Properties

Label 460.2.e.a.91.4
Level $460$
Weight $2$
Character 460.91
Analytic conductor $3.673$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [460,2,Mod(91,460)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(460, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("460.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.7465802011608416256.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} + x^{12} + 8x^{10} - 20x^{8} + 32x^{6} + 16x^{4} - 64x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.4
Root \(1.18353 + 0.774115i\) of defining polynomial
Character \(\chi\) \(=\) 460.91
Dual form 460.2.e.a.91.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35760 + 0.396143i) q^{2} -1.47175i q^{3} +(1.68614 - 1.07561i) q^{4} +1.00000i q^{5} +(0.583024 + 1.99804i) q^{6} -3.53986 q^{7} +(-1.86301 + 2.12819i) q^{8} +0.833952 q^{9} +(-0.396143 - 1.35760i) q^{10} +1.16300 q^{11} +(-1.58302 - 2.48158i) q^{12} +5.75893 q^{13} +(4.80570 - 1.40229i) q^{14} +1.47175 q^{15} +(1.68614 - 3.62725i) q^{16} -6.92143i q^{17} +(-1.13217 + 0.330364i) q^{18} +3.53986 q^{19} +(1.07561 + 1.68614i) q^{20} +5.20979i q^{21} +(-1.57888 + 0.460714i) q^{22} +(-4.70285 - 0.939764i) q^{23} +(3.13217 + 2.74188i) q^{24} -1.00000 q^{25} +(-7.81831 + 2.28136i) q^{26} -5.64262i q^{27} +(-5.96870 + 3.80749i) q^{28} -5.71519 q^{29} +(-1.99804 + 0.583024i) q^{30} -8.33558i q^{31} +(-0.852189 + 5.59230i) q^{32} -1.71164i q^{33} +(2.74188 + 9.39651i) q^{34} -3.53986i q^{35} +(1.40616 - 0.897004i) q^{36} -2.93580i q^{37} +(-4.80570 + 1.40229i) q^{38} -8.47571i q^{39} +(-2.12819 - 1.86301i) q^{40} +6.63662 q^{41} +(-2.06382 - 7.07279i) q^{42} +4.32076 q^{43} +(1.96098 - 1.25093i) q^{44} +0.833952i q^{45} +(6.75686 - 0.587185i) q^{46} -0.327086i q^{47} +(-5.33840 - 2.48158i) q^{48} +5.53059 q^{49} +(1.35760 - 0.396143i) q^{50} -10.1866 q^{51} +(9.71037 - 6.19435i) q^{52} +7.45202i q^{53} +(2.23529 + 7.66040i) q^{54} +1.16300i q^{55} +(6.59477 - 7.53351i) q^{56} -5.20979i q^{57} +(7.75893 - 2.26404i) q^{58} -8.51278i q^{59} +(2.48158 - 1.58302i) q^{60} -8.40520i q^{61} +(3.30209 + 11.3164i) q^{62} -2.95207 q^{63} +(-1.05842 - 7.92967i) q^{64} +5.75893i q^{65} +(0.678055 + 2.32372i) q^{66} -3.74555 q^{67} +(-7.44473 - 11.6705i) q^{68} +(-1.38310 + 6.92143i) q^{69} +(1.40229 + 4.80570i) q^{70} +12.6466i q^{71} +(-1.55366 + 1.77481i) q^{72} +1.85606 q^{73} +(1.16300 + 3.98563i) q^{74} +1.47175i q^{75} +(5.96870 - 3.80749i) q^{76} -4.11684 q^{77} +(3.35760 + 11.5066i) q^{78} +15.4773 q^{79} +(3.62725 + 1.68614i) q^{80} -5.80267 q^{81} +(-9.00986 + 2.62905i) q^{82} +15.1460 q^{83} +(5.60368 + 8.78443i) q^{84} +6.92143 q^{85} +(-5.86585 + 1.71164i) q^{86} +8.41134i q^{87} +(-2.16667 + 2.47508i) q^{88} +14.9358i q^{89} +(-0.330364 - 1.13217i) q^{90} -20.3858 q^{91} +(-8.94049 + 3.47385i) q^{92} -12.2679 q^{93} +(0.129573 + 0.444052i) q^{94} +3.53986i q^{95} +(8.23046 + 1.25421i) q^{96} -9.46639i q^{97} +(-7.50832 + 2.19091i) q^{98} +0.969883 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} + 14 q^{6} + 4 q^{9} - 30 q^{12} + 4 q^{13} + 4 q^{16} + 30 q^{18} + 2 q^{24} - 16 q^{25} - 54 q^{26} - 48 q^{29} + 34 q^{36} - 36 q^{41} - 40 q^{46} + 18 q^{48} + 68 q^{49} + 34 q^{52} - 40 q^{54}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35760 + 0.396143i −0.959966 + 0.280116i
\(3\) 1.47175i 0.849715i −0.905260 0.424858i \(-0.860324\pi\)
0.905260 0.424858i \(-0.139676\pi\)
\(4\) 1.68614 1.07561i 0.843070 0.537803i
\(5\) 1.00000i 0.447214i
\(6\) 0.583024 + 1.99804i 0.238019 + 0.815698i
\(7\) −3.53986 −1.33794 −0.668970 0.743289i \(-0.733265\pi\)
−0.668970 + 0.743289i \(0.733265\pi\)
\(8\) −1.86301 + 2.12819i −0.658672 + 0.752430i
\(9\) 0.833952 0.277984
\(10\) −0.396143 1.35760i −0.125272 0.429310i
\(11\) 1.16300 0.350657 0.175328 0.984510i \(-0.443901\pi\)
0.175328 + 0.984510i \(0.443901\pi\)
\(12\) −1.58302 2.48158i −0.456980 0.716370i
\(13\) 5.75893 1.59724 0.798620 0.601835i \(-0.205564\pi\)
0.798620 + 0.601835i \(0.205564\pi\)
\(14\) 4.80570 1.40229i 1.28438 0.374778i
\(15\) 1.47175 0.380004
\(16\) 1.68614 3.62725i 0.421535 0.906812i
\(17\) 6.92143i 1.67869i −0.543597 0.839346i \(-0.682938\pi\)
0.543597 0.839346i \(-0.317062\pi\)
\(18\) −1.13217 + 0.330364i −0.266855 + 0.0778677i
\(19\) 3.53986 0.812099 0.406050 0.913851i \(-0.366906\pi\)
0.406050 + 0.913851i \(0.366906\pi\)
\(20\) 1.07561 + 1.68614i 0.240513 + 0.377033i
\(21\) 5.20979i 1.13687i
\(22\) −1.57888 + 0.460714i −0.336619 + 0.0982245i
\(23\) −4.70285 0.939764i −0.980613 0.195954i
\(24\) 3.13217 + 2.74188i 0.639352 + 0.559684i
\(25\) −1.00000 −0.200000
\(26\) −7.81831 + 2.28136i −1.53330 + 0.447412i
\(27\) 5.64262i 1.08592i
\(28\) −5.96870 + 3.80749i −1.12798 + 0.719549i
\(29\) −5.71519 −1.06128 −0.530642 0.847596i \(-0.678049\pi\)
−0.530642 + 0.847596i \(0.678049\pi\)
\(30\) −1.99804 + 0.583024i −0.364791 + 0.106445i
\(31\) 8.33558i 1.49711i −0.663070 0.748557i \(-0.730747\pi\)
0.663070 0.748557i \(-0.269253\pi\)
\(32\) −0.852189 + 5.59230i −0.150647 + 0.988588i
\(33\) 1.71164i 0.297958i
\(34\) 2.74188 + 9.39651i 0.470228 + 1.61149i
\(35\) 3.53986i 0.598345i
\(36\) 1.40616 0.897004i 0.234360 0.149501i
\(37\) 2.93580i 0.482642i −0.970445 0.241321i \(-0.922419\pi\)
0.970445 0.241321i \(-0.0775807\pi\)
\(38\) −4.80570 + 1.40229i −0.779588 + 0.227482i
\(39\) 8.47571i 1.35720i
\(40\) −2.12819 1.86301i −0.336497 0.294567i
\(41\) 6.63662 1.03647 0.518233 0.855239i \(-0.326590\pi\)
0.518233 + 0.855239i \(0.326590\pi\)
\(42\) −2.06382 7.07279i −0.318455 1.09136i
\(43\) 4.32076 0.658910 0.329455 0.944171i \(-0.393135\pi\)
0.329455 + 0.944171i \(0.393135\pi\)
\(44\) 1.96098 1.25093i 0.295628 0.188584i
\(45\) 0.833952i 0.124318i
\(46\) 6.75686 0.587185i 0.996245 0.0865756i
\(47\) 0.327086i 0.0477105i −0.999715 0.0238552i \(-0.992406\pi\)
0.999715 0.0238552i \(-0.00759408\pi\)
\(48\) −5.33840 2.48158i −0.770532 0.358185i
\(49\) 5.53059 0.790085
\(50\) 1.35760 0.396143i 0.191993 0.0560232i
\(51\) −10.1866 −1.42641
\(52\) 9.71037 6.19435i 1.34659 0.859001i
\(53\) 7.45202i 1.02361i 0.859100 + 0.511807i \(0.171024\pi\)
−0.859100 + 0.511807i \(0.828976\pi\)
\(54\) 2.23529 + 7.66040i 0.304184 + 1.04245i
\(55\) 1.16300i 0.156818i
\(56\) 6.59477 7.53351i 0.881264 1.00671i
\(57\) 5.20979i 0.690053i
\(58\) 7.75893 2.26404i 1.01880 0.297283i
\(59\) 8.51278i 1.10827i −0.832427 0.554135i \(-0.813049\pi\)
0.832427 0.554135i \(-0.186951\pi\)
\(60\) 2.48158 1.58302i 0.320370 0.204368i
\(61\) 8.40520i 1.07618i −0.842889 0.538088i \(-0.819147\pi\)
0.842889 0.538088i \(-0.180853\pi\)
\(62\) 3.30209 + 11.3164i 0.419365 + 1.43718i
\(63\) −2.95207 −0.371926
\(64\) −1.05842 7.92967i −0.132303 0.991209i
