Properties

Label 396.2.r.a.19.4
Level $396$
Weight $2$
Character 396.19
Analytic conductor $3.162$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(19,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.r (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 19.4
Root \(1.40958 + 0.114404i\) of defining polynomial
Character \(\chi\) \(=\) 396.19
Dual form 396.2.r.a.271.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40958 - 0.114404i) q^{2} +(1.97382 - 0.322523i) q^{4} +(-1.09089 - 0.792578i) q^{5} +(0.503194 - 1.54867i) q^{7} +(2.74536 - 0.680436i) q^{8} +O(q^{10})\) \(q+(1.40958 - 0.114404i) q^{2} +(1.97382 - 0.322523i) q^{4} +(-1.09089 - 0.792578i) q^{5} +(0.503194 - 1.54867i) q^{7} +(2.74536 - 0.680436i) q^{8} +(-1.62837 - 0.992398i) q^{10} +(3.29726 - 0.357912i) q^{11} +(-2.09089 - 2.87786i) q^{13} +(0.532117 - 2.24054i) q^{14} +(3.79196 - 1.27321i) q^{16} +(0.0411247 - 0.0566033i) q^{17} +(2.45716 + 7.56236i) q^{19} +(-2.40885 - 1.21257i) q^{20} +(4.60680 - 0.881725i) q^{22} +5.30988i q^{23} +(-0.983224 - 3.02605i) q^{25} +(-3.27651 - 3.81737i) q^{26} +(0.493733 - 3.21909i) q^{28} +(-3.74364 - 1.21638i) q^{29} +(-2.17121 - 2.98842i) q^{31} +(5.19940 - 2.22850i) q^{32} +(0.0514928 - 0.0844916i) q^{34} +(-1.77637 + 1.29061i) q^{35} +(-2.12561 + 6.54194i) q^{37} +(4.32873 + 10.3786i) q^{38} +(-3.53418 - 1.43363i) q^{40} +(-5.50305 + 1.78805i) q^{41} +1.89516 q^{43} +(6.39277 - 1.76990i) q^{44} +(0.607472 + 7.48469i) q^{46} +(-9.32545 + 3.03002i) q^{47} +(3.51794 + 2.55593i) q^{49} +(-1.73212 - 4.15297i) q^{50} +(-5.05523 - 5.00603i) q^{52} +(-3.14518 + 2.28511i) q^{53} +(-3.88062 - 2.22289i) q^{55} +(0.327678 - 4.59405i) q^{56} +(-5.41611 - 1.28630i) q^{58} +(4.62366 + 1.50232i) q^{59} +(0.791173 - 1.08896i) q^{61} +(-3.40238 - 3.96401i) q^{62} +(7.07402 - 3.73608i) q^{64} +4.79662i q^{65} +4.91303i q^{67} +(0.0629170 - 0.124989i) q^{68} +(-2.35628 + 2.02244i) q^{70} +(4.10014 - 5.64335i) q^{71} +(-9.62677 - 3.12793i) q^{73} +(-2.24778 + 9.46456i) q^{74} +(7.28904 + 14.1343i) q^{76} +(1.10487 - 5.28646i) q^{77} +(4.85779 - 3.52939i) q^{79} +(-5.14572 - 1.61649i) q^{80} +(-7.55242 + 3.14997i) q^{82} +(-2.92211 - 2.12304i) q^{83} +(-0.0897250 + 0.0291534i) q^{85} +(2.67138 - 0.216814i) q^{86} +(8.80862 - 3.22617i) q^{88} +5.39711 q^{89} +(-5.50899 + 1.78998i) q^{91} +(1.71256 + 10.4808i) q^{92} +(-12.7983 + 5.33792i) q^{94} +(3.31327 - 10.1972i) q^{95} +(-5.92705 + 4.30625i) q^{97} +(5.25122 + 3.20032i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - q^{4} + 6 q^{5} + 5 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 5 q^{2} - q^{4} + 6 q^{5} + 5 q^{8} - 10 q^{13} - 8 q^{14} + 