Properties

Label 484.2.c.d.483.4
Level $484$
Weight $2$
Character 484.483
Analytic conductor $3.865$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,2,Mod(483,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.483");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 483.4
Root \(1.40958 + 0.114404i\) of defining polynomial
Character \(\chi\) \(=\) 484.483
Dual form 484.2.c.d.483.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20762 + 0.735975i) q^{2} +0.740676i q^{3} +(0.916683 - 1.77755i) q^{4} -1.34841 q^{5} +(-0.545118 - 0.894453i) q^{6} -1.62837 q^{7} +(0.201231 + 2.82126i) q^{8} +2.45140 q^{9} +(1.62837 - 0.992398i) q^{10} +(1.31659 + 0.678965i) q^{12} +3.55723i q^{13} +(1.96645 - 1.19844i) q^{14} -0.998737i q^{15} +(-2.31939 - 3.25890i) q^{16} -0.0699655i q^{17} +(-2.96035 + 1.80417i) q^{18} -7.95154 q^{19} +(-1.23607 + 2.39688i) q^{20} -1.20609i q^{21} +5.30988i q^{23} +(-2.08964 + 0.149047i) q^{24} -3.18178 q^{25} +(-2.61803 - 4.29578i) q^{26} +4.03772i q^{27} +(-1.49270 + 2.89451i) q^{28} +3.93630i q^{29} +(0.735045 + 1.20609i) q^{30} -3.69389i q^{31} +(5.19940 + 2.22850i) q^{32} +(0.0514928 + 0.0844916i) q^{34} +2.19572 q^{35} +(2.24716 - 4.35749i) q^{36} -6.87861 q^{37} +(9.60242 - 5.85213i) q^{38} -2.63476 q^{39} +(-0.271342 - 3.80423i) q^{40} -5.78625i q^{41} +(0.887654 + 1.45650i) q^{42} -1.89516 q^{43} -3.30550 q^{45} +(-3.90793 - 6.41230i) q^{46} +9.80536i q^{47} +(2.41379 - 1.71791i) q^{48} -4.34841 q^{49} +(3.84237 - 2.34171i) q^{50} +0.0518217 q^{51} +(6.32317 + 3.26086i) q^{52} -3.88765 q^{53} +(-2.97166 - 4.87602i) q^{54} +(-0.327678 - 4.59405i) q^{56} -5.88951i q^{57} +(-2.89701 - 4.75354i) q^{58} +4.86161i q^{59} +(-1.77531 - 0.915525i) q^{60} +1.34602i q^{61} +(2.71861 + 4.46080i) q^{62} -3.99178 q^{63} +(-7.91901 + 1.13545i) q^{64} -4.79662i q^{65} -4.91303i q^{67} +(-0.124367 - 0.0641362i) q^{68} -3.93290 q^{69} +(-2.65159 + 1.61599i) q^{70} +6.97557i q^{71} +(0.493297 + 6.91604i) q^{72} -10.1222i q^{73} +(8.30673 - 5.06248i) q^{74} -2.35667i q^{75} +(-7.28904 + 14.1343i) q^{76} +(3.18178 - 1.93911i) q^{78} +6.00456 q^{79} +(3.12749 + 4.39435i) q^{80} +4.36356 q^{81} +(4.25853 + 6.98758i) q^{82} +3.61193 q^{83} +(-2.14389 - 1.10560i) q^{84} +0.0943425i q^{85} +(2.28863 - 1.39479i) q^{86} -2.91552 q^{87} -5.39711 q^{89} +(3.99178 - 2.43277i) q^{90} -5.79249i q^{91} +(9.43858 + 4.86747i) q^{92} +2.73597 q^{93} +(-7.21649 - 11.8411i) q^{94} +10.7220 q^{95} +(-1.65060 + 3.85107i) q^{96} +7.32624 q^{97} +(5.25122 - 3.20032i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} + 4 q^{5} - 22 q^{12} - 12 q^{14} - 12 q^{16} + 16 q^{20} - 4 q^{25} - 24 q^{26} - 6 q^{34} + 50 q^{36} - 12 q^{37} + 42 q^{38} + 4 q^{42} + 40 q^{45} + 74 q^{48} - 44 q^{49} - 52 q^{53}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20762 + 0.735975i −0.853915 + 0.520413i
\(3\) 0.740676i 0.427629i 0.976874 + 0.213815i \(0.0685889\pi\)
−0.976874 + 0.213815i \(0.931411\pi\)
\(4\) 0.916683 1.77755i 0.458341 0.888776i
\(5\) −1.34841 −0.603029 −0.301515 0.953462i \(-0.597492\pi\)
−0.301515 + 0.953462i \(0.597492\pi\)
\(6\) −0.545118 0.894453i −0.222544 0.365159i
\(7\) −1.62837 −0.615466 −0.307733 0.951473i \(-0.599570\pi\)
−0.307733 + 0.951473i \(0.599570\pi\)
\(8\) 0.201231 + 2.82126i 0.0711458 + 0.997466i
\(9\) 2.45140 0.817133
\(10\) 1.62837 0.992398i 0.514936 0.313824i
\(11\) 0 0
\(12\) 1.31659 + 0.678965i 0.380067 + 0.196000i
\(13\) 3.55723i 0.986599i 0.869859 + 0.493300i \(0.164209\pi\)
−0.869859 + 0.493300i \(0.835791\pi\)
\(14\) 1.96645 1.19844i 0.525555 0.320296i
\(15\) 0.998737i 0.257873i
\(16\) −2.31939 3.25890i −0.579846 0.814726i
\(17\) 0.0699655i 0.0169691i −0.999964 0.00848456i \(-0.997299\pi\)
0.999964 0.00848456i \(-0.00270075\pi\)
\(18\) −2.96035 + 1.80417i −0.697762 + 0.425246i
\(19\) −7.95154 −1.82421 −0.912104 0.409959i \(-0.865543\pi\)
−0.912104 + 0.409959i \(0.865543\pi\)
\(20\) −1.23607 + 2.39688i −0.276393 + 0.535958i
\(21\) 1.20609i 0.263191i
\(22\) 0 0
\(23\) 5.30988i 1.10719i 0.832787 + 0.553593i \(0.186744\pi\)
−0.832787 + 0.553593i \(0.813256\pi\)
\(24\) −2.08964 + 0.149047i −0.426546 + 0.0304240i
\(25\) −3.18178 −0.636356
\(26\) −2.61803 4.29578i −0.513439 0.842472i
\(27\) 4.03772i 0.777059i
\(28\) −1.49270 + 2.89451i −0.282093 + 0.547011i
\(29\) 3.93630i 0.730952i 0.930821 + 0.365476i \(0.119094\pi\)
−0.930821 + 0.365476i \(0.880906\pi\)
\(30\) 0.735045 + 1.20609i 0.134200 + 0.220201i
\(31\) 3.69389i 0.663441i −0.943378 0.331721i \(-0.892371\pi\)
0.943378 0.331721i \(-0.107629\pi\)
\(32\) 5.19940 + 2.22850i 0.919133 + 0.393947i
\(33\) 0 0
\(34\) 0.0514928 + 0.0844916i 0.00883095 + 0.0144902i
\(35\) 2.19572 0.371144
\(36\) 2.24716 4.35749i 0.374526 0.726249i
\(37\) −6.87861 −1.13084 −0.565418 0.824804i \(-0.691285\pi\)
−0.565418 + 0.824804i \(0.691285\pi\)
\(38\) 9.60242 5.85213i 1.55772 0.949341i
\(39\) −2.63476 −0.421899
\(40\) −0.271342 3.80423i −0.0429030 0.601501i
\(41\) 5.78625i 0.903660i −0.892104 0.451830i \(-0.850771\pi\)
0.892104 0.451830i \(-0.149229\pi\)
\(42\) 0.887654 + 1.45650i 0.136968 + 0.224743i
\(43\) −1.89516 −0.289009 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(44\) 0 0
\(45\) −3.30550 −0.492755
\(46\) −3.90793 6.41230i −0.576193 0.945442i
\(47\) 9.80536i 1.43026i 0.698992 + 0.715129i \(0.253632\pi\)
−0.698992 + 0.715129i \(0.746368\pi\)
\(48\) 2.41379 1.71791i 0.348401 0.247959i
\(49\) −4.34841 −0.621202
\(50\) 3.84237 2.34171i 0.543394 0.331168i
\(51\) 0.0518217 0.00725650
\(52\) 6.32317 + 3.26086i 0.876866 + 0.452199i
\(53\) −3.88765 −0.534010 −0.267005 0.963695i \(-0.586034\pi\)
−0.267005 + 0.963695i \(0.586034\pi\)
\(54\) −2.97166 4.87602i −0.404391 0.663543i
\(55\) 0 0
\(56\) −0.327678 4.59405i −0.0437878 0.613906i
\(57\) 5.88951i 0.780085i
\(58\) −2.89701 4.75354i −0.380397 0.624171i
\(59\) 4.86161i 0.632927i 0.948605 + 0.316464i \(0.102496\pi\)
−0.948605 + 0.316464i \(0.897504\pi\)
\(60\) −1.77531 0.915525i −0.229191 0.118194i
\(61\) 1.34602i 0.172341i 0.996280 + 0.0861704i \(0.0274629\pi\)
−0.996280 + 0.0861704i \(0.972537\pi\)
\(62\) 2.71861 + 4.46080i 0.345263 + 0.566523i
\(63\) −3.99178 −0.502917
\(64\) −7.91901 + 1.13545i −0.989877 + 0.141931i
\(65\) 4.79662i 0.594948i
\(66\) 0 0
\(67\) 4.91303i 0.600223i −0.953904 0.300111i \(-0.902976\pi\)
0.953904 0.300111i \(-0.0970238\pi\)
\(68\) −0.124367 0.0641362i −0.0150818 0.00777765i
\(69\) −3.93290 −0.473465
\(70\) −2.65159 + 1.61599i −0.316925 + 0.193148i
\(71\) 6.97557i 0.827848i 0.910311 + 0.413924i \(0.135842\pi\)
