Properties

Label 460.2.e.b.91.19
Level $460$
Weight $2$
Character 460.91
Analytic conductor $3.673$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [460,2,Mod(91,460)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(460, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("460.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.19
Character \(\chi\) \(=\) 460.91
Dual form 460.2.e.b.91.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.341935 + 1.37225i) q^{2} -2.41873i q^{3} +(-1.76616 + 0.938444i) q^{4} -1.00000i q^{5} +(3.31911 - 0.827049i) q^{6} -2.44077 q^{7} +(-1.89170 - 2.10273i) q^{8} -2.85025 q^{9} +(1.37225 - 0.341935i) q^{10} -2.59002 q^{11} +(2.26984 + 4.27186i) q^{12} -0.482508 q^{13} +(-0.834584 - 3.34935i) q^{14} -2.41873 q^{15} +(2.23865 - 3.31489i) q^{16} +1.74316i q^{17} +(-0.974601 - 3.91126i) q^{18} -7.09763 q^{19} +(0.938444 + 1.76616i) q^{20} +5.90355i q^{21} +(-0.885620 - 3.55417i) q^{22} +(-1.73388 - 4.47143i) q^{23} +(-5.08594 + 4.57550i) q^{24} -1.00000 q^{25} +(-0.164986 - 0.662123i) q^{26} -0.362207i q^{27} +(4.31078 - 2.29052i) q^{28} +1.03287 q^{29} +(-0.827049 - 3.31911i) q^{30} +2.87696i q^{31} +(5.31434 + 1.93851i) q^{32} +6.26456i q^{33} +(-2.39206 + 0.596048i) q^{34} +2.44077i q^{35} +(5.03400 - 2.67480i) q^{36} -6.76257i q^{37} +(-2.42693 - 9.73974i) q^{38} +1.16706i q^{39} +(-2.10273 + 1.89170i) q^{40} +0.907172 q^{41} +(-8.10117 + 2.01863i) q^{42} +1.65967 q^{43} +(4.57439 - 2.43059i) q^{44} +2.85025i q^{45} +(5.54305 - 3.90827i) q^{46} -4.40127i q^{47} +(-8.01781 - 5.41468i) q^{48} -1.04266 q^{49} +(-0.341935 - 1.37225i) q^{50} +4.21623 q^{51} +(0.852186 - 0.452807i) q^{52} -1.89738i q^{53} +(0.497040 - 0.123851i) q^{54} +2.59002i q^{55} +(4.61719 + 5.13228i) q^{56} +17.1672i q^{57} +(0.353174 + 1.41736i) q^{58} -3.79671i q^{59} +(4.27186 - 2.26984i) q^{60} -8.17854i q^{61} +(-3.94792 + 0.983733i) q^{62} +6.95679 q^{63} +(-0.842973 + 7.95546i) q^{64} +0.482508i q^{65} +(-8.59656 + 2.14207i) q^{66} +15.6210 q^{67} +(-1.63586 - 3.07870i) q^{68} +(-10.8152 + 4.19380i) q^{69} +(-3.34935 + 0.834584i) q^{70} +11.0655i q^{71} +(5.39180 + 5.99331i) q^{72} +5.06355 q^{73} +(9.27996 - 2.31236i) q^{74} +2.41873i q^{75} +(12.5355 - 6.66073i) q^{76} +6.32163 q^{77} +(-1.60150 + 0.399057i) q^{78} +9.79312 q^{79} +(-3.31489 - 2.23865i) q^{80} -9.42683 q^{81} +(0.310194 + 1.24487i) q^{82} +13.5571 q^{83} +(-5.54015 - 10.4266i) q^{84} +1.74316 q^{85} +(0.567501 + 2.27749i) q^{86} -2.49823i q^{87} +(4.89953 + 5.44612i) q^{88} +2.55180i q^{89} +(-3.91126 + 0.974601i) q^{90} +1.17769 q^{91} +(7.25850 + 6.27010i) q^{92} +6.95858 q^{93} +(6.03965 - 1.50495i) q^{94} +7.09763i q^{95} +(4.68874 - 12.8539i) q^{96} +1.34364i q^{97} +(-0.356523 - 1.43080i) q^{98} +7.38220 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} - 4 q^{4} - 16 q^{6} - 2 q^{8} - 52 q^{9} + 24 q^{12} - 4 q^{13} + 20 q^{16} - 56 q^{18} - 6 q^{24} - 32 q^{25} + 68 q^{26} + 8 q^{29} - 16 q^{32} + 8 q^{36} + 44 q^{41} - 4 q^{46} - 4 q^{48}+ \cdots + 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.341935 + 1.37225i 0.241785 + 0.970330i
\(3\) 2.41873i 1.39645i −0.715877 0.698227i \(-0.753973\pi\)
0.715877 0.698227i \(-0.246027\pi\)
\(4\) −1.76616 + 0.938444i −0.883080 + 0.469222i
\(5\) 1.00000i 0.447214i
\(6\) 3.31911 0.827049i 1.35502 0.337641i
\(7\) −2.44077 −0.922523 −0.461261 0.887264i \(-0.652603\pi\)
−0.461261 + 0.887264i \(0.652603\pi\)
\(8\) −1.89170 2.10273i −0.668816 0.743428i
\(9\) −2.85025 −0.950083
\(10\) 1.37225 0.341935i 0.433945 0.108129i
\(11\) −2.59002 −0.780921 −0.390460 0.920620i \(-0.627684\pi\)
−0.390460 + 0.920620i \(0.627684\pi\)
\(12\) 2.26984 + 4.27186i 0.655247 + 1.23318i
\(13\) −0.482508 −0.133824 −0.0669118 0.997759i \(-0.521315\pi\)
−0.0669118 + 0.997759i \(0.521315\pi\)
\(14\) −0.834584 3.34935i −0.223052 0.895151i
\(15\) −2.41873 −0.624513
\(16\) 2.23865 3.31489i 0.559661 0.828721i
\(17\) 1.74316i 0.422779i 0.977402 + 0.211389i \(0.0677988\pi\)
−0.977402 + 0.211389i \(0.932201\pi\)
\(18\) −0.974601 3.91126i −0.229716 0.921894i
\(19\) −7.09763 −1.62831 −0.814154 0.580650i \(-0.802799\pi\)
−0.814154 + 0.580650i \(0.802799\pi\)
\(20\) 0.938444 + 1.76616i 0.209842 + 0.394925i
\(21\) 5.90355i 1.28826i
\(22\) −0.885620 3.55417i −0.188815 0.757751i
\(23\) −1.73388 4.47143i −0.361540 0.932357i
\(24\) −5.08594 + 4.57550i −1.03816 + 0.933970i
\(25\) −1.00000 −0.200000
\(26\) −0.164986 0.662123i −0.0323565 0.129853i
\(27\) 0.362207i 0.0697068i
\(28\) 4.31078 2.29052i 0.814662 0.432868i
\(29\) 1.03287 0.191799 0.0958994 0.995391i \(-0.469427\pi\)
0.0958994 + 0.995391i \(0.469427\pi\)
\(30\) −0.827049 3.31911i −0.150998 0.605984i
\(31\) 2.87696i 0.516717i 0.966049 + 0.258358i \(0.0831815\pi\)
−0.966049 + 0.258358i \(0.916818\pi\)
\(32\) 5.31434 + 1.93851i 0.939451 + 0.342684i
\(33\) 6.26456i 1.09052i
\(34\) −2.39206 + 0.596048i −0.410235 + 0.102221i
\(35\) 2.44077i 0.412565i
\(36\) 5.03400 2.67480i 0.839000 0.445800i
\(37\) 6.76257i 1.11176i −0.831263 0.555880i \(-0.812382\pi\)
0.831263 0.555880i \(-0.187618\pi\)
\(38\) −2.42693 9.73974i −0.393700 1.58000i
\(39\) 1.16706i 0.186878i
\(40\) −2.10273 + 1.89170i −0.332471 + 0.299103i
\(41\) 0.907172 0.141677 0.0708383 0.997488i \(-0.477433\pi\)
0.0708383 + 0.997488i \(0.477433\pi\)
\(42\) −8.10117 + 2.01863i −1.25004 + 0.311482i
\(43\) 1.65967 0.253098 0.126549 0.991960i \(-0.459610\pi\)
0.126549 + 0.991960i \(0.459610\pi\)
\(44\) 4.57439 2.43059i 0.689616 0.366425i
\(45\) 2.85025i 0.424890i
\(46\) 5.54305 3.90827i 0.817279 0.576243i
\(47\) 4.40127i 0.641991i −0.947081 0.320995i \(-0.895983\pi\)
0.947081 0.320995i \(-0.104017\pi\)
\(48\) −8.01781 5.41468i −1.15727 0.781541i
\(49\) −1.04266 −0.148952
\(50\) −0.341935 1.37225i −0.0483570 0.194066i
\(51\) 4.21623 0.590391
\(52\) 0.852186 0.452807i 0.118177 0.0627930i
\(53\) 1.89738i 0.260625i −0.991473 0.130312i \(-0.958402\pi\)
0.991473 0.130312i \(-0.0415980\pi\)
\(54\) 0.497040 0.123851i 0.0676385 0.0168540i
\(55\) 2.59002i 0.349238i
\(56\) 4.61719 + 5.13228i 0.616997 + 0.685830i
\(57\) 17.1672i 2.27386i
\(58\) 0.353174 + 1.41736i 0.0463740 + 0.186108i
\(59\) 3.79671i 0.494290i −0.968978 0.247145i \(-0.920508\pi\)
0.968978 0.247145i \(-0.0794924\pi\)
\(60\) 4.27186 2.26984i 0.551495 0.293035i
\(61\) 8.17854i 1.04715i −0.851978 0.523577i \(-0.824597\pi\)
0.851978 0.523577i \(-0.175403\pi\)
\(62\) −3.94792 + 0.983733i −0.501386 + 0.124934i
\(63\) 6.95679 0.876473
\(64\) −0.842973 + 7.95546i −0.105372 + 0.994433i
\(65\) 0.482508i 0.0598477i
\(66\) −8.59656 + 2.14207i −1.05816 + 0.263671i
\(67\) 15.6210 1.90840 0.954202 0.299163i \(-0.0967076\pi\)
0.954202 + 0.299163i \(0.0967076\pi\)