23 q^{16} + 10 q^{17} - 16 q^{20} + 17 q^{22} + 6 q^{25} + 4 q^{26} + 20 q^{28} + 10 q^{29} - 6 q^{34} + 18 q^{37} + 38 q^{38} - 40 q^{40} - 10 q^{41} + 28 q^{44} - 30 q^{46} + 6 q^{49} + 15 q^{50} - 10 q^{52} - 38 q^{53} + 12 q^{56} + 30 q^{58} - 10 q^{61} - 70 q^{62} + 23 q^{64} - 60 q^{68} + 12 q^{70} - 30 q^{73} - 40 q^{74} - 2 q^{77} + 28 q^{80} - 59 q^{82} - 50 q^{85} + 39 q^{86} - 53 q^{88} + 36 q^{89} - 36 q^{92} - 30 q^{94} - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40958 0.114404i 0.996723 0.0808960i
\(3\) 0 0
\(4\) 1.97382 0.322523i 0.986912 0.161262i
\(5\) −1.09089 0.792578i −0.487861 0.354452i 0.316500 0.948592i \(-0.397492\pi\)
−0.804361 + 0.594141i \(0.797492\pi\)
\(6\) 0 0
\(7\) 0.503194 1.54867i 0.190189 0.585343i −0.809810 0.586693i \(-0.800430\pi\)
0.999999 + 0.00134995i \(0.000429701\pi\)
\(8\) 2.74536 0.680436i 0.970632 0.240570i
\(9\) 0 0
\(10\) −1.62837 0.992398i −0.514936 0.313824i
\(11\) 3.29726 0.357912i 0.994160 0.107915i
\(12\) 0 0
\(13\) −2.09089 2.87786i −0.579909 0.798176i 0.413777 0.910378i \(-0.364209\pi\)
−0.993685 + 0.112203i \(0.964209\pi\)
\(14\) 0.532117 2.24054i 0.142214 0.598810i
\(15\) 0 0
\(16\) 3.79196 1.27321i 0.947989 0.318302i
\(17\) 0.0411247 0.0566033i 0.00997420 0.0137283i −0.804001 0.594628i \(-0.797299\pi\)
0.813975 + 0.580900i \(0.197299\pi\)
\(18\) 0 0
\(19\) 2.45716 + 7.56236i 0.563711 + 1.73493i 0.671749 + 0.740778i \(0.265543\pi\)
−0.108038 + 0.994147i \(0.534457\pi\)
\(20\) −2.40885 1.21257i −0.538635 0.271139i
\(21\) 0 0
\(22\) 4.60680 0.881725i 0.982172 0.187984i
\(23\) 5.30988i 1.10719i 0.832787 + 0.553593i \(0.186744\pi\)
−0.832787 + 0.553593i \(0.813256\pi\)
\(24\) 0 0
\(25\) −0.983224 3.02605i −0.196645 0.605210i
\(26\) −3.27651 3.81737i −0.642577 0.748647i
\(27\) 0 0
\(28\) 0.493733 3.21909i 0.0933068 0.608352i
\(29\) −3.74364 1.21638i −0.695177 0.225877i −0.0599489 0.998201i \(-0.519094\pi\)
−0.635228 + 0.772325i \(0.719094\pi\)
\(30\) 0 0
\(31\) −2.17121 2.98842i −0.389961 0.536735i 0.568228 0.822871i \(-0.307629\pi\)
−0.958189 + 0.286136i \(0.907629\pi\)
\(32\) 5.19940 2.22850i 0.919133 0.393947i
\(33\) 0 0
\(34\) 0.0514928 0.0844916i 0.00883095 0.0144902i
\(35\) −1.77637 + 1.29061i −0.300262 + 0.218153i
\(36\) 0 0
\(37\) −2.12561 + 6.54194i −0.349448 + 1.07549i 0.609712 + 0.792623i \(0.291285\pi\)
−0.959159 + 0.282866i \(0.908715\pi\)
\(38\) 4.32873 + 10.3786i 0.702212 + 1.68364i
\(39\) 0 0
\(40\) −3.53418 1.43363i −0.558804 0.226677i
\(41\) −5.50305 + 1.78805i −0.859432 + 0.279246i −0.705391 0.708818i \(-0.749229\pi\)
−0.154041 + 0.988065i \(0.549229\pi\)
\(42\) 0 0