−0.910311 + 0.413924i \(0.864158\pi\)
\(72\) 0.493297 + 6.91604i 0.0581356 + 0.815063i
\(73\) 10.1222i 1.18471i −0.805676 0.592356i \(-0.798198\pi\)
0.805676 0.592356i \(-0.201802\pi\)
\(74\) 8.30673 5.06248i 0.965638 0.588501i
\(75\) 2.35667i 0.272124i
\(76\) −7.28904 + 14.1343i −0.836110 + 1.62131i
\(77\) 0 0
\(78\) 3.18178 1.93911i 0.360266 0.219561i
\(79\) 6.00456 0.675566 0.337783 0.941224i \(-0.390323\pi\)
0.337783 + 0.941224i \(0.390323\pi\)
\(80\) 3.12749 + 4.39435i 0.349664 + 0.491303i
\(81\) 4.36356 0.484840
\(82\) 4.25853 + 6.98758i 0.470276 + 0.771649i
\(83\) 3.61193 0.396461 0.198230 0.980155i \(-0.436481\pi\)
0.198230 + 0.980155i \(0.436481\pi\)
\(84\) −2.14389 1.10560i −0.233918 0.120631i
\(85\) 0.0943425i 0.0102329i
\(86\) 2.28863 1.39479i 0.246789 0.150404i
\(87\) −2.91552 −0.312576
\(88\) 0 0
\(89\) −5.39711 −0.572093 −0.286046 0.958216i \(-0.592341\pi\)
−0.286046 + 0.958216i \(0.592341\pi\)
\(90\) 3.99178 2.43277i 0.420771 0.256436i
\(91\) 5.79249i 0.607218i
\(92\) 9.43858 + 4.86747i 0.984040 + 0.507469i
\(93\) 2.73597 0.283707
\(94\) −7.21649 11.8411i −0.744325 1.22132i
\(95\) 10.7220 1.10005
\(96\) −1.65060 + 3.85107i −0.168463 + 0.393048i
\(97\) 7.32624 0.743867 0.371933 0.928259i \(-0.378695\pi\)
0.371933 + 0.928259i \(0.378695\pi\)
\(98\) 5.25122 3.20032i 0.530454 0.323281i
\(99\) 0 0
\(100\) −2.91668 + 5.65578i −0.291668 + 0.565578i
\(101\) 9.57267i 0.952516i 0.879306 + 0.476258i \(0.158007\pi\)
−0.879306 + 0.476258i \(0.841993\pi\)
\(102\) −0.0625809 + 0.0381395i −0.00619643 + 0.00377637i
\(103\) 10.3215i 1.01701i 0.861060 + 0.508503i \(0.169801\pi\)
−0.861060 + 0.508503i \(0.830199\pi\)
\(104\) −10.0359 + 0.715824i −0.984099 + 0.0701924i
\(105\) 1.62631i 0.158712i
\(106\) 4.69480 2.86121i 0.455999 0.277906i
\(107\) 11.0772 1.07087 0.535435 0.844577i \(-0.320148\pi\)
0.535435 + 0.844577i \(0.320148\pi\)
\(108\) 7.17726 + 3.70131i 0.690632 + 0.356158i
\(109\) 8.95933i 0.858149i 0.903269 + 0.429074i \(0.141160\pi\)
−0.903269 + 0.429074i \(0.858840\pi\)
\(110\) 0 0
\(111\) 5.09482i 0.483579i
\(112\) 3.77682 + 5.30670i 0.356875 + 0.501436i
\(113\) 11.0231 1.03696 0.518481 0.855089i \(-0.326498\pi\)
0.518481 + 0.855089i \(0.326498\pi\)
\(114\) 4.33453 + 7.11228i 0.405966 + 0.666126i
\(115\) 7.15991i 0.667665i
\(116\) 6.99697 + 3.60834i 0.649653 + 0.335026i
\(117\) 8.72020i 0.806183i
\(118\) −3.57802 5.87096i −0.329383 0.540466i
\(119\) 0.113930i 0.0104439i
\(120\) 2.81770 0.200977i 0.257219 0.0183466i
\(121\) 0 0
\(122\) −0.990640 1.62548i −0.0896883 0.147164i
\(123\) 4.28573 0.386432
\(124\) −6.56608 3.38612i −0.589651 0.304083i
\(125\) 11.0324 0.986770
\(126\) 4.82055 2.93785i 0.429449 0.261725i
\(127\) 10.2923 0.913298 0.456649 0.889647i \(-0.349050\pi\)
0.456649 + 0.889647i \(0.349050\pi\)
\(128\) 8.72748 7.19938i 0.771408 0.636341i
\(129\) 1.40370i 0.123589i
\(130\) 3.53019 + 5.79249i 0.309618 + 0.508035i
\(131\) −1.86768 −0.163180 −0.0815901 0.996666i \(-0.526000\pi\)
−0.0815901 + 0.996666i \(0.526000\pi\)
\(132\) 0 0
\(133\) 12.9480 1.12274
\(134\) 3.61587 + 5.93307i 0.312363 + 0.512539i
\(135\) 5.44452i 0.468589i
\(136\) 0.197391 0.0140792i 0.0169261 0.00120728i
\(137\) −1.25447 −0.107177 −0.0535885 0.998563i \(-0.517066\pi\)
−0.0535885 + 0.998563i \(0.517066\pi\)
\(138\) 4.74944 2.89451i 0.404299 0.246397i
\(139\) −6.29114 −0.533608 −0.266804 0.963751i \(-0.585968\pi\)
−0.266804 + 0.963751i \(0.585968\pi\)
\(140\) 2.01277 3.90300i 0.170111 0.329864i
\(141\) −7.26259 −0.611620
\(142\) −5.13384 8.42382i −0.430822 0.706912i
\(143\) 0 0
\(144\) −5.68574 7.98888i −0.473812 0.665740i
\(145\) 5.30776i 0.440785i
\(146\) 7.44967 + 12.2237i 0.616539 + 1.01164i
\(147\) 3.22076i 0.265644i
\(148\) −6.30550 + 12.2271i −0.518309 + 1.00506i
\(149\) 17.1557i 1.40545i −0.711462 0.702724i \(-0.751967\pi\)
0.711462 0.702724i \(-0.248033\pi\)
\(150\) 1.73445 + 2.84595i 0.141617 + 0.232371i
\(151\) 12.1583 0.989428 0.494714 0.869056i \(-0.335273\pi\)
0.494714 + 0.869056i \(0.335273\pi\)
\(152\) −1.60009 22.4334i −0.129785 1.81959i
\(153\) 0.171513i 0.0138660i
\(154\) 0 0
\(155\) 4.98089i 0.400074i
\(156\) −2.41524 + 4.68342i −0.193374 + 0.374974i
\(157\) −5.30173 −0.423124 −0.211562 0.977365i \(-0.567855\pi\)
−0.211562 + 0.977365i \(0.567855\pi\)
\(158\) −7.25121 + 4.41920i −0.576876 + 0.351573i
\(159\) 2.87949i 0.228358i
\(160\) −7.01095 3.00494i −0.554264 0.237562i
\(161\) 8.64644i 0.681435i
\(162\) −5.26951 + 3.21147i −0.414012 + 0.252317i
\(163\) 10.0576i 0.787768i 0.919160 + 0.393884i \(0.128869\pi\)
−0.919160 + 0.393884i \(0.871131\pi\)
\(164\) −10.2854 5.30415i −0.803152 0.414185i
\(165\) 0 0
\(166\) −4.36183 + 2.65829i −0.338544 + 0.206323i
\(167\) −21.9076 −1.69526 −0.847632 0.530585i \(-0.821972\pi\)
−0.847632 + 0.530585i \(0.821972\pi\)
\(168\) 3.40270 0.242703i 0.262524 0.0187249i
\(169\) 0.346084 0.0266219
\(170\) −0.0694337 0.113930i −0.00532532 0.00873801i
\(171\) −19.4924 −1.49062
\(172\) −1.73726 + 3.36874i −0.132465 + 0.256864i
\(173\) 11.8322i 0.899586i 0.893133 + 0.449793i \(0.148502\pi\)
−0.893133 + 0.449793i \(0.851498\pi\)
\(174\) 3.52083 2.14575i 0.266914 0.162669i
\(175\) 5.18111 0.391655
\(176\) 0 0
\(177\) −3.60087 −0.270658
\(178\) 6.51765 3.97214i 0.488518 0.297724i
\(179\) 0.933676i 0.0697862i 0.999391 + 0.0348931i \(0.0111091\pi\)
−0.999391 + 0.0348931i \(0.988891\pi\)
\(180\) −3.03010 + 5.87570i −0.225850 + 0.437949i
\(181\) 18.8395 1.40033 0.700163 0.713983i \(-0.253111\pi\)
0.700163 + 0.713983i \(0.253111\pi\)
\(182\) 4.26313 + 6.99512i 0.316004 + 0.518513i
\(183\) −0.996967 −0.0736979
\(184\) −14.9805 + 1.06851i −1.10438 + 0.0787716i
\(185\) 9.27521 0.681927
\(186\) −3.30401 + 2.01361i −0.242262 + 0.147645i
\(187\) 0 0
\(188\) 17.4295 + 8.98840i 1.27118 + 0.655547i
\(189\) 6.57490i 0.478253i
\(190\) −12.9480 + 7.89110i −0.939350 + 0.572480i
\(191\) 20.4441i 1.47928i −0.673001 0.739641i \(-0.734995\pi\)
0.673001 0.739641i \(-0.265005\pi\)
\(192\) −0.840998 5.86542i −0.0606938 0.423300i
\(193\) 17.3409i 1.24823i 0.781333 + 0.624114i \(0.214540\pi\)
−0.781333 + 0.624114i \(0.785460\pi\)
\(194\) −8.84730 + 5.39192i −0.635199 + 0.387118i
\(195\) 3.55274 0.254417
\(196\) −3.98612 + 7.72953i −0.284723 + 0.552110i
\(197\) 3.49133i 0.248747i 0.992235 + 0.124374i \(0.0396921\pi\)
−0.992235 + 0.124374i \(0.960308\pi\)
\(198\) 0 0
\(199\) 11.2660i 0.798625i −0.916815 0.399313i \(-0.869249\pi\)
0.916815 0.399313i \(-0.130751\pi\)
\(200\) −0.640271 8.97663i −0.0452740 0.634743i
\(201\) 3.63896 0.256673
