Properties

Label 4608.2.k.u.3457.1
Level $4608$
Weight $2$
Character 4608.3457
Analytic conductor $36.795$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4608,2,Mod(1153,4608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4608, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4608.1153");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 3457.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4608.3457
Dual form 4608.2.k.u.1153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{5} -4.00000i q^{7} +(4.00000 + 4.00000i) q^{11} +(3.00000 - 3.00000i) q^{13} +6.00000 q^{17} +(4.00000 - 4.00000i) q^{19} +8.00000i q^{23} -3.00000i q^{25} +(3.00000 - 3.00000i) q^{29} -4.00000 q^{31} +(4.00000 - 4.00000i) q^{35} +(1.00000 + 1.00000i) q^{37} +2.00000i q^{41} +(4.00000 + 4.00000i) q^{43} -8.00000 q^{47} -9.00000 q^{49} +(-7.00000 - 7.00000i) q^{53} +8.00000i q^{55} +(-3.00000 + 3.00000i) q^{61} +6.00000 q^{65} +(-8.00000 + 8.00000i) q^{67} -10.0000i q^{73} +(16.0000 - 16.0000i) q^{77} +12.0000 q^{79} +(-4.00000 + 4.00000i) q^{83} +(6.00000 + 6.00000i) q^{85} +16.0000i q^{89} +(-12.0000 - 12.0000i) q^{91} +8.00000 q^{95} +8.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 8 q^{11} + 6 q^{13} + 12 q^{17} + 8 q^{19} + 6 q^{29} - 8 q^{31} + 8 q^{35} + 2 q^{37} + 8 q^{43} - 16 q^{47} - 18 q^{49} - 14 q^{53} - 6 q^{61} + 12 q^{65} - 16 q^{67} + 32 q^{77} + 24 q^{79}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(3583\) \(4097\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 + 1.00000i 0.447214 + 0.447214i 0.894427 0.447214i \(-0.147584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 + 4.00000i 1.20605 + 1.20605i 0.972297 + 0.233748i \(0.0750991\pi\)
0.233748 + 0.972297i \(0.424901\pi\)
\(12\) 0 0
\(13\) 3.00000 3.00000i 0.832050 0.832050i −0.155747 0.987797i \(-0.549778\pi\)
0.987797 + 0.155747i \(0.0497784\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 4.00000 4.00000i 0.917663 0.917663i −0.0791961 0.996859i \(-0.525235\pi\)
0.996859 + 0.0791961i \(0.0252353\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 3.00000i 0.557086 0.557086i −0.371391 0.928477i \(-0.621119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 4.00000i 0.676123 0.676123i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000i 0.312348i 0.987730 + 0.156174i \(0.0499160\pi\)
−0.987730 + 0.156174i \(0.950084\pi\)
\(42\) 0 0
\(43\) 4.00000 + 4.00000i 0.609994 + 0.609994i 0.942944 0.332950i \(-0.108044\pi\)
−0.332950 + 0.942944i \(0.608044\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.00000 7.00000i −0.961524 0.961524i 0.0377628 0.999287i \(-0.487977\pi\)
−0.999287 + 0.0377628i \(0.987977\pi\)
\(54\) 0 0
\(55\) 8.00000i 1.07872i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(60\) 0 0
\(61\) −3.00000 + 3.00000i −0.384111 + 0.384111i −0.872581 0.488470i \(-0.837555\pi\)
0.488470 + 0.872581i \(0.337555\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −8.00000 + 8.00000i −0.977356 + 0.977356i −0.999749 0.0223937i \(-0.992871\pi\)
0.0223937 + 0.999749i \(0.492871\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.0000 16.0000i 1.82337 1.82337i
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.00000 + 4.00000i −0.439057 + 0.439057i −0.891695 0.452638i \(-0.850483\pi\)
0.452638 + 0.891695i \(0.350483\pi\)
\(84\) 0 0
\(85\) 6.00000 + 6.00000i 0.650791 + 0.650791i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0000i 1.69600i 0.529999 + 0.847998i \(0.322192\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −12.0000 12.0000i −1.25794 1.25794i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.00000 7.00000i −0.696526 0.696526i 0.267133 0.963660i \(-0.413924\pi\)
−0.963660 + 0.267133i \(0.913924\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.00000 8.00000i −0.773389 0.773389i 0.205308 0.978697i \(-0.434180\pi\)