\(68\) −1.63586 3.07870i −0.198377 0.373348i
\(69\) −10.8152 + 4.19380i −1.30199 + 0.504874i
\(70\) −3.34935 + 0.834584i −0.400324 + 0.0997519i
\(71\) 11.0655i 1.31323i 0.754225 + 0.656616i \(0.228013\pi\)
−0.754225 + 0.656616i \(0.771987\pi\)
\(72\) 5.39180 + 5.99331i 0.635430 + 0.706319i
\(73\) 5.06355 0.592644 0.296322 0.955088i \(-0.404240\pi\)
0.296322 + 0.955088i \(0.404240\pi\)
\(74\) 9.27996 2.31236i 1.07877 0.268806i
\(75\) 2.41873i 0.279291i
\(76\) 12.5355 6.66073i 1.43793 0.764038i
\(77\) 6.32163 0.720417
\(78\) −1.60150 + 0.399057i −0.181334 + 0.0451844i
\(79\) 9.79312 1.10181 0.550906 0.834567i \(-0.314282\pi\)
0.550906 + 0.834567i \(0.314282\pi\)
\(80\) −3.31489 2.23865i −0.370615 0.250288i
\(81\) −9.42683 −1.04743
\(82\) 0.310194 + 1.24487i 0.0342552 + 0.137473i
\(83\) 13.5571 1.48808 0.744041 0.668134i \(-0.232907\pi\)
0.744041 + 0.668134i \(0.232907\pi\)
\(84\) −5.54015 10.4266i −0.604480 1.13764i
\(85\) 1.74316 0.189072
\(86\) 0.567501 + 2.27749i 0.0611952 + 0.245588i
\(87\) 2.49823i 0.267838i
\(88\) 4.89953 + 5.44612i 0.522292 + 0.580559i
\(89\) 2.55180i 0.270490i 0.990812 + 0.135245i \(0.0431822\pi\)
−0.990812 + 0.135245i \(0.956818\pi\)
\(90\) −3.91126 + 0.974601i −0.412284 + 0.102732i
\(91\) 1.17769 0.123455
\(92\) 7.25850 + 6.27010i 0.756751 + 0.653703i
\(93\) 6.95858 0.721571
\(94\) 6.03965 1.50495i 0.622943 0.155224i
\(95\) 7.09763i 0.728201i
\(96\) 4.68874 12.8539i 0.478542 1.31190i
\(97\) 1.34364i 0.136426i 0.997671 + 0.0682131i \(0.0217298\pi\)
−0.997671 + 0.0682131i \(0.978270\pi\)
\(98\) −0.356523 1.43080i −0.0360143 0.144532i
\(99\) 7.38220 0.741939
\(100\) 1.76616 0.938444i 0.176616 0.0938444i
\(101\) −17.6082 −1.75208 −0.876039 0.482240i \(-0.839823\pi\)
−0.876039 + 0.482240i \(0.839823\pi\)
\(102\) 1.44168 + 5.78574i 0.142748 + 0.572874i
\(103\) −14.8411 −1.46233 −0.731167 0.682199i \(-0.761024\pi\)
−0.731167 + 0.682199i \(0.761024\pi\)
\(104\) 0.912758 + 1.01459i 0.0895033 + 0.0994883i
\(105\) 5.90355 0.576128
\(106\) 2.60368 0.648780i 0.252892 0.0630151i
\(107\) −13.8673 −1.34060 −0.670302 0.742088i \(-0.733836\pi\)
−0.670302 + 0.742088i \(0.733836\pi\)
\(108\) 0.339911 + 0.639716i 0.0327079 + 0.0615567i
\(109\) 16.3923i 1.57010i −0.619434 0.785049i \(-0.712638\pi\)
0.619434 0.785049i \(-0.287362\pi\)
\(110\) −3.55417 + 0.885620i −0.338876 + 0.0844405i
\(111\) −16.3568 −1.55252
\(112\) −5.46401 + 8.09086i −0.516300 + 0.764514i
\(113\) 15.5128i 1.45932i 0.683811 + 0.729660i \(0.260321\pi\)
−0.683811 + 0.729660i \(0.739679\pi\)
\(114\) −23.5578 + 5.87008i −2.20639 + 0.549784i
\(115\) −4.47143 + 1.73388i −0.416963 + 0.161686i
\(116\) −1.82421 + 0.969289i −0.169374 + 0.0899962i
\(117\) 1.37527 0.127144
\(118\) 5.21006 1.29823i 0.479625 0.119512i
\(119\) 4.25465i 0.390023i
\(120\) 4.57550 + 5.08594i 0.417684 + 0.464281i
\(121\) −4.29179 −0.390163
\(122\) 11.2230 2.79653i 1.01609 0.253186i
\(123\) 2.19420i 0.197845i
\(124\) −2.69986 5.08117i −0.242455 0.456302i
\(125\) 1.00000i 0.0894427i
\(126\) 2.37877 + 9.54648i 0.211918 + 0.850468i
\(127\) 9.72306i 0.862782i −0.902165 0.431391i \(-0.858023\pi\)
0.902165 0.431391i \(-0.141977\pi\)
\(128\) −11.2052 + 1.56348i −0.990405 + 0.138193i
\(129\) 4.01430i 0.353439i
\(130\) −0.662123 + 0.164986i −0.0580720 + 0.0144703i
\(131\) 8.55926i 0.747826i −0.927464 0.373913i \(-0.878016\pi\)
0.927464 0.373913i \(-0.121984\pi\)
\(132\) −5.87894 11.0642i −0.511696 0.963016i
\(133\) 17.3236 1.50215
\(134\) 5.34136 + 21.4359i 0.461423 + 1.85178i
\(135\) −0.362207 −0.0311738
\(136\) 3.66540 3.29753i 0.314306 0.282761i
\(137\) 5.34661i 0.456792i −0.973568 0.228396i \(-0.926652\pi\)
0.973568 0.228396i \(-0.0733480\pi\)
\(138\) −9.45304 13.4071i −0.804696 1.14129i
\(139\) 15.1210i 1.28255i 0.767312 + 0.641274i \(0.221594\pi\)
−0.767312 + 0.641274i \(0.778406\pi\)
\(140\) −2.29052 4.31078i −0.193584 0.364328i
\(141\) −10.6455 −0.896510
\(142\) −15.1847 + 3.78368i −1.27427 + 0.317519i
\(143\) 1.24971 0.104506
\(144\) −6.38070 + 9.44825i −0.531725 + 0.787354i
\(145\) 1.03287i 0.0857751i
\(146\) 1.73141 + 6.94848i 0.143292 + 0.575060i
\(147\) 2.52192i 0.208004i
\(148\) 6.34629 + 11.9438i 0.521662 + 0.981773i
\(149\) 14.6235i 1.19800i 0.800749 + 0.599000i \(0.204435\pi\)
−0.800749 + 0.599000i \(0.795565\pi\)
\(150\) −3.31911 + 0.827049i −0.271004 + 0.0675283i
\(151\) 6.63114i 0.539635i −0.962911 0.269817i \(-0.913037\pi\)
0.962911 0.269817i \(-0.0869634\pi\)
\(152\) 13.4266 + 14.9244i 1.08904 + 1.21053i
\(153\) 4.96844i 0.401675i
\(154\) 2.16159 + 8.67488i 0.174186 + 0.699042i
\(155\) 2.87696 0.231083
\(156\) −1.09522 2.06121i −0.0876875 0.165029i
\(157\) 17.8150i 1.42180i −0.703296 0.710898i \(-0.748289\pi\)
0.703296 0.710898i \(-0.251711\pi\)
\(158\) 3.34861 + 13.4387i 0.266402 + 1.06912i
\(159\) −4.58924 −0.363951
\(160\) 1.93851 5.31434i 0.153253 0.420135i
\(161\) 4.23201 + 10.9137i 0.333529 + 0.860120i
\(162\) −3.22337 12.9360i −0.253251 1.01635i
\(163\) 4.03456i 0.316011i −0.987438 0.158005i \(-0.949494\pi\)
0.987438 0.158005i \(-0.0505064\pi\)
\(164\) −1.60221 + 0.851330i −0.125112 + 0.0664777i
\(165\) 6.26456 0.487695
\(166\) 4.63564 + 18.6037i 0.359795 + 1.44393i
\(167\) 12.1772i 0.942301i −0.882053 0.471150i \(-0.843839\pi\)
0.882053 0.471150i \(-0.156161\pi\)
\(168\) 12.4136 11.1677i 0.957729 0.861608i
\(169\) −12.7672 −0.982091
\(170\) 0.596048 + 2.39206i 0.0457148 + 0.183463i
\(171\) 20.2300 1.54703
\(172\) −2.93125 + 1.55751i −0.223506 + 0.118759i
\(173\) 21.5454 1.63807 0.819035 0.573743i \(-0.194509\pi\)
0.819035 + 0.573743i \(0.194509\pi\)
\(174\) 3.42820 0.854233i 0.259891 0.0647592i
\(175\) 2.44077 0.184505
\(176\) −5.79814 + 8.58562i −0.437051 + 0.647166i
\(177\) −9.18322 −0.690253
\(178\) −3.50171 + 0.872550i −0.262465 + 0.0654004i
\(179\) 25.0006i 1.86863i 0.356449 + 0.934315i \(0.383987\pi\)
−0.356449 + 0.934315i \(0.616013\pi\)
\(180\) −2.67480 5.03400i −0.199368 0.375212i
\(181\) 20.6924i 1.53805i −0.639217 0.769026i \(-0.720742\pi\)
0.639217 0.769026i \(-0.279258\pi\)
\(182\) 0.402693 + 1.61609i 0.0298496 + 0.119792i
\(183\) −19.7817 −1.46230
\(184\) −6.12223 + 12.1045i −0.451337 + 0.892354i
\(185\) −6.76257 −0.497194
\(186\) 2.37938 + 9.54894i 0.174465 + 0.700162i
\(187\) 4.51482i 0.330157i
\(188\) 4.13034 + 7.77334i 0.301236 + 0.566929i
\(189\) 0.884062i 0.0643061i
\(190\) −9.73974 + 2.42693i −0.706595 + 0.176068i
\(191\) −3.12789 −0.226326 −0.113163 0.993576i \(-0.536098\pi\)
−0.113163 + 0.993576i \(0.536098\pi\)
\(192\) 19.2421 + 2.03892i 1.38868 + 0.147147i
\(193\) 19.7240 1.41976 0.709882 0.704320i \(-0.248748\pi\)
0.709882 + 0.704320i \(0.248748\pi\)
\(194\) −1.84382 + 0.459439i −0.132378 + 0.0329858i