\(65\) 5.75893i 0.714308i
\(66\) 0.678055 + 2.32372i 0.0834629 + 0.286030i
\(67\) −3.74555 −0.457592 −0.228796 0.973474i \(-0.573479\pi\)
−0.228796 + 0.973474i \(0.573479\pi\)
\(68\) −7.44473 11.6705i −0.902807 1.41526i
\(69\) −1.38310 + 6.92143i −0.166505 + 0.833242i
\(70\) 1.40229 + 4.80570i 0.167606 + 0.574391i
\(71\) 12.6466i 1.50087i 0.660943 + 0.750436i \(0.270157\pi\)
−0.660943 + 0.750436i \(0.729843\pi\)
\(72\) −1.55366 + 1.77481i −0.183100 + 0.209163i
\(73\) 1.85606 0.217235 0.108618 0.994084i \(-0.465358\pi\)
0.108618 + 0.994084i \(0.465358\pi\)
\(74\) 1.16300 + 3.98563i 0.135196 + 0.463320i
\(75\) 1.47175i 0.169943i
\(76\) 5.96870 3.80749i 0.684657 0.436750i
\(77\) −4.11684 −0.469158
\(78\) 3.35760 + 11.5066i 0.380173 + 1.30287i
\(79\) 15.4773 1.74133 0.870664 0.491879i \(-0.163690\pi\)
0.870664 + 0.491879i \(0.163690\pi\)
\(80\) 3.62725 + 1.68614i 0.405539 + 0.188516i
\(81\) −5.80267 −0.644741
\(82\) −9.00986 + 2.62905i −0.994973 + 0.290331i
\(83\) 15.1460 1.66249 0.831246 0.555904i \(-0.187628\pi\)
0.831246 + 0.555904i \(0.187628\pi\)
\(84\) 5.60368 + 8.78443i 0.611412 + 0.958460i
\(85\) 6.92143 0.750734
\(86\) −5.86585 + 1.71164i −0.632531 + 0.184571i
\(87\) 8.41134i 0.901790i
\(88\) −2.16667 + 2.47508i −0.230968 + 0.263845i
\(89\) 14.9358i 1.58319i 0.611045 + 0.791596i \(0.290749\pi\)
−0.611045 + 0.791596i \(0.709251\pi\)
\(90\) −0.330364 1.13217i −0.0348235 0.119341i
\(91\) −20.3858 −2.13701
\(92\) −8.94049 + 3.47385i −0.932111 + 0.362174i
\(93\) −12.2679 −1.27212
\(94\) 0.129573 + 0.444052i 0.0133645 + 0.0458004i
\(95\) 3.53986i 0.363182i
\(96\) 8.23046 + 1.25421i 0.840018 + 0.128007i
\(97\) 9.46639i 0.961166i −0.876949 0.480583i \(-0.840425\pi\)
0.876949 0.480583i \(-0.159575\pi\)
\(98\) −7.50832 + 2.19091i −0.758455 + 0.221315i
\(99\) 0.969883 0.0974769
\(100\) −1.68614 + 1.07561i −0.168614 + 0.107561i
\(101\) −6.39083 −0.635912 −0.317956 0.948106i \(-0.602996\pi\)
−0.317956 + 0.948106i \(0.602996\pi\)
\(102\) 13.8293 4.03536i 1.36931 0.399560i
\(103\) 1.40698 0.138634 0.0693168 0.997595i \(-0.477918\pi\)
0.0693168 + 0.997595i \(0.477918\pi\)
\(104\) −10.7289 + 12.2561i −1.05206 + 1.20181i
\(105\) −5.20979 −0.508423
\(106\) −2.95207 10.1168i −0.286730 0.982635i
\(107\) −4.32076 −0.417704 −0.208852 0.977947i \(-0.566973\pi\)
−0.208852 + 0.977947i \(0.566973\pi\)
\(108\) −6.06924 9.51425i −0.584013 0.915509i
\(109\) 0.131214i 0.0125680i 0.999980 + 0.00628400i \(0.00200027\pi\)
−0.999980 + 0.00628400i \(0.998000\pi\)
\(110\) −0.460714 1.57888i −0.0439273 0.150540i
\(111\) −4.32076 −0.410108
\(112\) −5.96870 + 12.8399i −0.563989 + 1.21326i
\(113\) 9.32663i 0.877376i −0.898640 0.438688i \(-0.855443\pi\)
0.898640 0.438688i \(-0.144557\pi\)
\(114\) 2.06382 + 7.07279i 0.193295 + 0.662428i
\(115\) 0.939764 4.70285i 0.0876334 0.438543i
\(116\) −9.63662 + 6.14730i −0.894738 + 0.570763i
\(117\) 4.80267 0.444007
\(118\) 3.37228 + 11.5569i 0.310444 + 1.06390i
\(119\) 24.5009i 2.24599i
\(120\) −2.74188 + 3.13217i −0.250298 + 0.285927i
\(121\) −9.64744 −0.877040
\(122\) 3.32967 + 11.4109i 0.301454 + 1.03309i
\(123\) 9.76745i 0.880701i
\(124\) −8.96581 14.0550i −0.805153 1.26217i
\(125\) 1.00000i 0.0894427i
\(126\) 4.00772 1.16944i 0.357036 0.104182i
\(127\) 10.1247i 0.898418i 0.893427 + 0.449209i \(0.148294\pi\)
−0.893427 + 0.449209i \(0.851706\pi\)
\(128\) 4.57820 + 10.3460i 0.404660 + 0.914467i
\(129\) 6.35908i 0.559886i
\(130\) −2.28136 7.81831i −0.200089 0.685711i
\(131\) 5.41204i 0.472852i 0.971650 + 0.236426i \(0.0759761\pi\)
−0.971650 + 0.236426i \(0.924024\pi\)
\(132\) −1.84105 2.88607i −0.160243 0.251200i
\(133\) −12.5306 −1.08654
\(134\) 5.08495 1.48378i 0.439273 0.128179i
\(135\) 5.64262 0.485639
\(136\) 14.7301 + 12.8947i 1.26310 + 1.10571i
\(137\) 16.6474i 1.42229i 0.703047 + 0.711143i \(0.251822\pi\)
−0.703047 + 0.711143i \(0.748178\pi\)
\(138\) −0.864189 9.94442i −0.0735647 0.846525i
\(139\) 9.34213i 0.792389i 0.918167 + 0.396195i \(0.129669\pi\)
−0.918167 + 0.396195i \(0.870331\pi\)
\(140\) −3.80749 5.96870i −0.321792 0.504447i
\(141\) −0.481390 −0.0405403
\(142\) −5.00986 17.1690i −0.420418 1.44079i
\(143\) 6.69762 0.560083
\(144\) 1.40616 3.02495i 0.117180 0.252079i
\(145\) 5.71519i 0.474621i
\(146\) −2.51978 + 0.735265i −0.208538 + 0.0608510i
\(147\) 8.13965i 0.671347i
\(148\) −3.15776 4.95017i −0.259567 0.406901i
\(149\) 19.0958i 1.56438i −0.623037 0.782192i \(-0.714101\pi\)
0.623037 0.782192i \(-0.285899\pi\)
\(150\) −0.583024 1.99804i −0.0476037 0.163140i
\(151\) 4.20794i 0.342437i 0.985233 + 0.171218i \(0.0547704\pi\)
−0.985233 + 0.171218i \(0.945230\pi\)
\(152\) −6.59477 + 7.53351i −0.534907 + 0.611048i
\(153\) 5.77213i 0.466649i
\(154\) 5.58902 1.63086i 0.450376 0.131419i
\(155\) 8.33558 0.669530
\(156\) −9.11653 14.2912i −0.729907 1.14421i
\(157\) 2.54496i 0.203110i 0.994830 + 0.101555i \(0.0323818\pi\)
−0.994830 + 0.101555i \(0.967618\pi\)
\(158\) −21.0119 + 6.13121i −1.67162 + 0.487773i
\(159\) 10.9675 0.869780
\(160\) −5.59230 0.852189i −0.442110 0.0673715i
\(161\) 16.6474 + 3.32663i 1.31200 + 0.262175i
\(162\) 7.87769 2.29869i 0.618930 0.180602i
\(163\) 12.0811i 0.946267i 0.880991 + 0.473134i \(0.156877\pi\)
−0.880991 + 0.473134i \(0.843123\pi\)
\(164\) 11.1903 7.13839i 0.873814 0.557415i
\(165\) 1.71164 0.133251
\(166\) −20.5622 + 6.00000i −1.59594 + 0.465690i
\(167\) 8.51278i 0.658738i 0.944201 + 0.329369i \(0.106836\pi\)
−0.944201 + 0.329369i \(0.893164\pi\)
\(168\) −11.0874 9.70586i −0.855414 0.748823i
\(169\) 20.1653 1.55118
\(170\) −9.39651 + 2.74188i −0.720679 + 0.210292i
\(171\) 2.95207 0.225750
\(172\) 7.28541 4.64744i 0.555507 0.354364i
\(173\) −6.92143 −0.526226 −0.263113 0.964765i \(-0.584749\pi\)
−0.263113 + 0.964765i \(0.584749\pi\)
\(174\) −3.33210 11.4192i −0.252606 0.865688i
\(175\) 3.53986 0.267588
\(176\) 1.96098 4.21848i 0.147814 0.317980i
\(177\) −12.5287 −0.941713
\(178\) −5.91672 20.2768i −0.443477 1.51981i
\(179\) 5.41204i 0.404515i −0.979332 0.202257i \(-0.935172\pi\)
0.979332 0.202257i \(-0.0648277\pi\)
\(180\) 0.897004 + 1.40616i 0.0668587 + 0.104809i
\(181\) 16.5508i 1.23021i 0.788445 + 0.615105i \(0.210886\pi\)
−0.788445 + 0.615105i \(0.789114\pi\)
\(182\) 27.6757 8.07570i 2.05146 0.598611i
\(183\) −12.3704 −0.914443
\(184\) 10.7614 8.25780i 0.793344 0.608773i
\(185\) 2.93580 0.215844
\(186\) 16.6549 4.85985i 1.22119 0.356341i
\(187\) 8.04960i 0.588645i
\(188\) −0.351816 0.551514i −0.0256588 0.0402233i
\(189\) 19.9741i 1.45290i
\(190\) −1.40229 4.80570i −0.101733 0.348642i
\(191\) −15.1460 −1.09593 −0.547964 0.836502i \(-0.684597\pi\)
−0.547964 + 0.836502i \(0.684597\pi\)
\(192\) −11.6705 + 1.55773i −0.842246 + 0.112420i