−0.978697 + 0.205308i \(0.934180\pi\)
\(108\) 0 0
\(109\) 5.00000 5.00000i 0.478913 0.478913i −0.425871 0.904784i \(-0.640032\pi\)
0.904784 + 0.425871i \(0.140032\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) −8.00000 + 8.00000i −0.746004 + 0.746004i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 24.0000i 2.20008i
\(120\) 0 0
\(121\) 21.0000i 1.90909i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.00000 8.00000i 0.715542 0.715542i
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.00000 + 8.00000i −0.698963 + 0.698963i −0.964187 0.265224i \(-0.914554\pi\)
0.265224 + 0.964187i \(0.414554\pi\)
\(132\) 0 0
\(133\) −16.0000 16.0000i −1.38738 1.38738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000i 0.170872i −0.996344 0.0854358i \(-0.972772\pi\)
0.996344 0.0854358i \(-0.0272282\pi\)
\(138\) 0 0
\(139\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 24.0000 2.00698
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.00000 + 1.00000i 0.0819232 + 0.0819232i 0.746881 0.664958i \(-0.231550\pi\)
−0.664958 + 0.746881i \(0.731550\pi\)
\(150\) 0 0
\(151\) 4.00000i 0.325515i −0.986666 0.162758i \(-0.947961\pi\)
0.986666 0.162758i \(-0.0520389\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 4.00000i −0.321288 0.321288i
\(156\) 0 0
\(157\) −3.00000 + 3.00000i −0.239426 + 0.239426i −0.816612 0.577186i \(-0.804151\pi\)
0.577186 + 0.816612i \(0.304151\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 32.0000 2.52195
\(162\) 0 0
\(163\) 12.0000 12.0000i 0.939913 0.939913i −0.0583818 0.998294i \(-0.518594\pi\)
0.998294 + 0.0583818i \(0.0185941\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.0000 11.0000i 0.836315 0.836315i −0.152057 0.988372i \(-0.548590\pi\)
0.988372 + 0.152057i \(0.0485898\pi\)
\(174\) 0 0
\(175\) −12.0000 −0.907115
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.00000 8.00000i 0.597948 0.597948i −0.341818 0.939766i \(-0.611043\pi\)
0.939766 + 0.341818i \(0.111043\pi\)
\(180\) 0 0
\(181\) 9.00000 + 9.00000i 0.668965 + 0.668965i 0.957476 0.288512i \(-0.0931604\pi\)
−0.288512 + 0.957476i \(0.593160\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000i 0.147043i
\(186\) 0 0
\(187\) 24.0000 + 24.0000i 1.75505 + 1.75505i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) 8.00000 0.575853 0.287926 0.957653i \(-0.407034\pi\)
0.287926 + 0.957653i \(0.407034\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.00000 1.00000i −0.0712470 0.0712470i 0.670585 0.741832i \(-0.266043\pi\)
−0.741832 + 0.670585i \(0.766043\pi\)
\(198\) 0 0
\(199\) 4.00000i 0.283552i −0.989899 0.141776i \(-0.954719\pi\)
0.989899 0.141776i \(-0.0452813\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.0000 12.0000i −0.842235 0.842235i
\(204\) 0 0
\(205\) −2.00000 + 2.00000i −0.139686 + 0.139686i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 32.0000 2.21349
\(210\) 0 0
\(211\) 16.0000 16.0000i 1.10149 1.10149i 0.107254 0.994232i \(-0.465794\pi\)
0.994232 0.107254i \(-0.0342057\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.00000i 0.545595i
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.0000 18.0000i 1.21081 1.21081i
\(222\) 0 0
\(223\) 12.0000 0.803579 0.401790 0.915732i \(-0.368388\pi\)
0.401790 + 0.915732i \(0.368388\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.0000 + 12.0000i −0.796468 + 0.796468i −0.982537 0.186069i \(-0.940425\pi\)
0.186069 + 0.982537i \(0.440425\pi\)
\(228\) 0 0
\(229\) −7.00000 7.00000i −0.462573 0.462573i 0.436925 0.899498i \(-0.356068\pi\)
−0.899498 + 0.436925i \(0.856068\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.0000i 1.04819i 0.851658 + 0.524097i \(0.175597\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −8.00000 8.00000i −0.521862 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −24.0000 −1.54598 −0.772988 0.634421i \(-0.781239\pi\)
