Properties

Label 484.2.g.j.475.2
Level $484$
Weight $2$
Character 484.475
Analytic conductor $3.865$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,2,Mod(215,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.215");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.g (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 475.2
Root \(-0.544389 - 1.30524i\) of defining polynomial
Character \(\chi\) \(=\) 484.475
Dual form 484.2.g.j.215.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.326779 - 1.37594i) q^{2} +(-0.435358 - 0.599219i) q^{3} +(-1.78643 + 0.899257i) q^{4} +(-0.416683 - 1.28242i) q^{5} +(-0.682225 + 0.794840i) q^{6} +(-1.31738 - 0.957131i) q^{7} +(1.82109 + 2.16417i) q^{8} +(0.757524 - 2.33142i) q^{9} +O(q^{10})\) \(q+(-0.326779 - 1.37594i) q^{2} +(-0.435358 - 0.599219i) q^{3} +(-1.78643 + 0.899257i) q^{4} +(-0.416683 - 1.28242i) q^{5} +(-0.682225 + 0.794840i) q^{6} +(-1.31738 - 0.957131i) q^{7} +(1.82109 + 2.16417i) q^{8} +(0.757524 - 2.33142i) q^{9} +(-1.62837 + 0.992398i) q^{10} +(1.31659 + 0.678965i) q^{12} +(-3.38313 - 1.09925i) q^{13} +(-0.886465 + 2.12541i) q^{14} +(-0.587043 + 0.807995i) q^{15} +(2.38267 - 3.21292i) q^{16} +(-0.0665412 + 0.0216205i) q^{17} +(-3.45544 - 0.280450i) q^{18} +(-6.43293 + 4.67380i) q^{19} +(1.89760 + 1.91625i) q^{20} +1.20609i q^{21} +5.30988i q^{23} +(0.503982 - 2.03342i) q^{24} +(2.57411 - 1.87020i) q^{25} +(-0.406962 + 5.01420i) q^{26} +(-3.84010 + 1.24772i) q^{27} +(3.21411 + 0.525187i) q^{28} +(-2.31370 + 3.18453i) q^{29} +(1.30359 + 0.543701i) q^{30} +(-3.51309 - 1.14147i) q^{31} +(-5.19940 - 2.22850i) q^{32} +(0.0514928 + 0.0844916i) q^{34} +(-0.678513 + 2.08825i) q^{35} +(0.743282 + 4.84613i) q^{36} +(5.56491 + 4.04314i) q^{37} +(8.53302 + 7.32404i) q^{38} +(0.814185 + 2.50580i) q^{39} +(2.01655 - 3.23717i) q^{40} +(-3.40107 - 4.68117i) q^{41} +(1.65951 - 0.394126i) q^{42} +1.89516 q^{43} -3.30550 q^{45} +(7.30608 - 1.73516i) q^{46} +(-5.76344 - 7.93270i) q^{47} +(-2.96256 - 0.0289704i) q^{48} +(-1.34373 - 4.13559i) q^{49} +(-3.41446 - 2.93069i) q^{50} +(0.0419247 + 0.0304601i) q^{51} +(7.03224 - 1.07858i) q^{52} +(-1.20135 + 3.69738i) q^{53} +(2.97166 + 4.87602i) q^{54} +(-0.327678 - 4.59405i) q^{56} +(5.60126 + 1.81996i) q^{57} +(5.13780 + 2.14287i) q^{58} +(2.85758 - 3.93312i) q^{59} +(0.322116 - 1.97133i) q^{60} +(1.28015 - 0.415944i) q^{61} +(-0.422596 + 5.20682i) q^{62} +(-3.22942 + 2.34631i) q^{63} +(-1.36723 + 7.88230i) q^{64} +4.79662i q^{65} -4.91303i q^{67} +(0.0994288 - 0.0984612i) q^{68} +(3.18178 - 2.31170i) q^{69} +(3.09503 + 0.251199i) q^{70} +(-6.63416 + 2.15557i) q^{71} +(6.42510 - 2.60633i) q^{72} +(5.94967 - 8.18902i) q^{73} +(3.74464 - 8.97821i) q^{74} +(-2.24132 - 0.728250i) q^{75} +(7.28904 - 14.1343i) q^{76} +(3.18178 - 1.93911i) q^{78} +(-1.85551 + 5.71067i) q^{79} +(-5.11313 - 1.71681i) q^{80} +(-3.53019 - 2.56484i) q^{81} +(-5.32962 + 6.20939i) q^{82} +(-1.11615 - 3.43515i) q^{83} +(-1.08459 - 2.15460i) q^{84} +(0.0554531 + 0.0763247i) q^{85} +(-0.619298 - 2.60763i) q^{86} +2.91552 q^{87} -5.39711 q^{89} +(1.08017 + 4.54818i) q^{90} +(3.40474 + 4.68622i) q^{91} +(-4.77495 - 9.48573i) q^{92} +(0.845462 + 2.60206i) q^{93} +(-9.03156 + 10.5224i) q^{94} +(8.67425 + 6.30221i) q^{95} +(0.928241 + 4.08578i) q^{96} +(2.26393 - 6.96767i) q^{97} +(-5.25122 + 3.20032i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - q^{4} + 4 q^{5} - 10 q^{6} + 5 q^{8} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 5 q^{2} - q^{4} + 4 q^{5} - 10 q^{6} + 5 q^{8} + 10 q^{9} - 22 q^{12} - 2 q^{14} - 17 q^{16} + 10 q^{17} + 15 q^{18} - 24 q^{20} - 40 q^{24} - 4 q^{25} + 16 q^{26} + 30 q^{28} - 40 q^{29} - 30 q^{30} - 6 q^{34} + 5 q^{36} - 12 q^{37} + 17 q^{38} + 50 q^{41} + 24 q^{42} + 40 q^{45} + 40 q^{46} - q^{48} + 16 q^{49} - 25 q^{50} + 20 q^{52} - 12 q^{53} - 12 q^{56} + 50 q^{57} - 48 q^{60} - 20 q^{61} + 30 q^{62} - 37 q^{64} - 35 q^{68} + 4 q^{69} + 22 q^{70} + 10 q^{72} + 30 q^{73} - 60 q^{74} + 4 q^{78} + 32 q^{80} + 16 q^{81} + 46 q^{82} + 10 q^{84} - 60 q^{85} + 46 q^{86} - 36 q^{89} + 40 q^{90} - 54 q^{92} + 2 q^{93} - 60 q^{94} + 55 q^{96} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.326779 1.37594i −0.231068 0.972938i
\(3\) −0.435358 0.599219i −0.251354 0.345959i 0.664631 0.747172i \(-0.268589\pi\)
−0.915985 + 0.401213i \(0.868589\pi\)
\(4\) −1.78643 + 0.899257i −0.893216 + 0.449629i
\(5\) −0.416683 1.28242i −0.186346 0.573515i 0.813623 0.581393i \(-0.197492\pi\)
−0.999969 + 0.00787847i \(0.997492\pi\)
\(6\) −0.682225 + 0.794840i −0.278517 + 0.324492i
\(7\) −1.31738 0.957131i −0.497922 0.361762i 0.310301 0.950638i \(-0.399570\pi\)
−0.808223 + 0.588877i \(0.799570\pi\)
\(8\) 1.82109 + 2.16417i 0.643854 + 0.765148i
\(9\) 0.757524 2.33142i 0.252508 0.777140i
\(10\) −1.62837 + 0.992398i −0.514936 + 0.313824i
\(11\) 0 0
\(12\) 1.31659 + 0.678965i 0.380067 + 0.196000i
\(13\) −3.38313 1.09925i −0.938312 0.304876i −0.200354 0.979723i \(-0.564209\pi\)
−0.737957 + 0.674848i \(0.764209\pi\)
\(14\) −0.886465 + 2.12541i −0.236918 + 0.568039i
\(15\) −0.587043 + 0.807995i −0.151574 + 0.208624i
\(16\) 2.38267 3.21292i 0.595668 0.803231i
\(17\) −0.0665412 + 0.0216205i −0.0161386 + 0.00524375i −0.317075 0.948400i \(-0.602701\pi\)
0.300937 + 0.953644i \(0.402701\pi\)
\(18\) −3.45544 0.280450i −0.814455 0.0661028i
\(19\) −6.43293 + 4.67380i −1.47582 + 1.07224i −0.496940 + 0.867785i \(0.665543\pi\)
−0.978875 + 0.204458i \(0.934457\pi\)
\(20\) 1.89760 + 1.91625i 0.424316 + 0.428486i
\(21\) 1.20609i 0.263191i
\(22\) 0 0
\(23\) 5.30988i 1.10719i 0.832787 + 0.553593i \(0.186744\pi\)
−0.832787 + 0.553593i \(0.813256\pi\)
\(24\) 0.503982 2.03342i 0.102875 0.415071i
\(25\) 2.57411 1.87020i 0.514823 0.374041i
\(26\) −0.406962 + 5.01420i −0.0798119 + 0.983366i
\(27\) −3.84010 + 1.24772i −0.739027 + 0.240125i
\(28\) 3.21411 + 0.525187i 0.607410 + 0.0992510i
\(29\) −2.31370 + 3.18453i −0.429643 + 0.591353i −0.967871 0.251446i \(-0.919094\pi\)
0.538228 + 0.842799i \(0.319094\pi\)
\(30\) 1.30359 + 0.543701i 0.238002 + 0.0992658i
\(31\) −3.51309 1.14147i −0.630970 0.205015i −0.0239654 0.999713i \(-0.507629\pi\)
−0.607005 + 0.794698i \(0.707629\pi\)
\(32\) −5.19940 2.22850i −0.919133 0.393947i
\(33\) 0 0
\(34\) 0.0514928 + 0.0844916i 0.00883095 + 0.0144902i
\(35\) −0.678513 + 2.08825i −0.114690 + 0.352979i
\(36\) 0.743282 + 4.84613i 0.123880 + 0.807688i
\(37\) 5.56491 + 4.04314i 0.914866 + 0.664689i 0.942241 0.334936i \(-0.108715\pi\)
−0.0273751 + 0.999625i \(0.508715\pi\)
\(38\) 8.53302 + 7.32404i 1.38424 + 1.18812i
\(39\) 0.814185 + 2.50580i 0.130374 + 0.401250i
\(40\) 2.01655 3.23717i 0.318844 0.511842i
\(41\) −3.40107 4.68117i −0.531158 0.731076i 0.456148 0.889904i \(-0.349229\pi\)
−0.987306 + 0.158827i \(0.949229\pi\)
\(42\) 1.65951 0.394126i 0.256069 0.0608149i
\(43\) 1.89516 0.289009 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(44\) 0 0
\(45\) −3.30550 −0.492755
\(46\) 7.30608 1.73516i 1.07722 0.255835i
\(47\) −5.76344 7.93270i −0.840685 1.15710i −0.985839 0.167694i \(-0.946368\pi\)
0.145154 0.989409i \(-0.453632\pi\)
\(48\) −2.96256 0.0289704i −0.427609 0.00418152i
\(49\) −1.34373 4.13559i −0.191962 0.590798i
\(50\) −3.41446 2.93069i −0.482877 0.414462i
\(51\) 0.0419247 + 0.0304601i 0.00587063 + 0.00426526i
\(52\) 7.03224 1.07858i 0.975196 0.149572i
\(53\) −1.20135 + 3.69738i −0.165018 + 0.507874i −0.999038 0.0438612i \(-0.986034\pi\)
0.834019 + 0.551735i \(0.186034\pi\)
\(54\) 2.97166 + 4.87602i 0.404391 + 0.663543i
\(55\) 0 0
\(56\) −0.327678 4.59405i −0.0437878 0.613906i
\(57\) 5.60126 + 1.81996i 0.741905 + 0.241059i
\(58\) 5.13780 + 2.14287i 0.674626 + 0.281373i