\(43\) 1.89516 0.289009 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(44\) 6.39277 1.76990i 0.963746 0.266822i
\(45\) 0 0
\(46\) 0.607472 + 7.48469i 0.0895669 + 1.10356i
\(47\) −9.32545 + 3.03002i −1.36026 + 0.441974i −0.896129 0.443794i \(-0.853632\pi\)
−0.464128 + 0.885768i \(0.653632\pi\)
\(48\) 0 0
\(49\) 3.51794 + 2.55593i 0.502563 + 0.365133i
\(50\) −1.73212 4.15297i −0.244959 0.587319i
\(51\) 0 0
\(52\) −5.05523 5.00603i −0.701034 0.694212i
\(53\) −3.14518 + 2.28511i −0.432023 + 0.313883i −0.782457 0.622704i \(-0.786034\pi\)
0.350434 + 0.936587i \(0.386034\pi\)
\(54\) 0 0
\(55\) −3.88062 2.22289i −0.523262 0.299734i
\(56\) 0.327678 4.59405i 0.0437878 0.613906i
\(57\) 0 0
\(58\) −5.41611 1.28630i −0.711171 0.168899i
\(59\) 4.62366 + 1.50232i 0.601950 + 0.195585i 0.594110 0.804384i \(-0.297504\pi\)
0.00783982 + 0.999969i \(0.497504\pi\)
\(60\) 0 0
\(61\) 0.791173 1.08896i 0.101299 0.139427i −0.755358 0.655312i \(-0.772537\pi\)
0.856657 + 0.515886i \(0.172537\pi\)
\(62\) −3.40238 3.96401i −0.432103 0.503430i
\(63\) 0 0
\(64\) 7.07402 3.73608i 0.884252 0.467010i
\(65\) 4.79662i 0.594948i
\(66\) 0 0
\(67\) 4.91303i 0.600223i 0.953904 + 0.300111i \(0.0970238\pi\)
−0.953904 + 0.300111i \(0.902976\pi\)
\(68\) 0.0629170 0.124989i 0.00762981 0.0151571i
\(69\) 0 0
\(70\) −2.35628 + 2.02244i −0.281630 + 0.241728i
\(71\) 4.10014 5.64335i 0.486597 0.669743i −0.493159 0.869939i \(-0.664158\pi\)
0.979756 + 0.200196i \(0.0641580\pi\)
\(72\) 0 0
\(73\) −9.62677 3.12793i −1.12673 0.366096i −0.314397 0.949292i \(-0.601802\pi\)
−0.812332 + 0.583195i \(0.801802\pi\)
\(74\) −2.24778 + 9.46456i −0.261300 + 1.10023i
\(75\) 0 0
\(76\) 7.28904 + 14.1343i 0.836110 + 1.62131i
\(77\) 1.10487 5.28646i 0.125912 0.602449i
\(78\) 0 0
\(79\) 4.85779 3.52939i 0.546544 0.397088i −0.279966 0.960010i \(-0.590323\pi\)
0.826510 + 0.562923i \(0.190323\pi\)
\(80\) −5.14572 1.61649i −0.575309 0.180729i
\(81\) 0 0
\(82\) −7.55242 + 3.14997i −0.834025 + 0.347856i
\(83\) −2.92211 2.12304i −0.320744 0.233034i 0.415749 0.909479i \(-0.363519\pi\)
−0.736493 + 0.676446i \(0.763519\pi\)
\(84\) 0 0
\(85\) −0.0897250 + 0.0291534i −0.00973205 + 0.00316213i
\(86\) 2.67138 0.216814i 0.288062 0.0233797i
\(87\) 0 0
\(88\) 8.80862 3.22617i 0.939002 0.343911i
\(89\) 5.39711 0.572093 0.286046 0.958216i \(-0.407659\pi\)
0.286046 + 0.958216i \(0.407659\pi\)
\(90\) 0 0
\(91\) −5.50899 + 1.78998i −0.577499 + 0.187641i
\(92\) 1.71256 + 10.4808i 0.178547 + 1.09269i
\(93\) 0 0
\(94\) −12.7983 + 5.33792i −1.32004 + 0.550565i
\(95\) 3.31327 10.1972i 0.339934 1.04621i
\(96\) 0 0
\(97\) −5.92705 + 4.30625i −0.601801 + 0.437234i −0.846518 0.532361i \(-0.821305\pi\)
0.244717 + 0.969595i \(0.421305\pi\)