\(195\) 1.16706 0.0835746
\(196\) 1.84151 0.978481i 0.131536 0.0698915i
\(197\) −10.6999 −0.762333 −0.381167 0.924506i \(-0.624478\pi\)
−0.381167 + 0.924506i \(0.624478\pi\)
\(198\) 2.52424 + 10.1303i 0.179390 + 0.719926i
\(199\) −21.1502 −1.49930 −0.749649 0.661836i \(-0.769778\pi\)
−0.749649 + 0.661836i \(0.769778\pi\)
\(200\) 1.89170 + 2.10273i 0.133763 + 0.148686i
\(201\) 37.7829i 2.66500i
\(202\) −6.02086 24.1629i −0.423626 1.70009i
\(203\) −2.52099 −0.176939
\(204\) −7.44655 + 3.95670i −0.521363 + 0.277024i
\(205\) 0.907172i 0.0633597i
\(206\) −5.07468 20.3657i −0.353570 1.41895i
\(207\) 4.94200 + 12.7447i 0.343493 + 0.885816i
\(208\) −1.08016 + 1.59946i −0.0748959 + 0.110902i
\(209\) 18.3830 1.27158
\(210\) 2.01863 + 8.10117i 0.139299 + 0.559034i
\(211\) 6.84533i 0.471252i −0.971844 0.235626i \(-0.924286\pi\)
0.971844 0.235626i \(-0.0757140\pi\)
\(212\) 1.78058 + 3.35107i 0.122291 + 0.230153i
\(213\) 26.7644 1.83387
\(214\) −4.74173 19.0295i −0.324138 1.30083i
\(215\) 1.65967i 0.113189i
\(216\) −0.761624 + 0.685185i −0.0518220 + 0.0466210i
\(217\) 7.02198i 0.476683i
\(218\) 22.4944 5.60510i 1.52351 0.379626i
\(219\) 12.2474i 0.827600i
\(220\) −2.43059 4.57439i −0.163870 0.308405i
\(221\) 0.841089i 0.0565778i
\(222\) −5.59297 22.4457i −0.375376 1.50646i
\(223\) 9.20583i 0.616468i −0.951311 0.308234i \(-0.900262\pi\)
0.951311 0.308234i \(-0.0997379\pi\)
\(224\) −12.9710 4.73146i −0.866665 0.316134i
\(225\) 2.85025 0.190017
\(226\) −21.2875 + 5.30437i −1.41602 + 0.352841i
\(227\) 15.6774 1.04055 0.520274 0.853999i \(-0.325830\pi\)
0.520274 + 0.853999i \(0.325830\pi\)
\(228\) −16.1105 30.3201i −1.06694 2.00800i
\(229\) 12.3042i 0.813087i −0.913631 0.406543i \(-0.866734\pi\)
0.913631 0.406543i \(-0.133266\pi\)
\(230\) −3.90827 5.54305i −0.257704 0.365498i
\(231\) 15.2903i 1.00603i
\(232\) −1.95387 2.17185i −0.128278 0.142589i
\(233\) −7.21602 −0.472737 −0.236369 0.971663i \(-0.575957\pi\)
−0.236369 + 0.971663i \(0.575957\pi\)
\(234\) 0.470252 + 1.88722i 0.0307414 + 0.123371i
\(235\) −4.40127 −0.287107
\(236\) 3.56300 + 6.70561i 0.231932 + 0.436498i
\(237\) 23.6869i 1.53863i
\(238\) 5.83846 1.45481i 0.378451 0.0943016i
\(239\) 0.395962i 0.0256126i 0.999918 + 0.0128063i \(0.00407649\pi\)
−0.999918 + 0.0128063i \(0.995924\pi\)
\(240\) −5.41468 + 8.01781i −0.349516 + 0.517547i
\(241\) 3.11185i 0.200452i 0.994965 + 0.100226i \(0.0319565\pi\)
−0.994965 + 0.100226i \(0.968043\pi\)
\(242\) −1.46752 5.88943i −0.0943355 0.378587i
\(243\) 21.7143i 1.39297i
\(244\) 7.67510 + 14.4446i 0.491348 + 0.924722i
\(245\) 1.04266i 0.0666133i
\(246\) 3.01100 0.750276i 0.191975 0.0478358i
\(247\) 3.42466 0.217906
\(248\) 6.04947 5.44233i 0.384142 0.345588i
\(249\) 32.7909i 2.07804i
\(250\) −1.37225 + 0.341935i −0.0867889 + 0.0216259i
\(251\) 13.7629 0.868704 0.434352 0.900743i \(-0.356977\pi\)
0.434352 + 0.900743i \(0.356977\pi\)
\(252\) −12.2868 + 6.52856i −0.773996 + 0.411260i
\(253\) 4.49080 + 11.5811i 0.282334 + 0.728096i
\(254\) 13.3425 3.32466i 0.837183 0.208607i
\(255\) 4.21623i 0.264031i
\(256\) −5.97693 14.8417i −0.373558 0.927607i
\(257\) −24.5390 −1.53070 −0.765351 0.643613i \(-0.777435\pi\)
−0.765351 + 0.643613i \(0.777435\pi\)
\(258\) 5.50864 1.37263i 0.342953 0.0854563i
\(259\) 16.5058i 1.02562i
\(260\) −0.452807 0.852186i −0.0280819 0.0528503i
\(261\) −2.94393 −0.182225
\(262\) 11.7455 2.92671i 0.725638 0.180813i
\(263\) 10.3038 0.635362 0.317681 0.948198i \(-0.397096\pi\)
0.317681 + 0.948198i \(0.397096\pi\)
\(264\) 13.1727 11.8506i 0.810723 0.729356i
\(265\) −1.89738 −0.116555
\(266\) 5.92357 + 23.7724i 0.363197 + 1.45758i
\(267\) 6.17211 0.377727
\(268\) −27.5891 + 14.6594i −1.68527 + 0.895465i
\(269\) −2.31211 −0.140972 −0.0704859 0.997513i \(-0.522455\pi\)
−0.0704859 + 0.997513i \(0.522455\pi\)
\(270\) −0.123851 0.497040i −0.00753735 0.0302489i
\(271\) 21.0099i 1.27626i −0.769929 0.638129i \(-0.779709\pi\)
0.769929 0.638129i \(-0.220291\pi\)
\(272\) 5.77838 + 3.90232i 0.350366 + 0.236613i
\(273\) 2.84851i 0.172400i
\(274\) 7.33690 1.82819i 0.443239 0.110445i
\(275\) 2.59002 0.156184
\(276\) 15.1657 17.5563i 0.912866 1.05677i
\(277\) −7.45198 −0.447746 −0.223873 0.974618i \(-0.571870\pi\)
−0.223873 + 0.974618i \(0.571870\pi\)
\(278\) −20.7499 + 5.17041i −1.24449 + 0.310101i
\(279\) 8.20005i 0.490924i
\(280\) 5.13228 4.61719i 0.306712 0.275930i
\(281\) 14.8257i 0.884429i 0.896909 + 0.442215i \(0.145807\pi\)
−0.896909 + 0.442215i \(0.854193\pi\)
\(282\) −3.64006 14.6083i −0.216763 0.869911i
\(283\) −4.08320 −0.242721 −0.121360 0.992609i \(-0.538726\pi\)
−0.121360 + 0.992609i \(0.538726\pi\)
\(284\) −10.3843 19.5434i −0.616197 1.15969i
\(285\) 17.1672 1.01690
\(286\) 0.427318 + 1.71491i 0.0252679 + 0.101405i
\(287\) −2.21419 −0.130700
\(288\) −15.1472 5.52525i −0.892556 0.325578i
\(289\) 13.9614 0.821258
\(290\) 1.41736 0.353174i 0.0832301 0.0207391i
\(291\) 3.24991 0.190513
\(292\) −8.94304 + 4.75186i −0.523352 + 0.278082i
\(293\) 7.93619i 0.463637i −0.972759 0.231819i \(-0.925532\pi\)
0.972759 0.231819i \(-0.0744676\pi\)
\(294\) −3.46071 + 0.862333i −0.201833 + 0.0502923i
\(295\) −3.79671 −0.221053
\(296\) −14.2199 + 12.7927i −0.826514 + 0.743562i
\(297\) 0.938123i 0.0544354i
\(298\) −20.0671 + 5.00028i −1.16246 + 0.289658i
\(299\) 0.836613 + 2.15750i 0.0483826 + 0.124771i
\(300\) −2.26984 4.27186i −0.131049 0.246636i
\(301\) −4.05087 −0.233488
\(302\) 9.09961 2.26742i 0.523624 0.130475i
\(303\) 42.5894i 2.44670i
\(304\) −15.8891 + 23.5278i −0.911301 + 1.34941i
\(305\) −8.17854 −0.468302
\(306\) 6.81797 1.69889i 0.389757 0.0971189i
\(307\) 26.2313i 1.49710i 0.663078 + 0.748551i \(0.269250\pi\)
−0.663078 + 0.748551i \(0.730750\pi\)
\(308\) −11.1650 + 5.93250i −0.636186 + 0.338035i
\(309\) 35.8965i 2.04208i
\(310\) 0.983733 + 3.94792i 0.0558723 + 0.224227i
\(311\) 25.4427i 1.44272i 0.692559 + 0.721361i \(0.256483\pi\)
−0.692559 + 0.721361i \(0.743517\pi\)
\(312\) 2.45401 2.20771i 0.138931 0.124987i
\(313\) 27.2137i 1.53821i −0.639123 0.769105i \(-0.720702\pi\)
0.639123 0.769105i \(-0.279298\pi\)
\(314\) 24.4468 6.09159i 1.37961 0.343768i
\(315\) 6.95679i 0.391971i
\(316\) −17.2962 + 9.19030i −0.972989 + 0.516995i
\(317\) −19.7663 −1.11019 −0.555094 0.831788i \(-0.687318\pi\)
−0.555094 + 0.831788i \(0.687318\pi\)
\(318\) −1.56922 6.29760i −0.0879977 0.353152i
\(319\) −2.67515 −0.149780
\(320\) 7.95546 + 0.842973i 0.444724 + 0.0471236i
\(321\) 33.5413i 1.87209i
\(322\) −13.5293 + 9.53917i −0.753958 + 0.531597i
\(323\) 12.3723i 0.688414i
\(324\) 16.6493 8.84655i 0.924961 0.491475i
\(325\) 0.482508 0.0267647
\(326\) 5.53644 1.37956i 0.306635 0.0764066i
\(327\) −39.6485 −2.19257