\(59\) 2.85758 3.93312i 0.372025 0.512049i −0.581425 0.813600i \(-0.697504\pi\)
0.953450 + 0.301551i \(0.0975045\pi\)
\(60\) 0.322116 1.97133i 0.0415850 0.254498i
\(61\) 1.28015 0.415944i 0.163906 0.0532562i −0.225915 0.974147i \(-0.572537\pi\)
0.389820 + 0.920891i \(0.372537\pi\)
\(62\) −0.422596 + 5.20682i −0.0536697 + 0.661267i
\(63\) −3.22942 + 2.34631i −0.406869 + 0.295607i
\(64\) −1.36723 + 7.88230i −0.170904 + 0.985288i
\(65\) 4.79662i 0.594948i
\(66\) 0 0
\(67\) 4.91303i 0.600223i −0.953904 0.300111i \(-0.902976\pi\)
0.953904 0.300111i \(-0.0970238\pi\)
\(68\) 0.0994288 0.0984612i 0.0120575 0.0119402i
\(69\) 3.18178 2.31170i 0.383041 0.278296i
\(70\) 3.09503 + 0.251199i 0.369927 + 0.0300240i
\(71\) −6.63416 + 2.15557i −0.787330 + 0.255819i −0.674967 0.737848i \(-0.735842\pi\)
−0.112363 + 0.993667i \(0.535842\pi\)
\(72\) 6.42510 2.60633i 0.757206 0.307158i
\(73\) 5.94967 8.18902i 0.696356 0.958452i −0.303628 0.952791i \(-0.598198\pi\)
0.999984 0.00566160i \(-0.00180215\pi\)
\(74\) 3.74464 8.97821i 0.435305 1.04370i
\(75\) −2.24132 0.728250i −0.258806 0.0840911i
\(76\) 7.28904 14.1343i 0.836110 1.62131i
\(77\) 0 0
\(78\) 3.18178 1.93911i 0.360266 0.219561i
\(79\) −1.85551 + 5.71067i −0.208761 + 0.642501i 0.790777 + 0.612105i \(0.209677\pi\)
−0.999538 + 0.0303963i \(0.990323\pi\)
\(80\) −5.11313 1.71681i −0.571665 0.191945i
\(81\) −3.53019 2.56484i −0.392244 0.284982i
\(82\) −5.32962 + 6.20939i −0.588558 + 0.685712i
\(83\) −1.11615 3.43515i −0.122513 0.377057i 0.870927 0.491413i \(-0.163519\pi\)
−0.993440 + 0.114356i \(0.963519\pi\)
\(84\) −1.08459 2.15460i −0.118338 0.235086i
\(85\) 0.0554531 + 0.0763247i 0.00601473 + 0.00827857i
\(86\) −0.619298 2.60763i −0.0667806 0.281188i
\(87\) 2.91552 0.312576
\(88\) 0 0
\(89\) −5.39711 −0.572093 −0.286046 0.958216i \(-0.592341\pi\)
−0.286046 + 0.958216i \(0.592341\pi\)
\(90\) 1.08017 + 4.54818i 0.113860 + 0.479420i
\(91\) 3.40474 + 4.68622i 0.356914 + 0.491250i
\(92\) −4.77495 9.48573i −0.497823 0.988956i
\(93\) 0.845462 + 2.60206i 0.0876703 + 0.269821i
\(94\) −9.03156 + 10.5224i −0.931535 + 1.08530i
\(95\) 8.67425 + 6.30221i 0.889960 + 0.646594i
\(96\) 0.928241 + 4.08578i 0.0947382 + 0.417003i
\(97\) 2.26393 6.96767i 0.229867 0.707459i −0.767893 0.640578i \(-0.778695\pi\)
0.997761 0.0668817i \(-0.0213050\pi\)
\(98\) −5.25122 + 3.20032i −0.530454 + 0.323281i
\(99\) 0 0
\(100\) −2.91668 + 5.65578i −0.291668 + 0.565578i
\(101\) −9.10415 2.95812i −0.905897 0.294344i −0.181228 0.983441i \(-0.558007\pi\)
−0.724669 + 0.689097i \(0.758007\pi\)
\(102\) 0.0282112 0.0676396i 0.00279332 0.00669732i
\(103\) 6.06681 8.35025i 0.597781 0.822775i −0.397722 0.917506i \(-0.630199\pi\)
0.995503 + 0.0947311i \(0.0301991\pi\)
\(104\) −3.78205 9.32349i −0.370860 0.914243i
\(105\) 1.54672 0.502558i 0.150944 0.0490447i
\(106\) 5.47995 + 0.444764i 0.532260 + 0.0431993i
\(107\) 8.96161 6.51099i 0.866352 0.629441i −0.0632539 0.997997i \(-0.520148\pi\)
0.929605 + 0.368556i \(0.120148\pi\)
\(108\) 5.73805 5.68221i 0.552144 0.546771i
\(109\) 8.95933i 0.858149i −0.903269 0.429074i \(-0.858840\pi\)
0.903269 0.429074i \(-0.141160\pi\)
\(110\) 0 0
\(111\) 5.09482i 0.483579i
\(112\) −6.21407 + 1.95210i −0.587174 + 0.184457i
\(113\) −8.91785 + 6.47920i −0.838921 + 0.609511i −0.922069 0.387026i \(-0.873502\pi\)
0.0831484 + 0.996537i \(0.473502\pi\)
\(114\) 0.673785 8.30173i 0.0631057 0.777528i
\(115\) 6.80948 2.21253i 0.634987 0.206320i
\(116\) 1.26955 7.76955i 0.117875 0.721385i
\(117\) −5.12561 + 7.05479i −0.473863 + 0.652216i
\(118\) −6.34554 2.64660i −0.584155 0.243640i
\(119\) 0.108354 + 0.0352062i 0.00993275 + 0.00322735i
\(120\) −2.81770 + 0.200977i −0.257219 + 0.0183466i
\(121\) 0 0
\(122\) −0.990640 1.62548i −0.0896883 0.147164i
\(123\) −1.32436 + 4.07597i −0.119414 + 0.367518i
\(124\) 7.30238 1.12001i 0.655773 0.100580i
\(125\) −8.92542 6.48470i −0.798314 0.580009i
\(126\) 4.28369 + 3.67677i 0.381622 + 0.327553i
\(127\) −3.18051 9.78860i −0.282225 0.868598i −0.987217 0.159383i \(-0.949050\pi\)
0.704992 0.709215i \(-0.250950\pi\)
\(128\) 11.2924 0.694535i 0.998114 0.0613888i
\(129\) −0.825073 1.13562i −0.0726436 0.0999854i
\(130\) 6.59988 1.56744i 0.578847 0.137473i
\(131\) 1.86768 0.163180 0.0815901 0.996666i \(-0.474000\pi\)
0.0815901 + 0.996666i \(0.474000\pi\)
\(132\) 0 0
\(133\) 12.9480 1.12274
\(134\) −6.76005 + 1.60548i −0.583979 + 0.138692i
\(135\) 3.20021 + 4.40471i 0.275430 + 0.379097i
\(136\) −0.167968 0.104633i −0.0144031 0.00897222i
\(137\) −0.387654 1.19308i −0.0331195 0.101931i 0.933130 0.359539i \(-0.117066\pi\)
−0.966250 + 0.257607i \(0.917066\pi\)
\(138\) −4.22050 3.62253i −0.359273 0.308370i
\(139\) −5.08964 3.69784i −0.431698 0.313647i 0.350630 0.936514i \(-0.385968\pi\)
−0.782327 + 0.622867i \(0.785968\pi\)
\(140\) −0.665757 4.34067i −0.0562667 0.366854i
\(141\) −2.24426 + 6.90713i −0.189001 + 0.581686i
\(142\) 5.13384 + 8.42382i 0.430822 + 0.706912i
\(143\) 0 0
\(144\) −5.68574 7.98888i −0.473812 0.665740i
\(145\) 5.04798 + 1.64019i 0.419212 + 0.136210i
\(146\) −13.2118 5.51040i −1.09342 0.456044i
\(147\) −1.89312 + 2.60565i −0.156142 + 0.214911i
\(148\) −13.5772 2.21851i −1.11604 0.182360i
\(149\) −16.3160 + 5.30140i −1.33666 + 0.434307i −0.888184 0.459487i \(-0.848033\pi\)
−0.448477 + 0.893795i \(0.648033\pi\)
\(150\) −0.269612 + 3.32191i −0.0220138 + 0.271233i
\(151\) 9.83626 7.14646i 0.800464 0.581571i −0.110586 0.993867i \(-0.535273\pi\)
0.911050 + 0.412295i \(0.135273\pi\)
\(152\) −21.8298 5.41051i −1.77063 0.438850i
\(153\) 0.171513i 0.0138660i
\(154\) 0 0
\(155\) 4.98089i 0.400074i
\(156\) −3.70785 3.74428i −0.296865 0.299782i
\(157\) 4.28919 3.11628i 0.342315 0.248706i −0.403323 0.915058i \(-0.632145\pi\)
0.745638 + 0.666351i \(0.232145\pi\)
\(158\) 8.46390 + 0.686946i 0.673351 + 0.0546505i
\(159\) 2.73856 0.889811i 0.217182 0.0705666i
\(160\) −0.691370 + 7.59638i −0.0546576 + 0.600547i
\(161\) 5.08225 6.99512i 0.400537 0.551292i
\(162\) −2.37547 + 5.69547i −0.186635 + 0.447479i
\(163\) 9.56530 + 3.10795i 0.749212 + 0.243434i 0.658642 0.752456i \(-0.271131\pi\)
0.0905700 + 0.995890i \(0.471131\pi\)
\(164\) 10.2854 + 5.30415i 0.803152 + 0.414185i
\(165\) 0 0
\(166\) −4.36183 + 2.65829i −0.338544 + 0.206323i
\(167\) 6.76983 20.8354i 0.523865 1.61229i −0.242683 0.970106i \(-0.578028\pi\)
0.766549 0.642186i \(-0.221972\pi\)
\(168\) −2.61019 + 2.19641i −0.201380 + 0.169457i
\(169\) −0.279988 0.203423i −0.0215375 0.0156479i
\(170\) 0.0868974 0.101242i 0.00666472 0.00776487i
\(171\) 6.02348 + 18.5384i 0.460627 + 1.41766i
\(172\) −3.38557 + 1.70424i −0.258147 + 0.129947i
\(173\) 6.95480 + 9.57246i 0.528763 + 0.727780i 0.986941 0.161080i \(-0.0514977\pi\)
−0.458178 + 0.888861i \(0.651498\pi\)
\(174\) −0.952730 4.01158i −0.0722263 0.304117i
\(175\) −5.18111 −0.391655
\(176\) 0 0
\(177\) −3.60087 −0.270658
\(178\) 1.76366 + 7.42611i 0.132192 + 0.556611i
\(179\) −0.548801 0.755360i −0.0410193 0.0564582i 0.788015 0.615656i \(-0.211109\pi\)
−0.829034 + 0.559198i \(0.811109\pi\)
\(180\) 5.90505 2.97250i 0.440137 0.221557i
\(181\) 5.82171 + 17.9174i 0.432725 + 1.33179i 0.895400 + 0.445262i \(0.146889\pi\)
−0.462676 + 0.886528i \(0.653111\pi\)
\(182\) 5.33537 6.21608i 0.395484 0.460767i
\(183\) −0.806564 0.586003i −0.0596229 0.0433186i
\(184\) −11.4915 + 9.66978i −0.847162 + 0.712866i
\(185\) 2.86620 8.82125i 0.210727 0.648551i
\(186\) 3.30401 2.01361i 0.242262 0.147645i
\(187\) 0 0
\(188\) 17.4295 + 8.98840i 1.27118 + 0.655547i
\(189\) 6.25310 + 2.03175i 0.454846 + 0.147788i
\(190\) 5.83692 13.9947i 0.423454 1.01528i
\(191\) −12.0167 + 16.5396i −0.869501 + 1.19676i 0.109719 + 0.993963i \(0.465005\pi\)
−0.979220 + 0.202802i \(0.934995\pi\)