\(98\) 5.25122 + 3.20032i 0.530454 + 0.323281i
\(99\) 0 0
\(100\) −2.91668 5.65578i −0.291668 0.565578i
\(101\) 5.62667 + 7.74445i 0.559875 + 0.770602i 0.991311 0.131542i \(-0.0419928\pi\)
−0.431436 + 0.902144i \(0.641993\pi\)
\(102\) 0 0
\(103\) −9.81631 3.18951i −0.967230 0.314272i −0.217533 0.976053i \(-0.569801\pi\)
−0.749697 + 0.661781i \(0.769801\pi\)
\(104\) −7.69845 6.47806i −0.754895 0.635226i
\(105\) 0 0
\(106\) −4.17195 + 3.58086i −0.405216 + 0.347804i
\(107\) 3.42303 + 10.5350i 0.330917 + 1.01846i 0.968699 + 0.248240i \(0.0798522\pi\)
−0.637782 + 0.770217i \(0.720148\pi\)
\(108\) 0 0
\(109\) 8.95933i 0.858149i 0.903269 + 0.429074i \(0.141160\pi\)
−0.903269 + 0.429074i \(0.858840\pi\)
\(110\) −5.72434 2.68938i −0.545795 0.256422i
\(111\) 0 0
\(112\) −0.0636912 6.51317i −0.00601825 0.615436i
\(113\) −3.40631 10.4836i −0.320439 0.986210i −0.973457 0.228868i \(-0.926498\pi\)
0.653018 0.757342i \(-0.273502\pi\)
\(114\) 0 0
\(115\) 4.20849 5.79249i 0.392444 0.540153i
\(116\) −7.78160 1.19351i −0.722503 0.110815i
\(117\) 0 0
\(118\) 6.68929 + 1.58867i 0.615799 + 0.146249i
\(119\) −0.0669662 0.0921710i −0.00613878 0.00844931i
\(120\) 0 0
\(121\) 10.7438 2.36026i 0.976709 0.214569i
\(122\) 0.990640 1.62548i 0.0896883 0.147164i
\(123\) 0 0
\(124\) −5.24942 5.19834i −0.471412 0.466825i
\(125\) −3.40921 + 10.4925i −0.304929 + 0.938474i
\(126\) 0 0
\(127\) 8.32668 + 6.04969i 0.738874 + 0.536823i 0.892358 0.451328i \(-0.149050\pi\)
−0.153485 + 0.988151i \(0.549050\pi\)
\(128\) 9.54396 6.07560i 0.843575 0.537012i
\(129\) 0 0
\(130\) 0.548754 + 6.76122i 0.0481289 + 0.592998i
\(131\) −1.86768 −0.163180 −0.0815901 0.996666i \(-0.526000\pi\)
−0.0815901 + 0.996666i \(0.526000\pi\)
\(132\) 0 0
\(133\) 12.9480 1.12274
\(134\) 0.562072 + 6.92531i 0.0485556 + 0.598255i
\(135\) 0 0
\(136\) 0.0743873 0.183379i 0.00637865 0.0157246i
\(137\) −1.01489 0.737362i −0.0867080 0.0629971i 0.543587 0.839353i \(-0.317066\pi\)
−0.630295 + 0.776356i \(0.717066\pi\)
\(138\) 0 0
\(139\) 1.94407 5.98323i 0.164894 0.507491i −0.834135 0.551561i \(-0.814032\pi\)
0.999028 + 0.0440698i \(0.0140324\pi\)
\(140\) −3.08999 + 3.12036i −0.261152 + 0.263718i
\(141\) 0 0
\(142\) 5.13384 8.42382i 0.430822 0.706912i
\(143\) −7.92422 8.74070i −0.662657 0.730934i
\(144\) 0 0
\(145\) 3.11982 + 4.29407i 0.259087 + 0.356603i
\(146\) −13.9275 3.30772i −1.15265 0.273749i
\(147\) 0 0
\(148\) −2.08564 + 13.5982i −0.171439 + 1.11777i
\(149\) 10.0839 13.8792i 0.826102 1.13703i −0.162534 0.986703i \(-0.551967\pi\)
0.988636 0.150329i \(-0.0480332\pi\)
\(150\) 0 0
\(151\) −3.75712 11.5632i −0.305750 0.941002i −0.979396 0.201948i \(-0.935273\pi\)
0.673646 0.739054i \(-0.264727\pi\)