\(328\) −1.71609 1.90754i −0.0947554 0.105326i
\(329\) 10.7425i 0.592251i
\(330\) 2.14207 + 8.59656i 0.117917 + 0.473225i
\(331\) 32.1515i 1.76720i −0.468238 0.883602i \(-0.655111\pi\)
0.468238 0.883602i \(-0.344889\pi\)
\(332\) −23.9440 + 12.7225i −1.31410 + 0.698241i
\(333\) 19.2750i 1.05626i
\(334\) 16.7102 4.16382i 0.914343 0.227834i
\(335\) 15.6210i 0.853464i
\(336\) 19.5696 + 13.2160i 1.06761 + 0.720990i
\(337\) 25.7071i 1.40035i 0.713970 + 0.700176i \(0.246895\pi\)
−0.713970 + 0.700176i \(0.753105\pi\)
\(338\) −4.36555 17.5198i −0.237455 0.952953i
\(339\) 37.5212 2.03787
\(340\) −3.07870 + 1.63586i −0.166966 + 0.0887169i
\(341\) 7.45138i 0.403515i
\(342\) 6.91735 + 27.7607i 0.374048 + 1.50113i
\(343\) 19.6303 1.05993
\(344\) −3.13960 3.48985i −0.169276 0.188160i
\(345\) 4.19380 + 10.8152i 0.225786 + 0.582269i
\(346\) 7.36715 + 29.5658i 0.396060 + 1.58947i
\(347\) 6.50423i 0.349165i −0.984643 0.174583i \(-0.944142\pi\)
0.984643 0.174583i \(-0.0558576\pi\)
\(348\) 2.34445 + 4.41227i 0.125676 + 0.236523i
\(349\) 13.3980 0.717177 0.358588 0.933496i \(-0.383258\pi\)
0.358588 + 0.933496i \(0.383258\pi\)
\(350\) 0.834584 + 3.34935i 0.0446104 + 0.179030i
\(351\) 0.174768i 0.00932841i
\(352\) −13.7642 5.02079i −0.733636 0.267609i
\(353\) −35.4004 −1.88417 −0.942087 0.335370i \(-0.891139\pi\)
−0.942087 + 0.335370i \(0.891139\pi\)
\(354\) −3.14007 12.6017i −0.166893 0.669773i
\(355\) 11.0655 0.587295
\(356\) −2.39472 4.50688i −0.126920 0.238864i
\(357\) −10.2908 −0.544649
\(358\) −34.3071 + 8.54857i −1.81319 + 0.451806i
\(359\) −17.3591 −0.916179 −0.458089 0.888906i \(-0.651466\pi\)
−0.458089 + 0.888906i \(0.651466\pi\)
\(360\) 5.99331 5.39180i 0.315875 0.284173i
\(361\) 31.3763 1.65138
\(362\) 28.3952 7.07546i 1.49242 0.371878i
\(363\) 10.3807i 0.544845i
\(364\) −2.07999 + 1.10519i −0.109021 + 0.0579279i
\(365\) 5.06355i 0.265038i
\(366\) −6.76405 27.1455i −0.353563 1.41892i
\(367\) −15.7816 −0.823792 −0.411896 0.911231i \(-0.635133\pi\)
−0.411896 + 0.911231i \(0.635133\pi\)
\(368\) −18.7038 4.26231i −0.975004 0.222188i
\(369\) −2.58567 −0.134604
\(370\) −2.31236 9.27996i −0.120214 0.482442i
\(371\) 4.63105i 0.240432i
\(372\) −12.2900 + 6.53024i −0.637205 + 0.338577i
\(373\) 32.2760i 1.67119i 0.549348 + 0.835593i \(0.314876\pi\)
−0.549348 + 0.835593i \(0.685124\pi\)
\(374\) 6.19548 1.54378i 0.320361 0.0798268i
\(375\) 2.41873 0.124903
\(376\) −9.25469 + 8.32586i −0.477274 + 0.429373i
\(377\) −0.498367 −0.0256672
\(378\) −1.21316 + 0.302292i −0.0623981 + 0.0155482i
\(379\) −9.04274 −0.464494 −0.232247 0.972657i \(-0.574608\pi\)
−0.232247 + 0.972657i \(0.574608\pi\)
\(380\) −6.66073 12.5355i −0.341688 0.643060i
\(381\) −23.5174 −1.20483
\(382\) −1.06954 4.29226i −0.0547223 0.219611i
\(383\) −5.57417 −0.284827 −0.142414 0.989807i \(-0.545486\pi\)
−0.142414 + 0.989807i \(0.545486\pi\)
\(384\) 3.78164 + 27.1022i 0.192981 + 1.38306i
\(385\) 6.32163i 0.322180i
\(386\) 6.74433 + 27.0663i 0.343277 + 1.37764i
\(387\) −4.73048 −0.240464
\(388\) −1.26093 2.37309i −0.0640142 0.120475i
\(389\) 4.18438i 0.212156i 0.994358 + 0.106078i \(0.0338294\pi\)
−0.994358 + 0.106078i \(0.966171\pi\)
\(390\) 0.399057 + 1.60150i 0.0202071 + 0.0810949i
\(391\) 7.79442 3.02244i 0.394181 0.152851i
\(392\) 1.97240 + 2.19244i 0.0996213 + 0.110735i
\(393\) −20.7025 −1.04430
\(394\) −3.65866 14.6829i −0.184321 0.739715i
\(395\) 9.79312i 0.492746i
\(396\) −13.0382 + 6.92778i −0.655192 + 0.348134i
\(397\) −10.2111 −0.512481 −0.256240 0.966613i \(-0.582484\pi\)
−0.256240 + 0.966613i \(0.582484\pi\)
\(398\) −7.23200 29.0234i −0.362507 1.45481i
\(399\) 41.9012i 2.09768i
\(400\) −2.23865 + 3.31489i −0.111932 + 0.165744i
\(401\) 8.28754i 0.413860i 0.978356 + 0.206930i \(0.0663473\pi\)
−0.978356 + 0.206930i \(0.933653\pi\)
\(402\) 51.8477 12.9193i 2.58593 0.644356i
\(403\) 1.38815i 0.0691489i
\(404\) 31.0989 16.5243i 1.54723 0.822114i
\(405\) 9.42683i 0.468423i
\(406\) −0.862015 3.45944i −0.0427811 0.171689i
\(407\) 17.5152i 0.868196i
\(408\) −7.97583 8.86562i −0.394863 0.438913i
\(409\) −1.64792 −0.0814844 −0.0407422 0.999170i \(-0.512972\pi\)
−0.0407422 + 0.999170i \(0.512972\pi\)
\(410\) 1.24487 0.310194i 0.0614798 0.0153194i
\(411\) −12.9320 −0.637888
\(412\) 26.2117 13.9275i 1.29136 0.686159i
\(413\) 9.26689i 0.455994i
\(414\) −15.7991 + 11.1395i −0.776483 + 0.547478i
\(415\) 13.5571i 0.665490i
\(416\) −2.56421 0.935348i −0.125721 0.0458592i
\(417\) 36.5736 1.79102
\(418\) 6.28580 + 25.2261i 0.307448 + 1.23385i
\(419\) −27.8772 −1.36189 −0.680945 0.732334i \(-0.738431\pi\)
−0.680945 + 0.732334i \(0.738431\pi\)
\(420\) −10.4266 + 5.54015i −0.508767 + 0.270332i
\(421\) 1.00728i 0.0490920i −0.999699 0.0245460i \(-0.992186\pi\)
0.999699 0.0245460i \(-0.00781402\pi\)
\(422\) 9.39353 2.34066i 0.457270 0.113942i
\(423\) 12.5447i 0.609944i
\(424\) −3.98968 + 3.58926i −0.193756 + 0.174310i
\(425\) 1.74316i 0.0845557i
\(426\) 9.15169 + 36.7276i 0.443401 + 1.77946i
\(427\) 19.9619i 0.966024i
\(428\) 24.4919 13.0137i 1.18386 0.629041i
\(429\) 3.02270i 0.145937i
\(430\) 2.27749 0.567501i 0.109830 0.0273673i
\(431\) 32.5335 1.56708 0.783542 0.621339i \(-0.213411\pi\)
0.783542 + 0.621339i \(0.213411\pi\)
\(432\) −1.20067 0.810853i −0.0577675 0.0390122i
\(433\) 25.0052i 1.20167i −0.799373 0.600836i \(-0.794835\pi\)
0.799373 0.600836i \(-0.205165\pi\)
\(434\) 9.63594 2.40106i 0.462540 0.115255i
\(435\) −2.49823 −0.119781
\(436\) 15.3833 + 28.9514i 0.736724 + 1.38652i
\(437\) 12.3065 + 31.7365i 0.588698 + 1.51816i
\(438\) 16.8065 4.18780i 0.803045 0.200101i
\(439\) 3.60464i 0.172040i 0.996293 + 0.0860201i \(0.0274149\pi\)
−0.996293 + 0.0860201i \(0.972585\pi\)
\(440\) 5.44612 4.89953i 0.259634 0.233576i
\(441\) 2.97185 0.141517
\(442\) 1.15419 0.287598i 0.0548991 0.0136796i
\(443\) 8.90760i 0.423213i −0.977355 0.211606i \(-0.932131\pi\)
0.977355 0.211606i \(-0.0678695\pi\)
\(444\) 28.8888 15.3500i 1.37100 0.728477i
\(445\) 2.55180 0.120967
\(446\) 12.6327 3.14780i 0.598177 0.149053i
\(447\) 35.3702 1.67295
\(448\) 2.05750 19.4174i 0.0972077 0.917387i
\(449\) 24.9219 1.17614 0.588069 0.808811i \(-0.299888\pi\)
0.588069 + 0.808811i \(0.299888\pi\)
\(450\) 0.974601 + 3.91126i 0.0459431 + 0.184379i
\(451\) −2.34959 −0.110638
\(452\) −14.5579 27.3981i −0.684745 1.28870i
\(453\) −16.0389 −0.753575
\(454\) 5.36067 + 21.5134i 0.251589 + 1.00968i
\(455\) 1.17769i 0.0552109i
\(456\) 36.0981 32.4752i 1.69045 1.52079i
\(457\) 22.7410i 1.06378i −0.846813 0.531890i \(-0.821482\pi\)
0.846813 0.531890i \(-0.178518\pi\)
\(458\) 16.8845 4.20725i 0.788962 0.196592i
\(459\) 0.631385 0.0294705
\(460\) 6.27010 7.25850i 0.292345 0.338429i