\(192\) 5.31846 2.61235i 0.383827 0.188530i
\(193\) 16.4922 5.35865i 1.18714 0.385724i 0.352123 0.935954i \(-0.385460\pi\)
0.835013 + 0.550230i \(0.185460\pi\)
\(194\) −10.3269 0.838152i −0.741429 0.0601758i
\(195\) 2.87423 2.08825i 0.205828 0.149543i
\(196\) 6.11945 + 6.17958i 0.437103 + 0.441399i
\(197\) 3.49133i 0.248747i −0.992235 0.124374i \(-0.960308\pi\)
0.992235 0.124374i \(-0.0396921\pi\)
\(198\) 0 0
\(199\) 11.2660i 0.798625i −0.916815 0.399313i \(-0.869249\pi\)
0.916815 0.399313i \(-0.130751\pi\)
\(200\) 8.73513 + 2.16500i 0.617667 + 0.153088i
\(201\) −2.94398 + 2.13893i −0.207653 + 0.150868i
\(202\) −1.09515 + 13.4934i −0.0770547 + 0.949394i
\(203\) 6.09603 1.98072i 0.427857 0.139019i
\(204\) −0.102287 0.0167137i −0.00716152 0.00117019i
\(205\) −4.58605 + 6.31216i −0.320304 + 0.440860i
\(206\) −13.4720 5.61890i −0.938637 0.391487i
\(207\) 12.3796 + 4.02236i 0.860438 + 0.279573i
\(208\) −11.5927 + 8.25060i −0.803808 + 0.572076i
\(209\) 0 0
\(210\) −1.19693 1.96397i −0.0825957 0.135526i
\(211\) 0.847619 2.60870i 0.0583525 0.179590i −0.917632 0.397432i \(-0.869902\pi\)
0.975984 + 0.217841i \(0.0699015\pi\)
\(212\) −1.17876 7.68544i −0.0809579 0.527838i
\(213\) 4.17989 + 3.03687i 0.286402 + 0.208083i
\(214\) −11.8872 10.2030i −0.812593 0.697463i
\(215\) −0.789680 2.43039i −0.0538558 0.165751i
\(216\) −9.69346 6.03839i −0.659557 0.410861i
\(217\) 3.53553 + 4.86624i 0.240008 + 0.330342i
\(218\) −12.3275 + 2.92772i −0.834925 + 0.198290i
\(219\) −7.49726 −0.506618
\(220\) 0 0
\(221\) 0.248884 0.0167417
\(222\) −7.01017 + 1.66488i −0.470492 + 0.111739i
\(223\) 13.9457 + 19.1946i 0.933871 + 1.28536i 0.958330 + 0.285662i \(0.0922134\pi\)
−0.0244597 + 0.999701i \(0.507787\pi\)
\(224\) 4.71661 + 7.91229i 0.315142 + 0.528662i
\(225\) −2.41027 7.41806i −0.160685 0.494538i
\(226\) 11.8292 + 10.1532i 0.786864 + 0.675379i
\(227\) −0.647893 0.470721i −0.0430021 0.0312429i 0.566077 0.824353i \(-0.308461\pi\)
−0.609079 + 0.793110i \(0.708461\pi\)
\(228\) −11.6429 + 1.78574i −0.771068 + 0.118264i
\(229\) −7.28939 + 22.4344i −0.481696 + 1.48251i 0.355013 + 0.934861i \(0.384476\pi\)
−0.836709 + 0.547647i \(0.815524\pi\)
\(230\) −5.26951 8.64644i −0.347461 0.570129i
\(231\) 0 0
\(232\) −11.1053 + 0.792103i −0.729100 + 0.0520041i
\(233\) 16.6354 + 5.40517i 1.08982 + 0.354105i 0.798178 0.602422i \(-0.205798\pi\)
0.291644 + 0.956527i \(0.405798\pi\)
\(234\) 11.3819 + 4.74718i 0.744060 + 0.310333i
\(235\) −7.77151 + 10.6966i −0.506957 + 0.697767i
\(236\) −1.56798 + 9.59595i −0.102067 + 0.624643i
\(237\) 4.22976 1.37433i 0.274752 0.0892724i
\(238\) 0.0130340 0.160593i 0.000844871 0.0104097i
\(239\) 5.40825 3.92933i 0.349831 0.254167i −0.398967 0.916965i \(-0.630631\pi\)
0.748798 + 0.662798i \(0.230631\pi\)
\(240\) 1.19730 + 3.81131i 0.0772851 + 0.246019i
\(241\) 4.28655i 0.276121i 0.990424 + 0.138061i \(0.0440868\pi\)
−0.990424 + 0.138061i \(0.955913\pi\)
\(242\) 0 0
\(243\) 15.3451i 0.984391i
\(244\) −1.91285 + 1.89424i −0.122458 + 0.121266i
\(245\) −4.74364 + 3.44646i −0.303060 + 0.220186i
\(246\) 6.04108 + 0.490306i 0.385165 + 0.0312607i
\(247\) 26.9011 8.74070i 1.71168 0.556157i
\(248\) −3.92734 9.68165i −0.249386 0.614785i
\(249\) −1.57248 + 2.16434i −0.0996521 + 0.137159i
\(250\) −6.00593 + 14.3999i −0.379848 + 0.910731i
\(251\) −4.65797 1.51346i −0.294008 0.0955291i 0.158299 0.987391i \(-0.449399\pi\)
−0.452307 + 0.891862i \(0.649399\pi\)
\(252\) 3.65920 7.09560i 0.230508 0.446981i
\(253\) 0 0
\(254\) −12.4292 + 7.57491i −0.779879 + 0.475292i
\(255\) 0.0215932 0.0664571i 0.00135222 0.00416171i
\(256\) −4.64575 15.3107i −0.290359 0.956918i
\(257\) 10.0191 + 7.27931i 0.624975 + 0.454071i 0.854656 0.519195i \(-0.173768\pi\)
−0.229681 + 0.973266i \(0.573768\pi\)
\(258\) −1.29292 + 1.50635i −0.0804940 + 0.0937811i
\(259\) −3.46127 10.6527i −0.215073 0.661927i
\(260\) −4.31340 8.56884i −0.267506 0.531417i
\(261\) 5.67180 + 7.80656i 0.351075 + 0.483214i
\(262\) −0.610320 2.56982i −0.0377057 0.158764i
\(263\) −16.9489 −1.04511 −0.522556 0.852605i \(-0.675021\pi\)
−0.522556 + 0.852605i \(0.675021\pi\)
\(264\) 0 0
\(265\) 5.24217 0.322024
\(266\) −4.23115 17.8157i −0.259428 1.09235i
\(267\) 2.34968 + 3.23405i 0.143798 + 0.197921i
\(268\) 4.41808 + 8.77680i 0.269877 + 0.536128i
\(269\) 1.22209 + 3.76120i 0.0745120 + 0.229324i 0.981375 0.192101i \(-0.0615300\pi\)
−0.906863 + 0.421425i \(0.861530\pi\)
\(270\) 5.01486 5.84266i 0.305195 0.355573i
\(271\) −19.2040 13.9525i −1.16656 0.847556i −0.175968 0.984396i \(-0.556305\pi\)
−0.990593 + 0.136840i \(0.956305\pi\)
\(272\) −0.0890806 + 0.265306i −0.00540131 + 0.0160866i
\(273\) 1.32579 4.08037i 0.0802406 0.246955i
\(274\) −1.51493 + 0.923261i −0.0915200 + 0.0557763i
\(275\) 0 0
\(276\) −3.60522 + 6.99093i −0.217009 + 0.420804i
\(277\) −14.2764 4.63868i −0.857784 0.278711i −0.153081 0.988214i \(-0.548920\pi\)
−0.704703 + 0.709503i \(0.748920\pi\)
\(278\) −3.42483 + 8.21143i −0.205407 + 0.492489i
\(279\) −5.32251 + 7.32580i −0.318650 + 0.438584i
\(280\) −5.75496 + 2.33448i −0.343924 + 0.139512i
\(281\) 5.46035 1.77417i 0.325737 0.105838i −0.141584 0.989926i \(-0.545219\pi\)
0.467321 + 0.884088i \(0.345219\pi\)
\(282\) 10.2372 + 0.830870i 0.609616 + 0.0494776i
\(283\) −9.05676 + 6.58012i −0.538369 + 0.391148i −0.823479 0.567347i \(-0.807970\pi\)
0.285110 + 0.958495i \(0.407970\pi\)
\(284\) 9.91306 9.81660i 0.588232 0.582508i
\(285\) 7.94150i 0.470414i
\(286\) 0 0
\(287\) 9.42215i 0.556172i
\(288\) −9.13425 + 10.4338i −0.538241 + 0.614820i
\(289\) −13.7493 + 9.98947i −0.808784 + 0.587616i
\(290\) 0.607230 7.48170i 0.0356577 0.439341i
\(291\) −5.16078 + 1.67684i −0.302530 + 0.0982981i
\(292\) −3.26464 + 19.9794i −0.191049 + 1.16921i
\(293\) −3.11697 + 4.29014i −0.182095 + 0.250632i −0.890300 0.455375i \(-0.849505\pi\)
0.708205 + 0.706007i \(0.249505\pi\)
\(294\) 4.20386 + 1.75335i 0.245174 + 0.102257i
\(295\) −6.23461 2.02575i −0.362993 0.117944i
\(296\) 1.38419 + 19.4063i 0.0804542 + 1.12797i
\(297\) 0 0
\(298\) 12.6261 + 20.7175i 0.731413 + 1.20013i
\(299\) 5.83686 17.9640i 0.337554 1.03889i
\(300\) 4.65885 0.714558i 0.268979 0.0412550i
\(301\) −2.49664 1.81392i −0.143904 0.104552i
\(302\) −13.0474 11.1988i −0.750794 0.644419i
\(303\) 2.19101 + 6.74322i 0.125870 + 0.387388i
\(304\) −0.311012 + 31.8046i −0.0178378 + 1.82412i
\(305\) −1.06683 1.46836i −0.0610865 0.0840783i
\(306\) 0.235992 0.0560470i 0.0134908 0.00320399i
\(307\) −2.27014 −0.129564 −0.0647820 0.997899i \(-0.520635\pi\)
−0.0647820 + 0.997899i \(0.520635\pi\)
\(308\) 0 0
\(309\) −7.64487 −0.434901
\(310\) 6.85341 1.62765i 0.389248 0.0924442i
\(311\) −11.8536 16.3151i −0.672155 0.925143i 0.327651 0.944799i \(-0.393743\pi\)
−0.999807 + 0.0196560i \(0.993743\pi\)
\(312\) −3.94027 + 6.32533i −0.223074 + 0.358101i
\(313\) 0.476468 + 1.46642i 0.0269316 + 0.0828869i 0.963619 0.267280i \(-0.0861249\pi\)
−0.936687 + 0.350167i \(0.886125\pi\)
\(314\) −5.68944 4.88334i −0.321073 0.275583i
\(315\) 4.35460 + 3.16380i 0.245354 + 0.178260i
\(316\) −1.82062 11.8703i −0.102418 0.667757i
\(317\) −5.21071 + 16.0369i −0.292663 + 0.900723i 0.691334 + 0.722536i \(0.257023\pi\)
−0.983997 + 0.178188i \(0.942977\pi\)
\(318\) −2.11923 3.47732i −0.118841 0.194999i
\(319\) 0 0
\(320\) 10.6781 1.53105i 0.596924 0.0855885i
\(321\) −7.80302 2.53535i −0.435522 0.141510i
\(322\) −11.2856 4.70702i −0.628924 0.262312i
\(323\) 0.327005 0.450083i 0.0181950 0.0250433i
\(324\) 8.61290 + 1.40735i 0.478494 + 0.0781861i
\(325\) −10.7644 + 3.49756i −0.597100 + 0.194010i
\(326\) 1.15063 14.1769i 0.0637273 0.785186i
\(327\) −5.36860 + 3.90052i −0.296885 + 0.215699i
\(328\) 3.93717 15.8853i 0.217394 0.877121i
