692019i
\(889\) 0 0
\(890\) 3.12071 0.104607
\(891\) 7.77292 36.8261i 0.260402 1.23372i
\(892\) 4.37272 7.57378i 0.146410 0.253589i
\(893\) −66.8208 −2.23607
\(894\) −2.47111 0.457085i −0.0826464 0.0152872i
\(895\) −9.82150 + 17.0113i −0.328296 + 0.568626i
\(896\) 0 0
\(897\) −32.1472 5.94631i −1.07336 0.198542i
\(898\) 4.71574 8.16789i 0.157366 0.272566i
\(899\) 6.94357 12.0266i 0.231581 0.401110i
\(900\) −9.34733 3.58048i −0.311578 0.119349i
\(901\) 9.10848 + 15.7764i 0.303448 + 0.525587i
\(902\) −5.10948 8.84988i −0.170127 0.294669i
\(903\) 0 0
\(904\) 3.26647 5.65769i 0.108641 0.188172i
\(905\) −1.06045 −0.0352505
\(906\) −1.82807 0.338141i −0.0607336 0.0112340i
\(907\) −19.1144 −0.634682 −0.317341 0.948312i \(-0.602790\pi\)
−0.317341 + 0.948312i \(0.602790\pi\)
\(908\) 5.89092 + 10.2034i 0.195497 + 0.338611i
\(909\) −25.8633 + 20.9741i −0.857831 + 0.695669i
\(910\) 0 0
\(911\) 9.02928 + 15.6392i 0.299153 + 0.518149i 0.975942 0.218028i \(-0.0699625\pi\)
−0.676789 + 0.736177i \(0.736629\pi\)
\(912\) 15.1580 + 42.7566i 0.501932 + 1.41581i
\(913\) 14.4165 + 24.9701i 0.477117 + 0.826391i
\(914\) 4.09385 + 7.09076i 0.135413 + 0.234541i
\(915\) −35.2519 6.52059i −1.16539 0.215564i
\(916\) 10.7334 + 18.5908i 0.354642 + 0.614258i
\(917\) 0 0
\(918\) 0.0533866 2.12537i 0.00176202 0.0701478i
\(919\) −8.10464 14.0377i −0.267348 0.463060i 0.700828 0.713330i \(-0.252814\pi\)
−0.968176 + 0.250270i \(0.919481\pi\)
\(920\) 12.5228 0.412865
\(921\) −13.1208 37.0102i −0.432345 1.21953i
\(922\) −4.87514 −0.160554
\(923\) 11.4897 19.9007i 0.378187 0.655039i
\(924\) 0 0
\(925\) −1.42558 2.46918i −0.0468728 0.0811860i
\(926\) −0.814099 1.41006i −0.0267529 0.0463375i
\(927\) 18.6081 15.0904i 0.611169 0.495635i
\(928\) 2.93310 5.08029i 0.0962839 0.166769i
\(929\) −11.3415 + 19.6440i −0.372102 + 0.644499i −0.989889 0.141846i \(-0.954696\pi\)
0.617787 + 0.786345i \(0.288029\pi\)
\(930\) 2.34431 + 6.61266i 0.0768730 + 0.216838i
\(931\) 0 0
\(932\) −7.90576 + 13.6932i −0.258962 + 0.448535i
\(933\) 36.3382 42.5772i 1.18966 1.39391i
\(934\) −5.92814 −0.193975
\(935\) 9.27292 16.0612i 0.303257 0.525256i
\(936\) −1.63697 10.2881i −0.0535062 0.336277i
\(937\) −51.2933 −1.67568 −0.837840 0.545915i \(-0.816182\pi\)
−0.837840 + 0.545915i \(0.816182\pi\)
\(938\) 0 0
\(939\) −41.4201 7.66154i −1.35169 0.250025i
\(940\) 47.0216 1.53368
\(941\) −15.9659 27.6538i −0.520474 0.901487i −0.999717 0.0238048i \(-0.992422\pi\)