\(461\) 37.7027 1.75599 0.877996 0.478668i \(-0.158880\pi\)
0.877996 + 0.478668i \(0.158880\pi\)
\(462\) 20.9822 5.22830i 0.976180 0.243242i
\(463\) 4.38605i 0.203837i −0.994793 0.101918i \(-0.967502\pi\)
0.994793 0.101918i \(-0.0324981\pi\)
\(464\) 2.31223 3.42384i 0.107342 0.158948i
\(465\) 6.95858i 0.322696i
\(466\) −2.46741 9.90221i −0.114301 0.458711i
\(467\) −13.7395 −0.635788 −0.317894 0.948126i \(-0.602976\pi\)
−0.317894 + 0.948126i \(0.602976\pi\)
\(468\) −2.42894 + 1.29061i −0.112278 + 0.0596585i
\(469\) −38.1271 −1.76055
\(470\) −1.50495 6.03965i −0.0694181 0.278588i
\(471\) −43.0898 −1.98547
\(472\) −7.98348 + 7.18223i −0.367469 + 0.330589i
\(473\) −4.29859 −0.197649
\(474\) 32.5045 8.09939i 1.49298 0.372017i
\(475\) 7.09763 0.325661
\(476\) 3.99275 + 7.51439i 0.183007 + 0.344422i
\(477\) 5.40800i 0.247615i
\(478\) −0.543360 + 0.135393i −0.0248527 + 0.00619275i
\(479\) 34.3897 1.57130 0.785652 0.618668i \(-0.212327\pi\)
0.785652 + 0.618668i \(0.212327\pi\)
\(480\) −12.8539 4.68874i −0.586699 0.214011i
\(481\) 3.26299i 0.148780i
\(482\) −4.27025 + 1.06405i −0.194504 + 0.0484662i
\(483\) 26.3973 10.2361i 1.20112 0.465757i
\(484\) 7.58000 4.02761i 0.344545 0.183073i
\(485\) 1.34364 0.0610116
\(486\) −29.7976 + 7.42489i −1.35164 + 0.336800i
\(487\) 8.75208i 0.396594i −0.980142 0.198297i \(-0.936459\pi\)
0.980142 0.198297i \(-0.0635411\pi\)
\(488\) −17.1973 + 15.4713i −0.778485 + 0.700353i
\(489\) −9.75850 −0.441295
\(490\) −1.43080 + 0.356523i −0.0646369 + 0.0161061i
\(491\) 18.7020i 0.844009i 0.906594 + 0.422004i \(0.138673\pi\)
−0.906594 + 0.422004i \(0.861327\pi\)
\(492\) 2.05914 + 3.87532i 0.0928331 + 0.174713i
\(493\) 1.80046i 0.0810885i
\(494\) 1.17101 + 4.69950i 0.0526863 + 0.211441i
\(495\) 7.38220i 0.331805i
\(496\) 9.53678 + 6.44049i 0.428214 + 0.289186i
\(497\) 27.0083i 1.21149i
\(498\) 44.9974 11.2124i 2.01638 0.502438i
\(499\) 29.6215i 1.32604i 0.748601 + 0.663021i \(0.230726\pi\)
−0.748601 + 0.663021i \(0.769274\pi\)
\(500\) −0.938444 1.76616i −0.0419685 0.0789851i
\(501\) −29.4534 −1.31588
\(502\) 4.70601 + 18.8861i 0.210039 + 0.842929i
\(503\) −18.2062 −0.811774 −0.405887 0.913923i \(-0.633037\pi\)
−0.405887 + 0.913923i \(0.633037\pi\)
\(504\) −13.1601 14.6283i −0.586199 0.651595i
\(505\) 17.6082i 0.783553i
\(506\) −14.3566 + 10.1225i −0.638230 + 0.450000i
\(507\) 30.8804i 1.37144i
\(508\) 9.12454 + 17.1725i 0.404836 + 0.761905i
\(509\) 6.43616 0.285278 0.142639 0.989775i \(-0.454441\pi\)
0.142639 + 0.989775i \(0.454441\pi\)
\(510\) 5.78574 1.44168i 0.256197 0.0638386i
\(511\) −12.3589 −0.546727
\(512\) 18.3229 13.2768i 0.809764 0.586756i
\(513\) 2.57081i 0.113504i
\(514\) −8.39076 33.6738i −0.370101 1.48529i
\(515\) 14.8411i 0.653976i
\(516\) 3.76720 + 7.08990i 0.165842 + 0.312115i
\(517\) 11.3994i 0.501344i
\(518\) −22.6502 + 5.64393i −0.995193 + 0.247980i
\(519\) 52.1126i 2.28749i
\(520\) 1.01459 0.912758i 0.0444925 0.0400271i
\(521\) 16.5369i 0.724496i −0.932082 0.362248i \(-0.882009\pi\)
0.932082 0.362248i \(-0.117991\pi\)
\(522\) −1.00663 4.03982i −0.0440592 0.176818i
\(523\) 9.19096 0.401893 0.200946 0.979602i \(-0.435598\pi\)
0.200946 + 0.979602i \(0.435598\pi\)
\(524\) 8.03238 + 15.1170i 0.350896 + 0.660390i
\(525\) 5.90355i 0.257652i
\(526\) 3.52325 + 14.1395i 0.153621 + 0.616511i
\(527\) −5.01500 −0.218457
\(528\) 20.7663 + 14.0241i 0.903737 + 0.610322i
\(529\) −16.9873 + 15.5059i −0.738578 + 0.674168i
\(530\) −0.648780 2.60368i −0.0281812 0.113097i
\(531\) 10.8216i 0.469617i
\(532\) −30.5963 + 16.2573i −1.32652 + 0.704842i
\(533\) −0.437718 −0.0189597
\(534\) 2.11046 + 8.46970i 0.0913286 + 0.366520i
\(535\) 13.8673i 0.599537i
\(536\) −29.5501 32.8467i −1.27637 1.41876i
\(537\) 60.4696 2.60945
\(538\) −0.790592 3.17280i −0.0340848 0.136789i
\(539\) 2.70052 0.116320
\(540\) 0.639716 0.339911i 0.0275290 0.0146274i
\(541\) −30.3151 −1.30335 −0.651673 0.758500i \(-0.725933\pi\)
−0.651673 + 0.758500i \(0.725933\pi\)
\(542\) 28.8309 7.18401i 1.23839 0.308580i
\(543\) −50.0493 −2.14782
\(544\) −3.37914 + 9.26374i −0.144879 + 0.397180i
\(545\) −16.3923 −0.702169
\(546\) 3.90888 0.974006i 0.167284 0.0416836i
\(547\) 3.21629i 0.137519i −0.997633 0.0687593i \(-0.978096\pi\)
0.997633 0.0687593i \(-0.0219040\pi\)
\(548\) 5.01749 + 9.44297i 0.214337 + 0.403384i
\(549\) 23.3109i 0.994884i
\(550\) 0.885620 + 3.55417i 0.0377629 + 0.151550i
\(551\) −7.33091 −0.312307
\(552\) 29.2774 + 14.8080i 1.24613 + 0.630271i
\(553\) −23.9027 −1.01645
\(554\) −2.54809 10.2260i −0.108258 0.434461i
\(555\) 16.3568i 0.694308i
\(556\) −14.1902 26.7061i −0.601800 1.13259i
\(557\) 11.5928i 0.491202i 0.969371 + 0.245601i \(0.0789854\pi\)
−0.969371 + 0.245601i \(0.921015\pi\)
\(558\) 11.2525 2.80389i 0.476358 0.118698i
\(559\) −0.800805 −0.0338705
\(560\) 8.09086 + 5.46401i 0.341901 + 0.230897i
\(561\) −10.9201 −0.461048
\(562\) −20.3447 + 5.06944i −0.858188 + 0.213841i
\(563\) −0.736783 −0.0310517 −0.0155258 0.999879i \(-0.504942\pi\)
−0.0155258 + 0.999879i \(0.504942\pi\)
\(564\) 18.8016 9.99018i 0.791690 0.420662i
\(565\) 15.5128 0.652627
\(566\) −1.39619 5.60318i −0.0586862 0.235519i
\(567\) 23.0087 0.966274
\(568\) 23.2678 20.9325i 0.976293 0.878309i
\(569\) 6.35339i 0.266348i −0.991093 0.133174i \(-0.957483\pi\)
0.991093 0.133174i \(-0.0425169\pi\)
\(570\) 5.87008 + 23.5578i 0.245871 + 0.986728i
\(571\) 19.7922 0.828277 0.414138 0.910214i \(-0.364083\pi\)
0.414138 + 0.910214i \(0.364083\pi\)
\(572\) −2.20718 + 1.17278i −0.0922868 + 0.0490363i
\(573\) 7.56553i 0.316054i
\(574\) −0.757111 3.03844i −0.0316012 0.126822i
\(575\) 1.73388 + 4.47143i 0.0723080 + 0.186471i
\(576\) 2.40268 22.6751i 0.100112 0.944794i
\(577\) 5.69116 0.236926 0.118463 0.992958i \(-0.462203\pi\)
0.118463 + 0.992958i \(0.462203\pi\)
\(578\) 4.77389 + 19.1586i 0.198568 + 0.796891i
\(579\) 47.7070i 1.98264i
\(580\) 0.969289 + 1.82421i 0.0402475 + 0.0757463i
\(581\) −33.0896 −1.37279
\(582\) 1.11126 + 4.45969i 0.0460631 + 0.184860i
\(583\) 4.91425i 0.203527i
\(584\) −9.57870 10.6473i −0.396369 0.440588i
\(585\) 1.37527i 0.0568603i
\(586\) 10.8905 2.71366i 0.449881 0.112100i
\(587\) 29.8611i 1.23250i −0.787551 0.616250i \(-0.788651\pi\)
0.787551 0.616250i \(-0.211349\pi\)
\(588\) −2.36668 4.45411i −0.0976002 0.183685i
\(589\) 20.4196i 0.841374i
\(590\) −1.29823 5.21006i −0.0534473 0.214495i
\(591\) 25.8801i 1.06456i
\(592\) −22.4171 15.1390i −0.921339 0.622209i
\(593\) −7.36795 −0.302565 −0.151283 0.988491i \(-0.548340\pi\)
−0.151283 + 0.988491i \(0.548340\pi\)
\(594\) −1.28734 + 0.320778i −0.0528203 + 0.0131617i
\(595\) −4.25465 −0.174424
\(596\) −13.7233 25.8274i −0.562128 1.05793i
\(597\) 51.1566i 2.09370i