\(202\) −7.04524 11.5601i −0.495701 0.813368i
\(203\) 6.40974i 0.449876i
\(204\) 0.0475041 0.0921159i 0.00332595 0.00644940i
\(205\) 7.80226i 0.544933i
\(206\) −7.59635 12.4644i −0.529263 0.868436i
\(207\) 13.0166i 0.904718i
\(208\) 11.5927 8.25060i 0.803808 0.572076i
\(209\) 0 0
\(210\) −1.19693 1.96397i −0.0825957 0.135526i
\(211\) −2.74295 −0.188833 −0.0944163 0.995533i \(-0.530098\pi\)
−0.0944163 + 0.995533i \(0.530098\pi\)
\(212\) −3.56375 + 6.91051i −0.244759 + 0.474616i
\(213\) −5.16663 −0.354012
\(214\) −13.3770 + 8.15251i −0.914431 + 0.557294i
\(215\) 2.55546 0.174281
\(216\) −11.3915 + 0.812513i −0.775090 + 0.0552845i
\(217\) 6.01501i 0.408325i
\(218\) −6.59384 10.8195i −0.446591 0.732786i
\(219\) 7.49726 0.506618
\(220\) 0 0
\(221\) 0.248884 0.0167417
\(222\) 3.74966 + 6.15259i 0.251660 + 0.412935i
\(223\) 23.7258i 1.58880i −0.607398 0.794398i \(-0.707787\pi\)
0.607398 0.794398i \(-0.292213\pi\)
\(224\) −8.46655 3.62882i −0.565695 0.242461i
\(225\) −7.79981 −0.519988
\(226\) −13.3117 + 8.11270i −0.885478 + 0.539649i
\(227\) −0.800839 −0.0531536 −0.0265768 0.999647i \(-0.508461\pi\)
−0.0265768 + 0.999647i \(0.508461\pi\)
\(228\) −10.4689 5.39881i −0.693321 0.357545i
\(229\) −23.5889 −1.55880 −0.779401 0.626526i \(-0.784476\pi\)
−0.779401 + 0.626526i \(0.784476\pi\)
\(230\) 5.26951 + 8.64644i 0.347461 + 0.570129i
\(231\) 0 0
\(232\) −11.1053 + 0.792103i −0.729100 + 0.0520041i
\(233\) 17.4915i 1.14591i −0.819588 0.572953i \(-0.805798\pi\)
0.819588 0.572953i \(-0.194202\pi\)
\(234\) −6.41785 10.5307i −0.419548 0.688412i
\(235\) 13.2217i 0.862487i
\(236\) 8.64176 + 4.45655i 0.562531 + 0.290097i
\(237\) 4.44743i 0.288892i
\(238\) −0.0838493 0.137584i −0.00543515 0.00891822i
\(239\) 6.68497 0.432415 0.216207 0.976347i \(-0.430631\pi\)
0.216207 + 0.976347i \(0.430631\pi\)
\(240\) −3.25479 + 2.31646i −0.210096 + 0.149527i
\(241\) 4.28655i 0.276121i −0.990424 0.138061i \(-0.955913\pi\)
0.990424 0.138061i \(-0.0440868\pi\)
\(242\) 0 0
\(243\) 15.3451i 0.984391i
\(244\) 2.39263 + 1.23388i 0.153172 + 0.0789909i
\(245\) 5.86346 0.374603
\(246\) −5.17553 + 3.15419i −0.329980 + 0.201104i
\(247\) 28.2855i 1.79976i
\(248\) 10.4214 0.743323i 0.661760 0.0472010i
\(249\) 2.67527i 0.169538i
\(250\) −13.3230 + 8.11959i −0.842618 + 0.513528i
\(251\) 4.89768i 0.309139i −0.987982 0.154569i \(-0.950601\pi\)
0.987982 0.154569i \(-0.0493990\pi\)
\(252\) −3.65920 + 7.09560i −0.230508 + 0.446981i
\(253\) 0 0
\(254\) −12.4292 + 7.57491i −0.779879 + 0.475292i
\(255\) −0.0698772 −0.00437588
\(256\) −5.24091 + 15.1173i −0.327557 + 0.944832i
\(257\) −12.3843 −0.772511 −0.386256 0.922392i \(-0.626232\pi\)
−0.386256 + 0.922392i \(0.626232\pi\)
\(258\) 1.03309 + 1.69513i 0.0643171 + 0.105534i
\(259\) 11.2009 0.695991
\(260\) −8.52625 4.39698i −0.528776 0.272689i
\(261\) 9.64944i 0.597285i
\(262\) 2.25545 1.37457i 0.139342 0.0849211i
\(263\) 16.9489 1.04511 0.522556 0.852605i \(-0.324979\pi\)
0.522556 + 0.852605i \(0.324979\pi\)
\(264\) 0 0
\(265\) 5.24217 0.322024
\(266\) −15.6363 + 9.52943i −0.958722 + 0.584287i
\(267\) 3.99751i 0.244644i
\(268\) −8.73318 4.50369i −0.533464 0.275107i
\(269\) 3.95476 0.241126 0.120563 0.992706i \(-0.461530\pi\)
0.120563 + 0.992706i \(0.461530\pi\)
\(270\) 4.00703 + 6.57490i 0.243860 + 0.400135i
\(271\) −23.7375 −1.44195 −0.720974 0.692962i \(-0.756305\pi\)
−0.720974 + 0.692962i \(0.756305\pi\)
\(272\) −0.228011 + 0.162277i −0.0138252 + 0.00983949i
\(273\) 4.29036 0.259664
\(274\) 1.51493 0.923261i 0.0915200 0.0557763i
\(275\) 0 0
\(276\) −3.60522 + 6.99093i −0.217009 + 0.420804i
\(277\) 15.0111i 0.901928i 0.892542 + 0.450964i \(0.148920\pi\)
−0.892542 + 0.450964i \(0.851080\pi\)
\(278\) 7.59730 4.63012i 0.455656 0.277696i
\(279\) 9.05519i 0.542120i
\(280\) 0.441845 + 6.19468i 0.0264053 + 0.370203i
\(281\) 5.74135i 0.342500i 0.985228 + 0.171250i \(0.0547806\pi\)
−0.985228 + 0.171250i \(0.945219\pi\)
\(282\) 8.77043 5.34508i 0.522272 0.318295i
\(283\) −11.1948 −0.665460 −0.332730 0.943022i \(-0.607970\pi\)
−0.332730 + 0.943022i \(0.607970\pi\)
\(284\) 12.3994 + 6.39439i 0.735771 + 0.379437i
\(285\) 7.94150i 0.470414i
\(286\) 0 0
\(287\) 9.42215i 0.556172i
\(288\) 12.7458 + 5.46295i 0.751054 + 0.321907i
\(289\) 16.9951 0.999712
\(290\) 3.90637 + 6.40974i 0.229390 + 0.376393i
\(291\) 5.42637i 0.318099i
\(292\) −17.9927 9.27883i −1.05294 0.543003i
\(293\) 5.30290i 0.309799i 0.987930 + 0.154899i \(0.0495053\pi\)
−0.987930 + 0.154899i \(0.950495\pi\)
\(294\) 2.37040 + 3.88945i 0.138245 + 0.226838i
\(295\) 6.55546i 0.381674i
\(296\) −1.38419 19.4063i −0.0804542 1.12797i
\(297\) 0 0
\(298\) 12.6261 + 20.7175i 0.731413 + 1.20013i
\(299\) −18.8885 −1.09235
\(300\) −4.18910 2.16032i −0.241858 0.124726i
\(301\) 3.08602 0.177875
\(302\) −14.6826 + 8.94819i −0.844887 + 0.514911i
\(303\) −7.09024 −0.407324
\(304\) 18.4427 + 25.9133i 1.05776 + 1.48623i
\(305\) 1.81500i 0.103926i
\(306\) 0.126230 + 0.207123i 0.00721606 + 0.0118404i
\(307\) 2.27014 0.129564 0.0647820 0.997899i \(-0.479365\pi\)
0.0647820 + 0.997899i \(0.479365\pi\)
\(308\) 0 0
\(309\) −7.64487 −0.434901
\(310\) −3.66581 6.01501i −0.208204 0.341630i
\(311\) 20.1665i 1.14354i 0.820414 + 0.571770i \(0.193743\pi\)
−0.820414 + 0.571770i \(0.806257\pi\)
\(312\) −0.530194 7.43333i −0.0300163 0.420830i
\(313\) 1.54188 0.0871524 0.0435762 0.999050i \(-0.486125\pi\)
0.0435762 + 0.999050i \(0.486125\pi\)
\(314\) 6.40247 3.90194i 0.361312 0.220199i
\(315\) 5.38258 0.303274
\(316\) 5.50428 10.6734i 0.309640 0.600427i
\(317\) −16.8622 −0.947076 −0.473538 0.880773i \(-0.657023\pi\)
−0.473538 + 0.880773i \(0.657023\pi\)
\(318\) 2.11923 + 3.47732i 0.118841 + 0.194999i
\(319\) 0 0
\(320\) 10.6781 1.53105i 0.596924 0.0855885i
\(321\) 8.20458i 0.457935i
\(322\) 6.36356 + 10.4416i 0.354627 + 0.581887i
\(323\) 0.556334i 0.0309552i
\(324\) 4.00000 7.75646i 0.222222 0.430914i
\(325\) 11.3183i 0.627828i
\(326\) −7.40210 12.1457i −0.409965 0.672687i
\(327\) −6.63596 −0.366969
\(328\) 16.3245 1.16437i 0.901370 0.0642916i
\(329\) 15.9667i 0.880275i
\(330\) 0 0
\(331\) 33.9735i 1.86735i −0.358115 0.933677i \(-0.616581\pi\)
0.358115 0.933677i \(-0.383419\pi\)
\(332\) 3.31099 6.42039i 0.181714 0.352365i
\(333\) −16.8622 −0.924044
\(334\) 26.4561 16.1235i 1.44761 0.882237i
\(335\) 6.62480i 0.361952i
\(336\) −3.93054 + 2.79739i −0.214429 + 0.152610i
\(337\) 17.0957i 0.931262i −0.884979 0.465631i \(-0.845827\pi\)
0.884979 0.465631i \(-0.154173\pi\)
\(338\) −0.417938 + 0.254709i −0.0227328 + 0.0138544i
\(339\) 8.16452i 0.443436i