\(329\) 15.9667i 0.880275i
\(330\) 0 0
\(331\) 33.9735i 1.86735i −0.358115 0.933677i \(-0.616581\pi\)
0.358115 0.933677i \(-0.383419\pi\)
\(332\) 5.08300 + 5.13295i 0.278966 + 0.281707i
\(333\) 13.6418 9.91136i 0.747567 0.543139i
\(334\) −30.8805 2.50632i −1.68971 0.137140i
\(335\) −6.30056 + 2.04718i −0.344237 + 0.111849i
\(336\) 3.87508 + 2.87372i 0.211403 + 0.156775i
\(337\) 10.0486 13.8307i 0.547382 0.753407i −0.442272 0.896881i \(-0.645827\pi\)
0.989654 + 0.143474i \(0.0458274\pi\)
\(338\) −0.188404 + 0.451722i −0.0102478 + 0.0245704i
\(339\) 7.76492 + 2.52297i 0.421732 + 0.137029i
\(340\) −0.167699 0.0864821i −0.00909474 0.00469015i
\(341\) 0 0
\(342\) 23.5394 14.3459i 1.27286 0.775738i
\(343\) −5.71045 + 17.5750i −0.308335 + 0.948959i
\(344\) 3.45126 + 4.10144i 0.186080 + 0.221135i
\(345\) −4.29036 3.11713i −0.230985 0.167820i
\(346\) 10.8985 12.6975i 0.585905 0.682620i
\(347\) 0.772260 + 2.37677i 0.0414571 + 0.127592i 0.969643 0.244525i \(-0.0786321\pi\)
−0.928186 + 0.372117i \(0.878632\pi\)
\(348\) −5.20837 + 2.62180i −0.279198 + 0.140543i
\(349\) 4.12112 + 5.67223i 0.220598 + 0.303628i 0.904944 0.425530i \(-0.139912\pi\)
−0.684346 + 0.729157i \(0.739912\pi\)
\(350\) 1.69308 + 7.12891i 0.0904988 + 0.381056i
\(351\) 14.3631 0.766646
\(352\) 0 0
\(353\) 17.9431 0.955017 0.477509 0.878627i \(-0.341540\pi\)
0.477509 + 0.878627i \(0.341540\pi\)
\(354\) 1.17669 + 4.95459i 0.0625403 + 0.263334i
\(355\) 5.52868 + 7.60958i 0.293432 + 0.403874i
\(356\) 9.64157 4.85339i 0.511002 0.257229i
\(357\) −0.0260764 0.0802548i −0.00138011 0.00424754i
\(358\) −0.859995 + 1.00195i −0.0454521 + 0.0529549i
\(359\) 7.83085 + 5.68945i 0.413297 + 0.300278i 0.774935 0.632041i \(-0.217783\pi\)
−0.361638 + 0.932318i \(0.617783\pi\)
\(360\) −6.01963 7.15366i −0.317262 0.377031i
\(361\) 13.6669 42.0624i 0.719310 2.21381i
\(362\) 22.7509 13.8654i 1.19576 0.728748i
\(363\) 0 0
\(364\) −10.2965 5.30988i −0.539681 0.278313i
\(365\) −12.9809 4.21774i −0.679450 0.220767i
\(366\) −0.542738 + 1.30128i −0.0283693 + 0.0680189i
\(367\) 18.1903 25.0368i 0.949524 1.30691i −0.00221435 0.999998i \(-0.500705\pi\)
0.951738 0.306910i \(-0.0992952\pi\)
\(368\) 17.0602 + 12.6517i 0.889326 + 0.659515i
\(369\) −13.4902 + 4.38322i −0.702270 + 0.228181i
\(370\) −13.0741 1.06112i −0.679692 0.0551651i
\(371\) 5.12151 3.72100i 0.265896 0.193184i
\(372\) −3.85028 3.88812i −0.199628 0.201590i
\(373\) 4.92658i 0.255088i 0.991833 + 0.127544i \(0.0407095\pi\)
−0.991833 + 0.127544i \(0.959291\pi\)
\(374\) 0 0
\(375\) 8.17145i 0.421972i
\(376\) 6.67191 26.9192i 0.344078 1.38825i
\(377\) 11.3281 8.23036i 0.583428 0.423885i
\(378\) 0.752195 9.26783i 0.0386888 0.476686i
\(379\) −3.82815 + 1.24384i −0.196639 + 0.0638918i −0.405681 0.914015i \(-0.632965\pi\)
0.209042 + 0.977907i \(0.432965\pi\)
\(380\) −21.1633 3.45808i −1.08565 0.177396i
\(381\) −4.48086 + 6.16737i −0.229561 + 0.315964i
\(382\) 26.6844 + 11.1295i 1.36529 + 0.569436i
\(383\) −11.4021 3.70477i −0.582621 0.189305i 0.00285329 0.999996i \(-0.499092\pi\)
−0.585474 + 0.810691i \(0.699092\pi\)
\(384\) −5.33240 6.46423i −0.272118 0.329877i
\(385\) 0 0
\(386\) −12.7625 20.9412i −0.649594 1.06588i
\(387\) 1.43563 4.41841i 0.0729771 0.224600i
\(388\) 2.22137 + 14.4831i 0.112773 + 0.735269i
\(389\) −11.1135 8.07444i −0.563477 0.409390i 0.269253 0.963070i \(-0.413223\pi\)
−0.832730 + 0.553679i \(0.813223\pi\)
\(390\) −3.81255 3.27238i −0.193056 0.165703i
\(391\) −0.114802 0.353325i −0.00580580 0.0178684i
\(392\) 6.50304 10.4394i 0.328453 0.527267i
\(393\) −0.813111 1.11915i −0.0410160 0.0564537i
\(394\) −4.80387 + 1.14089i −0.242015 + 0.0574774i
\(395\) 8.09663 0.407386
\(396\) 0 0
\(397\) −12.1547 −0.610027 −0.305014 0.952348i \(-0.598661\pi\)
−0.305014 + 0.952348i \(0.598661\pi\)
\(398\) −15.5014 + 3.68149i −0.777013 + 0.184536i
\(399\) −5.63704 7.75871i −0.282205 0.388422i
\(400\) 0.124450 12.7265i 0.00622252 0.636326i
\(401\) −8.89366 27.3719i −0.444128 1.36689i −0.883437 0.468550i \(-0.844777\pi\)
0.439309 0.898336i \(-0.355223\pi\)
\(402\) 3.90507 + 3.35179i 0.194767 + 0.167172i
\(403\) 10.6305 + 7.72351i 0.529543 + 0.384735i
\(404\) 18.9240 2.90250i 0.941507 0.144405i
\(405\) −1.81822 + 5.59591i −0.0903481 + 0.278063i
\(406\) −4.71741 7.74052i −0.234121 0.384156i
\(407\) 0 0
\(408\) 0.0104281 + 0.146203i 0.000516269 + 0.00723811i
\(409\) 18.0275 + 5.85749i 0.891402 + 0.289634i 0.718684 0.695337i \(-0.244745\pi\)
0.172718 + 0.984971i \(0.444745\pi\)
\(410\) 10.1838 + 4.24746i 0.502942 + 0.209767i
\(411\) −0.546146 + 0.751705i −0.0269394 + 0.0370789i
\(412\) −3.32892 + 20.3728i −0.164004 + 1.00369i
\(413\) −7.52903 + 2.44633i −0.370479 + 0.120376i
\(414\) 1.48916 18.3480i 0.0731881 0.901753i
\(415\) −3.94022 + 2.86274i −0.193418 + 0.140526i
\(416\) 15.1406 + 13.2547i 0.742328 + 0.649867i
\(417\) 4.65970i 0.228186i
\(418\) 0 0
\(419\) 15.3705i 0.750898i 0.926843 + 0.375449i \(0.122512\pi\)
−0.926843 + 0.375449i \(0.877488\pi\)
\(420\) −2.31117 + 2.28868i −0.112774 + 0.111676i
\(421\) −15.6309 + 11.3565i −0.761803 + 0.553482i −0.899463 0.436997i \(-0.856042\pi\)
0.137660 + 0.990480i \(0.456042\pi\)
\(422\) −3.86641 0.313805i −0.188214 0.0152758i
\(423\) −22.8604 + 7.42780i −1.11151 + 0.361152i
\(424\) −10.1895 + 4.13335i −0.494847 + 0.200733i
\(425\) −0.130850 + 0.180099i −0.00634714 + 0.00873609i
\(426\) 2.81266 6.74368i 0.136274 0.326732i
\(427\) −2.08455 0.677311i −0.100878 0.0327774i
\(428\) −10.1542 + 19.6902i −0.490824 + 0.951763i
\(429\) 0 0
\(430\) −3.08602 + 1.88075i −0.148821 + 0.0906980i
\(431\) −8.37559 + 25.7774i −0.403438 + 1.24165i 0.518754 + 0.854923i \(0.326396\pi\)
−0.922192 + 0.386732i \(0.873604\pi\)
\(432\) −5.14086 + 15.3109i −0.247340 + 0.736644i
\(433\) −3.52419 2.56048i −0.169362 0.123049i 0.499876 0.866097i \(-0.333379\pi\)
−0.669237 + 0.743049i \(0.733379\pi\)
\(434\) 5.54033 6.45487i 0.265944 0.309844i
\(435\) −1.21485 3.73891i −0.0582474 0.179267i
\(436\) 8.05675 + 16.0052i 0.385848 + 0.766512i
\(437\) −24.8173 34.1581i −1.18717 1.63400i
\(438\) 2.44995 + 10.3158i 0.117063 + 0.492907i
\(439\) 24.0996 1.15021 0.575105 0.818080i \(-0.304961\pi\)
0.575105 + 0.818080i \(0.304961\pi\)
\(440\) 0 0
\(441\) −10.6597 −0.507605
\(442\) −0.0813299 0.342449i −0.00386847 0.0162887i
\(443\) −13.5454 18.6436i −0.643561 0.885786i 0.355238 0.934776i \(-0.384400\pi\)
−0.998799 + 0.0489896i \(0.984400\pi\)
\(444\) 4.58155 + 9.10154i 0.217431 + 0.431940i
\(445\) 2.24888 + 6.92135i 0.106607 + 0.328104i
\(446\) 21.8534 25.4608i 1.03479 1.20560i
\(447\) 10.2800 + 7.46887i 0.486228 + 0.353265i
\(448\) 9.34556 9.07535i 0.441536 0.428770i
\(449\) −1.16607 + 3.58880i −0.0550303 + 0.169366i −0.974794 0.223107i \(-0.928380\pi\)
0.919764 + 0.392473i \(0.128380\pi\)
\(450\) −9.41920 + 5.74046i −0.444025 + 0.270608i
\(451\) 0 0
\(452\) 10.1047 19.5941i 0.475283 0.921628i
\(453\) −8.56460 2.78281i −0.402400 0.130748i
\(454\) −0.435968 + 1.04528i −0.0204610 + 0.0490576i
\(455\) 4.59100 6.31897i 0.215229 0.296238i
\(456\) 6.26172 + 15.4364i 0.293232 + 0.722874i
\(457\) 33.5315 10.8950i 1.56854 0.509649i 0.609466 0.792812i \(-0.291384\pi\)
0.959072 + 0.283164i \(0.0913840\pi\)
\(458\) 33.2505 + 2.69867i 1.55369 + 0.126101i
\(459\) 0.228548 0.166050i 0.0106677 0.00775055i
\(460\) −10.1750 + 10.0760i −0.474413 + 0.469797i
\(461\) 38.5074i 1.79347i −0.442571 0.896734i \(-0.645933\pi\)
0.442571 0.896734i \(-0.354067\pi\)
\(462\) 0 0
\(463\) 10.7672i 0.500394i 0.968195 + 0.250197i \(0.0804954\pi\)
−0.968195 + 0.250197i \(0.919505\pi\)
\(464\) 4.71887 + 15.0214i 0.219068 + 0.697352i
\(465\) 2.98464 2.16847i 0.138409 0.100560i
\(466\) 2.00110 24.6557i 0.0926992 1.14215i