\(193\) 25.3739 1.82645 0.913227 0.407450i \(-0.133582\pi\)
0.913227 + 0.407450i \(0.133582\pi\)
\(194\) 3.75005 + 12.8515i 0.269238 + 0.922687i
\(195\) 8.47571 0.606958
\(196\) 9.32536 5.94874i 0.666097 0.424910i
\(197\) 1.85797 0.132375 0.0661874 0.997807i \(-0.478916\pi\)
0.0661874 + 0.997807i \(0.478916\pi\)
\(198\) −1.31671 + 0.384213i −0.0935745 + 0.0273048i
\(199\) −18.8916 −1.33919 −0.669594 0.742727i \(-0.733532\pi\)
−0.669594 + 0.742727i \(0.733532\pi\)
\(200\) 1.86301 2.12819i 0.131734 0.150486i
\(201\) 5.51252i 0.388823i
\(202\) 8.67618 2.53169i 0.610454 0.178129i
\(203\) 20.2310 1.41994
\(204\) −17.1761 + 10.9568i −1.20256 + 0.767129i
\(205\) 6.63662i 0.463522i
\(206\) −1.91011 + 0.557365i −0.133084 + 0.0388335i
\(207\) −3.92195 0.783717i −0.272595 0.0544721i
\(208\) 9.71037 20.8891i 0.673293 1.44840i
\(209\) 4.11684 0.284768
\(210\) 7.07279 2.06382i 0.488069 0.142417i
\(211\) 9.98092i 0.687115i −0.939132 0.343557i \(-0.888368\pi\)
0.939132 0.343557i \(-0.111632\pi\)
\(212\) 8.01544 + 12.5652i 0.550503 + 0.862978i
\(213\) 18.6126 1.27531
\(214\) 5.86585 1.71164i 0.400981 0.117005i
\(215\) 4.32076i 0.294673i
\(216\) 12.0086 + 10.5122i 0.817081 + 0.715267i
\(217\) 29.5068i 2.00305i
\(218\) −0.0519795 0.178135i −0.00352049 0.0120649i
\(219\) 2.73165i 0.184588i
\(220\) 1.25093 + 1.96098i 0.0843375 + 0.132209i
\(221\) 39.8600i 2.68128i
\(222\) 5.86585 1.71164i 0.393690 0.114878i
\(223\) 12.1431i 0.813161i 0.913615 + 0.406581i \(0.133279\pi\)
−0.913615 + 0.406581i \(0.866721\pi\)
\(224\) 3.01663 19.7959i 0.201557 1.32267i
\(225\) −0.833952 −0.0555968
\(226\) 3.69468 + 12.6618i 0.245767 + 0.842251i
\(227\) −27.6203 −1.83323 −0.916613 0.399775i \(-0.869088\pi\)
−0.916613 + 0.399775i \(0.869088\pi\)
\(228\) −5.60368 8.78443i −0.371113 0.581763i
\(229\) 2.67337i 0.176661i −0.996091 0.0883306i \(-0.971847\pi\)
0.996091 0.0883306i \(-0.0281532\pi\)
\(230\) 0.587185 + 6.75686i 0.0387178 + 0.445534i
\(231\) 6.05897i 0.398651i
\(232\) 10.6474 12.1630i 0.699039 0.798543i
\(233\) −19.2493 −1.26107 −0.630533 0.776162i \(-0.717164\pi\)
−0.630533 + 0.776162i \(0.717164\pi\)
\(234\) −6.52009 + 1.90255i −0.426232 + 0.124373i
\(235\) 0.327086 0.0213368
\(236\) −9.15640 14.3537i −0.596031 0.934349i
\(237\) 22.7787i 1.47963i
\(238\) −9.70586 33.2623i −0.629137 2.15608i
\(239\) 12.6352i 0.817303i −0.912691 0.408651i \(-0.865999\pi\)
0.912691 0.408651i \(-0.134001\pi\)
\(240\) 2.48158 5.33840i 0.160185 0.344592i
\(241\) 5.48076i 0.353047i −0.984296 0.176523i \(-0.943515\pi\)
0.984296 0.176523i \(-0.0564851\pi\)
\(242\) 13.0973 3.82177i 0.841929 0.245673i
\(243\) 8.38778i 0.538076i
\(244\) −9.04069 14.1724i −0.578771 0.907292i
\(245\) 5.53059i 0.353337i
\(246\) 3.86931 + 13.2603i 0.246698 + 0.845443i
\(247\) 20.3858 1.29712
\(248\) 17.7397 + 15.5292i 1.12647 + 0.986107i
\(249\) 22.2912i 1.41265i
\(250\) 0.396143 + 1.35760i 0.0250543 + 0.0858620i
\(251\) −3.20863 −0.202527 −0.101263 0.994860i \(-0.532289\pi\)
−0.101263 + 0.994860i \(0.532289\pi\)
\(252\) −4.97760 + 3.17527i −0.313560 + 0.200023i
\(253\) −5.46941 1.09294i −0.343859 0.0687127i
\(254\) −4.01082 13.7452i −0.251661 0.862451i
\(255\) 10.1866i 0.637910i
\(256\) −10.3139 12.2321i −0.644616 0.764506i
\(257\) 1.64018 0.102311 0.0511557 0.998691i \(-0.483710\pi\)
0.0511557 + 0.998691i \(0.483710\pi\)
\(258\) 2.51911 + 8.63307i 0.156833 + 0.537471i
\(259\) 10.3923i 0.645746i
\(260\) 6.19435 + 9.71037i 0.384157 + 0.602212i
\(261\) −4.76620 −0.295020
\(262\) −2.14394 7.34737i −0.132453 0.453922i
\(263\) 21.9476 1.35335 0.676674 0.736283i \(-0.263421\pi\)
0.676674 + 0.736283i \(0.263421\pi\)
\(264\) 3.64270 + 3.18880i 0.224193 + 0.196257i
\(265\) −7.45202 −0.457774
\(266\) 17.0115 4.96391i 1.04304 0.304357i
\(267\) 21.9818 1.34526
\(268\) −6.31553 + 4.02874i −0.385782 + 0.246094i
\(269\) −7.55805 −0.460822 −0.230411 0.973093i \(-0.574007\pi\)
−0.230411 + 0.973093i \(0.574007\pi\)
\(270\) −7.66040 + 2.23529i −0.466197 + 0.136035i
\(271\) 14.9403i 0.907561i 0.891114 + 0.453780i \(0.149925\pi\)
−0.891114 + 0.453780i \(0.850075\pi\)
\(272\) −25.1057 11.6705i −1.52226 0.707628i
\(273\) 30.0028i 1.81585i
\(274\) −6.59477 22.6005i −0.398405 1.36535i
\(275\) −1.16300 −0.0701314
\(276\) 5.11264 + 13.1582i 0.307745 + 0.792029i
\(277\) 9.82732 0.590466 0.295233 0.955425i \(-0.404603\pi\)
0.295233 + 0.955425i \(0.404603\pi\)
\(278\) −3.70082 12.6829i −0.221961 0.760667i
\(279\) 6.95147i 0.416174i
\(280\) 7.53351 + 6.59477i 0.450213 + 0.394113i
\(281\) 5.77494i 0.344504i −0.985053 0.172252i \(-0.944896\pi\)
0.985053 0.172252i \(-0.0551044\pi\)
\(282\) 0.653533 0.190699i 0.0389173 0.0113560i
\(283\) 8.83050 0.524919 0.262459 0.964943i \(-0.415466\pi\)
0.262459 + 0.964943i \(0.415466\pi\)
\(284\) 13.6027 + 21.3239i 0.807174 + 1.26534i
\(285\) 5.20979 0.308601
\(286\) −9.09267 + 2.65322i −0.537661 + 0.156888i
\(287\) −23.4927 −1.38673
\(288\) −0.710684 + 4.66370i −0.0418775 + 0.274811i
\(289\) −30.9062 −1.81801
\(290\) 2.26404 + 7.75893i 0.132949 + 0.455620i
\(291\) −13.9322 −0.816718
\(292\) 3.12957 1.99639i 0.183144 0.116830i
\(293\) 2.44831i 0.143032i 0.997439 + 0.0715160i \(0.0227837\pi\)
−0.997439 + 0.0715160i \(0.977216\pi\)
\(294\) 3.22447 + 11.0504i 0.188055 + 0.644471i
\(295\) 8.51278 0.495633
\(296\) 6.24795 + 5.46941i 0.363155 + 0.317903i
\(297\) 6.56235i 0.380786i
\(298\) 7.56466 + 25.9243i 0.438209 + 1.50176i
\(299\) −27.0834 5.41204i −1.56627 0.312986i
\(300\) 1.58302 + 2.48158i 0.0913959 + 0.143274i
\(301\) −15.2949 −0.881582
\(302\) −1.66695 5.71268i −0.0959220 0.328728i
\(303\) 9.40571i 0.540344i
\(304\) 5.96870 12.8399i 0.342328 0.736421i
\(305\) 8.40520 0.481281
\(306\) 2.28659 + 7.83623i 0.130716 + 0.447968i
\(307\) 21.2050i 1.21023i 0.796137 + 0.605116i \(0.206873\pi\)
−0.796137 + 0.605116i \(0.793127\pi\)
\(308\) −6.94158 + 4.42810i −0.395533 + 0.252315i
\(309\) 2.07072i 0.117799i
\(310\) −11.3164 + 3.30209i −0.642726 + 0.187546i
\(311\) 9.51159i 0.539353i 0.962951 + 0.269676i \(0.0869167\pi\)
−0.962951 + 0.269676i \(0.913083\pi\)
\(312\) 18.0380 + 15.7903i 1.02120 + 0.893949i
\(313\) 16.6474i 0.940969i −0.882408 0.470484i \(-0.844079\pi\)
0.882408 0.470484i \(-0.155921\pi\)
\(314\) −1.00817 3.45504i −0.0568944 0.194979i
\(315\) 2.95207i 0.166330i
\(316\) 26.0968 16.6474i 1.46806 0.936492i
\(317\) 2.41375 0.135570 0.0677849 0.997700i \(-0.478407\pi\)
0.0677849 + 0.997700i \(0.478407\pi\)
\(318\) −14.8895 + 4.34471i −0.834960 + 0.243639i
\(319\) −6.64675 −0.372147
\(320\) 7.92967 1.05842i 0.443282 0.0591676i
\(321\) 6.35908i 0.354929i
\(322\) −23.9183 + 2.07855i −1.33292 + 0.115833i
\(323\) 24.5009i 1.36326i
\(324\) −9.78412 + 6.24139i −0.543562 + 0.346744i