\(340\) 0.167699 + 0.0864821i 0.00909474 + 0.00469015i
\(341\) 0 0
\(342\) 23.5394 14.3459i 1.27286 0.775738i
\(343\) 18.4794 0.997794
\(344\) −0.381364 5.34674i −0.0205618 0.288277i
\(345\) 5.30317 0.285513
\(346\) −8.70820 14.2888i −0.468156 0.768170i
\(347\) −2.49909 −0.134158 −0.0670790 0.997748i \(-0.521368\pi\)
−0.0670790 + 0.997748i \(0.521368\pi\)
\(348\) −2.67261 + 5.18249i −0.143267 + 0.277810i
\(349\) 7.01126i 0.375304i 0.982236 + 0.187652i \(0.0600878\pi\)
−0.982236 + 0.187652i \(0.939912\pi\)
\(350\) −6.25680 + 3.81317i −0.334440 + 0.203822i
\(351\) −14.3631 −0.766646
\(352\) 0 0
\(353\) 17.9431 0.955017 0.477509 0.878627i \(-0.341540\pi\)
0.477509 + 0.878627i \(0.341540\pi\)
\(354\) 4.34848 2.65015i 0.231119 0.140854i
\(355\) 9.40596i 0.499216i
\(356\) −4.94744 + 9.59365i −0.262214 + 0.508462i
\(357\) −0.0843849 −0.00446612
\(358\) −0.687162 1.12752i −0.0363176 0.0595915i
\(359\) 9.67947 0.510863 0.255431 0.966827i \(-0.417783\pi\)
0.255431 + 0.966827i \(0.417783\pi\)
\(360\) −0.665168 9.32568i −0.0350574 0.491506i
\(361\) 44.2270 2.32774
\(362\) −22.7509 + 13.8654i −1.19576 + 0.728748i
\(363\) 0 0
\(364\) −10.2965 5.30988i −0.539681 0.278313i
\(365\) 13.6489i 0.714416i
\(366\) 1.20396 0.733743i 0.0629318 0.0383533i
\(367\) 30.9471i 1.61543i 0.589575 + 0.807713i \(0.299295\pi\)
−0.589575 + 0.807713i \(0.700705\pi\)
\(368\) 17.3044 12.3156i 0.902053 0.641998i
\(369\) 14.1844i 0.738411i
\(370\) −11.2009 + 6.82632i −0.582308 + 0.354883i
\(371\) 6.33054 0.328665
\(372\) 2.50802 4.86333i 0.130035 0.252152i
\(373\) 4.92658i 0.255088i −0.991833 0.127544i \(-0.959291\pi\)
0.991833 0.127544i \(-0.0407095\pi\)
\(374\) 0 0
\(375\) 8.17145i 0.421972i
\(376\) −27.6635 + 1.97314i −1.42663 + 0.101757i
\(377\) −14.0023 −0.721157
\(378\) 4.83896 + 7.93996i 0.248889 + 0.408388i
\(379\) 4.02515i 0.206758i 0.994642 + 0.103379i \(0.0329655\pi\)
−0.994642 + 0.103379i \(0.967035\pi\)
\(380\) 9.82864 19.0589i 0.504199 0.977699i
\(381\) 7.62329i 0.390553i
\(382\) 15.0463 + 24.6887i 0.769837 + 1.26318i
\(383\) 11.9889i 0.612604i −0.951934 0.306302i \(-0.900908\pi\)
0.951934 0.306302i \(-0.0990918\pi\)
\(384\) 5.33240 + 6.46423i 0.272118 + 0.329877i
\(385\) 0 0
\(386\) −12.7625 20.9412i −0.649594 1.06588i
\(387\) −4.64579 −0.236159
\(388\) 6.71584 13.0228i 0.340945 0.661131i
\(389\) 13.7371 0.696496 0.348248 0.937402i \(-0.386777\pi\)
0.348248 + 0.937402i \(0.386777\pi\)
\(390\) −4.29036 + 2.61473i −0.217251 + 0.132402i
\(391\) 0.371508 0.0187880
\(392\) −0.875034 12.2680i −0.0441959 0.619628i
\(393\) 1.38335i 0.0697807i
\(394\) −2.56953 4.21619i −0.129451 0.212409i
\(395\) −8.09663 −0.407386
\(396\) 0 0
\(397\) −12.1547 −0.610027 −0.305014 0.952348i \(-0.598661\pi\)
−0.305014 + 0.952348i \(0.598661\pi\)
\(398\) 8.29149 + 13.6050i 0.415615 + 0.681958i
\(399\) 9.59030i 0.480115i
\(400\) 7.37977 + 10.3691i 0.368989 + 0.518456i
\(401\) −28.7805 −1.43723 −0.718614 0.695409i \(-0.755223\pi\)
−0.718614 + 0.695409i \(0.755223\pi\)
\(402\) −4.39448 + 2.67819i −0.219177 + 0.133576i
\(403\) 13.1400 0.654551
\(404\) 17.0159 + 8.77510i 0.846574 + 0.436578i
\(405\) −5.88388 −0.292373
\(406\) 4.71741 + 7.74052i 0.234121 + 0.384156i
\(407\) 0 0
\(408\) 0.0104281 + 0.146203i 0.000516269 + 0.00723811i
\(409\) 18.9552i 0.937276i −0.883390 0.468638i \(-0.844745\pi\)
0.883390 0.468638i \(-0.155255\pi\)
\(410\) −5.74226 9.42215i −0.283590 0.465327i
\(411\) 0.929159i 0.0458320i
\(412\) 18.3470 + 9.46152i 0.903891 + 0.466136i
\(413\) 7.91649i 0.389545i
\(414\) −9.57991 15.7191i −0.470827 0.772552i
\(415\) −4.87038 −0.239077
\(416\) −7.92731 + 18.4955i −0.388668 + 0.906816i
\(417\) 4.65970i 0.228186i
\(418\) 0 0
\(419\) 15.3705i 0.750898i 0.926843 + 0.375449i \(0.122512\pi\)
−0.926843 + 0.375449i \(0.877488\pi\)
\(420\) 2.89086 + 1.49081i 0.141059 + 0.0727442i
\(421\) 19.3208 0.941640 0.470820 0.882229i \(-0.343958\pi\)
0.470820 + 0.882229i \(0.343958\pi\)
\(422\) 3.31244 2.01874i 0.161247 0.0982709i
\(423\) 24.0369i 1.16871i
\(424\) −0.782315 10.9681i −0.0379926 0.532657i
\(425\) 0.222615i 0.0107984i
\(426\) 6.23932 3.80251i 0.302296 0.184232i
\(427\) 2.19182i 0.106070i
\(428\) 10.1542 19.6902i 0.490824 0.951763i
\(429\) 0 0
\(430\) −3.08602 + 1.88075i −0.148821 + 0.0906980i
\(431\) 27.1040 1.30555 0.652777 0.757550i \(-0.273604\pi\)
0.652777 + 0.757550i \(0.273604\pi\)
\(432\) 13.1585 9.36502i 0.633090 0.450575i
\(433\) 4.35614 0.209343 0.104671 0.994507i \(-0.466621\pi\)
0.104671 + 0.994507i \(0.466621\pi\)
\(434\) −4.42689 7.26383i −0.212498 0.348675i
\(435\) 3.93133 0.188493
\(436\) 15.9257 + 8.21287i 0.762702 + 0.393325i
\(437\) 42.2217i 2.01974i
\(438\) −9.05382 + 5.51779i −0.432608 + 0.263650i
\(439\) −24.0996 −1.15021 −0.575105 0.818080i \(-0.695039\pi\)
−0.575105 + 0.818080i \(0.695039\pi\)
\(440\) 0 0
\(441\) −10.6597 −0.507605
\(442\) −0.300556 + 0.183172i −0.0142960 + 0.00871261i
\(443\) 23.0448i 1.09489i 0.836841 + 0.547446i \(0.184400\pi\)
−0.836841 + 0.547446i \(0.815600\pi\)
\(444\) −9.05630 4.67033i −0.429793 0.221644i
\(445\) 7.27754 0.344989
\(446\) 17.4616 + 28.6517i 0.826829 + 1.35670i
\(447\) 12.7068 0.601011
\(448\) 12.8951 1.84893i 0.609235 0.0873536i
\(449\) −3.77349 −0.178082 −0.0890409 0.996028i \(-0.528380\pi\)
−0.0890409 + 0.996028i \(0.528380\pi\)
\(450\) 9.41920 5.74046i 0.444025 0.270608i
\(451\) 0 0
\(452\) 10.1047 19.5941i 0.475283 0.921628i
\(453\) 9.00535i 0.423108i
\(454\) 0.967108 0.589397i 0.0453886 0.0276618i
\(455\) 7.81068i 0.366170i
\(456\) 16.6158 1.18515i 0.778108 0.0554997i
\(457\) 35.2571i 1.64926i 0.565674 + 0.824629i \(0.308616\pi\)
−0.565674 + 0.824629i \(0.691384\pi\)
\(458\) 28.4864 17.3609i 1.33108 0.811220i
\(459\) 0.282501 0.0131860
\(460\) −12.7271 6.56337i −0.593405 0.306019i
\(461\) 38.5074i 1.79347i 0.442571 + 0.896734i \(0.354067\pi\)
−0.442571 + 0.896734i \(0.645933\pi\)
\(462\) 0 0
\(463\) 10.7672i 0.500394i 0.968195 + 0.250197i \(0.0804954\pi\)
−0.968195 + 0.250197i \(0.919505\pi\)
\(464\) 12.8280 9.12979i 0.595525 0.423840i
\(465\) −3.68922 −0.171084
\(466\) 12.8733 + 21.1231i 0.596344 + 0.978507i
\(467\) 20.6799i 0.956950i 0.878101 + 0.478475i \(0.158810\pi\)
−0.878101 + 0.478475i \(0.841190\pi\)
\(468\) 15.5006 + 7.99366i 0.716516 + 0.369507i
\(469\) 8.00023i 0.369416i
\(470\) 9.73082 + 15.9667i 0.448849 + 0.736491i
\(471\) 3.92686i 0.180940i
\(472\) −13.7159 + 0.978304i −0.631323 + 0.0450301i
\(473\) 0 0
\(474\) −3.27320 5.37080i −0.150343 0.246689i
\(475\) 25.3000 1.16085
\(476\) 0.202516 + 0.104437i 0.00928230 + 0.00478688i