\(467\) −19.6677 + 6.39043i −0.910114 + 0.295714i −0.726405 0.687267i \(-0.758810\pi\)
−0.183709 + 0.982981i \(0.558810\pi\)
\(468\) 2.81247 17.2121i 0.130006 0.795631i
\(469\) −4.70242 + 6.47232i −0.217138 + 0.298864i
\(470\) 17.2574 + 7.19773i 0.796025 + 0.332007i
\(471\) −3.73467 1.21347i −0.172084 0.0559136i
\(472\) 13.7159 0.978304i 0.631323 0.0450301i
\(473\) 0 0
\(474\) −3.27320 5.37080i −0.150343 0.246689i
\(475\) −7.81814 + 24.0618i −0.358721 + 1.10403i
\(476\) −0.225226 + 0.0345443i −0.0103232 + 0.00158333i
\(477\) 7.71009 + 5.60171i 0.353021 + 0.256485i
\(478\) −7.17383 6.15742i −0.328123 0.281634i
\(479\) 3.52707 + 10.8552i 0.161156 + 0.495986i 0.998732 0.0503333i \(-0.0160284\pi\)
−0.837577 + 0.546320i \(0.816028\pi\)
\(480\) 4.85289 2.89287i 0.221503 0.132041i
\(481\) −14.3824 19.7957i −0.655781 0.902606i
\(482\) 5.89804 1.40075i 0.268649 0.0638026i
\(483\) −6.40421 −0.291401
\(484\) 0 0
\(485\) −9.87880 −0.448573
\(486\) 21.1140 5.01447i 0.957751 0.227461i
\(487\) −2.35405 3.24008i −0.106672 0.146822i 0.752343 0.658771i \(-0.228924\pi\)
−0.859016 + 0.511949i \(0.828924\pi\)
\(488\) 3.23144 + 2.01297i 0.146280 + 0.0911230i
\(489\) −2.30199 7.08479i −0.104099 0.320385i
\(490\) 6.29225 + 5.40074i 0.284255 + 0.243981i
\(491\) 9.05615 + 6.57968i 0.408698 + 0.296937i 0.773075 0.634315i \(-0.218718\pi\)
−0.364376 + 0.931252i \(0.618718\pi\)
\(492\) −1.29946 8.47239i −0.0585844 0.381965i
\(493\) 0.0851048 0.261926i 0.00383293 0.0117965i
\(494\) −20.8174 34.1581i −0.936619 1.53684i
\(495\) 0 0
\(496\) −12.0380 + 8.56754i −0.540523 + 0.384694i
\(497\) 10.8029 + 3.51006i 0.484575 + 0.157448i
\(498\) 3.49186 + 1.45639i 0.156474 + 0.0652622i
\(499\) 23.1385 31.8474i 1.03582 1.42569i 0.135336 0.990800i \(-0.456789\pi\)
0.900485 0.434886i \(-0.143211\pi\)
\(500\) 21.7761 + 3.55821i 0.973855 + 0.159128i
\(501\) −15.4323 + 5.01425i −0.689463 + 0.224020i
\(502\) −0.560314 + 6.90366i −0.0250081 + 0.308125i
\(503\) −15.6439 + 11.3660i −0.697527 + 0.506783i −0.879126 0.476589i \(-0.841873\pi\)
0.181599 + 0.983373i \(0.441873\pi\)
\(504\) −10.9589 2.71615i −0.488148 0.120987i
\(505\) 12.9079i 0.574395i
\(506\) 0 0
\(507\) 0.256336i 0.0113843i
\(508\) 14.4842 + 14.6266i 0.642634 + 0.648949i
\(509\) 34.7849 25.2727i 1.54181 1.12019i 0.592628 0.805476i \(-0.298090\pi\)
0.949186 0.314717i \(-0.101910\pi\)
\(510\) −0.0984974 0.00799424i −0.00436154 0.000353991i
\(511\) −15.6759 + 5.09342i −0.693463 + 0.225320i
\(512\) −19.5485 + 11.3955i −0.863929 + 0.503614i
\(513\) 18.8715 25.9744i 0.833196 1.14680i
\(514\) 6.74187 16.1644i 0.297371 0.712982i
\(515\) −13.2365 4.30078i −0.583268 0.189515i
\(516\) 2.49515 + 1.28675i 0.109843 + 0.0566458i
\(517\) 0 0
\(518\) −13.5264 + 8.24359i −0.594317 + 0.362202i
\(519\) 2.70817 8.33490i 0.118876 0.365861i
\(520\) −10.3807 + 8.73510i −0.455224 + 0.383060i
\(521\) 11.9178 + 8.65882i 0.522130 + 0.379350i 0.817406 0.576062i \(-0.195411\pi\)
−0.295275 + 0.955412i \(0.595411\pi\)
\(522\) 8.88795 10.3551i 0.389015 0.453230i
\(523\) −12.5006 38.4729i −0.546614 1.68230i −0.717122 0.696948i \(-0.754541\pi\)
0.170508 0.985356i \(-0.445459\pi\)
\(524\) −3.33649 + 1.67953i −0.145755 + 0.0733705i
\(525\) 2.25564 + 3.10462i 0.0984442 + 0.135497i
\(526\) 5.53853 + 23.3206i 0.241491 + 1.01683i
\(527\) 0.258445 0.0112580
\(528\) 0 0
\(529\) −5.19479 −0.225860
\(530\) −1.71303 7.21292i −0.0744093 0.313309i
\(531\) −7.00507 9.64165i −0.303994 0.418412i
\(532\) −23.1308 + 11.6436i −1.00285 + 0.504815i
\(533\) 6.36051 + 19.5756i 0.275504 + 0.847915i
\(534\) 3.68204 4.28984i 0.159338 0.185639i
\(535\) −12.0840 8.77951i −0.522435 0.379571i
\(536\) 10.6326 8.94710i 0.459259 0.386456i
\(537\) −0.213701 + 0.657704i −0.00922188 + 0.0283820i
\(538\) 4.77584 2.91060i 0.205901 0.125485i
\(539\) 0 0
\(540\) −9.67791 4.99089i −0.416471 0.214774i
\(541\) −15.9160 5.17141i −0.684281 0.222336i −0.0538123 0.998551i \(-0.517137\pi\)
−0.630469 + 0.776215i \(0.717137\pi\)
\(542\) −12.9224 + 30.9830i −0.555065 + 1.33083i
\(543\) 8.20192 11.2890i 0.351978 0.484456i
\(544\) 0.394156 + 0.0358733i 0.0168993 + 0.00153805i
\(545\) −11.4896 + 3.73320i −0.492161 + 0.159913i
\(546\) −6.04759 0.490835i −0.258813 0.0210058i
\(547\) −7.51580 + 5.46055i −0.321352 + 0.233476i −0.736752 0.676163i \(-0.763642\pi\)
0.415400 + 0.909639i \(0.363642\pi\)
\(548\) 1.76540 + 1.78275i 0.0754141 + 0.0761552i
\(549\) 3.29964i 0.140825i
\(550\) 0 0
\(551\) 31.2996i 1.33341i
\(552\) 10.7972 + 2.67608i 0.459560 + 0.113902i
\(553\) 7.91027 5.74715i 0.336379 0.244394i
\(554\) −1.71733 + 21.1593i −0.0729623 + 0.898972i
\(555\) −6.53368 + 2.12292i −0.277339 + 0.0901131i
\(556\) 12.4176 + 2.02904i 0.526624 + 0.0860505i
\(557\) −7.79519 + 10.7292i −0.330293 + 0.454609i −0.941575 0.336804i \(-0.890654\pi\)
0.611282 + 0.791413i \(0.290654\pi\)
\(558\) 11.8192 + 4.92954i 0.500345 + 0.208684i
\(559\) −6.41157 2.08325i −0.271181 0.0881119i
\(560\) 5.09271 + 7.15563i 0.215206 + 0.302380i
\(561\) 0 0
\(562\) −4.22549 6.93336i −0.178241 0.292466i
\(563\) −7.26327 + 22.3541i −0.306110 + 0.942111i 0.673150 + 0.739506i \(0.264941\pi\)
−0.979260 + 0.202605i \(0.935059\pi\)
\(564\) −2.20207 14.3573i −0.0927238 0.604551i
\(565\) 12.0250 + 8.73664i 0.505893 + 0.367553i
\(566\) 12.0134 + 10.3113i 0.504962 + 0.433418i
\(567\) 2.19572 + 6.75772i 0.0922114 + 0.283797i
\(568\) −16.7464 10.4319i −0.702665 0.437714i
\(569\) 7.57056 + 10.4200i 0.317374 + 0.436828i 0.937663 0.347545i \(-0.112985\pi\)
−0.620289 + 0.784373i \(0.712985\pi\)
\(570\) −10.9270 + 2.59511i −0.457683 + 0.108697i
\(571\) 20.4261 0.854806 0.427403 0.904061i \(-0.359429\pi\)
0.427403 + 0.904061i \(0.359429\pi\)
\(572\) 0 0
\(573\) 15.1424 0.632585
\(574\) 12.9643 3.07896i 0.541121 0.128513i
\(575\) 9.93055 + 13.6682i 0.414132 + 0.570004i
\(576\) 17.3412 + 9.15863i 0.722552 + 0.381610i
\(577\) 2.11524 + 6.51003i 0.0880585 + 0.271016i 0.985383 0.170356i \(-0.0544918\pi\)
−0.897324 + 0.441372i \(0.854492\pi\)
\(578\) 18.2379 + 15.6539i 0.758598 + 0.651117i
\(579\) −10.3910 7.54952i −0.431836 0.313747i
\(580\) −10.4928 + 1.60935i −0.435690 + 0.0668246i
\(581\) −1.81750 + 5.59369i −0.0754026 + 0.232065i
\(582\) 3.99367 + 6.55298i 0.165543 + 0.271630i
\(583\) 0 0
\(584\) 28.5573 2.03689i 1.18171 0.0842873i
\(585\) 11.1829 + 3.63356i 0.462358 + 0.150229i
\(586\) 6.92154 + 2.88684i 0.285926 + 0.119254i
\(587\) 0.375476 0.516798i 0.0154975 0.0213305i −0.801198 0.598399i \(-0.795804\pi\)
0.816695 + 0.577069i \(0.195804\pi\)
\(588\) 1.03877 6.35722i 0.0428382 0.262167i
\(589\) 27.9345 9.07647i 1.15102 0.373989i
\(590\) −0.749972 + 9.24043i −0.0308758 + 0.380423i
\(591\) −2.09207 + 1.51998i −0.0860564 + 0.0625236i
\(592\) 26.2497 8.24614i 1.07885 0.338914i
\(593\) 17.0480i 0.700077i 0.936735 + 0.350039i \(0.113832\pi\)
−0.936735 + 0.350039i \(0.886168\pi\)
\(594\) 0 0
\(595\) 0.153624i 0.00629799i
\(596\) 24.3801 24.1429i 0.998649 0.988931i
\(597\) −6.75080 + 4.90474i −0.276292 + 0.200738i
\(598\) −26.6248 2.16092i −1.08877 0.0883666i
\(599\) −1.88754 + 0.613298i −0.0771227 + 0.0250587i −0.347324 0.937745i \(-0.612910\pi\)
0.270202 + 0.962804i \(0.412910\pi\)
\(600\) −2.50561 6.17681i −0.102291 0.252167i
\(601\) −9.67660 + 13.3187i −0.394717 + 0.543281i −0.959408 0.282021i \(-0.908995\pi\)
0.564692 + 0.825302i \(0.308995\pi\)
\(602\) −1.67999 + 4.02798i −0.0684714 + 0.164168i
\(603\) −11.4543 3.72174i −0.466457 0.151561i
\(604\) −11.1453 + 21.6120i −0.453496 + 0.879380i
\(605\) 0 0
\(606\) 8.56231 5.21824i 0.347820 0.211976i
\(607\) 8.87509 27.3147i 0.360229 1.10867i −0.592686 0.805433i \(-0.701933\pi\)
0.952915 0.303237i \(-0.0980674\pi\)
\(608\) 43.8630 9.96515i 1.77888 0.404140i