−0.772988 + 0.634421i \(0.781239\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.00000 9.00000i −0.574989 0.574989i
\(246\) 0 0
\(247\) 24.0000i 1.52708i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.00000 + 4.00000i 0.252478 + 0.252478i 0.821986 0.569508i \(-0.192866\pi\)
−0.569508 + 0.821986i \(0.692866\pi\)
\(252\) 0 0
\(253\) −32.0000 + 32.0000i −2.01182 + 2.01182i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 4.00000 4.00000i 0.248548 0.248548i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.0000i 0.986602i 0.869859 + 0.493301i \(0.164210\pi\)
−0.869859 + 0.493301i \(0.835790\pi\)
\(264\) 0 0
\(265\) 14.0000i 0.860013i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.00000 3.00000i 0.182913 0.182913i −0.609711 0.792624i \(-0.708714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 0 0
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.0000 12.0000i 0.723627 0.723627i
\(276\) 0 0
\(277\) 15.0000 + 15.0000i 0.901263 + 0.901263i 0.995545 0.0942828i \(-0.0300558\pi\)
−0.0942828 + 0.995545i \(0.530056\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −8.00000 8.00000i −0.475551 0.475551i 0.428155 0.903705i \(-0.359164\pi\)
−0.903705 + 0.428155i \(0.859164\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.00000 1.00000i −0.0584206 0.0584206i 0.677293 0.735714i \(-0.263153\pi\)
−0.735714 + 0.677293i \(0.763153\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 24.0000 + 24.0000i 1.38796 + 1.38796i
\(300\) 0 0
\(301\) 16.0000 16.0000i 0.922225 0.922225i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) −24.0000 + 24.0000i −1.36975 + 1.36975i −0.508965 + 0.860787i \(0.669972\pi\)
−0.860787 + 0.508965i \(0.830028\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.0000i 0.907277i 0.891186 + 0.453638i \(0.149874\pi\)
−0.891186 + 0.453638i \(0.850126\pi\)
\(312\) 0 0
\(313\) 8.00000i 0.452187i 0.974106 + 0.226093i \(0.0725954\pi\)
−0.974106 + 0.226093i \(0.927405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.0000 19.0000i 1.06715 1.06715i 0.0695692 0.997577i \(-0.477838\pi\)
0.997577 0.0695692i \(-0.0221625\pi\)
\(318\) 0 0
\(319\) 24.0000 1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.0000 24.0000i 1.33540 1.33540i
\(324\) 0 0
\(325\) −9.00000 9.00000i −0.499230 0.499230i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 32.0000i 1.76422i
\(330\) 0 0
\(331\) −16.0000 16.0000i −0.879440 0.879440i 0.114037 0.993477i \(-0.463622\pi\)
−0.993477 + 0.114037i \(0.963622\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −16.0000 −0.874173
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −16.0000 16.0000i −0.866449 0.866449i
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.0000 + 20.0000i 1.07366 + 1.07366i 0.997062 + 0.0765939i \(0.0244045\pi\)
0.0765939 + 0.997062i \(0.475596\pi\)
\(348\) 0 0
\(349\) 11.0000 11.0000i 0.588817 0.588817i −0.348494 0.937311i \(-0.613307\pi\)
0.937311 + 0.348494i \(0.113307\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.0000 0.851594 0.425797 0.904819i \(-0.359994\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0000i 0.844448i 0.906492 + 0.422224i \(0.138750\pi\)
−0.906492 + 0.422224i \(0.861250\pi\)
\(360\) 0 0
\(361\) 13.0000i 0.684211i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.0000 10.0000i 0.523424 0.523424i
\(366\) 0 0
\(367\) 20.0000 1.04399 0.521996 0.852948i \(-0.325188\pi\)
0.521996 + 0.852948i \(0.325188\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −28.0000 + 28.0000i −1.45369 + 1.45369i
\(372\) 0 0
\(373\) −15.0000 15.0000i −0.776671 0.776671i 0.202593 0.979263i \(-0.435063\pi\)
−0.979263 + 0.202593i \(0.935063\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.0000i 0.927047i