\(477\) −9.53019 −0.436358
\(478\) −8.07289 + 4.91997i −0.369245 + 0.225034i
\(479\) −11.4138 −0.521511 −0.260756 0.965405i \(-0.583972\pi\)
−0.260756 + 0.965405i \(0.583972\pi\)
\(480\) 2.22569 5.19284i 0.101588 0.237019i
\(481\) 24.4688i 1.11568i
\(482\) 3.15479 + 5.17652i 0.143697 + 0.235784i
\(483\) 6.40421 0.291401
\(484\) 0 0
\(485\) −9.87880 −0.448573
\(486\) −11.2936 18.5311i −0.512290 0.840586i
\(487\) 4.00496i 0.181482i 0.995875 + 0.0907410i \(0.0289235\pi\)
−0.995875 + 0.0907410i \(0.971076\pi\)
\(488\) −3.79748 + 0.270861i −0.171904 + 0.0122613i
\(489\) −7.44938 −0.336873
\(490\) −7.08082 + 4.31536i −0.319879 + 0.194948i
\(491\) 11.1940 0.505179 0.252589 0.967574i \(-0.418718\pi\)
0.252589 + 0.967574i \(0.418718\pi\)
\(492\) 3.92866 7.61812i 0.177118 0.343451i
\(493\) 0.275405 0.0124036
\(494\) 20.8174 + 34.1581i 0.936619 + 1.53684i
\(495\) 0 0
\(496\) −12.0380 + 8.56754i −0.540523 + 0.384694i
\(497\) 11.3588i 0.509512i
\(498\) −1.96893 3.23070i −0.0882298 0.144771i
\(499\) 39.3656i 1.76224i 0.472888 + 0.881122i \(0.343211\pi\)
−0.472888 + 0.881122i \(0.656789\pi\)
\(500\) 10.1132 19.6107i 0.452278 0.877018i
\(501\) 16.2265i 0.724944i
\(502\) 3.60456 + 5.91452i 0.160880 + 0.263978i
\(503\) −19.3369 −0.862191 −0.431096 0.902306i \(-0.641873\pi\)
−0.431096 + 0.902306i \(0.641873\pi\)
\(504\) −0.803269 11.2619i −0.0357804 0.501643i
\(505\) 12.9079i 0.574395i
\(506\) 0 0
\(507\) 0.256336i 0.0113843i
\(508\) 9.43482 18.2952i 0.418602 0.811718i
\(509\) −42.9965 −1.90579 −0.952893 0.303306i \(-0.901910\pi\)
−0.952893 + 0.303306i \(0.901910\pi\)
\(510\) 0.0843849 0.0514278i 0.00373663 0.00227726i
\(511\) 16.4827i 0.729150i
\(512\) −4.79694 22.1131i −0.211997 0.977270i
\(513\) 32.1061i 1.41752i
\(514\) 14.9555 9.11453i 0.659659 0.402025i
\(515\) 13.9176i 0.613284i
\(516\) −2.49515 1.28675i −0.109843 0.0566458i
\(517\) 0 0
\(518\) −13.5264 + 8.24359i −0.594317 + 0.362202i
\(519\) −8.76383 −0.384689
\(520\) 13.5325 0.965228i 0.593440 0.0423280i
\(521\) −14.7313 −0.645389 −0.322694 0.946503i \(-0.604589\pi\)
−0.322694 + 0.946503i \(0.604589\pi\)
\(522\) −7.10174 11.6528i −0.310835 0.510031i
\(523\) 40.4528 1.76888 0.884440 0.466655i \(-0.154541\pi\)
0.884440 + 0.466655i \(0.154541\pi\)
\(524\) −1.71207 + 3.31991i −0.0747923 + 0.145031i
\(525\) 3.83752i 0.167483i
\(526\) −20.4677 + 12.4739i −0.892436 + 0.543889i
\(527\) −0.258445 −0.0112580
\(528\) 0 0
\(529\) −5.19479 −0.225860
\(530\) −6.33054 + 3.85810i −0.274981 + 0.167585i
\(531\) 11.9177i 0.517186i
\(532\) 11.8692 23.0158i 0.514597 0.997862i
\(533\) 20.5830 0.891551
\(534\) 2.94206 + 4.82746i 0.127316 + 0.208905i
\(535\) −14.9366 −0.645765
\(536\) 13.8609 0.988653i 0.598702 0.0427033i
\(537\) −0.691551 −0.0298426
\(538\) −4.77584 + 2.91060i −0.205901 + 0.125485i
\(539\) 0 0
\(540\) −9.67791 4.99089i −0.416471 0.214774i
\(541\) 16.7350i 0.719496i 0.933050 + 0.359748i \(0.117137\pi\)
−0.933050 + 0.359748i \(0.882863\pi\)
\(542\) 28.6658 17.4702i 1.23130 0.750408i
\(543\) 13.9539i 0.598821i
\(544\) 0.155918 0.363779i 0.00668494 0.0155969i
\(545\) 12.0809i 0.517489i
\(546\) −5.18111 + 3.15759i −0.221731 + 0.135133i
\(547\) −9.29004 −0.397214 −0.198607 0.980079i \(-0.563642\pi\)
−0.198607 + 0.980079i \(0.563642\pi\)
\(548\) −1.14996 + 2.22989i −0.0491237 + 0.0952564i
\(549\) 3.29964i 0.140825i
\(550\) 0 0
\(551\) 31.2996i 1.33341i
\(552\) −0.791419 11.0957i −0.0336850 0.472265i
\(553\) −9.77764 −0.415787
\(554\) −11.0478 18.1276i −0.469375 0.770170i
\(555\) 6.86992i 0.291612i
\(556\) −5.76698 + 11.1828i −0.244575 + 0.474258i
\(557\) 13.2620i 0.561928i 0.959718 + 0.280964i \(0.0906541\pi\)
−0.959718 + 0.280964i \(0.909346\pi\)
\(558\) 6.66439 + 10.9352i 0.282126 + 0.462924i
\(559\) 6.74153i 0.285136i
\(560\) −5.09271 7.15563i −0.215206 0.302380i
\(561\) 0 0
\(562\) −4.22549 6.93336i −0.178241 0.292466i
\(563\) 23.5044 0.990594 0.495297 0.868724i \(-0.335059\pi\)
0.495297 + 0.868724i \(0.335059\pi\)
\(564\) −6.65749 + 12.9096i −0.280331 + 0.543594i
\(565\) −14.8637 −0.625319
\(566\) 13.5190 8.23907i 0.568246 0.346314i
\(567\) −7.10549 −0.298402
\(568\) −19.6799 + 1.40370i −0.825750 + 0.0588979i
\(569\) 12.8798i 0.539950i 0.962867 + 0.269975i \(0.0870154\pi\)
−0.962867 + 0.269975i \(0.912985\pi\)
\(570\) −5.84474 9.59030i −0.244809 0.401693i
\(571\) −20.4261 −0.854806 −0.427403 0.904061i \(-0.640571\pi\)
−0.427403 + 0.904061i \(0.640571\pi\)
\(572\) 0 0
\(573\) 15.1424 0.632585
\(574\) −6.93446 11.3784i −0.289439 0.474923i
\(575\) 16.8949i 0.704564i
\(576\) −19.4127 + 2.78344i −0.808861 + 0.115976i
\(577\) 6.84506 0.284963 0.142482 0.989797i \(-0.454492\pi\)
0.142482 + 0.989797i \(0.454492\pi\)
\(578\) −20.5236 + 12.5080i −0.853669 + 0.520263i
\(579\) −12.8440 −0.533779
\(580\) −9.43482 4.86553i −0.391759 0.202030i
\(581\) −5.88155 −0.244008
\(582\) −3.99367 6.55298i −0.165543 0.271630i
\(583\) 0 0
\(584\) 28.5573 2.03689i 1.18171 0.0842873i
\(585\) 11.7584i 0.486152i
\(586\) −3.90280 6.40388i −0.161223 0.264542i
\(587\) 0.638798i 0.0263660i 0.999913 + 0.0131830i \(0.00419640\pi\)
−0.999913 + 0.0131830i \(0.995804\pi\)
\(588\) −5.72508 2.95242i −0.236098 0.121756i
\(589\) 29.3721i 1.21026i
\(590\) 4.82465 + 7.91649i 0.198628 + 0.325917i
\(591\) −2.58594 −0.106372
\(592\) 15.9541 + 22.4167i 0.655711 + 0.921321i
\(593\) 17.0480i 0.700077i −0.936735 0.350039i \(-0.886168\pi\)
0.936735 0.350039i \(-0.113832\pi\)
\(594\) 0 0
\(595\) 0.153624i 0.00629799i
\(596\) −30.4951 15.7263i −1.24913 0.644175i
\(597\) 8.34445 0.341516
\(598\) 22.8101 13.9014i 0.932773 0.568472i
\(599\) 1.98468i 0.0810916i 0.999178 + 0.0405458i \(0.0129097\pi\)
−0.999178 + 0.0405458i \(0.987090\pi\)
\(600\) 6.64877 0.474233i 0.271435 0.0193605i
\(601\) 16.4628i 0.671532i 0.941945 + 0.335766i \(0.108995\pi\)
−0.941945 + 0.335766i \(0.891005\pi\)
\(602\) −3.72673 + 2.27123i −0.151890 + 0.0925685i
\(603\) 12.0438i 0.490462i
\(604\) 11.1453 21.6120i 0.453496 0.879380i
\(605\) 0 0
\(606\) 8.56231 5.21824i 0.347820 0.211976i
\(607\) −28.7204 −1.16573 −0.582863 0.812571i \(-0.698067\pi\)
−0.582863 + 0.812571i \(0.698067\pi\)
\(608\) −41.3432 17.7200i −1.67669 0.718642i
\(609\) 4.74754 0.192380
\(610\) 1.33579 + 2.19182i 0.0540847 + 0.0887444i
\(611\) −34.8800 −1.41109
\(612\) −0.304874 0.157223i −0.0123238 0.00635538i
\(613\) 6.65378i 0.268744i −0.990931 0.134372i \(-0.957098\pi\)
0.990931 0.134372i \(-0.0429017\pi\)
\(614\) −2.74147 + 1.67077i −0.110637 + 0.0674267i
\(615\) −5.77894 −0.233029
\(616\) 0 0