\(325\) −5.75893 −0.319448
\(326\) −4.78586 16.4013i −0.265064 0.908385i
\(327\) 0.193114 0.0106792
\(328\) −12.3641 + 14.1240i −0.682691 + 0.779869i
\(329\) 1.15784i 0.0638338i
\(330\) −2.32372 + 0.678055i −0.127917 + 0.0373257i
\(331\) 7.46743i 0.410447i 0.978715 + 0.205224i \(0.0657922\pi\)
−0.978715 + 0.205224i \(0.934208\pi\)
\(332\) 25.5383 16.2912i 1.40160 0.894094i
\(333\) 2.44831i 0.134167i
\(334\) −3.37228 11.5569i −0.184523 0.632367i
\(335\) 3.74555i 0.204641i
\(336\) 18.8972 + 8.78443i 1.03093 + 0.479230i
\(337\) 31.4548i 1.71345i 0.515770 + 0.856727i \(0.327506\pi\)
−0.515770 + 0.856727i \(0.672494\pi\)
\(338\) −27.3764 + 7.98835i −1.48908 + 0.434509i
\(339\) −13.7265 −0.745519
\(340\) 11.6705 7.44473i 0.632922 0.403747i
\(341\) 9.69426i 0.524973i
\(342\) −4.00772 + 1.16944i −0.216713 + 0.0632362i
\(343\) 5.20149 0.280854
\(344\) −8.04960 + 9.19542i −0.434005 + 0.495784i
\(345\) −6.92143 1.38310i −0.372637 0.0744635i
\(346\) 9.39651 2.74188i 0.505160 0.147404i
\(347\) 19.8241i 1.06421i −0.846677 0.532107i \(-0.821401\pi\)
0.846677 0.532107i \(-0.178599\pi\)
\(348\) 9.04729 + 14.1827i 0.484986 + 0.760273i
\(349\) −28.6634 −1.53432 −0.767160 0.641456i \(-0.778331\pi\)
−0.767160 + 0.641456i \(0.778331\pi\)
\(350\) −4.80570 + 1.40229i −0.256876 + 0.0749556i
\(351\) 32.4955i 1.73448i
\(352\) −0.991093 + 6.50382i −0.0528255 + 0.346655i
\(353\) 12.6439 0.672966 0.336483 0.941690i \(-0.390763\pi\)
0.336483 + 0.941690i \(0.390763\pi\)
\(354\) 17.0089 4.96316i 0.904013 0.263789i
\(355\) −12.6466 −0.671211
\(356\) 16.0650 + 25.1839i 0.851446 + 1.33474i
\(357\) 36.0592 1.90845
\(358\) 2.14394 + 7.34737i 0.113311 + 0.388320i
\(359\) 23.7325 1.25256 0.626278 0.779600i \(-0.284578\pi\)
0.626278 + 0.779600i \(0.284578\pi\)
\(360\) −1.77481 1.55366i −0.0935407 0.0818849i
\(361\) −6.46941 −0.340495
\(362\) −6.55649 22.4693i −0.344601 1.18096i
\(363\) 14.1986i 0.745234i
\(364\) −34.3733 + 21.9271i −1.80165 + 1.14929i
\(365\) 1.85606i 0.0971505i
\(366\) 16.7940 4.90044i 0.877835 0.256150i
\(367\) 32.7053 1.70720 0.853601 0.520927i \(-0.174414\pi\)
0.853601 + 0.520927i \(0.174414\pi\)
\(368\) −11.3384 + 15.4738i −0.591057 + 0.806630i
\(369\) 5.53462 0.288121
\(370\) −3.98563 + 1.16300i −0.207203 + 0.0604613i
\(371\) 26.3791i 1.36953i
\(372\) −20.6854 + 13.1954i −1.07249 + 0.684151i
\(373\) 13.9713i 0.723404i 0.932294 + 0.361702i \(0.117804\pi\)
−0.932294 + 0.361702i \(0.882196\pi\)
\(374\) 3.18880 + 10.9281i 0.164889 + 0.565079i
\(375\) −1.47175 −0.0760009
\(376\) 0.696104 + 0.609364i 0.0358988 + 0.0314255i
\(377\) −32.9134 −1.69513
\(378\) −7.91260 27.1167i −0.406980 1.39473i
\(379\) −20.7170 −1.06416 −0.532081 0.846693i \(-0.678590\pi\)
−0.532081 + 0.846693i \(0.678590\pi\)
\(380\) 3.80749 + 5.96870i 0.195320 + 0.306188i
\(381\) 14.9010 0.763399
\(382\) 20.5622 6.00000i 1.05205 0.306987i
\(383\) 1.99477 0.101928 0.0509639 0.998700i \(-0.483771\pi\)
0.0509639 + 0.998700i \(0.483771\pi\)
\(384\) 15.2268 6.73797i 0.777037 0.343845i
\(385\) 4.11684i 0.209814i
\(386\) −34.4476 + 10.0517i −1.75333 + 0.511619i
\(387\) 3.60330 0.183166
\(388\) −10.1821 15.9617i −0.516918 0.810331i
\(389\) 16.4309i 0.833081i 0.909117 + 0.416541i \(0.136758\pi\)
−0.909117 + 0.416541i \(0.863242\pi\)
\(390\) −11.5066 + 3.35760i −0.582659 + 0.170019i
\(391\) −6.50451 + 32.5505i −0.328947 + 1.64615i
\(392\) −10.3035 + 11.7702i −0.520407 + 0.594484i
\(393\) 7.96517 0.401789
\(394\) −2.52238 + 0.736023i −0.127075 + 0.0370803i
\(395\) 15.4773i 0.778745i
\(396\) 1.63536 1.04321i 0.0821799 0.0524234i
\(397\) −0.580900 −0.0291545 −0.0145773 0.999894i \(-0.504640\pi\)
−0.0145773 + 0.999894i \(0.504640\pi\)
\(398\) 25.6472 7.48378i 1.28558 0.375128i
\(399\) 18.4419i 0.923250i
\(400\) −1.68614 + 3.62725i −0.0843070 + 0.181362i
\(401\) 8.44831i 0.421889i 0.977498 + 0.210944i \(0.0676539\pi\)
−0.977498 + 0.210944i \(0.932346\pi\)
\(402\) −2.18375 7.48378i −0.108915 0.373257i
\(403\) 48.0041i 2.39125i
\(404\) −10.7758 + 6.87402i −0.536118 + 0.341995i
\(405\) 5.80267i 0.288337i
\(406\) −27.4655 + 8.01437i −1.36309 + 0.397746i
\(407\) 3.41432i 0.169242i
\(408\) 18.9777 21.6791i 0.939537 1.07327i
\(409\) 2.95154 0.145944 0.0729722 0.997334i \(-0.476752\pi\)
0.0729722 + 0.997334i \(0.476752\pi\)
\(410\) −2.62905 9.00986i −0.129840 0.444965i
\(411\) 24.5009 1.20854
\(412\) 2.37236 1.51335i 0.116878 0.0745576i
\(413\) 30.1340i 1.48280i
\(414\) 5.63490 0.489683i 0.276940 0.0240666i
\(415\) 15.1460i 0.743489i
\(416\) −4.90770 + 32.2057i −0.240620 + 1.57901i
\(417\) 13.7493 0.673305
\(418\) −5.58902 + 1.63086i −0.273368 + 0.0797680i
\(419\) 13.6392 0.666320 0.333160 0.942870i \(-0.391885\pi\)
0.333160 + 0.942870i \(0.391885\pi\)
\(420\) −8.78443 + 5.60368i −0.428636 + 0.273432i
\(421\) 22.9416i 1.11811i −0.829132 0.559053i \(-0.811165\pi\)
0.829132 0.559053i \(-0.188835\pi\)
\(422\) 3.95388 + 13.5501i 0.192472 + 0.659607i
\(423\) 0.272774i 0.0132627i
\(424\) −15.8593 13.8832i −0.770198 0.674226i
\(425\) 6.92143i 0.335739i
\(426\) −25.2684 + 7.37326i −1.22426 + 0.357236i
\(427\) 29.7532i 1.43986i
\(428\) −7.28541 + 4.64744i −0.352154 + 0.224642i
\(429\) 9.85722i 0.475911i
\(430\) −1.71164 5.86585i −0.0825427 0.282876i
\(431\) 21.3048 1.02622 0.513109 0.858324i \(-0.328494\pi\)
0.513109 + 0.858324i \(0.328494\pi\)
\(432\) −20.4672 9.51425i −0.984728 0.457755i
\(433\) 21.3294i 1.02503i −0.858679 0.512514i \(-0.828714\pi\)
0.858679 0.512514i \(-0.171286\pi\)
\(434\) −11.6889 40.0583i −0.561086 1.92286i
\(435\) −8.41134 −0.403293
\(436\) 0.141134 + 0.221245i 0.00675911 + 0.0105957i
\(437\) −16.6474 3.32663i −0.796355 0.159134i
\(438\) 1.08213 + 3.70848i 0.0517060 + 0.177198i
\(439\) 10.4758i 0.499984i 0.968248 + 0.249992i \(0.0804281\pi\)
−0.968248 + 0.249992i \(0.919572\pi\)
\(440\) −2.47508 2.16667i −0.117995 0.103292i
\(441\) 4.61225 0.219631
\(442\) 15.7903 + 54.1139i 0.751068 + 2.57393i
\(443\) 12.6173i 0.599465i 0.954023 + 0.299733i \(0.0968975\pi\)
−0.954023 + 0.299733i \(0.903103\pi\)
\(444\) −7.28541 + 4.64744i −0.345750 + 0.220558i
\(445\) −14.9358 −0.708025
\(446\) −4.81041 16.4854i −0.227779 0.780608i
\(447\) −28.1042 −1.32928
\(448\) 3.74666 + 28.0699i 0.177013 + 1.32618i
\(449\) −13.7434 −0.648591 −0.324295 0.945956i \(-0.605127\pi\)
−0.324295 + 0.945956i \(0.605127\pi\)
\(450\) 1.13217 0.330364i 0.0533710 0.0155735i
\(451\) 7.71837 0.363444
\(452\) −10.0318 15.7260i −0.471856 0.739689i
\(453\) 6.19303 0.290974
\(454\) 37.4973 10.9416i 1.75984 0.513516i
\(455\) 20.3858i 0.955701i
\(456\) 11.0874 + 9.70586i 0.519217 + 0.454519i
\(457\) 3.81412i 0.178417i 0.996013 + 0.0892084i \(0.0284337\pi\)
−0.996013 + 0.0892084i \(0.971566\pi\)