\(378\) 0 0
\(379\) 12.0000 + 12.0000i 0.616399 + 0.616399i 0.944606 0.328207i \(-0.106444\pi\)
−0.328207 + 0.944606i \(0.606444\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 32.0000 1.63087
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −25.0000 25.0000i −1.26755 1.26755i −0.947350 0.320201i \(-0.896250\pi\)
−0.320201 0.947350i \(-0.603750\pi\)
\(390\) 0 0
\(391\) 48.0000i 2.42746i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.0000 + 12.0000i 0.603786 + 0.603786i
\(396\) 0 0
\(397\) 27.0000 27.0000i 1.35509 1.35509i 0.475229 0.879862i \(-0.342365\pi\)
0.879862 0.475229i \(-0.157635\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) −12.0000 + 12.0000i −0.597763 + 0.597763i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.00000i 0.396545i
\(408\) 0 0
\(409\) 8.00000i 0.395575i 0.980245 + 0.197787i \(0.0633755\pi\)
−0.980245 + 0.197787i \(0.936624\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 12.0000i 0.586238 0.586238i −0.350372 0.936611i \(-0.613945\pi\)
0.936611 + 0.350372i \(0.113945\pi\)
\(420\) 0 0
\(421\) 9.00000 + 9.00000i 0.438633 + 0.438633i 0.891552 0.452919i \(-0.149617\pi\)
−0.452919 + 0.891552i \(0.649617\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.0000i 0.873128i
\(426\) 0 0
\(427\) 12.0000 + 12.0000i 0.580721 + 0.580721i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) 8.00000 0.384455 0.192228 0.981350i \(-0.438429\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 32.0000 + 32.0000i 1.53077 + 1.53077i
\(438\) 0 0
\(439\) 20.0000i 0.954548i 0.878755 + 0.477274i \(0.158375\pi\)
−0.878755 + 0.477274i \(0.841625\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 12.0000i −0.570137 0.570137i 0.362029 0.932167i \(-0.382084\pi\)
−0.932167 + 0.362029i \(0.882084\pi\)
\(444\) 0 0
\(445\) −16.0000 + 16.0000i −0.758473 + 0.758473i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) −8.00000 + 8.00000i −0.376705 + 0.376705i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 24.0000i 1.12514i
\(456\) 0 0
\(457\) 8.00000i 0.374224i −0.982339 0.187112i \(-0.940087\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −19.0000 + 19.0000i −0.884918 + 0.884918i −0.994030 0.109111i \(-0.965200\pi\)
0.109111 + 0.994030i \(0.465200\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.00000 + 4.00000i −0.185098 + 0.185098i −0.793573 0.608475i \(-0.791782\pi\)
0.608475 + 0.793573i \(0.291782\pi\)
\(468\) 0 0
\(469\) 32.0000 + 32.0000i 1.47762 + 1.47762i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 32.0000i 1.47136i
\(474\) 0 0
\(475\) −12.0000 12.0000i −0.550598 0.550598i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.00000 + 8.00000i 0.363261 + 0.363261i
\(486\) 0 0
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.00000 8.00000i −0.361035 0.361035i 0.503159 0.864194i \(-0.332171\pi\)
−0.864194 + 0.503159i \(0.832171\pi\)
\(492\) 0 0
\(493\) 18.0000 18.0000i 0.810679 0.810679i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.00000 8.00000i 0.358129 0.358129i −0.504994 0.863123i \(-0.668505\pi\)
0.863123 + 0.504994i \(0.168505\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.0000i 0.713405i 0.934218 + 0.356702i \(0.116099\pi\)
−0.934218 + 0.356702i \(0.883901\pi\)
\(504\) 0 0
\(505\) 14.0000i 0.622992i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.0000 + 11.0000i −0.487566 + 0.487566i −0.907537 0.419971i \(-0.862040\pi\)
0.419971 + 0.907537i \(0.362040\pi\)
\(510\) 0 0
\(511\) −40.0000 −1.76950
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.00000 + 4.00000i −0.176261 + 0.176261i
\(516\) 0 0
\(517\) −32.0000 32.0000i −1.40736 1.40736i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.0000i 1.31432i −0.753749 0.657162i \(-0.771757\pi\)
0.753749 0.657162i \(-0.228243\pi\)