\(617\) −17.8948 −0.720416 −0.360208 0.932872i \(-0.617294\pi\)
−0.360208 + 0.932872i \(0.617294\pi\)
\(618\) 9.23208 5.62643i 0.371369 0.226328i
\(619\) 23.2378i 0.934007i 0.884256 + 0.467003i \(0.154666\pi\)
−0.884256 + 0.467003i \(0.845334\pi\)
\(620\) 8.85379 + 4.56589i 0.355577 + 0.183371i
\(621\) −21.4398 −0.860349
\(622\) −14.8421 24.3535i −0.595112 0.976485i
\(623\) 8.78849 0.352103
\(624\) 6.11102 + 8.58642i 0.244636 + 0.343732i
\(625\) 1.03262 0.0413048
\(626\) −1.86201 + 1.13479i −0.0744208 + 0.0453552i
\(627\) 0 0
\(628\) −4.86001 + 9.42411i −0.193935 + 0.376063i
\(629\) 0.481265i 0.0191893i
\(630\) −6.50010 + 3.96144i −0.258970 + 0.157828i
\(631\) 46.3216i 1.84404i −0.387148 0.922018i \(-0.626540\pi\)
0.387148 0.922018i \(-0.373460\pi\)
\(632\) 1.20830 + 16.9404i 0.0480636 + 0.673854i
\(633\) 2.03164i 0.0807503i
\(634\) 20.3631 12.4102i 0.808723 0.492871i
\(635\) −13.8783 −0.550745
\(636\) −5.11845 2.63958i −0.202960 0.104666i
\(637\) 15.4683i 0.612877i
\(638\) 0 0
\(639\) 17.0999i 0.676462i
\(640\) −11.7683 + 9.70774i −0.465181 + 0.383732i
\(641\) 27.1756 1.07337 0.536687 0.843782i \(-0.319676\pi\)
0.536687 + 0.843782i \(0.319676\pi\)
\(642\) −6.03836 9.90800i −0.238315 0.391038i
\(643\) 31.0236i 1.22345i −0.791069 0.611726i \(-0.790475\pi\)
0.791069 0.611726i \(-0.209525\pi\)
\(644\) −15.3695 7.92604i −0.605643 0.312330i
\(645\) 1.89277i 0.0745276i
\(646\) −0.409447 0.671838i −0.0161095 0.0264331i
\(647\) 42.1713i 1.65793i 0.559303 + 0.828963i \(0.311069\pi\)
−0.559303 + 0.828963i \(0.688931\pi\)
\(648\) 0.878082 + 12.3107i 0.0344943 + 0.483611i
\(649\) 0 0
\(650\) 8.33001 + 13.6682i 0.326730 + 0.536112i
\(651\) −4.45517 −0.174612
\(652\) 17.8778 + 9.21959i 0.700150 + 0.361067i
\(653\) −4.04757 −0.158394 −0.0791969 0.996859i \(-0.525236\pi\)
−0.0791969 + 0.996859i \(0.525236\pi\)
\(654\) 8.01371 4.88390i 0.313361 0.190976i
\(655\) 2.51841 0.0984025
\(656\) −18.8568 + 13.4205i −0.736235 + 0.523984i
\(657\) 24.8135i 0.968068i
\(658\) 11.7511 + 19.2817i 0.458106 + 0.751680i
\(659\) 6.46292 0.251760 0.125880 0.992045i \(-0.459825\pi\)
0.125880 + 0.992045i \(0.459825\pi\)
\(660\) 0 0
\(661\) 26.6232 1.03552 0.517761 0.855525i \(-0.326766\pi\)
0.517761 + 0.855525i \(0.326766\pi\)
\(662\) 25.0037 + 41.0271i 0.971795 + 1.59456i
\(663\) 0.184342i 0.00715925i
\(664\) 0.726831 + 10.1902i 0.0282065 + 0.395456i
\(665\) −17.4593 −0.677043
\(666\) 20.3631 12.4102i 0.789055 0.480884i
\(667\) −20.9012 −0.809300
\(668\) −20.0824 + 38.9420i −0.777010 + 1.50671i
\(669\) 17.5731 0.679416
\(670\) −4.87569 8.00023i −0.188364 0.309076i
\(671\) 0 0
\(672\) 2.68778 6.27096i 0.103683 0.241908i
\(673\) 8.31993i 0.320710i 0.987059 + 0.160355i \(0.0512639\pi\)
−0.987059 + 0.160355i \(0.948736\pi\)
\(674\) 12.5820 + 20.6451i 0.484641 + 0.795219i
\(675\) 12.8471i 0.494486i
\(676\) 0.317250 0.615183i 0.0122019 0.0236609i
\(677\) 15.2629i 0.586602i −0.956020 0.293301i \(-0.905246\pi\)
0.956020 0.293301i \(-0.0947538\pi\)
\(678\) −6.00888 9.85962i −0.230769 0.378656i
\(679\) −11.9298 −0.457824
\(680\) −0.266165 + 0.0189846i −0.0102069 + 0.000728026i
\(681\) 0.593162i 0.0227300i
\(682\) 0 0
\(683\) 32.9156i 1.25948i 0.776806 + 0.629740i \(0.216839\pi\)
−0.776806 + 0.629740i \(0.783161\pi\)
\(684\) −17.8683 + 34.6488i −0.683213 + 1.32483i
\(685\) 1.69155 0.0646308
\(686\) −22.3161 + 13.6004i −0.852031 + 0.519265i
\(687\) 17.4718i 0.666589i
\(688\) 4.39560 + 6.17614i 0.167581 + 0.235463i
\(689\) 13.8293i 0.526854i
\(690\) −6.40421 + 3.90300i −0.243804 + 0.148585i
\(691\) 45.5175i 1.73157i −0.500419 0.865783i \(-0.666821\pi\)
0.500419 0.865783i \(-0.333179\pi\)
\(692\) 21.0324 + 10.8464i 0.799531 + 0.412318i
\(693\) 0 0
\(694\) 3.01794 1.83926i 0.114559 0.0698175i
\(695\) 8.48306 0.321781
\(696\) −0.586692 8.22544i −0.0222385 0.311784i
\(697\) −0.404838 −0.0153343
\(698\) −5.16011 8.46693i −0.195313 0.320478i
\(699\) 12.9555 0.490023
\(700\) 4.74944 9.20970i 0.179512 0.348094i
\(701\) 50.0843i 1.89166i 0.324665 + 0.945829i \(0.394748\pi\)
−0.324665 + 0.945829i \(0.605252\pi\)
\(702\) 17.3452 10.5709i 0.654651 0.398972i
\(703\) 54.6955 2.06288
\(704\) 0 0
\(705\) 9.79298 0.368825
\(706\) −21.6685 + 13.2057i −0.815504 + 0.497003i
\(707\) 15.5878i 0.586241i
\(708\) −3.30086 + 6.40074i −0.124054 + 0.240555i
\(709\) −8.49866 −0.319174 −0.159587 0.987184i \(-0.551016\pi\)
−0.159587 + 0.987184i \(0.551016\pi\)
\(710\) 6.92254 + 11.3588i 0.259798 + 0.426288i
\(711\) 14.7196 0.552027
\(712\) −1.08606 15.2267i −0.0407020 0.570643i
\(713\) 19.6141 0.734553
\(714\) 0.101905 0.0621052i 0.00381369 0.00232423i
\(715\) 0 0
\(716\) 1.65966 + 0.855885i 0.0620243 + 0.0319859i
\(717\) 4.95139i 0.184913i
\(718\) −11.6891 + 7.12384i −0.436233 + 0.265859i
\(719\) 7.29734i 0.272145i −0.990699 0.136072i \(-0.956552\pi\)
0.990699 0.136072i \(-0.0434480\pi\)
\(720\) 7.66673 + 10.7723i 0.285722 + 0.401460i
\(721\) 16.8072i 0.625932i
\(722\) −53.4093 + 32.5499i −1.98769 + 1.21138i
\(723\) 3.17494 0.118077
\(724\) 17.2698 33.4881i 0.641828 1.24458i
\(725\) 12.5244i 0.465146i
\(726\) 0 0
\(727\) 1.85004i 0.0686140i 0.999411 + 0.0343070i \(0.0109224\pi\)
−0.999411 + 0.0343070i \(0.989078\pi\)
\(728\) 16.3421 1.16563i 0.605679 0.0432010i
\(729\) 1.72491 0.0638855
\(730\) −10.0452 16.4827i −0.371791 0.610050i
\(731\) 0.132596i 0.00490423i
\(732\) −0.913903 + 1.77216i −0.0337788 + 0.0655010i
\(733\) 18.8938i 0.697857i 0.937149 + 0.348928i \(0.113454\pi\)
−0.937149 + 0.348928i \(0.886546\pi\)
\(734\) −22.7763 37.3723i −0.840689 1.37944i
\(735\) 4.34292i 0.160191i
\(736\) −11.8331 + 27.6082i −0.436173 + 1.01765i
\(737\) 0 0
\(738\) 10.4394 + 17.1293i 0.384278 + 0.630540i
\(739\) −15.7186 −0.578218 −0.289109 0.957296i \(-0.593359\pi\)
−0.289109 + 0.957296i \(0.593359\pi\)
\(740\) 8.50243 16.4872i 0.312555 0.606081i
\(741\) 20.9504 0.769631
\(742\) −7.64487 + 4.65911i −0.280652 + 0.171041i
\(743\) −5.80638 −0.213015 −0.106508 0.994312i \(-0.533967\pi\)
−0.106508 + 0.994312i \(0.533967\pi\)
\(744\) 0.550561 + 7.71888i 0.0201845 + 0.282988i
\(745\) 23.1330i 0.847526i
\(746\) 3.62583 + 5.94942i 0.132751 + 0.217824i
\(747\) 8.85428 0.323961
\(748\) 0 0
\(749\) −18.0377 −0.659083
\(750\) −6.01398 9.86799i −0.219599 0.360328i
\(751\) 3.00343i 0.109597i −0.998497 0.0547983i \(-0.982548\pi\)
0.998497 0.0547983i \(-0.0174516\pi\)
\(752\) 31.9547 22.7424i 1.16527 0.829330i
\(753\) 3.62759 0.132197
\(754\) 16.9095 10.3054i 0.615806 0.375299i
\(755\) −16.3944 −0.596654
\(756\) −11.6872 6.02709i −0.425060 0.219203i