\(458\) 1.05904 + 3.62936i 0.0494856 + 0.169589i
\(459\) −39.0550 −1.82293
\(460\) −3.47385 8.94049i −0.161969 0.416853i
\(461\) 24.6480 1.14797 0.573985 0.818866i \(-0.305397\pi\)
0.573985 + 0.818866i \(0.305397\pi\)
\(462\) −2.40022 8.22564i −0.111668 0.382691i
\(463\) 41.6124i 1.93389i 0.254983 + 0.966945i \(0.417930\pi\)
−0.254983 + 0.966945i \(0.582070\pi\)
\(464\) −9.63662 + 20.7304i −0.447369 + 0.962386i
\(465\) 12.2679i 0.568910i
\(466\) 26.1329 7.62550i 1.21058 0.353245i
\(467\) −5.16511 −0.239013 −0.119506 0.992833i \(-0.538131\pi\)
−0.119506 + 0.992833i \(0.538131\pi\)
\(468\) 8.09798 5.16578i 0.374329 0.238788i
\(469\) 13.2587 0.612231
\(470\) −0.444052 + 0.129573i −0.0204826 + 0.00597677i
\(471\) 3.74555 0.172586
\(472\) 18.1168 + 15.8593i 0.833895 + 0.729986i
\(473\) 5.02503 0.231051
\(474\) 9.02361 + 30.9242i 0.414468 + 1.42040i
\(475\) −3.53986 −0.162420
\(476\) 26.3533 + 41.3119i 1.20790 + 1.89353i
\(477\) 6.21462i 0.284548i
\(478\) 5.00535 + 17.1535i 0.228939 + 0.784583i
\(479\) 2.23875 0.102291 0.0511455 0.998691i \(-0.483713\pi\)
0.0511455 + 0.998691i \(0.483713\pi\)
\(480\) −1.25421 + 8.23046i −0.0572466 + 0.375667i
\(481\) 16.9071i 0.770895i
\(482\) 2.17117 + 7.44067i 0.0988940 + 0.338913i
\(483\) 4.89597 24.5009i 0.222774 1.11483i
\(484\) −16.2669 + 10.3768i −0.739406 + 0.471675i
\(485\) 9.46639 0.429847
\(486\) 3.32276 + 11.3872i 0.150724 + 0.516535i
\(487\) 30.3341i 1.37457i −0.726389 0.687284i \(-0.758803\pi\)
0.726389 0.687284i \(-0.241197\pi\)
\(488\) 17.8879 + 15.6589i 0.809747 + 0.708847i
\(489\) 17.7804 0.804058
\(490\) −2.19091 7.50832i −0.0989752 0.339191i
\(491\) 23.2954i 1.05131i −0.850698 0.525654i \(-0.823821\pi\)
0.850698 0.525654i \(-0.176179\pi\)
\(492\) −10.5059 16.4693i −0.473644 0.742493i
\(493\) 39.5573i 1.78157i
\(494\) −27.6757 + 8.07570i −1.24519 + 0.363343i
\(495\) 0.969883i 0.0435930i
\(496\) −30.2352 14.0550i −1.35760 0.631087i
\(497\) 44.7671i 2.00808i
\(498\) 8.83050 + 30.2624i 0.395704 + 1.35609i
\(499\) 22.5990i 1.01167i −0.862631 0.505834i \(-0.831185\pi\)
0.862631 0.505834i \(-0.168815\pi\)
\(500\) −1.07561 1.68614i −0.0481026 0.0754065i
\(501\) 12.5287 0.559740
\(502\) 4.35603 1.27108i 0.194419 0.0567310i
\(503\) 2.63342 0.117418 0.0587092 0.998275i \(-0.481302\pi\)
0.0587092 + 0.998275i \(0.481302\pi\)
\(504\) 5.49972 6.28258i 0.244977 0.279848i
\(505\) 6.39083i 0.284388i
\(506\) 7.85821 0.682894i 0.349340 0.0303583i
\(507\) 29.6783i 1.31806i
\(508\) 10.8901 + 17.0716i 0.483172 + 0.757429i
\(509\) 34.6596 1.53626 0.768130 0.640293i \(-0.221187\pi\)
0.768130 + 0.640293i \(0.221187\pi\)
\(510\) 4.03536 + 13.8293i 0.178689 + 0.612372i
\(511\) −6.57018 −0.290648
\(512\) 18.8477 + 12.5205i 0.832960 + 0.553333i
\(513\) 19.9741i 0.881877i
\(514\) −2.22670 + 0.649745i −0.0982154 + 0.0286590i
\(515\) 1.40698i 0.0619989i
\(516\) −6.83987 10.7223i −0.301108 0.472023i
\(517\) 0.380401i 0.0167300i
\(518\) −4.11684 14.1086i −0.180884 0.619895i
\(519\) 10.1866i 0.447143i
\(520\) −12.2561 10.7289i −0.537467 0.470494i
\(521\) 5.00371i 0.219216i 0.993975 + 0.109608i \(0.0349596\pi\)
−0.993975 + 0.109608i \(0.965040\pi\)
\(522\) 6.47057 1.88810i 0.283209 0.0826398i
\(523\) 17.3919 0.760493 0.380247 0.924885i \(-0.375839\pi\)
0.380247 + 0.924885i \(0.375839\pi\)
\(524\) 5.82122 + 9.12545i 0.254301 + 0.398647i
\(525\) 5.20979i 0.227374i
\(526\) −29.7960 + 8.69440i −1.29917 + 0.379094i
\(527\) −57.6941 −2.51320
\(528\) −6.20855 2.88607i −0.270192 0.125600i
\(529\) 21.2337 + 8.83915i 0.923204 + 0.384311i
\(530\) 10.1168 2.95207i 0.439448 0.128230i
\(531\) 7.09924i 0.308081i
\(532\) −21.1283 + 13.4780i −0.916030 + 0.584345i
\(533\) 38.2199 1.65549
\(534\) −29.8424 + 8.70793i −1.29141 + 0.376829i
\(535\) 4.32076i 0.186803i
\(536\) 6.97798 7.97126i 0.301403 0.344306i
\(537\) −7.96517 −0.343722
\(538\) 10.2608 2.99407i 0.442374 0.129084i
\(539\) 6.43206 0.277049
\(540\) 9.51425 6.06924i 0.409428 0.261178i
\(541\) 6.53779 0.281082 0.140541 0.990075i \(-0.455116\pi\)
0.140541 + 0.990075i \(0.455116\pi\)
\(542\) −5.91852 20.2830i −0.254222 0.871228i
\(543\) 24.3586 1.04533
\(544\) 38.7067 + 5.89837i 1.65953 + 0.252890i
\(545\) −0.131214 −0.00562058
\(546\) −11.8854 40.7317i −0.508649 1.74316i
\(547\) 34.5946i 1.47916i −0.673069 0.739579i \(-0.735024\pi\)
0.673069 0.739579i \(-0.264976\pi\)
\(548\) 17.9061 + 28.0699i 0.764910 + 1.19909i
\(549\) 7.00953i 0.299160i
\(550\) 1.57888 0.460714i 0.0673237 0.0196449i
\(551\) −20.2310 −0.861869
\(552\) −12.1534 15.8382i −0.517284 0.674117i
\(553\) −54.7873 −2.32979
\(554\) −13.3415 + 3.89303i −0.566828 + 0.165399i
\(555\) 4.32076i 0.183406i
\(556\) 10.0485 + 15.7521i 0.426150 + 0.668040i
\(557\) 3.84587i 0.162955i 0.996675 + 0.0814774i \(0.0259638\pi\)
−0.996675 + 0.0814774i \(0.974036\pi\)
\(558\) 2.75378 + 9.43730i 0.116577 + 0.399513i
\(559\) 24.8830 1.05244
\(560\) −12.8399 5.96870i −0.542587 0.252224i
\(561\) −11.8470 −0.500181
\(562\) 2.28771 + 7.84005i 0.0965011 + 0.330712i
\(563\) −8.64152 −0.364197 −0.182098 0.983280i \(-0.558289\pi\)
−0.182098 + 0.983280i \(0.558289\pi\)
\(564\) −0.811691 + 0.517786i −0.0341783 + 0.0218027i
\(565\) 9.32663 0.392374
\(566\) −11.9883 + 3.49815i −0.503904 + 0.147038i
\(567\) 20.5406 0.862625
\(568\) −26.9144 23.5606i −1.12930 0.988583i
\(569\) 5.28746i 0.221662i 0.993839 + 0.110831i \(0.0353512\pi\)
−0.993839 + 0.110831i \(0.964649\pi\)
\(570\) −7.07279 + 2.06382i −0.296247 + 0.0864440i
\(571\) 23.7200 0.992650 0.496325 0.868137i \(-0.334682\pi\)
0.496325 + 0.868137i \(0.334682\pi\)
\(572\) 11.2931 7.20401i 0.472190 0.301215i
\(573\) 22.2912i 0.931227i
\(574\) 31.8936 9.30648i 1.33121 0.388445i
\(575\) 4.70285 + 0.939764i 0.196123 + 0.0391909i
\(576\) −0.882673 6.61296i −0.0367780 0.275540i
\(577\) −16.0897 −0.669825 −0.334912 0.942249i \(-0.608707\pi\)
−0.334912 + 0.942249i \(0.608707\pi\)
\(578\) 41.9581 12.2433i 1.74523 0.509253i
\(579\) 37.3441i 1.55197i
\(580\) −6.14730 9.63662i −0.255253 0.400139i
\(581\) −53.6148 −2.22432
\(582\) 18.9143 5.51914i 0.784022 0.228776i
\(583\) 8.66668i 0.358937i
\(584\) −3.45784 + 3.95005i −0.143087 + 0.163454i
\(585\) 4.80267i 0.198566i
\(586\) −0.969883 3.32382i −0.0400655 0.137306i
\(587\) 32.2006i 1.32906i 0.747261 + 0.664531i \(0.231369\pi\)
−0.747261 + 0.664531i \(0.768631\pi\)
\(588\) −8.75506 13.7246i −0.361053 0.565993i
\(589\) 29.5068i 1.21581i
\(590\) −11.5569 + 3.37228i −0.475791 + 0.138835i
\(591\) 2.73447i 0.112481i
\(592\) −10.6489 4.95017i −0.437666 0.203451i
\(593\) 13.0612 0.536359 0.268179 0.963369i \(-0.413578\pi\)
0.268179 + 0.963369i \(0.413578\pi\)
\(594\) 2.59963 + 8.90903i 0.106664 + 0.365542i
\(595\) −24.5009 −1.00444
\(596\) −20.5395 32.1981i −0.841331 1.31889i