\(522\) 0 0
\(523\) 12.0000 + 12.0000i 0.524723 + 0.524723i 0.918994 0.394271i \(-0.129003\pi\)
−0.394271 + 0.918994i \(0.629003\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.00000 + 6.00000i 0.259889 + 0.259889i
\(534\) 0 0
\(535\) 16.0000i 0.691740i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −36.0000 36.0000i −1.55063 1.55063i
\(540\) 0 0
\(541\) 3.00000 3.00000i 0.128980 0.128980i −0.639670 0.768650i \(-0.720929\pi\)
0.768650 + 0.639670i \(0.220929\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) 12.0000 12.0000i 0.513083 0.513083i −0.402387 0.915470i \(-0.631819\pi\)
0.915470 + 0.402387i \(0.131819\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 24.0000i 1.02243i
\(552\) 0 0
\(553\) 48.0000i 2.04117i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0000 11.0000i 0.466085 0.466085i −0.434559 0.900644i \(-0.643096\pi\)
0.900644 + 0.434559i \(0.143096\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.0000 20.0000i 0.842900 0.842900i −0.146336 0.989235i \(-0.546748\pi\)
0.989235 + 0.146336i \(0.0467479\pi\)
\(564\) 0 0
\(565\) 16.0000 + 16.0000i 0.673125 + 0.673125i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.0000i 0.754599i −0.926091 0.377300i \(-0.876853\pi\)
0.926091 0.377300i \(-0.123147\pi\)
\(570\) 0 0
\(571\) −24.0000 24.0000i −1.00437 1.00437i −0.999990 0.00437833i \(-0.998606\pi\)
−0.00437833 0.999990i \(-0.501394\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.0000 1.00087
\(576\) 0 0
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.0000 + 16.0000i 0.663792 + 0.663792i
\(582\) 0 0
\(583\) 56.0000i 2.31928i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.0000 16.0000i −0.660391 0.660391i 0.295081 0.955472i \(-0.404653\pi\)
−0.955472 + 0.295081i \(0.904653\pi\)
\(588\) 0 0
\(589\) −16.0000 + 16.0000i −0.659269 + 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.0000 −0.657041 −0.328521 0.944497i \(-0.606550\pi\)
−0.328521 + 0.944497i \(0.606550\pi\)
\(594\) 0 0
\(595\) 24.0000 24.0000i 0.983904 0.983904i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 40.0000i 1.63436i −0.576386 0.817178i \(-0.695537\pi\)
0.576386 0.817178i \(-0.304463\pi\)
\(600\) 0 0
\(601\) 38.0000i 1.55005i 0.631929 + 0.775026i \(0.282263\pi\)
−0.631929 + 0.775026i \(0.717737\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −21.0000 + 21.0000i −0.853771 + 0.853771i
\(606\) 0 0
\(607\) 12.0000 0.487065 0.243532 0.969893i \(-0.421694\pi\)
0.243532 + 0.969893i \(0.421694\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.0000 + 24.0000i −0.970936 + 0.970936i
\(612\) 0 0
\(613\) 7.00000 + 7.00000i 0.282727 + 0.282727i 0.834196 0.551468i \(-0.185932\pi\)
−0.551468 + 0.834196i \(0.685932\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.0000i 1.28827i 0.764911 + 0.644136i \(0.222783\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 64.0000 2.56411
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.00000 + 6.00000i 0.239236 + 0.239236i
\(630\) 0 0
\(631\) 20.0000i 0.796187i −0.917345 0.398094i \(-0.869672\pi\)
0.917345 0.398094i \(-0.130328\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.00000 4.00000i −0.158735 0.158735i
\(636\) 0 0
\(637\) −27.0000 + 27.0000i −1.06978 + 1.06978i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22.0000 −0.868948 −0.434474 0.900684i \(-0.643066\pi\)
−0.434474 + 0.900684i \(0.643066\pi\)
\(642\) 0 0
\(643\) −12.0000 + 12.0000i −0.473234 + 0.473234i −0.902959 0.429726i \(-0.858610\pi\)
0.429726 + 0.902959i \(0.358610\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000i 0.943537i −0.881722 0.471769i \(-0.843616\pi\)
0.881722 0.471769i \(-0.156384\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.0000 + 19.0000i −0.743527 + 0.743527i −0.973255 0.229728i \(-0.926216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(654\) 0 0