\(757\) −26.0871 −0.948152 −0.474076 0.880484i \(-0.657218\pi\)
−0.474076 + 0.880484i \(0.657218\pi\)
\(758\) −2.96241 4.86085i −0.107600 0.176554i
\(759\) 0 0
\(760\) 2.15759 + 30.2495i 0.0782639 + 1.09726i
\(761\) 31.9526i 1.15828i 0.815228 + 0.579140i \(0.196612\pi\)
−0.815228 + 0.579140i \(0.803388\pi\)
\(762\) −5.61055 9.20602i −0.203249 0.333499i
\(763\) 14.5891i 0.528161i
\(764\) −36.3405 18.7408i −1.31475 0.678017i
\(765\) 0.231271i 0.00836162i
\(766\) 8.82353 + 14.4780i 0.318807 + 0.523112i
\(767\) −17.2939 −0.624446
\(768\) −11.1970 3.88181i −0.404038 0.140073i
\(769\) 22.3560i 0.806176i 0.915161 + 0.403088i \(0.132063\pi\)
−0.915161 + 0.403088i \(0.867937\pi\)
\(770\) 0 0
\(771\) 9.17275i 0.330348i
\(772\) 30.8244 + 15.8961i 1.10940 + 0.572115i
\(773\) 5.07704 0.182608 0.0913042 0.995823i \(-0.470896\pi\)
0.0913042 + 0.995823i \(0.470896\pi\)
\(774\) 5.61034 3.41919i 0.201660 0.122900i
\(775\) 11.7531i 0.422185i
\(776\) 1.47426 + 20.6692i 0.0529230 + 0.741982i
\(777\) 8.29624i 0.297626i
\(778\) −16.5891 + 10.1101i −0.594749 + 0.362465i
\(779\) 46.0096i 1.64846i
\(780\) 3.25674 6.31519i 0.116610 0.226120i
\(781\) 0 0
\(782\) −0.448640 + 0.273421i −0.0160433 + 0.00977750i
\(783\) −15.8937 −0.567993
\(784\) 10.0856 + 14.1711i 0.360202 + 0.506109i
\(785\) 7.14893 0.255156
\(786\) 1.01811 + 1.67056i 0.0363147 + 0.0595867i
\(787\) −2.94375 −0.104933 −0.0524667 0.998623i \(-0.516708\pi\)
−0.0524667 + 0.998623i \(0.516708\pi\)
\(788\) 6.20602 + 3.20044i 0.221080 + 0.114011i
\(789\) 12.5536i 0.446920i
\(790\) 9.77764 5.95891i 0.347873 0.212009i
\(791\) −17.9496 −0.638215
\(792\) 0 0
\(793\) −4.78812 −0.170031
\(794\) 14.6782 8.94556i 0.520911 0.317466i
\(795\) 3.88275i 0.137707i
\(796\) −20.0259 10.3273i −0.709799 0.366043i
\(797\) 7.49194 0.265378 0.132689 0.991158i \(-0.457639\pi\)
0.132689 + 0.991158i \(0.457639\pi\)
\(798\) −7.05822 11.5814i −0.249858 0.409978i
\(799\) 0.686037 0.0242702
\(800\) −16.5434 7.09060i −0.584896 0.250691i
\(801\) −13.2305 −0.467476
\(802\) 34.7558 21.1817i 1.22727 0.747952i
\(803\) 0 0
\(804\) 3.33578 6.46845i 0.117644 0.228125i
\(805\) 11.6590i 0.410925i
\(806\) −15.8681 + 9.67072i −0.558931 + 0.340637i
\(807\) 2.92919i 0.103112i
\(808\) −27.0070 + 1.92631i −0.950103 + 0.0677675i
\(809\) 39.8260i 1.40021i 0.714041 + 0.700104i \(0.246863\pi\)
−0.714041 + 0.700104i \(0.753137\pi\)
\(810\) 7.10549 4.33039i 0.249661 0.152154i
\(811\) 42.6481 1.49758 0.748788 0.662809i \(-0.230636\pi\)
0.748788 + 0.662809i \(0.230636\pi\)
\(812\) −11.3937 5.87570i −0.399839 0.206197i
\(813\) 17.5818i 0.616619i
\(814\) 0 0
\(815\) 13.5617i 0.475047i
\(816\) −0.120195 0.168882i −0.00420765 0.00591205i
\(817\) 15.0694 0.527213
\(818\) 13.9506 + 22.8907i 0.487770 + 0.800354i
\(819\) 14.1997i 0.496178i
\(820\) 13.8689 + 7.15220i 0.484324 + 0.249766i
\(821\) 19.3110i 0.673958i −0.941512 0.336979i \(-0.890595\pi\)
0.941512 0.336979i \(-0.109405\pi\)
\(822\) 0.683837 + 1.12207i 0.0238516 + 0.0391366i
\(823\) 9.91929i 0.345765i 0.984942 + 0.172882i \(0.0553080\pi\)
−0.984942 + 0.172882i \(0.944692\pi\)
\(824\) −29.1196 + 2.07700i −1.01443 + 0.0723557i
\(825\) 0 0
\(826\) 5.82633 + 9.56010i 0.202724 + 0.332638i
\(827\) −43.6308 −1.51719 −0.758596 0.651562i \(-0.774114\pi\)
−0.758596 + 0.651562i \(0.774114\pi\)
\(828\) 23.1377 + 11.9321i 0.804092 + 0.414670i
\(829\) −28.1496 −0.977677 −0.488838 0.872374i \(-0.662579\pi\)
−0.488838 + 0.872374i \(0.662579\pi\)
\(830\) 5.88155 3.58447i 0.204152 0.124419i
\(831\) −11.1183 −0.385691
\(832\) −4.03905 28.1698i −0.140029 0.976611i
\(833\) 0.304239i 0.0105413i
\(834\) 3.42942 + 5.62713i 0.118751 + 0.194852i
\(835\) 29.5406 1.02229
\(836\) 0 0
\(837\) 14.9149 0.515533
\(838\) −11.3123 18.5617i −0.390777 0.641203i
\(839\) 34.9528i 1.20670i −0.797475 0.603352i \(-0.793831\pi\)
0.797475 0.603352i \(-0.206169\pi\)
\(840\) −4.58825 + 0.327264i −0.158310 + 0.0112917i
\(841\) 13.5056 0.465709
\(842\) −23.3322 + 14.2196i −0.804081 + 0.490041i
\(843\) −4.25248 −0.146463
\(844\) −2.51442 + 4.87574i −0.0865498 + 0.167830i
\(845\) −0.466665 −0.0160538
\(846\) −17.6905 29.0273i −0.608212 0.997980i
\(847\) 0 0
\(848\) 9.01697 + 12.6695i 0.309644 + 0.435072i
\(849\) 8.29170i 0.284570i
\(850\) −0.163839 0.268834i −0.00561963 0.00922092i
\(851\) 36.5246i 1.25205i
\(852\) −4.73617 + 9.18396i −0.162258 + 0.314637i
\(853\) 27.2162i 0.931864i −0.884821 0.465932i \(-0.845719\pi\)
0.884821 0.465932i \(-0.154281\pi\)
\(854\) 1.61313 + 2.64689i 0.0552001 + 0.0905746i
\(855\) 26.2838 0.898888
\(856\) 2.22906 + 31.2515i 0.0761878 + 1.06816i
\(857\) 37.5541i 1.28282i 0.767197 + 0.641412i \(0.221651\pi\)
−0.767197 + 0.641412i \(0.778349\pi\)
\(858\) 0 0
\(859\) 4.50293i 0.153638i −0.997045 0.0768190i \(-0.975524\pi\)
0.997045 0.0768190i \(-0.0244764\pi\)
\(860\) 2.34255 4.54246i 0.0798801 0.154897i
\(861\) −6.97876 −0.237835
\(862\) −32.7313 + 19.9478i −1.11483 + 0.679426i
\(863\) 18.0361i 0.613958i −0.951716 0.306979i \(-0.900682\pi\)
0.951716 0.306979i \(-0.0993181\pi\)
\(864\) −8.99807 + 20.9937i −0.306120 + 0.714221i
\(865\) 15.9547i 0.542477i
\(866\) −5.26055 + 3.20601i −0.178761 + 0.108945i
\(867\) 12.5879i 0.427506i
\(868\) 10.6920 + 5.51386i 0.362910 + 0.187152i
\(869\) 0 0
\(870\) −4.74754 + 2.89336i −0.160957 + 0.0980940i
\(871\) 17.4768 0.592179
\(872\) −25.2766 + 1.80289i −0.855974 + 0.0610536i
\(873\) 17.9595 0.607838
\(874\) 31.0741 + 50.9877i 1.05110 + 1.72468i
\(875\) −17.9649 −0.607323
\(876\) 6.87261 13.3268i 0.232204 0.450270i
\(877\) 13.6207i 0.459939i 0.973198 + 0.229970i \(0.0738627\pi\)
−0.973198 + 0.229970i \(0.926137\pi\)
\(878\) 29.1031 17.7367i 0.982181 0.598583i
\(879\) −3.92773 −0.132479
\(880\) 0 0
\(881\) 5.44549 0.183463 0.0917317 0.995784i \(-0.470760\pi\)
0.0917317 + 0.995784i \(0.470760\pi\)
\(882\) 12.8728 7.84527i 0.433451 0.264164i
\(883\) 28.2297i 0.950005i −0.879985 0.475002i \(-0.842447\pi\)
0.879985 0.475002i \(-0.157553\pi\)
\(884\) 0.228147 0.442404i 0.00767343 0.0148797i
\(885\) 4.85547 0.163215
\(886\) −16.9604 27.8293i −0.569796 0.934945i
\(887\) −42.4394 −1.42498 −0.712488 0.701684i \(-0.752432\pi\)
−0.712488 + 0.701684i \(0.752432\pi\)
\(888\) 14.3738 1.02523i 0.482353 0.0344046i
\(889\) −16.7597 −0.562104
\(890\) −8.78849 + 5.35608i −0.294591 + 0.179536i
\(891\) 0 0
\(892\) −42.1738 21.7490i −1.41208 0.728211i
\(893\) 77.9677i 2.60909i
\(894\) −15.3450 + 9.35188i −0.513212 + 0.312774i
\(895\) 1.25898i 0.0420831i
\(896\) −14.2116 + 11.7232i −0.474775 + 0.391646i
\(897\) 13.9902i 0.467120i