\(152\) 11.8915 + 19.0895i 0.964528 + 1.54836i
\(153\) 0 0
\(154\) 0.952608 7.57809i 0.0767633 0.610660i
\(155\) 4.98089i 0.400074i
\(156\) 0 0
\(157\) −1.63833 5.04225i −0.130753 0.402415i 0.864153 0.503230i \(-0.167855\pi\)
−0.994905 + 0.100815i \(0.967855\pi\)
\(158\) 6.44366 5.53071i 0.512630 0.439999i
\(159\) 0 0
\(160\) −7.43824 1.68988i −0.588044 0.133597i
\(161\) 8.22325 + 2.67190i 0.648083 + 0.210575i
\(162\) 0 0
\(163\) 5.91168 + 8.13673i 0.463039 + 0.637318i 0.975135 0.221610i \(-0.0711311\pi\)
−0.512097 + 0.858928i \(0.671131\pi\)
\(164\) −10.2854 + 5.30415i −0.803152 + 0.414185i
\(165\) 0 0
\(166\) −4.36183 2.65829i −0.338544 0.206323i
\(167\) 17.7237 12.8770i 1.37150 0.996451i 0.373879 0.927478i \(-0.378028\pi\)
0.997618 0.0689735i \(-0.0219724\pi\)
\(168\) 0 0
\(169\) 0.106946 0.329146i 0.00822661 0.0253189i
\(170\) −0.123139 + 0.0513590i −0.00944435 + 0.00393905i
\(171\) 0 0
\(172\) 3.74071 0.611233i 0.285226 0.0466061i
\(173\) 11.2531 3.65635i 0.855557 0.277987i 0.151785 0.988413i \(-0.451498\pi\)
0.703772 + 0.710426i \(0.251498\pi\)
\(174\) 0 0
\(175\) −5.18111 −0.391655
\(176\) 12.0474 5.55528i 0.908104 0.418745i
\(177\) 0 0
\(178\) 7.60765 0.617452i 0.570218 0.0462800i
\(179\) −0.887979 + 0.288522i −0.0663707 + 0.0215651i −0.342014 0.939695i \(-0.611109\pi\)
0.275643 + 0.961260i \(0.411109\pi\)
\(180\) 0 0
\(181\) −15.2414 11.0736i −1.13289 0.823091i −0.146775 0.989170i \(-0.546889\pi\)
−0.986113 + 0.166079i \(0.946889\pi\)
\(182\) −7.56057 + 3.15337i −0.560427 + 0.233743i
\(183\) 0 0
\(184\) 3.61303 + 14.5775i 0.266356 + 1.07467i
\(185\) 7.50380 5.45183i 0.551691 0.400827i
\(186\) 0 0
\(187\) 0.115340 0.201355i 0.00843447 0.0147245i
\(188\) −17.4295 + 8.98840i −1.27118 + 0.655547i
\(189\) 0 0
\(190\) 3.50371 14.7528i 0.254186 1.07028i
\(191\) −19.4435 6.31757i −1.40688 0.457124i −0.495472 0.868624i \(-0.665005\pi\)
−0.911410 + 0.411500i \(0.865005\pi\)
\(192\) 0 0
\(193\) 10.1927 14.0291i 0.733690 1.00984i −0.265267 0.964175i \(-0.585460\pi\)
0.998957 0.0456628i \(-0.0145400\pi\)
\(194\) −7.86199 + 6.74808i −0.564458 + 0.484484i
\(195\) 0 0
\(196\) 7.76814 + 3.91034i 0.554867 + 0.279310i
\(197\) 3.49133i 0.248747i −0.992235 0.124374i \(-0.960308\pi\)
0.992235 0.124374i \(-0.0396921\pi\)
\(198\) 0 0
\(199\) 11.2660i 0.798625i 0.916815 + 0.399313i \(0.130751\pi\)
−0.916815 + 0.399313i \(0.869249\pi\)
\(200\) −4.75834 7.63859i −0.336465 0.540130i
\(201\) 0 0
\(202\) 8.81724 + 10.2727i 0.620379 + 0.722785i
\(203\) −3.76755 + 5.18559i −0.264430 + 0.363957i
\(204\) 0 0
\(205\) 7.42039 + 2.41103i 0.518262 + 0.168394i
\(206\) −14.2018 3.37284i −0.989483 0.234997i
\(207\) 0 0