\(609\) −3.84084 2.79053i −0.155639 0.113078i
\(610\) −1.67177 + 1.94773i −0.0676878 + 0.0788611i
\(611\) 10.7785 + 33.1728i 0.436051 + 1.34203i
\(612\) −0.154235 0.306397i −0.00623457 0.0123854i
\(613\) −3.91099 5.38302i −0.157964 0.217418i 0.722698 0.691164i \(-0.242902\pi\)
−0.880662 + 0.473745i \(0.842902\pi\)
\(614\) 0.741835 + 3.12359i 0.0299380 + 0.126058i
\(615\) 5.77894 0.233029
\(616\) 0 0
\(617\) −17.8948 −0.720416 −0.360208 0.932872i \(-0.617294\pi\)
−0.360208 + 0.932872i \(0.617294\pi\)
\(618\) 2.49818 + 10.5189i 0.100492 + 0.423132i
\(619\) −13.6588 18.7998i −0.548995 0.755627i 0.440880 0.897566i \(-0.354666\pi\)
−0.989875 + 0.141939i \(0.954666\pi\)
\(620\) −4.47910 8.89801i −0.179885 0.357353i
\(621\) −6.62526 20.3904i −0.265862 0.818241i
\(622\) −18.5751 + 21.6413i −0.744793 + 0.867736i
\(623\) 7.11004 + 5.16574i 0.284858 + 0.206961i
\(624\) 9.99088 + 3.35459i 0.399955 + 0.134291i
\(625\) 0.319097 0.982080i 0.0127639 0.0392832i
\(626\) 1.86201 1.13479i 0.0744208 0.0453552i
\(627\) 0 0
\(628\) −4.86001 + 9.42411i −0.193935 + 0.376063i
\(629\) −0.457710 0.148719i −0.0182501 0.00592982i
\(630\) 2.93021 7.02553i 0.116742 0.279904i
\(631\) −27.2272 + 37.4750i −1.08390 + 1.49186i −0.228739 + 0.973488i \(0.573460\pi\)
−0.855158 + 0.518368i \(0.826540\pi\)
\(632\) −15.7379 + 6.38404i −0.626020 + 0.253943i
\(633\) −1.93220 + 0.627811i −0.0767981 + 0.0249532i
\(634\) 23.7686 + 1.92911i 0.943972 + 0.0766147i
\(635\) −11.2278 + 8.15749i −0.445562 + 0.323720i
\(636\) −4.09208 + 4.05226i −0.162261 + 0.160682i
\(637\) 15.4683i 0.612877i
\(638\) 0 0
\(639\) 17.0999i 0.676462i
\(640\) −5.59602 14.1921i −0.221202 0.560993i
\(641\) −21.9856 + 15.9734i −0.868377 + 0.630913i −0.930151 0.367177i \(-0.880324\pi\)
0.0617738 + 0.998090i \(0.480324\pi\)
\(642\) −0.938638 + 11.5650i −0.0370451 + 0.456434i
\(643\) 29.5052 9.58683i 1.16357 0.378068i 0.337333 0.941386i \(-0.390475\pi\)
0.826240 + 0.563318i \(0.190475\pi\)
\(644\) −2.78868 + 17.0665i −0.109889 + 0.672516i
\(645\) −1.11254 + 1.53128i −0.0438062 + 0.0602941i
\(646\) −0.726147 0.302862i −0.0285699 0.0119159i
\(647\) 40.1073 + 13.0317i 1.57678 + 0.512327i 0.961225 0.275765i \(-0.0889313\pi\)
0.615557 + 0.788093i \(0.288931\pi\)
\(648\) −0.878082 12.3107i −0.0344943 0.483611i
\(649\) 0 0
\(650\) 8.33001 + 13.6682i 0.326730 + 0.536112i
\(651\) 1.37672 4.23712i 0.0539580 0.166066i
\(652\) −19.8826 + 3.04952i −0.778663 + 0.119428i
\(653\) 3.27455 + 2.37910i 0.128143 + 0.0931015i 0.650011 0.759925i \(-0.274764\pi\)
−0.521867 + 0.853027i \(0.674764\pi\)
\(654\) 7.12123 + 6.11228i 0.278462 + 0.239009i
\(655\) −0.778232 2.39515i −0.0304080 0.0935863i
\(656\) −23.1439 0.226320i −0.903617 0.00883632i
\(657\) −14.5850 20.0746i −0.569016 0.783183i
\(658\) 21.9693 5.21759i 0.856453 0.203403i
\(659\) −6.46292 −0.251760 −0.125880 0.992045i \(-0.540175\pi\)
−0.125880 + 0.992045i \(0.540175\pi\)
\(660\) 0 0
\(661\) 26.6232 1.03552 0.517761 0.855525i \(-0.326766\pi\)
0.517761 + 0.855525i \(0.326766\pi\)
\(662\) −46.7456 + 11.1018i −1.81682 + 0.431485i
\(663\) −0.108354 0.149136i −0.00420810 0.00579196i
\(664\) 5.40163 8.67126i 0.209624 0.336510i
\(665\) −5.39523 16.6048i −0.209218 0.643907i
\(666\) −18.0953 15.5315i −0.701179 0.601834i
\(667\) −16.9095 12.2854i −0.654737 0.475694i
\(668\) 6.64255 + 43.3088i 0.257008 + 1.67567i
\(669\) 5.43039 16.7130i 0.209951 0.646163i
\(670\) 4.87569 + 8.00023i 0.188364 + 0.309076i
\(671\) 0 0
\(672\) 2.68778 6.27096i 0.103683 0.241908i
\(673\) −7.91272 2.57100i −0.305013 0.0991047i 0.152512 0.988302i \(-0.451264\pi\)
−0.457525 + 0.889197i \(0.651264\pi\)
\(674\) −22.3139 9.30670i −0.859500 0.358481i
\(675\) −7.55135 + 10.3935i −0.290652 + 0.400048i
\(676\) 0.683109 + 0.111620i 0.0262734 + 0.00429309i
\(677\) −14.5159 + 4.71650i −0.557891 + 0.181270i −0.574372 0.818594i \(-0.694754\pi\)
0.0164808 + 0.999864i \(0.494754\pi\)
\(678\) 0.934055 11.5085i 0.0358721 0.441982i
\(679\) −9.65143 + 7.01217i −0.370388 + 0.269102i
\(680\) −0.0641940 + 0.259004i −0.00246173 + 0.00993236i
\(681\) 0.593162i 0.0227300i
\(682\) 0 0
\(683\) 32.9156i 1.25948i 0.776806 + 0.629740i \(0.216839\pi\)
−0.776806 + 0.629740i \(0.783161\pi\)
\(684\) −27.4313 27.7009i −1.04886 1.05917i
\(685\) −1.36849 + 0.994269i −0.0522875 + 0.0379891i
\(686\) 26.0482 + 2.11412i 0.994524 + 0.0807175i
\(687\) 16.6166 5.39907i 0.633964 0.205987i
\(688\) 4.51554 6.08900i 0.172153 0.232141i
\(689\) 8.12866 11.1881i 0.309677 0.426234i
\(690\) −2.88699 + 6.92189i −0.109906 + 0.263512i
\(691\) −43.2897 14.0657i −1.64682 0.535083i −0.668771 0.743469i \(-0.733179\pi\)
−0.978047 + 0.208385i \(0.933179\pi\)
\(692\) −21.0324 10.8464i −0.799531 0.412318i
\(693\) 0 0
\(694\) 3.01794 1.83926i 0.114559 0.0698175i
\(695\) −2.62141 + 8.06787i −0.0994358 + 0.306032i
\(696\) 5.30943 + 6.30967i 0.201254 + 0.239167i
\(697\) 0.327521 + 0.237958i 0.0124057 + 0.00901329i
\(698\) 6.45797 7.52398i 0.244438 0.284787i
\(699\) −4.00348 12.3214i −0.151426 0.466040i
\(700\) 9.25570 4.65915i 0.349833 0.176099i
\(701\) 29.4388 + 40.5191i 1.11189 + 1.53038i 0.818604 + 0.574359i \(0.194748\pi\)
0.293285 + 0.956025i \(0.405252\pi\)
\(702\) −4.69356 19.7628i −0.177147 0.745899i
\(703\) −54.6955 −2.06288
\(704\) 0 0
\(705\) 9.79298 0.368825
\(706\) −5.86344 24.6887i −0.220674 0.929172i
\(707\) 9.16230 + 12.6108i 0.344584 + 0.474279i
\(708\) 6.43271 3.23811i 0.241756 0.121696i
\(709\) −2.62623 8.08270i −0.0986301 0.303552i 0.889553 0.456833i \(-0.151016\pi\)
−0.988183 + 0.153280i \(0.951016\pi\)
\(710\) 8.66368 10.0938i 0.325142 0.378813i
\(711\) 11.9084 + 8.65195i 0.446599 + 0.324473i
\(712\) −9.82865 11.6802i −0.368344 0.437736i
\(713\) 6.06108 18.6541i 0.226989 0.698601i
\(714\) −0.101905 + 0.0621052i −0.00381369 + 0.00232423i
\(715\) 0 0
\(716\) 1.65966 + 0.855885i 0.0620243 + 0.0319859i
\(717\) −4.70905 1.53006i −0.175863 0.0571413i
\(718\) 5.26939 12.6340i 0.196652 0.471496i
\(719\) −4.28927 + 5.90368i −0.159963 + 0.220170i −0.881474 0.472233i \(-0.843448\pi\)
0.721511 + 0.692403i \(0.243448\pi\)
\(720\) −7.87593 + 10.6203i −0.293518 + 0.395796i
\(721\) −15.9846 + 5.19370i −0.595297 + 0.193424i
\(722\) −62.3414 5.05975i −2.32011 0.188304i
\(723\) 2.56858 1.86619i 0.0955266 0.0694042i
\(724\) −26.5124 26.7730i −0.985327 0.995010i
\(725\) 12.5244i 0.465146i
\(726\) 0 0
\(727\) 1.85004i 0.0686140i 0.999411 + 0.0343070i \(0.0109224\pi\)
−0.999411 + 0.0343070i \(0.989078\pi\)
\(728\) −3.94142 + 15.9025i −0.146079 + 0.589385i
\(729\) −1.39548 + 1.01388i −0.0516845 + 0.0375510i
\(730\) −1.56149 + 19.2392i −0.0577934 + 0.712075i
\(731\) −0.126106 + 0.0409743i −0.00466420 + 0.00151549i
\(732\) 1.96784 + 0.321545i 0.0727334 + 0.0118847i
\(733\) −11.1055 + 15.2854i −0.410190 + 0.564578i −0.963265 0.268554i \(-0.913454\pi\)
0.553075 + 0.833132i \(0.313454\pi\)
\(734\) −40.3933 16.8473i −1.49094 0.621844i
\(735\) 4.13037 + 1.34204i 0.152351 + 0.0495018i
\(736\) 11.8331 27.6082i 0.436173 1.01765i
\(737\) 0 0
\(738\) 10.4394 + 17.1293i 0.384278 + 0.630540i
\(739\) 4.85731 14.9493i 0.178679 0.549918i −0.821103 0.570780i \(-0.806641\pi\)
0.999782 + 0.0208619i \(0.00664102\pi\)
\(740\) 2.81231 + 18.3360i 0.103383 + 0.674045i
\(741\) −16.9492 12.3143i −0.622645 0.452378i
\(742\) −6.79347 5.83096i −0.249396 0.214061i
\(743\) 1.79427 + 5.52219i 0.0658253 + 0.202590i 0.978559 0.205964i \(-0.0660331\pi\)
−0.912734 + 0.408554i \(0.866033\pi\)
\(744\) −4.09163 + 6.56832i −0.150007 + 0.240806i
\(745\) 13.5972 + 18.7150i 0.498163 + 0.685663i
\(746\) 6.77868 1.60990i 0.248185 0.0589427i
\(747\) −8.85428 −0.323961
\(748\) 0 0
\(749\) −18.0377 −0.659083
\(750\) 11.2434 2.67026i 0.410552 0.0975040i