\(898\) 4.55693 2.77719i 0.152067 0.0926760i
\(899\) 14.5402 0.484944
\(900\) −7.14996 + 13.8646i −0.238332 + 0.462153i
\(901\) 0.272002i 0.00906169i
\(902\) 0 0
\(903\) 2.28574i 0.0760646i
\(904\) 2.21818 + 31.0989i 0.0737755 + 1.03434i
\(905\) −25.4034 −0.844438
\(906\) −6.62771 10.8750i −0.220191 0.361298i
\(907\) 34.6899i 1.15186i −0.817500 0.575929i \(-0.804640\pi\)
0.817500 0.575929i \(-0.195360\pi\)
\(908\) −0.734116 + 1.42353i −0.0243625 + 0.0472416i
\(909\) 23.4664i 0.778333i
\(910\) −5.74846 9.43231i −0.190560 0.312678i
\(911\) 29.6674i 0.982924i −0.870899 0.491462i \(-0.836463\pi\)
0.870899 0.491462i \(-0.163537\pi\)
\(912\) −19.1933 + 13.6600i −0.635555 + 0.452329i
\(913\) 0 0
\(914\) −25.9483 42.5771i −0.858294 1.40833i
\(915\) 1.34432 0.0444420
\(916\) −21.6236 + 41.9306i −0.714463 + 1.38543i
\(917\) 3.04128 0.100432
\(918\) −0.341153 + 0.207914i −0.0112597 + 0.00686217i
\(919\) 21.6093 0.712825 0.356412 0.934329i \(-0.384000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(920\) 20.2000 1.44079i 0.665973 0.0475016i
\(921\) 1.68144i 0.0554054i
\(922\) −28.3405 46.5022i −0.933343 1.53147i
\(923\) −24.8137 −0.816754
\(924\) 0 0
\(925\) 21.8862 0.719614
\(926\) −7.92438 13.0027i −0.260411 0.427294i
\(927\) 25.3021i 0.831029i
\(928\) −8.77205 + 20.4664i −0.287957 + 0.671842i
\(929\) 47.2208 1.54926 0.774632 0.632412i \(-0.217935\pi\)
0.774632 + 0.632412i \(0.217935\pi\)
\(930\) 4.45517 2.71517i 0.146091 0.0890340i
\(931\) 34.5766 1.13320
\(932\) −31.0921 16.0342i −1.01845 0.525217i
\(933\) −14.9369 −0.489011
\(934\) −15.2199 24.9734i −0.498009 0.817154i
\(935\) 0 0
\(936\) −24.6020 + 1.75477i −0.804140 + 0.0573565i
\(937\) 46.3875i 1.51541i −0.652595 0.757707i \(-0.726320\pi\)
0.652595 0.757707i \(-0.273680\pi\)
\(938\) −5.88797 9.66123i −0.192249 0.315450i
\(939\) 1.14204i 0.0372689i
\(940\) −23.5022 12.1201i −0.766558 0.395314i
\(941\) 39.4205i 1.28507i 0.766255 + 0.642536i \(0.222118\pi\)
−0.766255 + 0.642536i \(0.777882\pi\)
\(942\) 2.89007 + 4.74215i 0.0941636 + 0.154508i
\(943\) 30.7243 1.00052
\(944\) 15.8435 11.2759i 0.515662 0.367000i
\(945\) 8.86568i 0.288401i
\(946\) 0 0
\(947\) 24.9488i 0.810725i −0.914156 0.405363i \(-0.867145\pi\)
0.914156 0.405363i \(-0.132855\pi\)
\(948\) 7.90554 + 4.07688i 0.256760 + 0.132411i
\(949\) 36.0070 1.16884
\(950\) −30.5528 + 18.6202i −0.991264 + 0.604119i
\(951\) 12.4894i 0.404998i
\(952\) −0.321425 + 0.0229261i −0.0104175 + 0.000743040i
\(953\) 40.9113i 1.32525i 0.748952 + 0.662624i \(0.230557\pi\)
−0.748952 + 0.662624i \(0.769443\pi\)
\(954\) 11.5088 7.01398i 0.372612 0.227086i
\(955\) 27.5671i 0.892051i
\(956\) 6.12800 11.8829i 0.198194 0.384320i
\(957\) 0 0
\(958\) 13.7835 8.40029i 0.445326 0.271401i
\(959\) 2.04275 0.0659638
\(960\) 1.13401 + 7.90901i 0.0366001 + 0.255262i
\(961\) 17.3552 0.559845
\(962\) 18.0084 + 29.5490i 0.580615 + 0.952698i
\(963\) 27.1545 0.875043
\(964\) −7.61957 3.92941i −0.245410 0.126558i
\(965\) 23.3828i 0.752718i
\(966\) −7.73384 + 4.71333i −0.248832 + 0.151649i
\(967\) −23.6696 −0.761164 −0.380582 0.924747i \(-0.624276\pi\)
−0.380582 + 0.924747i \(0.624276\pi\)
\(968\) 0 0
\(969\) −0.412063 −0.0132374
\(970\) 11.9298 7.27055i 0.383043 0.233443i
\(971\) 53.9321i 1.73076i −0.501112 0.865382i \(-0.667076\pi\)
0.501112 0.865382i \(-0.332924\pi\)
\(972\) 27.2768 + 14.0666i 0.874903 + 0.451187i
\(973\) 10.2443 0.328417
\(974\) −2.94755 4.83646i −0.0944455 0.154970i
\(975\) 8.38321 0.268478
\(976\) 4.38656 3.12195i 0.140410 0.0999311i
\(977\) −9.59586 −0.306999 −0.153499 0.988149i \(-0.549054\pi\)
−0.153499 + 0.988149i \(0.549054\pi\)
\(978\) 8.99601 5.48256i 0.287661 0.175313i
\(979\) 0 0
\(980\) 5.37494 10.4226i 0.171696 0.332938i
\(981\) 21.9629i 0.701222i
\(982\) −13.5181 + 8.23851i −0.431380 + 0.262901i
\(983\) 35.3025i 1.12597i 0.826466 + 0.562987i \(0.190348\pi\)
−0.826466 + 0.562987i \(0.809652\pi\)
\(984\) 0.862421 + 12.0912i 0.0274930 + 0.385452i
\(985\) 4.70776i 0.150002i
\(986\) −0.332584 + 0.202691i −0.0105916 + 0.00645500i
\(987\) 11.8262 0.376431
\(988\) −50.2789 25.9288i −1.59959 0.824906i
\(989\) 10.0631i 0.319987i
\(990\) 0 0
\(991\) 17.8021i 0.565502i −0.959193 0.282751i \(-0.908753\pi\)
0.959193 0.282751i \(-0.0912471\pi\)
\(992\) 8.23183 19.2060i 0.261361 0.609791i
\(993\) 25.1634 0.798536
\(994\) 8.35979 + 13.7171i 0.265156 + 0.435080i
\(995\) 15.1912i 0.481594i
\(996\) 4.75543 + 2.45237i 0.150682 + 0.0777064i
\(997\) 62.9390i 1.99330i −0.0817877 0.996650i \(-0.526063\pi\)
0.0817877 0.996650i \(-0.473937\pi\)
\(998\) −28.9721 47.5386i −0.917094 1.50481i
\(999\) 27.7739i 0.878727i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.c.d.483.4 16
4.3 odd 2 inner 484.2.c.d.483.14 16
11.2 odd 10 44.2.g.a.7.1 16
11.3 even 5 484.2.g.f.475.3 16
11.4 even 5 484.2.g.j.215.1 16
11.5 even 5 44.2.g.a.19.3 yes 16
11.6 odd 10 484.2.g.i.239.2 16
11.7 odd 10 484.2.g.f.215.4 16
11.8 odd 10 484.2.g.j.475.2 16
11.9 even 5 484.2.g.i.403.4 16
11.10 odd 2 inner 484.2.c.d.483.13 16
33.2 even 10 396.2.r.a.271.4 16
33.5 odd 10 396.2.r.a.19.2 16
44.3 odd 10 484.2.g.f.475.4 16
44.7 even 10 484.2.g.f.215.3 16
44.15 odd 10 484.2.g.j.215.2 16
44.19 even 10 484.2.g.j.475.1 16
44.27 odd 10 44.2.g.a.19.1 yes 16
44.31 odd 10 484.2.g.i.403.2 16
44.35 even 10 44.2.g.a.7.3 yes 16
44.39 even 10 484.2.g.i.239.4 16
44.43 even 2 inner 484.2.c.d.483.3 16
88.5 even 10 704.2.u.c.63.3 16
88.13 odd 10 704.2.u.c.447.2 16
88.27 odd 10 704.2.u.c.63.2 16
88.35 even 10 704.2.u.c.447.3 16
132.35 odd 10 396.2.r.a.271.2 16
132.71 even 10 396.2.r.a.19.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.7.1 16 11.2 odd 10
44.2.g.a.7.3 yes 16 44.35 even 10
44.2.g.a.19.1 yes 16 44.27 odd 10
44.2.g.a.19.3 yes 16 11.5 even 5
396.2.r.a.19.2 16 33.5 odd 10
396.2.r.a.19.4 16 132.71 even 10
396.2.r.a.271.2 16 132.35 odd 10
396.2.r.a.271.4 16 33.2 even 10
484.2.c.d.483.3 16 44.43 even 2 inner
484.2.c.d.483.4 16 1.1 even 1 trivial
484.2.c.d.483.13 16 11.10 odd 2 inner
484.2.c.d.483.14 16 4.3 odd 2 inner
484.2.g.f.215.3 16 44.7 even 10
484.2.g.f.215.4 16 11.7 odd 10
484.2.g.f.475.3 16 11.3 even 5
484.2.g.f.475.4 16 44.3 odd 10
484.2.g.i.239.2 16 11.6 odd 10
484.2.g.i.239.4 16 44.39 even 10
484.2.g.i.403.2 16 44.31 odd 10
484.2.g.i.403.4 16 11.9 even 5
484.2.g.j.215.1 16 11.4 even 5
484.2.g.j.215.2 16 44.15 odd 10
484.2.g.j.475.1 16 44.19 even 10
484.2.g.j.475.2 16 11.8 odd 10
704.2.u.c.63.2 16 88.27 odd 10
704.2.u.c.63.3 16 88.5 even 10
704.2.u.c.447.2 16 88.13 odd 10
704.2.u.c.447.3 16 88.35 even 10