\(208\) −11.5927 8.25060i −0.803808 0.572076i
\(209\) 10.8086 + 24.0556i 0.747643 + 1.66396i
\(210\) 0 0
\(211\) −2.21909 + 1.61227i −0.152769 + 0.110993i −0.661544 0.749906i \(-0.730098\pi\)
0.508775 + 0.860899i \(0.330098\pi\)
\(212\) −5.47103 + 5.52479i −0.375752 + 0.379444i
\(213\) 0 0
\(214\) 6.03028 + 14.4583i 0.412221 + 0.988349i
\(215\) −2.06741 1.50206i −0.140996 0.102440i
\(216\) 0 0
\(217\) −5.72061 + 1.85874i −0.388341 + 0.126180i
\(218\) 1.02499 + 12.6289i 0.0694207 + 0.855336i
\(219\) 0 0
\(220\) −8.37659 3.13600i −0.564749 0.211429i
\(221\) −0.248884 −0.0167417
\(222\) 0 0
\(223\) −22.5646 + 7.33167i −1.51103 + 0.490965i −0.943213 0.332187i \(-0.892213\pi\)
−0.567821 + 0.823152i \(0.692213\pi\)
\(224\) −0.834911 9.17353i −0.0557848 0.612932i
\(225\) 0 0
\(226\) −6.00083 14.3877i −0.399169 0.957056i
\(227\) −0.247473 + 0.761643i −0.0164254 + 0.0505520i −0.958933 0.283632i \(-0.908461\pi\)
0.942508 + 0.334184i \(0.108461\pi\)
\(228\) 0 0
\(229\) 19.0839 13.8652i 1.26110 0.916241i 0.262286 0.964990i \(-0.415524\pi\)
0.998811 + 0.0487497i \(0.0155237\pi\)
\(230\) 5.26951 8.64644i 0.347461 0.570129i
\(231\) 0 0
\(232\) −11.1053 0.792103i −0.729100 0.0520041i
\(233\) −10.2812 14.1509i −0.673547 0.927058i 0.326287 0.945271i \(-0.394202\pi\)
−0.999834 + 0.0182127i \(0.994202\pi\)
\(234\) 0 0
\(235\) 12.5746 + 4.08572i 0.820274 + 0.266523i
\(236\) 9.61083 + 1.47407i 0.625611 + 0.0959540i
\(237\) 0 0
\(238\) −0.104939 0.122261i −0.00680217 0.00792501i
\(239\) 2.06577 + 6.35778i 0.133623 + 0.411251i 0.995373 0.0960826i \(-0.0306313\pi\)
−0.861750 + 0.507333i \(0.830631\pi\)
\(240\) 0 0
\(241\) 4.28655i 0.276121i −0.990424 0.138061i \(-0.955913\pi\)
0.990424 0.138061i \(-0.0440868\pi\)
\(242\) 14.8742 4.55610i 0.956150 0.292877i
\(243\) 0 0
\(244\) 1.21042 2.40458i 0.0774894 0.153937i
\(245\) −1.81191 5.57648i −0.115759 0.356268i
\(246\) 0 0
\(247\) 16.6258 22.8834i 1.05787 1.45604i
\(248\) −7.99418 6.72691i −0.507631 0.427159i
\(249\) 0 0
\(250\) −3.60516 + 15.1800i −0.228011 + 0.960066i
\(251\) 2.87878 + 3.96230i 0.181707 + 0.250098i 0.890148 0.455672i \(-0.150601\pi\)
−0.708441 + 0.705770i \(0.750601\pi\)
\(252\) 0 0
\(253\) 1.90047 + 17.5080i 0.119482 + 1.10072i
\(254\) 12.4292 + 7.57491i 0.779879 + 0.475292i
\(255\) 0 0
\(256\) 12.7579 9.65590i 0.797368 0.603494i
\(257\) 3.82696 11.7782i 0.238719 0.734702i −0.757887 0.652386i \(-0.773768\pi\)
0.996606 0.0823161i \(-0.0262317\pi\)
\(258\) 0 0
\(259\) 9.06173 + 6.58373i 0.563068 + 0.409093i
\(260\) 1.54702 + 9.46769i 0.0959423 + 0.587161i
\(261\) 0 0
\(262\) −2.63265 + 0.213671i −0.162645 + 0.0132006i
\(263\) 16.9489 1.04511 0.522556 0.852605i \(-0.324979\pi\)