\(597\) 27.8037i 1.13793i
\(598\) 38.9123 3.38156i 1.59124 0.138282i
\(599\) 16.6052i 0.678469i −0.940702 0.339234i \(-0.889832\pi\)
0.940702 0.339234i \(-0.110168\pi\)
\(600\) −3.13217 2.74188i −0.127870 0.111937i
\(601\) 0.980281 0.0399865 0.0199932 0.999800i \(-0.493636\pi\)
0.0199932 + 0.999800i \(0.493636\pi\)
\(602\) 20.7643 6.05897i 0.846289 0.246945i
\(603\) −3.12361 −0.127203
\(604\) 4.52608 + 7.09517i 0.184164 + 0.288698i
\(605\) 9.64744i 0.392224i
\(606\) −3.72601 12.7692i −0.151359 0.518712i
\(607\) 9.05291i 0.367446i 0.982978 + 0.183723i \(0.0588150\pi\)
−0.982978 + 0.183723i \(0.941185\pi\)
\(608\) −3.01663 + 19.7959i −0.122340 + 0.802831i
\(609\) 29.7749i 1.20654i
\(610\) −11.4109 + 3.32967i −0.462013 + 0.134814i
\(611\) 1.88367i 0.0762051i
\(612\) −6.20855 9.73263i −0.250966 0.393418i
\(613\) 10.4845i 0.423464i −0.977328 0.211732i \(-0.932090\pi\)
0.977328 0.211732i \(-0.0679104\pi\)
\(614\) −8.40022 28.7878i −0.339005 1.16178i
\(615\) 9.76745 0.393862
\(616\) 7.66970 8.76144i 0.309021 0.353009i
\(617\) 8.27118i 0.332985i 0.986043 + 0.166493i \(0.0532442\pi\)
−0.986043 + 0.166493i \(0.946756\pi\)
\(618\) 0.820302 + 2.81120i 0.0329974 + 0.113083i
\(619\) −15.1042 −0.607087 −0.303544 0.952818i \(-0.598170\pi\)
−0.303544 + 0.952818i \(0.598170\pi\)
\(620\) 14.0550 8.96581i 0.564461 0.360075i
\(621\) −5.30273 + 26.5364i −0.212791 + 1.06487i
\(622\) −3.76795 12.9129i −0.151081 0.517760i
\(623\) 52.8706i 2.11822i
\(624\) −30.7435 14.2912i −1.23073 0.572107i
\(625\) 1.00000 0.0400000
\(626\) 6.59477 + 22.6005i 0.263580 + 0.903298i
\(627\) 6.05897i 0.241972i
\(628\) 2.73738 + 4.29117i 0.109233 + 0.171236i
\(629\) −20.3199 −0.810208
\(630\) 1.16944 + 4.00772i 0.0465917 + 0.159671i
\(631\) −36.3050 −1.44528 −0.722640 0.691225i \(-0.757072\pi\)
−0.722640 + 0.691225i \(0.757072\pi\)
\(632\) −28.8342 + 32.9386i −1.14696 + 1.31023i
\(633\) −14.6894 −0.583852
\(634\) −3.27690 + 0.956191i −0.130142 + 0.0379752i
\(635\) −10.1247 −0.401785
\(636\) 18.4928 11.7967i 0.733286 0.467771i
\(637\) 31.8503 1.26196
\(638\) 9.02361 2.63307i 0.357248 0.104244i
\(639\) 10.5466i 0.417218i
\(640\) −10.3460 + 4.57820i −0.408962 + 0.180969i
\(641\) 33.5891i 1.32669i 0.748315 + 0.663344i \(0.230863\pi\)
−0.748315 + 0.663344i \(0.769137\pi\)
\(642\) −2.51911 8.63307i −0.0994213 0.340720i
\(643\) 1.33940 0.0528207 0.0264104 0.999651i \(-0.491592\pi\)
0.0264104 + 0.999651i \(0.491592\pi\)
\(644\) 31.6481 12.2969i 1.24711 0.484567i
\(645\) 6.35908 0.250388
\(646\) 9.70586 + 33.2623i 0.381872 + 1.30869i
\(647\) 41.6967i 1.63927i 0.572889 + 0.819633i \(0.305822\pi\)
−0.572889 + 0.819633i \(0.694178\pi\)
\(648\) 10.8104 12.3492i 0.424673 0.485123i
\(649\) 9.90033i 0.388622i
\(650\) 7.81831 2.28136i 0.306659 0.0894824i
\(651\) 43.4266 1.70202
\(652\) 12.9945 + 20.3705i 0.508906 + 0.797770i
\(653\) −13.9039 −0.544101 −0.272051 0.962283i \(-0.587702\pi\)
−0.272051 + 0.962283i \(0.587702\pi\)
\(654\) −0.262171 + 0.0765008i −0.0102517 + 0.00299142i
\(655\) −5.41204 −0.211466
\(656\) 11.1903 24.0727i 0.436907 0.939880i
\(657\) 1.54786 0.0603878
\(658\) −0.458671 1.57188i −0.0178808 0.0612783i
\(659\) −2.90120 −0.113015 −0.0565074 0.998402i \(-0.517996\pi\)
−0.0565074 + 0.998402i \(0.517996\pi\)
\(660\) 2.88607 1.84105i 0.112340 0.0716629i
\(661\) 9.24133i 0.359446i 0.983717 + 0.179723i \(0.0575202\pi\)
−0.983717 + 0.179723i \(0.942480\pi\)
\(662\) −2.95818 10.1378i −0.114973 0.394015i
\(663\) −58.6640 −2.27832
\(664\) −28.2171 + 32.2337i −1.09504 + 1.25091i
\(665\) 12.5306i 0.485916i
\(666\) 0.969883 + 3.32382i 0.0375822 + 0.128795i
\(667\) 26.8777 + 5.37093i 1.04071 + 0.207963i
\(668\) 9.15640 + 14.3537i 0.354272 + 0.555363i
\(669\) 17.8716 0.690956
\(670\) 1.48378 + 5.08495i 0.0573233 + 0.196449i
\(671\) 9.77523i 0.377368i
\(672\) −29.1347 4.43972i −1.12389 0.171266i
\(673\) −12.1472 −0.468241 −0.234121 0.972208i \(-0.575221\pi\)
−0.234121 + 0.972208i \(0.575221\pi\)
\(674\) −12.4606 42.7030i −0.479965 1.64486i
\(675\) 5.64262i 0.217184i
\(676\) 34.0015 21.6899i 1.30775 0.834228i
\(677\) 22.1571i 0.851568i −0.904825 0.425784i \(-0.859998\pi\)
0.904825 0.425784i \(-0.140002\pi\)
\(678\) 18.6350 5.43765i 0.715674 0.208832i
\(679\) 33.5097i 1.28598i
\(680\) −12.8947 + 14.7301i −0.494487 + 0.564875i
\(681\) 40.6502i 1.55772i
\(682\) 3.84032 + 13.1609i 0.147053 + 0.503957i
\(683\) 19.4459i 0.744078i 0.928217 + 0.372039i \(0.121341\pi\)
−0.928217 + 0.372039i \(0.878659\pi\)
\(684\) 4.97760 3.17527i 0.190323 0.121409i
\(685\) −16.6474 −0.636066
\(686\) −7.06153 + 2.06054i −0.269610 + 0.0786716i
\(687\) −3.93453 −0.150112
\(688\) 7.28541 15.6725i 0.277754 0.597507i
\(689\) 42.9157i 1.63496i
\(690\) 9.94442 0.864189i 0.378577 0.0328991i
\(691\) 19.0338i 0.724081i 0.932162 + 0.362040i \(0.117920\pi\)
−0.932162 + 0.362040i \(0.882080\pi\)
\(692\) −11.6705 + 7.44473i −0.443646 + 0.283006i
\(693\) −3.43325 −0.130418
\(694\) 7.85319 + 26.9131i 0.298103 + 1.02161i
\(695\) −9.34213 −0.354367
\(696\) −17.9010 15.6704i −0.678534 0.593984i
\(697\) 45.9349i 1.73991i
\(698\) 38.9134 11.3548i 1.47289 0.429787i
\(699\) 28.3302i 1.07155i
\(700\) 5.96870 3.80749i 0.225596 0.143910i
\(701\) 1.32081i 0.0498862i 0.999689 + 0.0249431i \(0.00794046\pi\)
−0.999689 + 0.0249431i \(0.992060\pi\)
\(702\) 12.8729 + 44.1157i 0.485855 + 1.66504i
\(703\) 10.3923i 0.391953i
\(704\) −1.23094 9.22219i −0.0463929 0.347574i
\(705\) 0.481390i 0.0181302i
\(706\) −17.1653 + 5.00879i −0.646025 + 0.188508i
\(707\) 22.6226 0.850812
\(708\) −21.1251 + 13.4759i −0.793931 + 0.506457i
\(709\) 14.6676i 0.550854i 0.961322 + 0.275427i \(0.0888193\pi\)
−0.961322 + 0.275427i \(0.911181\pi\)
\(710\) 17.1690 5.00986i 0.644340 0.188017i
\(711\) 12.9073 0.484061
\(712\) −31.7863 27.8255i −1.19124 1.04280i
\(713\) −7.83348 + 39.2010i −0.293366 + 1.46809i
\(714\) −48.9538 + 14.2846i −1.83205 + 0.534588i
\(715\) 6.69762i 0.250477i
\(716\) −5.82122 9.12545i −0.217549 0.341034i
\(717\) −18.5958 −0.694475
\(718\) −32.2192 + 9.40149i −1.20241 + 0.350861i
\(719\) 24.8798i 0.927858i −0.885872 0.463929i \(-0.846439\pi\)
0.885872 0.463929i \(-0.153561\pi\)
\(720\) 3.02495 + 1.40616i 0.112733 + 0.0524045i
\(721\) −4.98050 −0.185484
\(722\) 8.78285 2.56281i 0.326864 0.0953780i
\(723\) −8.06631 −0.299989
\(724\) 17.8021 + 27.9070i 0.661611 + 1.03715i
\(725\) 5.71519 0.212257
\(726\) −5.62469 19.2760i −0.208752 0.715400i
\(727\) 16.7420 0.620926 0.310463 0.950585i \(-0.399516\pi\)
0.310463 + 0.950585i \(0.399516\pi\)
\(728\) 37.9789 43.3849i 1.40759 1.60795i
\(729\) −29.7527 −1.10195
\(730\) −0.735265 2.51978i −0.0272134 0.0932612i
\(731\) 29.9058i 1.10611i
\(732\) −20.8582 + 13.3056i −0.770940 + 0.491791i