\(655\) −16.0000 −0.625172
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.00000 + 8.00000i −0.311636 + 0.311636i −0.845543 0.533907i \(-0.820723\pi\)
0.533907 + 0.845543i \(0.320723\pi\)
\(660\) 0 0
\(661\) 7.00000 + 7.00000i 0.272268 + 0.272268i 0.830013 0.557744i \(-0.188333\pi\)
−0.557744 + 0.830013i \(0.688333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 32.0000i 1.24091i
\(666\) 0 0
\(667\) 24.0000 + 24.0000i 0.929284 + 0.929284i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) −8.00000 −0.308377 −0.154189 0.988041i \(-0.549276\pi\)
−0.154189 + 0.988041i \(0.549276\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.00000 9.00000i −0.345898 0.345898i 0.512681 0.858579i \(-0.328652\pi\)
−0.858579 + 0.512681i \(0.828652\pi\)
\(678\) 0 0
\(679\) 32.0000i 1.22805i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.0000 12.0000i −0.459167 0.459167i 0.439215 0.898382i \(-0.355257\pi\)
−0.898382 + 0.439215i \(0.855257\pi\)
\(684\) 0 0
\(685\) 2.00000 2.00000i 0.0764161 0.0764161i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −42.0000 −1.60007
\(690\) 0 0
\(691\) 36.0000 36.0000i 1.36950 1.36950i 0.508360 0.861145i \(-0.330252\pi\)
0.861145 0.508360i \(-0.169748\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −11.0000 + 11.0000i −0.415464 + 0.415464i −0.883637 0.468173i \(-0.844913\pi\)
0.468173 + 0.883637i \(0.344913\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −28.0000 + 28.0000i −1.05305 + 1.05305i
\(708\) 0 0
\(709\) −33.0000 33.0000i −1.23934 1.23934i −0.960271 0.279070i \(-0.909974\pi\)
−0.279070 0.960271i \(-0.590026\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) 24.0000 + 24.0000i 0.897549 + 0.897549i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.00000 9.00000i −0.334252 0.334252i
\(726\) 0 0
\(727\) 52.0000i 1.92857i 0.264861 + 0.964287i \(0.414674\pi\)
−0.264861 + 0.964287i \(0.585326\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 24.0000 + 24.0000i 0.887672 + 0.887672i
\(732\) 0 0
\(733\) 37.0000 37.0000i 1.36663 1.36663i 0.501425 0.865201i \(-0.332809\pi\)
0.865201 0.501425i \(-0.167191\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −64.0000 −2.35747
\(738\) 0 0
\(739\) −24.0000 + 24.0000i −0.882854 + 0.882854i −0.993824 0.110970i \(-0.964604\pi\)
0.110970 + 0.993824i \(0.464604\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) 0 0
\(745\) 2.00000i 0.0732743i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −32.0000 + 32.0000i −1.16925 + 1.16925i
\(750\) 0 0
\(751\) −28.0000 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.00000 4.00000i 0.145575 0.145575i
\(756\) 0 0
\(757\) −7.00000 7.00000i −0.254419 0.254419i 0.568360 0.822780i \(-0.307578\pi\)
−0.822780 + 0.568360i \(0.807578\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.0000i 0.652499i 0.945284 + 0.326250i \(0.105785\pi\)
−0.945284 + 0.326250i \(0.894215\pi\)
\(762\) 0 0
\(763\) −20.0000 20.0000i −0.724049 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 40.0000 1.44244 0.721218 0.692708i \(-0.243582\pi\)
0.721218 + 0.692708i \(0.243582\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.00000 + 9.00000i 0.323708 + 0.323708i 0.850188 0.526480i \(-0.176489\pi\)
−0.526480 + 0.850188i \(0.676489\pi\)
\(774\) 0 0
\(775\) 12.0000i 0.431053i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.00000 + 8.00000i 0.286630 + 0.286630i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.00000 −0.214149
\(786\) 0 0
\(787\) −12.0000 + 12.0000i −0.427754 + 0.427754i −0.887863 0.460109i \(-0.847810\pi\)
0.460109 + 0.887863i \(0.347810\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 64.0000i 2.27558i
\(792\) 0 0