\(598\) −2.67457 + 1.88577i −0.109371 + 0.0771149i
\(599\) 18.7451i 0.765903i 0.923768 + 0.382951i \(0.125092\pi\)
−0.923768 + 0.382951i \(0.874908\pi\)
\(600\) 5.08594 4.57550i 0.207633 0.186794i
\(601\) 21.7119 0.885645 0.442822 0.896609i \(-0.353977\pi\)
0.442822 + 0.896609i \(0.353977\pi\)
\(602\) −1.38514 5.55883i −0.0564540 0.226561i
\(603\) −44.5236 −1.81314
\(604\) 6.22296 + 11.7117i 0.253209 + 0.476541i
\(605\) 4.29179i 0.174486i
\(606\) −58.4434 + 14.5628i −2.37410 + 0.591574i
\(607\) 37.1837i 1.50924i 0.656161 + 0.754621i \(0.272179\pi\)
−0.656161 + 0.754621i \(0.727821\pi\)
\(608\) −37.7192 13.7588i −1.52971 0.557995i
\(609\) 6.09759i 0.247087i
\(610\) −2.79653 11.2230i −0.113228 0.454407i
\(611\) 2.12365i 0.0859135i
\(612\) 4.66261 + 8.77507i 0.188475 + 0.354711i
\(613\) 16.3856i 0.661808i −0.943664 0.330904i \(-0.892646\pi\)
0.943664 0.330904i \(-0.107354\pi\)
\(614\) −35.9960 + 8.96942i −1.45268 + 0.361976i
\(615\) −2.19420 −0.0884788
\(616\) −11.9586 13.2927i −0.481826 0.535578i
\(617\) 21.1275i 0.850560i 0.905062 + 0.425280i \(0.139824\pi\)
−0.905062 + 0.425280i \(0.860176\pi\)
\(618\) −49.2591 + 12.2743i −1.98149 + 0.493744i
\(619\) 31.6245 1.27110 0.635548 0.772062i \(-0.280774\pi\)
0.635548 + 0.772062i \(0.280774\pi\)
\(620\) −5.08117 + 2.69986i −0.204065 + 0.108429i
\(621\) −1.61958 + 0.628025i −0.0649916 + 0.0252018i
\(622\) −34.9138 + 8.69975i −1.39992 + 0.348828i
\(623\) 6.22834i 0.249533i
\(624\) 3.86866 + 2.61262i 0.154870 + 0.104589i
\(625\) 1.00000 0.0400000
\(626\) 37.3441 9.30533i 1.49257 0.371916i
\(627\) 44.4635i 1.77570i
\(628\) 16.7184 + 31.4642i 0.667138 + 1.25556i
\(629\) 11.7882 0.470028
\(630\) 9.54648 2.37877i 0.380341 0.0947726i
\(631\) 9.34449 0.371998 0.185999 0.982550i \(-0.440448\pi\)
0.185999 + 0.982550i \(0.440448\pi\)
\(632\) −18.5256 20.5923i −0.736909 0.819119i
\(633\) −16.5570 −0.658082
\(634\) −6.75880 27.1244i −0.268426 1.07725i
\(635\) −9.72306 −0.385848
\(636\) 8.10534 4.30675i 0.321398 0.170774i
\(637\) 0.503093 0.0199333
\(638\) −0.914728 3.67099i −0.0362144 0.145336i
\(639\) 31.5394i 1.24768i
\(640\) 1.56348 + 11.2052i 0.0618020 + 0.442923i
\(641\) 22.8441i 0.902289i 0.892451 + 0.451145i \(0.148984\pi\)
−0.892451 + 0.451145i \(0.851016\pi\)
\(642\) −46.0272 + 11.4690i −1.81655 + 0.452643i
\(643\) 38.8532 1.53222 0.766109 0.642710i \(-0.222190\pi\)
0.766109 + 0.642710i \(0.222190\pi\)
\(644\) −17.7163 15.3038i −0.698120 0.603056i
\(645\) −4.01430 −0.158063
\(646\) 16.9779 4.23053i 0.667988 0.166448i
\(647\) 28.2652i 1.11122i −0.831443 0.555610i \(-0.812485\pi\)
0.831443 0.555610i \(-0.187515\pi\)
\(648\) 17.8327 + 19.8221i 0.700534 + 0.778686i
\(649\) 9.83357i 0.386001i
\(650\) 0.164986 + 0.662123i 0.00647130 + 0.0259706i
\(651\) −16.9843 −0.665666
\(652\) 3.78621 + 7.12568i 0.148279 + 0.279063i
\(653\) 41.8565 1.63797 0.818985 0.573815i \(-0.194537\pi\)
0.818985 + 0.573815i \(0.194537\pi\)
\(654\) −13.5572 54.4078i −0.530130 2.12751i
\(655\) −8.55926 −0.334438
\(656\) 2.03084 3.00717i 0.0792909 0.117410i
\(657\) −14.4324 −0.563061
\(658\) −14.7414 + 3.67323i −0.574679 + 0.143197i
\(659\) 12.5653 0.489473 0.244737 0.969590i \(-0.421298\pi\)
0.244737 + 0.969590i \(0.421298\pi\)
\(660\) −11.0642 + 5.87894i −0.430674 + 0.228837i
\(661\) 40.3545i 1.56961i 0.619743 + 0.784805i \(0.287237\pi\)
−0.619743 + 0.784805i \(0.712763\pi\)
\(662\) 44.1200 10.9937i 1.71477 0.427283i
\(663\) −2.03437 −0.0790082
\(664\) −25.6459 28.5069i −0.995252 1.10628i
\(665\) 17.3236i 0.671782i
\(666\) −26.4502 + 6.59080i −1.02492 + 0.255388i
\(667\) −1.79087 4.61839i −0.0693429 0.178825i
\(668\) 11.4276 + 21.5069i 0.442148 + 0.832127i
\(669\) −22.2664 −0.860869
\(670\) 21.4359 5.34136i 0.828142 0.206355i
\(671\) 21.1826i 0.817745i
\(672\) −11.4441 + 31.3734i −0.441466 + 1.21026i
\(673\) 25.6709 0.989542 0.494771 0.869023i \(-0.335252\pi\)
0.494771 + 0.869023i \(0.335252\pi\)
\(674\) −35.2766 + 8.79015i −1.35880 + 0.338584i
\(675\) 0.362207i 0.0139414i
\(676\) 22.5489 11.9813i 0.867265 0.460819i
\(677\) 31.1431i 1.19693i −0.801150 0.598463i \(-0.795778\pi\)
0.801150 0.598463i \(-0.204222\pi\)
\(678\) 12.8298 + 51.4886i 0.492726 + 1.97741i
\(679\) 3.27951i 0.125856i
\(680\) −3.29753 3.66540i −0.126455 0.140562i
\(681\) 37.9195i 1.45308i
\(682\) 10.2252 2.54789i 0.391542 0.0975637i
\(683\) 42.9346i 1.64285i −0.570319 0.821423i \(-0.693180\pi\)
0.570319 0.821423i \(-0.306820\pi\)
\(684\) −35.7294 + 18.9847i −1.36615 + 0.725899i
\(685\) −5.34661 −0.204283
\(686\) 6.71228 + 26.9377i 0.256276 + 1.02849i
\(687\) −29.7606 −1.13544
\(688\) 3.71542 5.50163i 0.141649 0.209748i
\(689\) 0.915499i 0.0348778i
\(690\) −13.4071 + 9.45304i −0.510401 + 0.359871i
\(691\) 28.0597i 1.06744i −0.845660 0.533721i \(-0.820793\pi\)
0.845660 0.533721i \(-0.179207\pi\)
\(692\) −38.0527 + 20.2192i −1.44655 + 0.768619i
\(693\) −18.0182 −0.684456
\(694\) 8.92545 2.22402i 0.338805 0.0844228i
\(695\) 15.1210 0.573573
\(696\) −5.25311 + 4.72589i −0.199119 + 0.179134i
\(697\) 1.58135i 0.0598978i
\(698\) 4.58124 + 18.3854i 0.173402 + 0.695898i
\(699\) 17.4536i 0.660156i
\(700\) −4.31078 + 2.29052i −0.162932 + 0.0865736i
\(701\) 6.27098i 0.236852i −0.992963 0.118426i \(-0.962215\pi\)
0.992963 0.118426i \(-0.0377848\pi\)
\(702\) −0.239826 + 0.0597592i −0.00905163 + 0.00225547i
\(703\) 47.9982i 1.81029i
\(704\) 2.18332 20.6048i 0.0822869 0.776573i
\(705\) 10.6455i 0.400932i
\(706\) −12.1046 48.5783i −0.455564 1.82827i
\(707\) 42.9774 1.61633
\(708\) 16.2190 8.61794i 0.609549 0.323882i
\(709\) 4.21638i 0.158349i −0.996861 0.0791747i \(-0.974772\pi\)
0.996861 0.0791747i \(-0.0252285\pi\)
\(710\) 3.78368 + 15.1847i 0.141999 + 0.569870i
\(711\) −27.9128 −1.04681
\(712\) 5.36575 4.82722i 0.201090 0.180908i
\(713\) 12.8641 4.98831i 0.481764 0.186814i
\(714\) −3.51880 14.1216i −0.131688 0.528489i
\(715\) 1.24971i 0.0467363i
\(716\) −23.4616 44.1550i −0.876802 1.65015i
\(717\) 0.957724 0.0357669
\(718\) −5.93569 23.8211i −0.221518 0.888995i
\(719\) 10.0948i 0.376473i 0.982124 + 0.188237i \(0.0602772\pi\)
−0.982124 + 0.188237i \(0.939723\pi\)
\(720\) 9.44825 + 6.38070i 0.352115 + 0.237795i
\(721\) 36.2236 1.34904
\(722\) 10.7287 + 43.0563i 0.399280 + 1.60239i
\(723\) 7.52672 0.279922
\(724\) 19.4186 + 36.5461i 0.721688 + 1.35822i
\(725\) −1.03287 −0.0383598
\(726\) −14.2449 + 3.54952i −0.528679 + 0.131735i
\(727\) −35.0141 −1.29860 −0.649300 0.760532i \(-0.724938\pi\)
−0.649300 + 0.760532i \(0.724938\pi\)
\(728\) −2.22783 2.47636i −0.0825688 0.0917802i
\(729\) 24.2406 0.897799
\(730\) 6.94848 1.73141i 0.257175 0.0640823i
\(731\) 2.89308i 0.107004i
\(732\) 34.9376 18.5640i 1.29133 0.686145i