0.479243 0.877682i \(-0.340911\pi\)
\(942\) −0.142394 0.401655i −0.00463946 0.0130866i
\(943\) 26.1849 45.3535i 0.852697 1.47691i
\(944\) −22.1965 −0.722433
\(945\) 0 0
\(946\) −1.66019 −0.0539774
\(947\) 2.24665 3.89131i 0.0730063 0.126451i −0.827211 0.561891i \(-0.810074\pi\)
0.900218 + 0.435440i \(0.143407\pi\)
\(948\) 11.0512 + 31.1724i 0.358926 + 1.01243i
\(949\) −13.1774 22.8240i −0.427757 0.740898i
\(950\) 2.93854 0.0953390
\(951\) −8.75158 1.61879i −0.283789 0.0524929i
\(952\) 0 0
\(953\) 1.14635 0.0371340 0.0185670 0.999828i \(-0.494090\pi\)
0.0185670 + 0.999828i \(0.494090\pi\)
\(954\) 7.13216 + 2.73196i 0.230912 + 0.0884505i
\(955\) −20.7655 + 35.9669i −0.671956 + 1.16386i
\(956\) −41.1150 −1.32975
\(957\) −9.99109 + 11.7065i −0.322966 + 0.378417i
\(958\) −1.32710 + 2.29860i −0.0428765 + 0.0742643i
\(959\) 0 0
\(960\) −9.99028 28.1799i −0.322435 0.909501i
\(961\) −5.85868 + 10.1475i −0.188990 + 0.327340i
\(962\) 0.731078 1.26626i 0.0235709 0.0408260i
\(963\) 11.0841 + 4.24576i 0.357181 + 0.136818i
\(964\) −13.3000 23.0363i −0.428365 0.741950i
\(965\) 16.0358 + 27.7748i 0.516210 + 0.894102i
\(966\) 0 0
\(967\) −24.8080 + 42.9686i −0.797770 + 1.38178i 0.123295 + 0.992370i \(0.460654\pi\)
−0.921065 + 0.389408i \(0.872680\pi\)
\(968\) −6.11763 −0.196628
\(969\) −7.08609 19.9879i −0.227638 0.642105i
\(970\) −1.89853 −0.0609582
\(971\) −2.56661 4.44550i −0.0823664 0.142663i 0.821900 0.569632i \(-0.192914\pi\)
−0.904266 + 0.426970i \(0.859581\pi\)
\(972\) 18.4794 + 23.9943i 0.592726 + 0.769619i
\(973\) 0 0
\(974\) 1.20013 + 2.07869i 0.0384546 + 0.0666054i
\(975\) 10.7729 + 1.99268i 0.345009 + 0.0638169i
\(976\) −14.6151 25.3141i −0.467817 0.810283i
\(977\) −15.5974 27.0155i −0.499006 0.864303i 0.500994 0.865451i \(-0.332968\pi\)
−0.999999 + 0.00114787i \(0.999635\pi\)
\(978\) 0.945010 + 2.66561i 0.0302181 + 0.0852369i
\(979\) −10.5288 18.2365i −0.336503 0.582840i
\(980\) 0 0
\(981\) −3.42395 21.5189i −0.109318 0.687046i
\(982\) 1.48113 + 2.56538i 0.0472646 + 0.0818647i
\(983\) −20.3401 −0.648748 −0.324374 0.945929i \(-0.605154\pi\)
−0.324374 + 0.945929i \(0.605154\pi\)
\(984\) 16.4093 + 3.03526i 0.523110 + 0.0967604i
\(985\) 59.8757 1.90780
\(986\) −0.434681 + 0.752890i −0.0138431 + 0.0239769i
\(987\) 0 0
\(988\) −25.6014 44.3429i −0.814488 1.41074i
\(989\) −4.25404 7.36821i −0.135271 0.234296i
\(990\) −1.22180 7.67877i −0.0388312 0.244047i