\(793\) 18.0000i 0.639199i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.00000 + 5.00000i −0.177109 + 0.177109i −0.790094 0.612985i \(-0.789968\pi\)
0.612985 + 0.790094i \(0.289968\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 40.0000 40.0000i 1.41157 1.41157i
\(804\) 0 0
\(805\) 32.0000 + 32.0000i 1.12785 + 1.12785i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.00000i 0.0703163i −0.999382 0.0351581i \(-0.988807\pi\)
0.999382 0.0351581i \(-0.0111935\pi\)
\(810\) 0 0
\(811\) −4.00000 4.00000i −0.140459 0.140459i 0.633381 0.773840i \(-0.281667\pi\)
−0.773840 + 0.633381i \(0.781667\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −39.0000 39.0000i −1.36111 1.36111i −0.872506 0.488603i \(-0.837507\pi\)
−0.488603 0.872506i \(-0.662493\pi\)
\(822\) 0 0
\(823\) 44.0000i 1.53374i 0.641800 + 0.766872i \(0.278188\pi\)
−0.641800 + 0.766872i \(0.721812\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.0000 + 32.0000i 1.11275 + 1.11275i 0.992777 + 0.119972i \(0.0382804\pi\)
0.119972 + 0.992777i \(0.461720\pi\)
\(828\) 0 0
\(829\) −29.0000 + 29.0000i −1.00721 + 1.00721i −0.00723783 + 0.999974i \(0.502304\pi\)
−0.999974 + 0.00723783i \(0.997696\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −54.0000 −1.87099
\(834\) 0 0
\(835\) 8.00000 8.00000i 0.276851 0.276851i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 48.0000i 1.65714i 0.559883 + 0.828572i \(0.310846\pi\)
−0.559883 + 0.828572i \(0.689154\pi\)
\(840\) 0 0
\(841\) 11.0000i 0.379310i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.00000 5.00000i 0.172005 0.172005i
\(846\) 0 0
\(847\) 84.0000 2.88627
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.00000 + 8.00000i −0.274236 + 0.274236i
\(852\) 0 0
\(853\) 1.00000 + 1.00000i 0.0342393 + 0.0342393i 0.724019 0.689780i \(-0.242293\pi\)
−0.689780 + 0.724019i \(0.742293\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.0000i 0.614868i −0.951569 0.307434i \(-0.900530\pi\)
0.951569 0.307434i \(-0.0994704\pi\)
\(858\) 0 0
\(859\) 12.0000 + 12.0000i 0.409435 + 0.409435i 0.881541 0.472107i \(-0.156506\pi\)
−0.472107 + 0.881541i \(0.656506\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48.0000 + 48.0000i 1.62829 + 1.62829i
\(870\) 0 0
\(871\) 48.0000i 1.62642i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −32.0000 32.0000i −1.08180 1.08180i
\(876\) 0 0
\(877\) −5.00000 + 5.00000i −0.168838 + 0.168838i −0.786468 0.617630i \(-0.788093\pi\)
0.617630 + 0.786468i \(0.288093\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −4.00000 + 4.00000i −0.134611 + 0.134611i −0.771202 0.636591i \(-0.780344\pi\)
0.636591 + 0.771202i \(0.280344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 48.0000i 1.61168i 0.592132 + 0.805841i \(0.298286\pi\)
−0.592132 + 0.805841i \(0.701714\pi\)
\(888\) 0 0
\(889\) 16.0000i 0.536623i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.0000 + 32.0000i −1.07084 + 1.07084i
\(894\) 0 0
\(895\) 16.0000 0.534821
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.0000 + 12.0000i −0.400222 + 0.400222i
\(900\) 0 0
\(901\) −42.0000 42.0000i −1.39922 1.39922i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.0000i 0.598340i
\(906\) 0 0
\(907\) −28.0000 28.0000i −0.929725 0.929725i 0.0679631 0.997688i \(-0.478350\pi\)
−0.997688 + 0.0679631i \(0.978350\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40.0000 −1.32526 −0.662630 0.748947i \(-0.730560\pi\)
−0.662630 + 0.748947i \(0.730560\pi\)
\(912\) 0 0
\(913\) −32.0000 −1.05905
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 32.0000 + 32.0000i 1.05673 + 1.05673i
\(918\) 0 0
\(919\) 20.0000i 0.659739i −0.944027 0.329870i \(-0.892995\pi\)
0.944027 0.329870i \(-0.107005\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 3.00000 3.00000i 0.0986394 0.0986394i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −42.0000 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(930\) 0 0