\(733\) 10.2928i 0.380175i −0.981767 0.190087i \(-0.939123\pi\)
0.981767 0.190087i \(-0.0608771\pi\)
\(734\) −5.39628 21.6563i −0.199180 0.799350i
\(735\) 2.52192 0.0930224
\(736\) −0.546526 27.1238i −0.0201452 0.999797i
\(737\) −40.4586 −1.49031
\(738\) −0.884131 3.54819i −0.0325453 0.130611i
\(739\) 23.0799i 0.849007i 0.905426 + 0.424503i \(0.139551\pi\)
−0.905426 + 0.424503i \(0.860449\pi\)
\(740\) 11.9438 6.34629i 0.439062 0.233294i
\(741\) 8.28332i 0.304296i
\(742\) −6.35498 + 1.58352i −0.233299 + 0.0581329i
\(743\) −11.9643 −0.438926 −0.219463 0.975621i \(-0.570431\pi\)
−0.219463 + 0.975621i \(0.570431\pi\)
\(744\) −13.1635 14.6320i −0.482598 0.536436i
\(745\) 14.6235 0.535762
\(746\) −44.2908 + 11.0363i −1.62160 + 0.404068i
\(747\) −38.6410 −1.41380
\(748\) 4.23691 + 7.97390i 0.154917 + 0.291555i
\(749\) 33.8469 1.23674
\(750\) 0.827049 + 3.31911i 0.0301996 + 0.121197i
\(751\) 23.5856 0.860650 0.430325 0.902674i \(-0.358399\pi\)
0.430325 + 0.902674i \(0.358399\pi\)
\(752\) −14.5897 9.85287i −0.532031 0.359297i
\(753\) 33.2886i 1.21310i
\(754\) −0.170409 0.683886i −0.00620594 0.0249057i
\(755\) −6.63114 −0.241332
\(756\) −0.829643 1.56140i −0.0301738 0.0567874i
\(757\) 33.3612i 1.21253i −0.795261 0.606267i \(-0.792666\pi\)
0.795261 0.606267i \(-0.207334\pi\)
\(758\) −3.09203 12.4089i −0.112308 0.450713i
\(759\) 28.0115 10.8620i 1.01675 0.394266i
\(760\) 14.9244 13.4266i 0.541365 0.487032i
\(761\) 20.9441 0.759223 0.379612 0.925146i \(-0.376058\pi\)
0.379612 + 0.925146i \(0.376058\pi\)
\(762\) −8.04144 32.2719i −0.291311 1.16909i
\(763\) 40.0098i 1.44845i
\(764\) 5.52436 2.93535i 0.199864 0.106197i
\(765\) −4.96844 −0.179634
\(766\) −1.90601 7.64918i −0.0688668 0.276376i
\(767\) 1.83194i 0.0661477i
\(768\) −35.8981 + 14.4566i −1.29536 + 0.521657i
\(769\) 40.2590i 1.45178i −0.687813 0.725888i \(-0.741429\pi\)
0.687813 0.725888i \(-0.258571\pi\)
\(770\) 8.67488 2.16159i 0.312621 0.0778983i
\(771\) 59.3533i 2.13756i
\(772\) −34.8358 + 18.5099i −1.25377 + 0.666185i
\(773\) 8.99653i 0.323583i −0.986825 0.161791i \(-0.948273\pi\)
0.986825 0.161791i \(-0.0517271\pi\)
\(774\) −1.61752 6.49142i −0.0581405 0.233329i
\(775\) 2.87696i 0.103343i
\(776\) 2.82532 2.54176i 0.101423 0.0912439i
\(777\) 39.9232 1.43224
\(778\) −5.74203 + 1.43079i −0.205862 + 0.0512962i
\(779\) −6.43877 −0.230693
\(780\) −2.06121 + 1.09522i −0.0738031 + 0.0392150i
\(781\) 28.6598i 1.02553i
\(782\) 6.81274 + 9.66244i 0.243623 + 0.345528i
\(783\) 0.374112i 0.0133697i
\(784\) −2.33415 + 3.45631i −0.0833626 + 0.123440i
\(785\) −17.8150 −0.635846
\(786\) −7.07892 28.4091i −0.252497 1.01332i
\(787\) 17.3155 0.617232 0.308616 0.951187i \(-0.400134\pi\)
0.308616 + 0.951187i \(0.400134\pi\)
\(788\) 18.8977 10.0412i 0.673202 0.357704i
\(789\) 24.9222i 0.887254i
\(790\) 13.4387 3.34861i 0.478126 0.119138i
\(791\) 37.8630i 1.34626i
\(792\) −13.9649 15.5228i −0.496221 0.551579i
\(793\) 3.94621i 0.140134i
\(794\) −3.49154 14.0122i −0.123910 0.497275i
\(795\) 4.58924i 0.162764i
\(796\) 37.3547 19.8483i 1.32400 0.703504i
\(797\) 46.3144i 1.64054i −0.571976 0.820271i \(-0.693823\pi\)
0.571976 0.820271i \(-0.306177\pi\)
\(798\) 57.4991 14.3275i 2.03545 0.507188i
\(799\) 7.67212 0.271420
\(800\) −5.31434 1.93851i −0.187890 0.0685368i
\(801\) 7.27326i 0.256988i
\(802\) −11.3726 + 2.83380i −0.401581 + 0.100065i
\(803\) −13.1147 −0.462808
\(804\) 35.4571 + 66.7306i 1.25048 + 2.35341i
\(805\) 10.9137 4.23201i 0.384657 0.149159i
\(806\) 1.90490 0.474659i 0.0670972 0.0167192i
\(807\) 5.59237i 0.196861i
\(808\) 33.3093 + 37.0253i 1.17182 + 1.30254i
\(809\) 16.4030 0.576698 0.288349 0.957525i \(-0.406894\pi\)
0.288349 + 0.957525i \(0.406894\pi\)
\(810\) −12.9360 + 3.22337i −0.454525 + 0.113258i
\(811\) 10.0839i 0.354095i 0.984202 + 0.177048i \(0.0566547\pi\)
−0.984202 + 0.177048i \(0.943345\pi\)
\(812\) 4.45247 2.36581i 0.156251 0.0830236i
\(813\) −50.8172 −1.78224
\(814\) −24.0353 + 5.98906i −0.842436 + 0.209917i
\(815\) −4.03456 −0.141324
\(816\) 9.43865 13.9763i 0.330419 0.489270i
\(817\) −11.7797 −0.412121
\(818\) −0.563482 2.26137i −0.0197017 0.0790668i
\(819\) −3.35671 −0.117293
\(820\) 0.851330 + 1.60221i 0.0297297 + 0.0559517i
\(821\) 29.6987 1.03649 0.518246 0.855232i \(-0.326585\pi\)
0.518246 + 0.855232i \(0.326585\pi\)
\(822\) −4.42191 17.7460i −0.154232 0.618962i
\(823\) 25.1840i 0.877857i −0.898522 0.438929i \(-0.855358\pi\)
0.898522 0.438929i \(-0.144642\pi\)
\(824\) 28.0748 + 31.2068i 0.978031 + 1.08714i
\(825\) 6.26456i 0.218104i
\(826\) −12.7165 + 3.16868i −0.442464 + 0.110252i
\(827\) 30.3418 1.05509 0.527544 0.849528i \(-0.323113\pi\)
0.527544 + 0.849528i \(0.323113\pi\)
\(828\) −20.6885 17.8714i −0.718976 0.621072i
\(829\) 15.3213 0.532129 0.266065 0.963955i \(-0.414277\pi\)
0.266065 + 0.963955i \(0.414277\pi\)
\(830\) 18.6037 4.63564i 0.645745 0.160905i
\(831\) 18.0243i 0.625256i
\(832\) 0.406741 3.83857i 0.0141012 0.133079i
\(833\) 1.81753i 0.0629737i
\(834\) 12.5058 + 50.1883i 0.433041 + 1.73788i
\(835\) −12.1772 −0.421410
\(836\) −32.4673 + 17.2514i −1.12291 + 0.596653i
\(837\) 1.04205 0.0360187
\(838\) −9.53220 38.2546i −0.329284 1.32148i
\(839\) −17.8938 −0.617764 −0.308882 0.951100i \(-0.599955\pi\)
−0.308882 + 0.951100i \(0.599955\pi\)
\(840\) −11.1677 12.4136i −0.385323 0.428310i
\(841\) −27.9332 −0.963213
\(842\) 1.38225 0.344426i 0.0476355 0.0118697i
\(843\) 35.8594 1.23506
\(844\) 6.42396 + 12.0900i 0.221122 + 0.416153i
\(845\) 12.7672i 0.439205i
\(846\) −17.2145 + 4.28948i −0.591847 + 0.147475i
\(847\) 10.4753 0.359934
\(848\) −6.28959 4.24756i −0.215985 0.145862i
\(849\) 9.87615i 0.338949i
\(850\) 2.39206 0.596048i 0.0820470 0.0204443i
\(851\) −30.2383 + 11.7255i −1.03656 + 0.401945i
\(852\) −47.2702 + 25.1169i −1.61945 + 0.860491i
\(853\) −28.3424 −0.970425 −0.485213 0.874396i \(-0.661258\pi\)
−0.485213 + 0.874396i \(0.661258\pi\)
\(854\) −27.3928 + 6.82568i −0.937362 + 0.233570i
\(855\) 20.2300i 0.691852i
\(856\) 26.2328 + 29.1593i 0.896617 + 0.996643i
\(857\) −0.739951 −0.0252763 −0.0126381 0.999920i \(-0.504023\pi\)
−0.0126381 + 0.999920i \(0.504023\pi\)
\(858\) 4.14791 1.03357i 0.141607 0.0352854i
\(859\) 30.7839i 1.05033i −0.851000 0.525166i \(-0.824003\pi\)
0.851000 0.525166i \(-0.175997\pi\)
\(860\) 1.55751 + 2.93125i 0.0531107 + 0.0999548i
\(861\) 5.35554i 0.182516i
\(862\) 11.1244 + 44.6442i 0.378897 + 1.52059i
\(863\) 12.5426i 0.426955i 0.976948 + 0.213478i \(0.0684790\pi\)
−0.976948 + 0.213478i \(0.931521\pi\)
\(864\) 0.702143 1.92489i 0.0238874 0.0654861i
\(865\) 21.5454i 0.732567i
\(866\) 34.3134 8.55015i 1.16602 0.290546i
\(867\) 33.7688i 1.14685i
\(868\) 6.58973 + 12.4019i 0.223670 + 0.420949i
\(869\) −25.3644 −0.860428