\(991\) 6.48276 11.2285i 0.205932 0.356684i −0.744498 0.667625i \(-0.767311\pi\)
0.950429 + 0.310941i \(0.100644\pi\)
\(992\) −9.02234 + 15.6272i −0.286460 + 0.496163i
\(993\) 19.9235 + 3.68527i 0.632252 + 0.116948i
\(994\) 0 0
\(995\) −8.74269 + 15.1428i −0.277162 + 0.480059i
\(996\) −22.8139 4.21992i −0.722887 0.133713i
\(997\) 49.4816 1.56710 0.783548 0.621331i \(-0.213408\pi\)
0.783548 + 0.621331i \(0.213408\pi\)
\(998\) −1.22218 + 2.11688i −0.0386875 + 0.0670086i
\(999\) −0.216621 + 8.62388i −0.00685358 + 0.272847i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.g.g.67.4 12
3.2 odd 2 1323.2.g.g.361.3 12
7.2 even 3 441.2.h.g.373.3 12
7.3 odd 6 441.2.f.g.148.3 12
7.4 even 3 441.2.f.g.148.4 yes 12
7.5 odd 6 441.2.h.g.373.4 12
7.6 odd 2 inner 441.2.g.g.67.3 12
9.2 odd 6 1323.2.h.g.802.4 12
9.7 even 3 441.2.h.g.214.3 12
21.2 odd 6 1323.2.h.g.226.4 12
21.5 even 6 1323.2.h.g.226.3 12
21.11 odd 6 1323.2.f.g.442.4 12
21.17 even 6 1323.2.f.g.442.3 12
21.20 even 2 1323.2.g.g.361.4 12
63.2 odd 6 1323.2.g.g.667.3 12
63.4 even 3 3969.2.a.be.1.4 6
63.11 odd 6 1323.2.f.g.883.4 12
63.16 even 3 inner 441.2.g.g.79.4 12
63.20 even 6 1323.2.h.g.802.3 12
63.25 even 3 441.2.f.g.295.4 yes 12
63.31 odd 6 3969.2.a.be.1.3 6
63.32 odd 6 3969.2.a.bd.1.3 6
63.34 odd 6 441.2.h.g.214.4 12
63.38 even 6 1323.2.f.g.883.3 12
63.47 even 6 1323.2.g.g.667.4 12
63.52 odd 6 441.2.f.g.295.3 yes 12
63.59 even 6 3969.2.a.bd.1.4 6
63.61 odd 6 inner 441.2.g.g.79.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.f.g.148.3 12 7.3 odd 6
441.2.f.g.148.4 yes 12 7.4 even 3
441.2.f.g.295.3 yes 12 63.52 odd 6
441.2.f.g.295.4 yes 12 63.25 even 3
441.2.g.g.67.3 12 7.6 odd 2 inner
441.2.g.g.67.4 12 1.1 even 1 trivial
441.2.g.g.79.3 12 63.61 odd 6 inner
441.2.g.g.79.4 12 63.16 even 3 inner
441.2.h.g.214.3 12 9.7 even 3
441.2.h.g.214.4 12 63.34 odd 6
441.2.h.g.373.3 12 7.2 even 3
441.2.h.g.373.4 12 7.5 odd 6
1323.2.f.g.442.3 12 21.17 even 6
1323.2.f.g.442.4 12 21.11 odd 6
1323.2.f.g.883.3 12 63.38 even 6
1323.2.f.g.883.4 12 63.11 odd 6
1323.2.g.g.361.3 12 3.2 odd 2
1323.2.g.g.361.4 12 21.20 even 2
1323.2.g.g.667.3 12 63.2 odd 6
1323.2.g.g.667.4 12 63.47 even 6
1323.2.h.g.226.3 12 21.5 even 6
1323.2.h.g.226.4 12 21.2 odd 6
1323.2.h.g.802.3 12 63.20 even 6
1323.2.h.g.802.4 12 9.2 odd 6
3969.2.a.bd.1.3 6 63.32 odd 6
3969.2.a.bd.1.4 6 63.59 even 6
3969.2.a.be.1.3 6 63.31 odd 6
3969.2.a.be.1.4 6 63.4 even 3