\(931\) −36.0000 + 36.0000i −1.17985 + 1.17985i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 48.0000i 1.56977i
\(936\) 0 0
\(937\) 26.0000i 0.849383i 0.905338 + 0.424691i \(0.139617\pi\)
−0.905338 + 0.424691i \(0.860383\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −35.0000 + 35.0000i −1.14097 + 1.14097i −0.152694 + 0.988274i \(0.548795\pi\)
−0.988274 + 0.152694i \(0.951205\pi\)
\(942\) 0 0
\(943\) −16.0000 −0.521032
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.0000 40.0000i 1.29983 1.29983i 0.371321 0.928505i \(-0.378905\pi\)
0.928505 0.371321i \(-0.121095\pi\)
\(948\) 0 0
\(949\) −30.0000 30.0000i −0.973841 0.973841i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 18.0000i 0.583077i −0.956559 0.291539i \(-0.905833\pi\)
0.956559 0.291539i \(-0.0941672\pi\)
\(954\) 0 0
\(955\) −24.0000 24.0000i −0.776622 0.776622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.00000 + 8.00000i 0.257529 + 0.257529i
\(966\) 0 0
\(967\) 20.0000i 0.643157i −0.946883 0.321578i \(-0.895787\pi\)
0.946883 0.321578i \(-0.104213\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.0000 + 28.0000i 0.898563 + 0.898563i 0.995309 0.0967463i \(-0.0308436\pi\)
−0.0967463 + 0.995309i \(0.530844\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38.0000 −1.21573 −0.607864 0.794041i \(-0.707973\pi\)
−0.607864 + 0.794041i \(0.707973\pi\)
\(978\) 0 0
\(979\) −64.0000 + 64.0000i −2.04545 + 2.04545i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.0000i 1.02064i 0.859984 + 0.510321i \(0.170473\pi\)
−0.859984 + 0.510321i \(0.829527\pi\)
\(984\) 0 0
\(985\) 2.00000i 0.0637253i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0000 + 32.0000i −1.01754 + 1.01754i
\(990\) 0 0
\(991\) 44.0000 1.39771 0.698853 0.715265i \(-0.253694\pi\)
0.698853 + 0.715265i \(0.253694\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.00000 4.00000i 0.126809 0.126809i
\(996\) 0 0
\(997\) 33.0000 + 33.0000i 1.04512 + 1.04512i 0.998933 + 0.0461877i \(0.0147072\pi\)
0.0461877 + 0.998933i \(0.485293\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4608.2.k.u.3457.1 yes 2
3.2 odd 2 4608.2.k.e.3457.1 yes 2
4.3 odd 2 4608.2.k.n.3457.1 yes 2
8.3 odd 2 4608.2.k.k.3457.1 yes 2
8.5 even 2 4608.2.k.d.3457.1 yes 2
12.11 even 2 4608.2.k.l.3457.1 yes 2
16.3 odd 4 4608.2.k.n.1153.1 yes 2
16.5 even 4 4608.2.k.d.1153.1 2
16.11 odd 4 4608.2.k.k.1153.1 yes 2
16.13 even 4 inner 4608.2.k.u.1153.1 yes 2
24.5 odd 2 4608.2.k.t.3457.1 yes 2
24.11 even 2 4608.2.k.m.3457.1 yes 2
32.3 odd 8 9216.2.a.t.1.1 2
32.13 even 8 9216.2.a.a.1.2 2
32.19 odd 8 9216.2.a.t.1.2 2
32.29 even 8 9216.2.a.a.1.1 2
48.5 odd 4 4608.2.k.t.1153.1 yes 2
48.11 even 4 4608.2.k.m.1153.1 yes 2
48.29 odd 4 4608.2.k.e.1153.1 yes 2
48.35 even 4 4608.2.k.l.1153.1 yes 2
96.29 odd 8 9216.2.a.c.1.2 2
96.35 even 8 9216.2.a.v.1.2 2
96.77 odd 8 9216.2.a.c.1.1 2
96.83 even 8 9216.2.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4608.2.k.d.1153.1 2 16.5 even 4
4608.2.k.d.3457.1 yes 2 8.5 even 2
4608.2.k.e.1153.1 yes 2 48.29 odd 4
4608.2.k.e.3457.1 yes 2 3.2 odd 2
4608.2.k.k.1153.1 yes 2 16.11 odd 4
4608.2.k.k.3457.1 yes 2 8.3 odd 2
4608.2.k.l.1153.1 yes 2 48.35 even 4
4608.2.k.l.3457.1 yes 2 12.11 even 2
4608.2.k.m.1153.1 yes 2 48.11 even 4
4608.2.k.m.3457.1 yes 2 24.11 even 2
4608.2.k.n.1153.1 yes 2 16.3 odd 4
4608.2.k.n.3457.1 yes 2 4.3 odd 2
4608.2.k.t.1153.1 yes 2 48.5 odd 4
4608.2.k.t.3457.1 yes 2 24.5 odd 2
4608.2.k.u.1153.1 yes 2 16.13 even 4 inner
4608.2.k.u.3457.1 yes 2 1.1 even 1 trivial
9216.2.a.a.1.1 2 32.29 even 8
9216.2.a.a.1.2 2 32.13 even 8
9216.2.a.c.1.1 2 96.77 odd 8
9216.2.a.c.1.2 2 96.29 odd 8
9216.2.a.t.1.1 2 32.3 odd 8
9216.2.a.t.1.2 2 32.19 odd 8
9216.2.a.v.1.1 2 96.83 even 8
9216.2.a.v.1.2 2 96.35 even 8