\(870\) −0.854233 3.42820i −0.0289612 0.116227i
\(871\) −7.53723 −0.255389
\(872\) −34.4686 + 31.0092i −1.16725 + 1.05011i
\(873\) 3.82971i 0.129616i
\(874\) −39.3425 + 27.7394i −1.33078 + 0.938300i
\(875\) 2.44077i 0.0825129i
\(876\) 11.4935 + 21.6308i 0.388328 + 0.730837i
\(877\) −11.7013 −0.395126 −0.197563 0.980290i \(-0.563303\pi\)
−0.197563 + 0.980290i \(0.563303\pi\)
\(878\) −4.94648 + 1.23255i −0.166936 + 0.0415967i
\(879\) −19.1955 −0.647448
\(880\) 8.58562 + 5.79814i 0.289421 + 0.195455i
\(881\) 7.76026i 0.261450i −0.991419 0.130725i \(-0.958270\pi\)
0.991419 0.130725i \(-0.0417305\pi\)
\(882\) 1.01618 + 4.07813i 0.0342166 + 0.137318i
\(883\) 49.0477i 1.65059i −0.564704 0.825294i \(-0.691010\pi\)
0.564704 0.825294i \(-0.308990\pi\)
\(884\) 0.789315 + 1.48550i 0.0265475 + 0.0499627i
\(885\) 9.18322i 0.308691i
\(886\) 12.2235 3.04582i 0.410656 0.102326i
\(887\) 1.36114i 0.0457026i −0.999739 0.0228513i \(-0.992726\pi\)
0.999739 0.0228513i \(-0.00727443\pi\)
\(888\) 30.9421 + 34.3940i 1.03835 + 1.15419i
\(889\) 23.7317i 0.795936i
\(890\) 0.872550 + 3.50171i 0.0292479 + 0.117378i
\(891\) 24.4157 0.817956
\(892\) 8.63915 + 16.2590i 0.289260 + 0.544390i
\(893\) 31.2385i 1.04536i
\(894\) 12.0943 + 48.5369i 0.404494 + 1.62332i
\(895\) 25.0006 0.835677
\(896\) 27.3492 3.81609i 0.913671 0.127487i
\(897\) 5.21840 2.02354i 0.174237 0.0675640i
\(898\) 8.52169 + 34.1992i 0.284372 + 1.14124i
\(899\) 2.97152i 0.0991057i
\(900\) −5.03400 + 2.67480i −0.167800 + 0.0891600i
\(901\) 3.30744 0.110187
\(902\) −0.803409 3.22424i −0.0267506 0.107355i
\(903\) 9.79797i 0.326056i
\(904\) 32.6192 29.3455i 1.08490 0.976015i
\(905\) −20.6924 −0.687838
\(906\) −5.48428 22.0095i −0.182203 0.731216i
\(907\) −13.2300 −0.439294 −0.219647 0.975579i \(-0.570491\pi\)
−0.219647 + 0.975579i \(0.570491\pi\)
\(908\) −27.6889 + 14.7124i −0.918888 + 0.488248i
\(909\) 50.1877 1.66462
\(910\) 1.61609 0.402693i 0.0535728 0.0133492i
\(911\) −12.0129 −0.398004 −0.199002 0.979999i \(-0.563770\pi\)
−0.199002 + 0.979999i \(0.563770\pi\)
\(912\) 56.9074 + 38.4314i 1.88439 + 1.27259i
\(913\) −35.1131 −1.16207
\(914\) 31.2065 7.77596i 1.03222 0.257206i
\(915\) 19.7817i 0.653962i
\(916\) 11.5468 + 21.7313i 0.381518 + 0.718021i
\(917\) 20.8911i 0.689886i
\(918\) 0.215893 + 0.866420i 0.00712553 + 0.0285961i
\(919\) 21.1075 0.696273 0.348136 0.937444i \(-0.386815\pi\)
0.348136 + 0.937444i \(0.386815\pi\)
\(920\) 12.1045 + 6.12223i 0.399073 + 0.201844i
\(921\) 63.4465 2.09063
\(922\) 12.8919 + 51.7377i 0.424572 + 1.70389i
\(923\) 5.33918i 0.175741i
\(924\) 14.3491 + 27.0052i 0.472051 + 0.888404i
\(925\) 6.76257i 0.222352i
\(926\) 6.01877 1.49974i 0.197789 0.0492847i
\(927\) 42.3007 1.38934
\(928\) 5.48901 + 2.00223i 0.180186 + 0.0657264i
\(929\) −16.4375 −0.539295 −0.269648 0.962959i \(-0.586907\pi\)
−0.269648 + 0.962959i \(0.586907\pi\)
\(930\) 9.54894 2.37938i 0.313122 0.0780231i
\(931\) 7.40043 0.242539
\(932\) 12.7447 6.77183i 0.417465 0.221819i
\(933\) 61.5389 2.01469
\(934\) −4.69802 18.8541i −0.153724 0.616925i
\(935\) −4.51482 −0.147651
\(936\) −2.60159 2.89182i −0.0850356 0.0945221i
\(937\) 22.1718i 0.724322i 0.932115 + 0.362161i \(0.117961\pi\)
−0.932115 + 0.362161i \(0.882039\pi\)
\(938\) −13.0370 52.3201i −0.425673 1.70831i
\(939\) −65.8226 −2.14804
\(940\) 7.77334 4.13034i 0.253538 0.134717i
\(941\) 14.7090i 0.479500i −0.970835 0.239750i \(-0.922935\pi\)
0.970835 0.239750i \(-0.0770654\pi\)
\(942\) −14.7339 59.1301i −0.480057 1.92656i
\(943\) −1.57293 4.05635i −0.0512217 0.132093i
\(944\) −12.5857 8.49950i −0.409629 0.276635i
\(945\) 0.884062 0.0287585
\(946\) −1.46984 5.89875i −0.0477886 0.191785i
\(947\) 10.0702i 0.327237i −0.986524 0.163619i \(-0.947683\pi\)
0.986524 0.163619i \(-0.0523166\pi\)
\(948\) 22.2288 + 41.8349i 0.721959 + 1.35873i
\(949\) −2.44320 −0.0793097
\(950\) 2.42693 + 9.73974i 0.0787400 + 0.315999i
\(951\) 47.8094i 1.55032i
\(952\) −8.94639 + 8.04850i −0.289954 + 0.260853i
\(953\) 22.9968i 0.744938i −0.928045 0.372469i \(-0.878511\pi\)
0.928045 0.372469i \(-0.121489\pi\)
\(954\) −7.42115 + 1.84919i −0.240268 + 0.0598696i
\(955\) 3.12789i 0.101216i
\(956\) −0.371588 0.699332i −0.0120180 0.0226180i
\(957\) 6.47046i 0.209160i
\(958\) 11.7590 + 47.1914i 0.379918 + 1.52468i
\(959\) 13.0498i 0.421401i
\(960\) 2.03892 19.2421i 0.0658060 0.621036i
\(961\) 22.7231 0.733004
\(962\) −4.47765 + 1.11573i −0.144365 + 0.0359726i
\(963\) 39.5253 1.27369
\(964\) −2.92030 5.49602i −0.0940564 0.177015i
\(965\) 19.7240i 0.634938i
\(966\) 23.0727 + 32.7237i 0.742350 + 1.05287i
\(967\) 16.1903i 0.520646i 0.965522 + 0.260323i \(0.0838290\pi\)
−0.965522 + 0.260323i \(0.916171\pi\)
\(968\) 8.11877 + 9.02450i 0.260947 + 0.290058i
\(969\) −29.9253 −0.961338
\(970\) 0.459439 + 1.84382i 0.0147517 + 0.0592014i
\(971\) −56.0221 −1.79784 −0.898918 0.438118i \(-0.855645\pi\)
−0.898918 + 0.438118i \(0.855645\pi\)
\(972\) −20.3777 38.3510i −0.653614 1.23011i
\(973\) 36.9069i 1.18318i
\(974\) 12.0101 2.99264i 0.384827 0.0958905i
\(975\) 1.16706i 0.0373757i
\(976\) −27.1109 18.3089i −0.867800 0.586052i
\(977\) 27.2869i 0.872984i −0.899708 0.436492i \(-0.856221\pi\)
0.899708 0.436492i \(-0.143779\pi\)
\(978\) −3.33678 13.3911i −0.106698 0.428201i
\(979\) 6.60921i 0.211231i
\(980\) −0.978481 1.84151i −0.0312564 0.0588249i
\(981\) 46.7221i 1.49172i
\(982\) −25.6639 + 6.39487i −0.818967 + 0.204069i
\(983\) 49.0064 1.56306 0.781531 0.623866i \(-0.214439\pi\)
0.781531 + 0.623866i \(0.214439\pi\)
\(984\) −4.61382 + 4.15077i −0.147083 + 0.132322i
\(985\) 10.6999i 0.340926i
\(986\) −2.47068 + 0.615640i −0.0786826 + 0.0196060i
\(987\) 25.9831 0.827051
\(988\) −6.04850 + 3.21385i −0.192428 + 0.102246i
\(989\) −2.87768 7.42111i −0.0915050 0.235977i
\(990\) 10.1303 2.52424i 0.321961 0.0802255i
\(991\) 7.65834i 0.243275i −0.992575 0.121638i \(-0.961185\pi\)
0.992575 0.121638i \(-0.0388146\pi\)
\(992\) −5.57702 + 15.2891i −0.177071 + 0.485430i
\(993\) −77.7657 −2.46782
\(994\) 37.0622 9.23507i 1.17554 0.292919i
\(995\) 21.1502i 0.670506i
\(996\) 30.7724 + 57.9139i 0.975061 + 1.83507i
\(997\) 60.3120 1.91010 0.955050 0.296445i \(-0.0958010\pi\)
0.955050 + 0.296445i \(0.0958010\pi\)
\(998\) −40.6482 + 10.1286i −1.28670 + 0.320617i
\(999\) −2.44945 −0.0774971
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 460.2.e.b.91.19 yes 32
4.3 odd 2 inner 460.2.e.b.91.17 32
23.22 odd 2 inner 460.2.e.b.91.20 yes 32
92.91 even 2 inner 460.2.e.b.91.18 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.2.e.b.91.17 32 4.3 odd 2 inner
460.2.e.b.91.18 yes 32 92.91 even 2 inner
460.2.e.b.91.19 yes 32 1.1 even 1 trivial
460.2.e.b.91.20 yes 32 23.22 odd 2 inner