\(733\) 14.5767i 0.538403i −0.963084 0.269202i \(-0.913240\pi\)
0.963084 0.269202i \(-0.0867598\pi\)
\(734\) −44.4006 + 12.9560i −1.63886 + 0.478214i
\(735\) 8.13965 0.300236
\(736\) 9.26316 25.4989i 0.341445 0.939902i
\(737\) −4.35606 −0.160458
\(738\) −7.51379 + 2.19250i −0.276586 + 0.0807072i
\(739\) 30.1332i 1.10847i −0.832361 0.554234i \(-0.813011\pi\)
0.832361 0.554234i \(-0.186989\pi\)
\(740\) 4.95017 3.15776i 0.181972 0.116082i
\(741\) 30.0028i 1.10218i
\(742\) 10.4499 + 35.8122i 0.383628 + 1.31471i
\(743\) 5.43289 0.199313 0.0996567 0.995022i \(-0.468226\pi\)
0.0996567 + 0.995022i \(0.468226\pi\)
\(744\) 22.8552 26.1085i 0.837911 0.957183i
\(745\) 19.0958 0.699614
\(746\) −5.53462 18.9673i −0.202637 0.694444i
\(747\) 12.6311 0.462146
\(748\) −8.65820 13.5728i −0.316575 0.496269i
\(749\) 15.2949 0.558863
\(750\) 1.99804 0.583024i 0.0729583 0.0212890i
\(751\) 10.0611 0.367134 0.183567 0.983007i \(-0.441236\pi\)
0.183567 + 0.983007i \(0.441236\pi\)
\(752\) −1.18642 0.551514i −0.0432644 0.0201116i
\(753\) 4.72230i 0.172090i
\(754\) 44.6832 13.0384i 1.62726 0.474832i
\(755\) −4.20794 −0.153142
\(756\) 21.4842 + 33.6791i 0.781374 + 1.22490i
\(757\) 16.5853i 0.602805i 0.953497 + 0.301402i \(0.0974547\pi\)
−0.953497 + 0.301402i \(0.902545\pi\)
\(758\) 28.1254 8.20692i 1.02156 0.298089i
\(759\) −1.60854 + 8.04960i −0.0583862 + 0.292182i
\(760\) −7.53351 6.59477i −0.273269 0.239218i
\(761\) 34.1984 1.23969 0.619845 0.784724i \(-0.287195\pi\)
0.619845 + 0.784724i \(0.287195\pi\)
\(762\) −20.2295 + 5.90292i −0.732838 + 0.213840i
\(763\) 0.464478i 0.0168152i
\(764\) −25.5383 + 16.2912i −0.923944 + 0.589394i
\(765\) 5.77213 0.208692
\(766\) −2.70809 + 0.790214i −0.0978472 + 0.0285516i
\(767\) 49.0245i 1.77017i
\(768\) −18.0026 + 15.1794i −0.649613 + 0.547740i
\(769\) 44.6472i 1.61002i 0.593261 + 0.805010i \(0.297840\pi\)
−0.593261 + 0.805010i \(0.702160\pi\)
\(770\) 1.63086 + 5.58902i 0.0587721 + 0.201414i
\(771\) 2.41393i 0.0869355i
\(772\) 42.7840 27.2924i 1.53983 0.982274i
\(773\) 42.9053i 1.54319i −0.636111 0.771597i \(-0.719458\pi\)
0.636111 0.771597i \(-0.280542\pi\)
\(774\) −4.89184 + 1.42743i −0.175833 + 0.0513078i
\(775\) 8.33558i 0.299423i
\(776\) 20.1463 + 17.6359i 0.723211 + 0.633093i
\(777\) 15.2949 0.548701
\(778\) −6.50901 22.3066i −0.233359 0.799730i
\(779\) 23.4927 0.841713
\(780\) 14.2912 9.11653i 0.511708 0.326424i
\(781\) 14.7079i 0.526291i
\(782\) −4.06416 46.7671i −0.145334 1.67239i
\(783\) 32.2487i 1.15247i
\(784\) 9.32536 20.0608i 0.333049 0.716458i
\(785\) −2.54496 −0.0908337
\(786\) −10.8135 + 3.15535i −0.385704 + 0.112548i
\(787\) −2.63565 −0.0939506 −0.0469753 0.998896i \(-0.514958\pi\)
−0.0469753 + 0.998896i \(0.514958\pi\)
\(788\) 3.13280 1.99844i 0.111601 0.0711917i
\(789\) 32.3014i 1.14996i
\(790\) −6.13121 21.0119i −0.218139 0.747569i
\(791\) 33.0149i 1.17388i
\(792\) −1.80690 + 2.06410i −0.0642053 + 0.0733446i
\(793\) 48.4050i 1.71891i
\(794\) 0.788629 0.230120i 0.0279874 0.00816665i
\(795\) 10.9675i 0.388978i
\(796\) −31.8539 + 20.3199i −1.12903 + 0.720220i
\(797\) 47.3035i 1.67558i −0.545996 0.837788i \(-0.683848\pi\)
0.545996 0.837788i \(-0.316152\pi\)
\(798\) −7.30564 25.0367i −0.258617 0.886289i
\(799\) −2.26391 −0.0800912
\(800\) 0.852189 5.59230i 0.0301294 0.197718i
\(801\) 12.4557i 0.440102i
\(802\) −3.34674 11.4694i −0.118178 0.404999i
\(803\) 2.15859 0.0761749
\(804\) 5.92930 + 9.29488i 0.209110 + 0.327805i
\(805\) −3.32663 + 16.6474i −0.117248 + 0.586745i
\(806\) 19.0165 + 65.1702i 0.669827 + 2.29552i
\(807\) 11.1236i 0.391568i
\(808\) 11.9062 13.6009i 0.418857 0.478479i
\(809\) −32.4597 −1.14122 −0.570611 0.821221i \(-0.693293\pi\)
−0.570611 + 0.821221i \(0.693293\pi\)
\(810\) 2.29869 + 7.87769i 0.0807677 + 0.276794i
\(811\) 24.2658i 0.852086i 0.904703 + 0.426043i \(0.140093\pi\)
−0.904703 + 0.426043i \(0.859907\pi\)
\(812\) 34.1123 21.7606i 1.19711 0.763646i
\(813\) 21.9884 0.771168
\(814\) 1.35256 + 4.63528i 0.0474073 + 0.162466i
\(815\) −12.0811 −0.423184
\(816\) −17.1761 + 36.9494i −0.601282 + 1.29349i
\(817\) 15.2949 0.535100
\(818\) −4.00700 + 1.16923i −0.140102 + 0.0408813i
\(819\) −17.0008 −0.594055
\(820\) 7.13839 + 11.1903i 0.249284 + 0.390781i
\(821\) 14.7107 0.513408 0.256704 0.966490i \(-0.417363\pi\)
0.256704 + 0.966490i \(0.417363\pi\)
\(822\) −33.2623 + 9.70586i −1.16016 + 0.338531i
\(823\) 13.4405i 0.468506i 0.972176 + 0.234253i \(0.0752644\pi\)
−0.972176 + 0.234253i \(0.924736\pi\)
\(824\) −2.62121 + 2.99432i −0.0913141 + 0.104312i
\(825\) 1.71164i 0.0595917i
\(826\) −11.9374 40.9099i −0.415355 1.42344i
\(827\) −6.28210 −0.218450 −0.109225 0.994017i \(-0.534837\pi\)
−0.109225 + 0.994017i \(0.534837\pi\)
\(828\) −7.45594 + 2.89702i −0.259112 + 0.100678i
\(829\) −28.2337 −0.980597 −0.490298 0.871555i \(-0.663112\pi\)
−0.490298 + 0.871555i \(0.663112\pi\)
\(830\) −6.00000 20.5622i −0.208263 0.713725i
\(831\) 14.4634i 0.501728i
\(832\) −6.09538 45.6665i −0.211319 1.58320i
\(833\) 38.2796i 1.32631i
\(834\) −18.6660 + 5.44669i −0.646350 + 0.188603i
\(835\) −8.51278 −0.294597
\(836\) 6.94158 4.42810i 0.240079 0.153149i
\(837\) −47.0345 −1.62575
\(838\) −18.5166 + 5.40309i −0.639644 + 0.186647i
\(839\) 30.2119 1.04303 0.521515 0.853242i \(-0.325367\pi\)
0.521515 + 0.853242i \(0.325367\pi\)
\(840\) 9.70586 11.0874i 0.334884 0.382553i
\(841\) 3.66345 0.126326
\(842\) 9.08817 + 31.1455i 0.313199 + 1.07334i
\(843\) −8.49927 −0.292731
\(844\) −10.7355 16.8292i −0.369533 0.579286i
\(845\) 20.1653i 0.693708i
\(846\) 0.108058 + 0.370318i 0.00371510 + 0.0127318i
\(847\) 34.1506 1.17343
\(848\) 27.0303 + 12.5652i 0.928225 + 0.431489i
\(849\) 12.9963i 0.446032i
\(850\) −2.74188 9.39651i −0.0940457 0.322298i
\(851\) −2.75896 + 13.8066i −0.0945758 + 0.473285i
\(852\) 31.3835 20.0198i 1.07518 0.685868i
\(853\) −19.2010 −0.657431 −0.328715 0.944429i \(-0.606616\pi\)
−0.328715 + 0.944429i \(0.606616\pi\)
\(854\) −11.7865 40.3929i −0.403327 1.38222i
\(855\) 2.95207i 0.100959i
\(856\) 8.04960 9.19542i 0.275130 0.314293i
\(857\) 57.6819 1.97038 0.985189 0.171472i \(-0.0548524\pi\)
0.985189 + 0.171472i \(0.0548524\pi\)
\(858\) 3.90488 + 13.3821i 0.133310 + 0.456859i
\(859\) 55.8795i 1.90658i 0.302052 + 0.953292i \(0.402328\pi\)
−0.302052 + 0.953292i \(0.597672\pi\)
\(860\) 4.64744 + 7.28541i 0.158476 + 0.248430i
\(861\) 34.5754i 1.17833i
\(862\) −28.9234 + 8.43977i −0.985134 + 0.287460i
\(863\) 35.1360i 1.19604i −0.801480 0.598021i \(-0.795954\pi\)
0.801480 0.598021i \(-0.204046\pi\)
\(864\) 31.5552 + 4.80858i 1.07353 + 0.163591i
\(865\) 6.92143i 0.235336i
\(866\) 8.44952 + 28.9568i 0.287126 + 0.983992i
\(867\) 45.4861i 1.54479i