\(751\) 1.76537 + 2.42982i 0.0644193 + 0.0886655i 0.840011 0.542569i \(-0.182548\pi\)
−0.775592 + 0.631235i \(0.782548\pi\)
\(752\) −39.2196 0.383522i −1.43019 0.0139856i
\(753\) 1.12099 + 3.45004i 0.0408510 + 0.125727i
\(754\) −15.0263 12.8973i −0.547225 0.469693i
\(755\) −13.2634 9.63639i −0.482703 0.350704i
\(756\) −12.9978 + 1.99356i −0.472725 + 0.0725049i
\(757\) −8.06136 + 24.8103i −0.292995 + 0.901746i 0.690892 + 0.722958i \(0.257218\pi\)
−0.983888 + 0.178789i \(0.942782\pi\)
\(758\) 2.96241 + 4.86085i 0.107600 + 0.176554i
\(759\) 0 0
\(760\) 2.15759 + 30.2495i 0.0782639 + 1.09726i
\(761\) −30.3887 9.87389i −1.10159 0.357928i −0.298876 0.954292i \(-0.596612\pi\)
−0.802714 + 0.596364i \(0.796612\pi\)
\(762\) 9.95019 + 4.15003i 0.360457 + 0.150340i
\(763\) −8.57526 + 11.8028i −0.310445 + 0.427291i
\(764\) 6.59370 40.3530i 0.238552 1.45992i
\(765\) 0.219952 0.0714667i 0.00795238 0.00258388i
\(766\) −1.37158 + 16.8993i −0.0495572 + 0.610596i
\(767\) −13.9910 + 10.1651i −0.505187 + 0.367040i
\(768\) −7.15189 + 9.44945i −0.258072 + 0.340978i
\(769\) 22.3560i 0.806176i −0.915161 0.403088i \(-0.867937\pi\)
0.915161 0.403088i \(-0.132063\pi\)
\(770\) 0 0
\(771\) 9.17275i 0.330348i
\(772\) −24.6434 + 24.4036i −0.886936 + 0.878305i
\(773\) −4.10741 + 2.98421i −0.147733 + 0.107335i −0.659197 0.751970i \(-0.729104\pi\)
0.511463 + 0.859305i \(0.329104\pi\)
\(774\) −6.54861 0.531498i −0.235385 0.0191043i
\(775\) −11.1779 + 3.63192i −0.401522 + 0.130462i
\(776\) 19.2020 7.78925i 0.689312 0.279618i
\(777\) −4.87641 + 6.71180i −0.174940 + 0.240785i
\(778\) −7.47830 + 17.9301i −0.268110 + 0.642825i
\(779\) 43.7577 + 14.2177i 1.56778 + 0.509404i
\(780\) −3.25674 + 6.31519i −0.116610 + 0.226120i
\(781\) 0 0
\(782\) −0.448640 + 0.273421i −0.0160433 + 0.00977750i
\(783\) 4.91141 15.1158i 0.175519 0.540193i
\(784\) −16.4890 5.53644i −0.588893 0.197730i
\(785\) −5.78361 4.20204i −0.206426 0.149977i
\(786\) −1.27418 + 1.48451i −0.0454485 + 0.0529507i
\(787\) 0.909670 + 2.79968i 0.0324262 + 0.0997977i 0.965960 0.258693i \(-0.0832916\pi\)
−0.933533 + 0.358490i \(0.883292\pi\)
\(788\) 3.13961 + 6.23702i 0.111844 + 0.222185i
\(789\) 7.37882 + 10.1561i 0.262693 + 0.361566i
\(790\) −2.64581 11.1405i −0.0941336 0.396361i
\(791\) 17.9496 0.638215
\(792\) 0 0
\(793\) −4.78812 −0.170031
\(794\) 3.97190 + 16.7242i 0.140958 + 0.593519i
\(795\) −2.28222 3.14121i −0.0809420 0.111407i
\(796\) 10.1310 + 20.1259i 0.359085 + 0.713345i
\(797\) 2.31514 + 7.12526i 0.0820064 + 0.252390i 0.983650 0.180090i \(-0.0576388\pi\)
−0.901644 + 0.432479i \(0.857639\pi\)
\(798\) −8.83347 + 10.2916i −0.312702 + 0.364319i
\(799\) 0.555015 + 0.403242i 0.0196350 + 0.0142657i
\(800\) −17.5516 + 3.98752i −0.620543 + 0.140980i
\(801\) −4.08844 + 12.5829i −0.144458 + 0.444596i
\(802\) −34.7558 + 21.1817i −1.22727 + 0.747952i
\(803\) 0 0
\(804\) 3.33578 6.46845i 0.117644 0.228125i
\(805\) −11.0883 3.60282i −0.390813 0.126983i
\(806\) 7.15327 17.1508i 0.251963 0.604112i
\(807\) 1.72174 2.36977i 0.0606080 0.0834197i
\(808\) −10.1777 25.0899i −0.358049 0.882660i
\(809\) 37.8768 12.3069i 1.33168 0.432688i 0.445188 0.895437i \(-0.353137\pi\)
0.886489 + 0.462749i \(0.153137\pi\)
\(810\) 8.29380 + 0.673141i 0.291414 + 0.0236518i
\(811\) 34.5030 25.0679i 1.21157 0.880254i 0.216193 0.976351i \(-0.430636\pi\)
0.995372 + 0.0960970i \(0.0306359\pi\)
\(812\) −9.10896 + 9.02032i −0.319662 + 0.316551i
\(813\) 17.5818i 0.616619i
\(814\) 0 0
\(815\) 13.5617i 0.475047i
\(816\) 0.197759 0.0621244i 0.00692293 0.00217479i
\(817\) −12.1914 + 8.85759i −0.426524 + 0.309888i
\(818\) 2.16856 26.7189i 0.0758218 0.934204i
\(819\) 13.5047 4.38795i 0.471893 0.153327i
\(820\) 2.51641 15.4003i 0.0878769 0.537801i
\(821\) 11.3507 15.6229i 0.396142 0.545243i −0.563628 0.826029i \(-0.690595\pi\)
0.959771 + 0.280785i \(0.0905949\pi\)
\(822\) 1.21277 + 0.505823i 0.0423003 + 0.0176426i
\(823\) 9.43380 + 3.06523i 0.328842 + 0.106847i 0.468785 0.883312i \(-0.344692\pi\)
−0.139943 + 0.990160i \(0.544692\pi\)
\(824\) 29.1196 2.07700i 1.01443 0.0723557i
\(825\) 0 0
\(826\) 5.82633 + 9.56010i 0.202724 + 0.332638i
\(827\) 13.4827 41.4953i 0.468838 1.44293i −0.385253 0.922811i \(-0.625886\pi\)
0.854091 0.520124i \(-0.174114\pi\)
\(828\) −25.7324 + 3.94673i −0.894261 + 0.137159i
\(829\) 22.7735 + 16.5459i 0.790957 + 0.574664i 0.908247 0.418434i \(-0.137421\pi\)
−0.117290 + 0.993098i \(0.537421\pi\)
\(830\) 5.22654 + 4.48603i 0.181416 + 0.155712i
\(831\) 3.43575 + 10.5742i 0.119185 + 0.366814i
\(832\) 13.2901 25.1639i 0.460752 0.872402i
\(833\) 0.178827 + 0.246135i 0.00619600 + 0.00852806i
\(834\) 6.41147 1.52269i 0.222011 0.0527265i
\(835\) −29.5406 −1.02229
\(836\) 0 0
\(837\) 14.9149 0.515533
\(838\) 21.1489 5.02276i 0.730577 0.173508i
\(839\) 20.5447 + 28.2774i 0.709283 + 0.976244i 0.999812 + 0.0193779i \(0.00616858\pi\)
−0.290529 + 0.956866i \(0.593831\pi\)
\(840\) 3.90433 + 2.43214i 0.134712 + 0.0839170i
\(841\) 4.17345 + 12.8446i 0.143912 + 0.442916i
\(842\) 20.7337 + 17.7961i 0.714532 + 0.613295i
\(843\) −3.44033 2.49954i −0.118491 0.0860889i
\(844\) 0.831683 + 5.42249i 0.0286277 + 0.186650i
\(845\) −0.144207 + 0.443825i −0.00496089 + 0.0152680i
\(846\) 17.6905 + 29.0273i 0.608212 + 0.997980i
\(847\) 0 0
\(848\) 9.01697 + 12.6695i 0.309644 + 0.435072i
\(849\) 7.88587 + 2.56227i 0.270642 + 0.0879371i
\(850\) 0.290565 + 0.121189i 0.00996629 + 0.00415675i
\(851\) −21.4686 + 29.5490i −0.735934 + 1.01293i
\(852\) −10.1980 1.66636i −0.349379 0.0570885i
\(853\) −25.8841 + 8.41026i −0.886255 + 0.287962i −0.716552 0.697533i \(-0.754281\pi\)
−0.169703 + 0.985495i \(0.554281\pi\)
\(854\) −0.250754 + 3.08955i −0.00858062 + 0.105722i
\(855\) 21.2641 15.4492i 0.727216 0.528353i
\(856\) 30.4108 + 7.53729i 1.03942 + 0.257619i
\(857\) 37.5541i 1.28282i −0.767197 0.641412i \(-0.778349\pi\)
0.767197 0.641412i \(-0.221651\pi\)
\(858\) 0 0
\(859\) 4.50293i 0.153638i −0.997045 0.0768190i \(-0.975524\pi\)
0.997045 0.0768190i \(-0.0244764\pi\)
\(860\) 3.59625 + 3.63159i 0.122631 + 0.123836i
\(861\) 5.64593 4.10201i 0.192413 0.139796i
\(862\) 38.2052 + 3.10081i 1.30127 + 0.105614i
\(863\) 17.1534 5.57348i 0.583908 0.189723i −0.00214238 0.999998i \(-0.500682\pi\)
0.586051 + 0.810274i \(0.300682\pi\)
\(864\) 22.7468 + 2.07025i 0.773861 + 0.0704314i
\(865\) 9.37795 12.9076i 0.318860 0.438873i
\(866\) −2.37143 + 5.68579i −0.0805846 + 0.193211i
\(867\) 11.9718 + 3.88986i 0.406582 + 0.132107i
\(868\) −10.6920 5.51386i −0.362910 0.187152i
\(869\) 0 0
\(870\) −4.74754 + 2.89336i −0.160957 + 0.0980940i
\(871\) −5.40063 + 16.6214i −0.182993 + 0.563196i
\(872\) 19.3895 16.3158i 0.656611 0.552522i
\(873\) −14.5296 10.5564i −0.491751 0.357278i
\(874\) −38.8897 + 45.3093i −1.31547 + 1.53261i
\(875\) 5.55145 + 17.0856i 0.187673 + 0.577599i
\(876\) 13.3933 6.74196i 0.452519 0.227790i
\(877\) 8.00606 + 11.0194i 0.270345 + 0.372099i 0.922506 0.385982i \(-0.126137\pi\)
−0.652161 + 0.758081i \(0.726137\pi\)
\(878\) −7.87523 33.1596i −0.265776 1.11908i
\(879\) 3.92773 0.132479
\(880\) 0 0
\(881\) 5.44549 0.183463 0.0917317 0.995784i \(-0.470760\pi\)
0.0917317 + 0.995784i \(0.470760\pi\)
\(882\) 3.48337 + 14.6671i 0.117291 + 0.493868i
\(883\) 16.5930 + 22.8383i 0.558399 + 0.768570i 0.991122 0.132957i \(-0.0424472\pi\)
−0.432723 + 0.901527i \(0.642447\pi\)
\(884\) −0.444614 + 0.223811i −0.0149540 + 0.00752756i
\(885\) 1.50042 + 4.61782i 0.0504361 + 0.155226i
\(886\) −21.2262 + 24.7300i −0.713109 + 0.830822i
\(887\) −34.3342 24.9453i −1.15283 0.837580i −0.163975 0.986464i \(-0.552432\pi\)
−0.988855 + 0.148885i \(0.952432\pi\)
\(888\) 11.0260 9.27814i 0.370009 0.311354i
\(889\) −5.17904 + 15.9395i −0.173700 + 0.534592i