\(868\) 31.7377 + 49.7526i 1.07725 + 1.68871i
\(869\) 18.0000 0.610608
\(870\) 11.4192 3.33210i 0.387147 0.112969i
\(871\) −21.5704 −0.730884
\(872\) −0.279248 0.244452i −0.00945654 0.00827819i
\(873\) 7.89451i 0.267189i
\(874\) 23.9183 2.07855i 0.809050 0.0703080i
\(875\) 3.53986i 0.119669i
\(876\) −2.93818 4.60595i −0.0992720 0.155621i
\(877\) −24.7643 −0.836230 −0.418115 0.908394i \(-0.637309\pi\)
−0.418115 + 0.908394i \(0.637309\pi\)
\(878\) −4.14993 14.2220i −0.140054 0.479968i
\(879\) 3.60330 0.121536
\(880\) 4.21848 + 1.96098i 0.142205 + 0.0661045i
\(881\) 7.84285i 0.264232i 0.991234 + 0.132116i \(0.0421772\pi\)
−0.991234 + 0.132116i \(0.957823\pi\)
\(882\) −6.26157 + 1.82711i −0.210838 + 0.0615221i
\(883\) 2.88449i 0.0970708i 0.998821 + 0.0485354i \(0.0154554\pi\)
−0.998821 + 0.0485354i \(0.984545\pi\)
\(884\) −42.8737 67.2096i −1.44200 2.26050i
\(885\) 12.5287i 0.421147i
\(886\) −4.99826 17.1292i −0.167920 0.575467i
\(887\) 27.8673i 0.935691i −0.883810 0.467846i \(-0.845030\pi\)
0.883810 0.467846i \(-0.154970\pi\)
\(888\) 8.04960 9.19542i 0.270127 0.308578i
\(889\) 35.8398i 1.20203i
\(890\) 20.2768 5.91672i 0.679680 0.198329i
\(891\) −6.74849 −0.226083
\(892\) 13.0612 + 20.4750i 0.437321 + 0.685552i
\(893\) 1.15784i 0.0387456i
\(894\) 38.1541 11.1333i 1.27607 0.372353i
\(895\) 5.41204 0.180904
\(896\) −16.2062 36.6234i −0.541410 1.22350i
\(897\) −7.96517 + 39.8600i −0.265949 + 1.33089i
\(898\) 18.6580 5.44436i 0.622625 0.181681i
\(899\) 47.6395i 1.58887i
\(900\) −1.40616 + 0.897004i −0.0468720 + 0.0299001i
\(901\) 51.5786 1.71833
\(902\) −10.4784 + 3.05758i −0.348894 + 0.101806i
\(903\) 22.5102i 0.749094i
\(904\) 19.8489 + 17.3756i 0.660164 + 0.577903i
\(905\) −16.5508 −0.550167
\(906\) −8.40764 + 2.45333i −0.279325 + 0.0815064i
\(907\) −34.2014 −1.13564 −0.567820 0.823153i \(-0.692213\pi\)
−0.567820 + 0.823153i \(0.692213\pi\)
\(908\) −46.5718 + 29.7086i −1.54554 + 0.985915i
\(909\) −5.32964 −0.176773
\(910\) 8.07570 + 27.6757i 0.267707 + 0.917441i
\(911\) 22.6587 0.750716 0.375358 0.926880i \(-0.377520\pi\)
0.375358 + 0.926880i \(0.377520\pi\)
\(912\) −18.8972 8.78443i −0.625748 0.290882i
\(913\) 17.6148 0.582964
\(914\) −1.51094 5.17803i −0.0499774 0.171274i
\(915\) 12.3704i 0.408951i
\(916\) −2.87549 4.50768i −0.0950090 0.148938i
\(917\) 19.1578i 0.632648i
\(918\) 53.0209 15.4714i 1.74995 0.510631i
\(919\) 16.5070 0.544516 0.272258 0.962224i \(-0.412230\pi\)
0.272258 + 0.962224i \(0.412230\pi\)
\(920\) 8.25780 + 10.7614i 0.272252 + 0.354794i
\(921\) 31.2085 1.02835
\(922\) −33.4620 + 9.76414i −1.10201 + 0.321565i
\(923\) 72.8308i 2.39725i
\(924\) 6.51706 + 10.2163i 0.214396 + 0.336091i
\(925\) 2.93580i 0.0965284i
\(926\) −16.4845 56.4928i −0.541713 1.85647i
\(927\) 1.17335 0.0385379
\(928\) 4.87043 31.9611i 0.159880 1.04917i
\(929\) 46.2688 1.51803 0.759015 0.651073i \(-0.225681\pi\)
0.759015 + 0.651073i \(0.225681\pi\)
\(930\) 4.85985 + 16.6549i 0.159361 + 0.546134i
\(931\) 19.5775 0.641627
\(932\) −32.4571 + 20.7047i −1.06317 + 0.678206i
\(933\) 13.9987 0.458296
\(934\) 7.01214 2.04612i 0.229444 0.0669512i
\(935\) 8.04960 0.263250
\(936\) −8.94740 + 10.2210i −0.292455 + 0.334084i
\(937\) 56.3876i 1.84210i 0.389441 + 0.921051i \(0.372668\pi\)
−0.389441 + 0.921051i \(0.627332\pi\)
\(938\) −18.0000 + 5.25236i −0.587721 + 0.171495i
\(939\) −24.5009 −0.799556
\(940\) 0.551514 0.351816i 0.0179884 0.0114750i
\(941\) 39.6971i 1.29409i 0.762453 + 0.647044i \(0.223995\pi\)
−0.762453 + 0.647044i \(0.776005\pi\)
\(942\) −5.08495 + 1.48378i −0.165677 + 0.0483440i
\(943\) −31.2111 6.23686i −1.01637 0.203100i
\(944\) −30.8780 14.3537i −1.00499 0.467174i
\(945\) −19.9741 −0.649756
\(946\) −6.82197 + 1.99063i −0.221801 + 0.0647211i
\(947\) 16.6941i 0.542484i −0.962511 0.271242i \(-0.912566\pi\)
0.962511 0.271242i \(-0.0874344\pi\)
\(948\) −24.5009 38.4080i −0.795751 1.24743i
\(949\) 10.6889 0.346977
\(950\) 4.80570 1.40229i 0.155918 0.0454964i
\(951\) 3.55244i 0.115196i
\(952\) −52.1426 45.6453i −1.68995 1.47937i
\(953\) 2.39477i 0.0775742i 0.999247 + 0.0387871i \(0.0123494\pi\)
−0.999247 + 0.0387871i \(0.987651\pi\)
\(954\) −2.46188 8.43696i −0.0797064 0.273157i
\(955\) 15.1460i 0.490114i
\(956\) −13.5905 21.3047i −0.439548 0.689044i
\(957\) 9.78236i 0.316219i
\(958\) −3.03932 + 0.886865i −0.0981959 + 0.0286533i
\(959\) 58.9296i 1.90293i
\(960\) −1.55773 11.6705i −0.0502756 0.376664i
\(961\) −38.4819 −1.24135
\(962\) 6.69762 + 22.9530i 0.215940 + 0.740034i
\(963\) −3.60330 −0.116115
\(964\) −5.89514 9.24133i −0.189870 0.297643i
\(965\) 25.3739i 0.816815i
\(966\) 3.05911 + 35.2018i 0.0984251 + 1.13260i
\(967\) 27.1960i 0.874563i 0.899325 + 0.437282i \(0.144059\pi\)
−0.899325 + 0.437282i \(0.855941\pi\)
\(968\) 17.9732 20.5316i 0.577681 0.659911i
\(969\) −36.0592 −1.15839
\(970\) −12.8515 + 3.75005i −0.412638 + 0.120407i
\(971\) 24.7066 0.792871 0.396436 0.918063i \(-0.370247\pi\)
0.396436 + 0.918063i \(0.370247\pi\)
\(972\) −9.02195 14.1430i −0.289379 0.453636i
\(973\) 33.0698i 1.06017i
\(974\) 12.0166 + 41.1814i 0.385038 + 1.31954i
\(975\) 8.47571i 0.271440i
\(976\) −30.4878 14.1724i −0.975889 0.453646i
\(977\) 25.3686i 0.811614i −0.913959 0.405807i \(-0.866991\pi\)
0.913959 0.405807i \(-0.133009\pi\)
\(978\) −24.1386 + 7.04359i −0.771868 + 0.225229i
\(979\) 17.3703i 0.555157i
\(980\) 5.94874 + 9.32536i 0.190026 + 0.297888i
\(981\) 0.109426i 0.00349370i
\(982\) 9.22834 + 31.6258i 0.294488 + 1.00922i
\(983\) −50.6994 −1.61706 −0.808530 0.588454i \(-0.799737\pi\)
−0.808530 + 0.588454i \(0.799737\pi\)
\(984\) 20.7870 + 18.1968i 0.662666 + 0.580093i
\(985\) 1.85797i 0.0591998i
\(986\) −15.6704 53.7029i −0.499046 1.71025i
\(987\) 1.70405 0.0542405
\(988\) 34.3733 21.9271i 1.09356 0.697594i
\(989\) −20.3199 4.06049i −0.646135 0.129116i
\(990\) −0.384213 1.31671i −0.0122111 0.0418478i
\(991\) 13.9029i 0.441639i −0.975315 0.220820i \(-0.929127\pi\)
0.975315 0.220820i \(-0.0708732\pi\)
\(992\) 46.6150 + 7.10349i 1.48003 + 0.225536i
\(993\) 10.9902 0.348763
\(994\) 17.7342 + 60.7757i 0.562494 + 1.92769i
\(995\) 18.8916i 0.598903i
\(996\) −23.9765 37.5860i −0.759725 1.19096i
\(997\) −11.8776 −0.376168 −0.188084 0.982153i \(-0.560228\pi\)
−0.188084 + 0.982153i \(0.560228\pi\)
\(998\) 8.95244 + 30.6803i 0.283384 + 0.971168i
\(999\) −16.5656 −0.524112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 460.2.e.a.91.4 yes 16
4.3 odd 2 inner 460.2.e.a.91.2 yes 16
23.22 odd 2 inner 460.2.e.a.91.3 yes 16
92.91 even 2 inner 460.2.e.a.91.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.2.e.a.91.1 16 92.91 even 2 inner
460.2.e.a.91.2 yes 16 4.3 odd 2 inner
460.2.e.a.91.3 yes 16 23.22 odd 2 inner
460.2.e.a.91.4 yes 16 1.1 even 1 trivial