\(890\) 8.78849 5.35608i 0.294591 0.179536i
\(891\) 0 0
\(892\) −42.1738 21.7490i −1.41208 0.728211i
\(893\) 74.1517 + 24.0933i 2.48139 + 0.806253i
\(894\) 6.91744 16.5854i 0.231354 0.554698i
\(895\) −0.740011 + 1.01854i −0.0247358 + 0.0340460i
\(896\) −15.5411 9.89332i −0.519191 0.330513i
\(897\) −13.3055 + 4.32322i −0.444258 + 0.144348i
\(898\) 5.31903 + 0.431703i 0.177498 + 0.0144061i
\(899\) 11.7633 8.54653i 0.392328 0.285043i
\(900\) 10.9765 + 11.0844i 0.365885 + 0.369480i
\(901\) 0.272002i 0.00906169i
\(902\) 0 0
\(903\) 2.28574i 0.0760646i
\(904\) −30.2623 7.50049i −1.00651 0.249462i
\(905\) 20.5518 14.9317i 0.683164 0.496348i
\(906\) −1.03025 + 12.6937i −0.0342277 + 0.421722i
\(907\) 32.9920 10.7198i 1.09548 0.355944i 0.295120 0.955460i \(-0.404640\pi\)
0.800363 + 0.599516i \(0.204640\pi\)
\(908\) 1.58072 + 0.258289i 0.0524579 + 0.00857163i
\(909\) −13.7932 + 18.9847i −0.457492 + 0.629684i
\(910\) −10.1948 4.25204i −0.337953 0.140954i
\(911\) −28.2154 9.16772i −0.934816 0.303740i −0.198286 0.980144i \(-0.563537\pi\)
−0.736531 + 0.676404i \(0.763537\pi\)
\(912\) 19.1933 13.6600i 0.635555 0.452329i
\(913\) 0 0
\(914\) −25.9483 42.5771i −0.858294 1.40833i
\(915\) −0.415419 + 1.27853i −0.0137333 + 0.0422669i
\(916\) −7.15234 46.6326i −0.236320 1.54078i
\(917\) −2.46045 1.78762i −0.0812511 0.0590324i
\(918\) −0.303160 0.260207i −0.0100058 0.00858812i
\(919\) −6.67764 20.5517i −0.220275 0.677937i −0.998737 0.0502448i \(-0.984000\pi\)
0.778462 0.627692i \(-0.216000\pi\)
\(920\) 17.1890 + 10.7076i 0.566704 + 0.353020i
\(921\) 0.988326 + 1.36031i 0.0325665 + 0.0448239i
\(922\) −52.9839 + 12.5834i −1.74493 + 0.414412i
\(923\) 24.8137 0.816754
\(924\) 0 0
\(925\) 21.8862 0.719614
\(926\) 14.8150 3.51849i 0.486852 0.115625i
\(927\) −14.8722 20.4698i −0.488467 0.672317i
\(928\) 19.1266 11.4016i 0.627861 0.374275i
\(929\) 14.5920 + 44.9097i 0.478749 + 1.47344i 0.840834 + 0.541293i \(0.182065\pi\)
−0.362085 + 0.932145i \(0.617935\pi\)
\(930\) −3.95901 3.39808i −0.129821 0.111428i
\(931\) 27.9730 + 20.3236i 0.916780 + 0.666079i
\(932\) −34.5787 + 5.30355i −1.13266 + 0.173724i
\(933\) −4.61574 + 14.2058i −0.151113 + 0.465077i
\(934\) 15.2199 + 24.9734i 0.498009 + 0.817154i
\(935\) 0 0
\(936\) −24.6020 + 1.75477i −0.804140 + 0.0573565i
\(937\) 44.1171 + 14.3345i 1.44124 + 0.468289i 0.922285 0.386510i \(-0.126320\pi\)
0.518959 + 0.854799i \(0.326320\pi\)
\(938\) 10.4422 + 4.35524i 0.340950 + 0.142203i
\(939\) 0.671272 0.923926i 0.0219061 0.0301512i
\(940\) 4.26430 26.0973i 0.139086 0.851199i
\(941\) 37.4912 12.1816i 1.22218 0.397109i 0.374303 0.927307i \(-0.377882\pi\)
0.847874 + 0.530197i \(0.177882\pi\)
\(942\) −0.449250 + 5.53522i −0.0146373 + 0.180347i
\(943\) 24.8565 18.0593i 0.809438 0.588091i
\(944\) −5.82814 18.5525i −0.189690 0.603833i
\(945\) 8.86568i 0.288401i
\(946\) 0 0
\(947\) 24.9488i 0.810725i −0.914156 0.405363i \(-0.867145\pi\)
0.914156 0.405363i \(-0.132855\pi\)
\(948\) −6.32029 + 6.25879i −0.205274 + 0.203276i
\(949\) −29.1303 + 21.1644i −0.945608 + 0.687025i
\(950\) 35.6624 + 2.89443i 1.15704 + 0.0939077i
\(951\) 11.8782 3.85945i 0.385176 0.125151i
\(952\) 0.121130 + 0.298609i 0.00392584 + 0.00967797i
\(953\) −24.0471 + 33.0979i −0.778961 + 1.07215i 0.216435 + 0.976297i \(0.430557\pi\)
−0.995396 + 0.0958506i \(0.969443\pi\)
\(954\) 5.18813 12.4392i 0.167972 0.402732i
\(955\) 26.2179 + 8.51870i 0.848391 + 0.275659i
\(956\) −6.12800 + 11.8829i −0.198194 + 0.384320i
\(957\) 0 0
\(958\) 13.7835 8.40029i 0.445326 0.271401i
\(959\) −0.631244 + 1.94277i −0.0203839 + 0.0627353i
\(960\) −5.56624 5.73197i −0.179650 0.184999i
\(961\) −14.0407 10.2011i −0.452924 0.329069i
\(962\) −22.5378 + 26.2582i −0.726649 + 0.846597i
\(963\) −8.39122 25.8255i −0.270403 0.832215i
\(964\) −3.85471 7.65763i −0.124152 0.246636i
\(965\) −13.7440 18.9171i −0.442437 0.608962i
\(966\) 2.09276 + 8.81181i 0.0673334 + 0.283515i
\(967\) 23.6696 0.761164 0.380582 0.924747i \(-0.375724\pi\)
0.380582 + 0.924747i \(0.375724\pi\)
\(968\) 0 0
\(969\) −0.412063 −0.0132374
\(970\) 3.22818 + 13.5927i 0.103651 + 0.436434i
\(971\) 31.7005 + 43.6320i 1.01732 + 1.40022i 0.914067 + 0.405563i \(0.132924\pi\)
0.103251 + 0.994655i \(0.467076\pi\)
\(972\) −13.7992 27.4130i −0.442610 0.879273i
\(973\) 3.16566 + 9.74291i 0.101487 + 0.312343i
\(974\) −3.68890 + 4.29783i −0.118200 + 0.137711i
\(975\) 6.78216 + 4.92753i 0.217203 + 0.157807i
\(976\) 1.71377 5.10407i 0.0548564 0.163377i
\(977\) −2.96528 + 9.12620i −0.0948678 + 0.291973i −0.987219 0.159368i \(-0.949054\pi\)
0.892351 + 0.451341i \(0.149054\pi\)
\(978\) −8.99601 + 5.48256i −0.287661 + 0.175313i
\(979\) 0 0
\(980\) 5.37494 10.4226i 0.171696 0.332938i
\(981\) −20.8880 6.78691i −0.666901 0.216689i
\(982\) 6.09389 14.6108i 0.194464 0.466250i
\(983\) 20.7503 28.5603i 0.661831 0.910932i −0.337709 0.941250i \(-0.609652\pi\)
0.999540 + 0.0303182i \(0.00965206\pi\)
\(984\) −11.2329 + 4.55659i −0.358091 + 0.145259i
\(985\) −4.47735 + 1.45478i −0.142660 + 0.0463531i
\(986\) −0.388205 0.0315075i −0.0123630 0.00100340i
\(987\) 9.56758 6.95125i 0.304539 0.221261i
\(988\) −40.1968 + 39.8057i −1.27883 + 1.26639i
\(989\) 10.0631i 0.319987i
\(990\) 0 0
\(991\) 17.8021i 0.565502i −0.959193 0.282751i \(-0.908753\pi\)
0.959193 0.282751i \(-0.0912471\pi\)
\(992\) 15.7222 + 13.7639i 0.499181 + 0.437005i
\(993\) −20.3576 + 14.7907i −0.646029 + 0.469367i
\(994\) 1.29949 16.0111i 0.0412175 0.507842i
\(995\) −14.4477 + 4.69435i −0.458023 + 0.148821i
\(996\) 0.862836 5.28051i 0.0273400 0.167319i
\(997\) 36.9946 50.9188i 1.17163 1.61261i 0.519648 0.854380i \(-0.326063\pi\)
0.651984 0.758233i \(-0.273937\pi\)
\(998\) −51.3814 21.4302i −1.62645 0.678360i
\(999\) −26.4145 8.58260i −0.835719 0.271542i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.g.j.475.2 16
4.3 odd 2 inner 484.2.g.j.475.1 16
11.2 odd 10 44.2.g.a.19.3 yes 16
11.3 even 5 44.2.g.a.7.1 16
11.4 even 5 484.2.c.d.483.13 16
11.5 even 5 484.2.g.f.215.4 16
11.6 odd 10 inner 484.2.g.j.215.1 16
11.7 odd 10 484.2.c.d.483.4 16
11.8 odd 10 484.2.g.i.403.4 16
11.9 even 5 484.2.g.i.239.2 16
11.10 odd 2 484.2.g.f.475.3 16
33.2 even 10 396.2.r.a.19.2 16
33.14 odd 10 396.2.r.a.271.4 16
44.3 odd 10 44.2.g.a.7.3 yes 16
44.7 even 10 484.2.c.d.483.14 16
44.15 odd 10 484.2.c.d.483.3 16
44.19 even 10 484.2.g.i.403.2 16
44.27 odd 10 484.2.g.f.215.3 16
44.31 odd 10 484.2.g.i.239.4 16
44.35 even 10 44.2.g.a.19.1 yes 16
44.39 even 10 inner 484.2.g.j.215.2 16
44.43 even 2 484.2.g.f.475.4 16
88.3 odd 10 704.2.u.c.447.3 16
88.13 odd 10 704.2.u.c.63.3 16
88.35 even 10 704.2.u.c.63.2 16
88.69 even 10 704.2.u.c.447.2 16
132.35 odd 10 396.2.r.a.19.4 16
132.47 even 10 396.2.r.a.271.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.7.1 16 11.3 even 5
44.2.g.a.7.3 yes 16 44.3 odd 10
44.2.g.a.19.1 yes 16 44.35 even 10
44.2.g.a.19.3 yes 16 11.2 odd 10
396.2.r.a.19.2 16 33.2 even 10
396.2.r.a.19.4 16 132.35 odd 10
396.2.r.a.271.2 16 132.47 even 10
396.2.r.a.271.4 16 33.14 odd 10
484.2.c.d.483.3 16 44.15 odd 10
484.2.c.d.483.4 16 11.7 odd 10
484.2.c.d.483.13 16 11.4 even 5
484.2.c.d.483.14 16 44.7 even 10
484.2.g.f.215.3 16 44.27 odd 10
484.2.g.f.215.4 16 11.5 even 5
484.2.g.f.475.3 16 11.10 odd 2
484.2.g.f.475.4 16 44.43 even 2
484.2.g.i.239.2 16 11.9 even 5
484.2.g.i.239.4 16 44.31 odd 10
484.2.g.i.403.2 16 44.19 even 10
484.2.g.i.403.4 16 11.8 odd 10
484.2.g.j.215.1 16 11.6 odd 10 inner
484.2.g.j.215.2 16 44.39 even 10 inner
484.2.g.j.475.1 16 4.3 odd 2 inner
484.2.g.j.475.2 16 1.1 even 1 trivial
704.2.u.c.63.2 16 88.35 even 10
704.2.u.c.63.3 16 88.13 odd 10
704.2.u.c.447.2 16 88.69 even 10
704.2.u.c.447.3 16 88.3 odd 10