0.522556 + 0.852605i \(0.324979\pi\)
\(264\) 0 0
\(265\) 5.24217 0.322024
\(266\) 18.2513 1.48131i 1.11906 0.0908249i
\(267\) 0 0
\(268\) 1.58457 + 9.69746i 0.0967929 + 0.592367i
\(269\) 3.19947 + 2.32455i 0.195075 + 0.141730i 0.681035 0.732251i \(-0.261530\pi\)
−0.485960 + 0.873981i \(0.661530\pi\)
\(270\) 0 0
\(271\) 7.33528 22.5757i 0.445587 1.37137i −0.436252 0.899824i \(-0.643695\pi\)
0.881839 0.471550i \(-0.156305\pi\)
\(272\) 0.0838753 0.266998i 0.00508569 0.0161891i
\(273\) 0 0
\(274\) −1.51493 0.923261i −0.0915200 0.0557763i
\(275\) −4.32500 9.62576i −0.260807 0.580455i
\(276\) 0 0
\(277\) −8.82329 12.1442i −0.530140 0.729675i 0.457012 0.889461i \(-0.348920\pi\)
−0.987152 + 0.159786i \(0.948920\pi\)
\(278\) 2.05581 8.65625i 0.123299 0.519167i
\(279\) 0 0
\(280\) −3.99860 + 4.75189i −0.238962 + 0.283980i
\(281\) −3.37468 + 4.64485i −0.201317 + 0.277089i −0.897724 0.440558i \(-0.854781\pi\)
0.696408 + 0.717647i \(0.254781\pi\)
\(282\) 0 0
\(283\) 3.45938 + 10.6469i 0.205639 + 0.632890i 0.999687 + 0.0250353i \(0.00796982\pi\)
−0.794048 + 0.607855i \(0.792030\pi\)
\(284\) 6.27283 12.4614i 0.372224 0.739447i
\(285\) 0 0
\(286\) −12.1698 11.4141i −0.719614 0.674932i
\(287\) 9.42215i 0.556172i
\(288\) 0 0
\(289\) 5.25178 + 16.1633i 0.308928 + 0.950783i
\(290\) 4.88889 + 5.69590i 0.287086 + 0.334475i
\(291\) 0 0
\(292\) −20.0104 3.06912i −1.17102 0.179607i
\(293\) −5.04336 1.63869i −0.294636 0.0957331i 0.157969 0.987444i \(-0.449505\pi\)
−0.452605 + 0.891711i \(0.649505\pi\)
\(294\) 0 0
\(295\) −3.85320 5.30348i −0.224342 0.308780i
\(296\) −1.38419 + 19.4063i −0.0804542 + 1.12797i
\(297\) 0 0
\(298\) 12.6261 20.7175i 0.731413 1.20013i
\(299\) 15.2811 11.1024i 0.883729 0.642066i
\(300\) 0 0
\(301\) 0.953632 2.93498i 0.0549664 0.169169i
\(302\) −6.61883 15.8694i −0.380871 0.913184i
\(303\) 0 0
\(304\) 18.9459 + 25.5477i 1.08662 + 1.46526i
\(305\) −1.72617 + 0.560865i −0.0988400 + 0.0321150i
\(306\) 0 0
\(307\) −2.27014 −0.129564 −0.0647820 0.997899i \(-0.520635\pi\)
−0.0647820 + 0.997899i \(0.520635\pi\)
\(308\) 0.475811 10.7909i 0.0271119 0.614868i
\(309\) 0 0
\(310\) 0.569834 + 7.02095i 0.0323644 + 0.398763i
\(311\) −19.1795 + 6.23180i −1.08757 + 0.353373i −0.797307 0.603574i \(-0.793743\pi\)
−0.290263 + 0.956947i \(0.593743\pi\)
\(312\) 0 0
\(313\) −1.24741 0.906296i −0.0705078 0.0512269i 0.551973 0.833862i \(-0.313875\pi\)
−0.622481 + 0.782635i \(0.713875\pi\)
\(314\) −2.88620 6.92001i −0.162878 0.390519i
\(315\) 0 0
\(316\) 8.45011 8.53314i 0.475356 0.480027i
\(317\) −13.6418 + 9.91136i −0.766201 + 0.556678i −0.900806 0.434222i \(-0.857023\pi\)
0.134605 + 0.990899i \(0.457023\pi\)
\(318\) 0 0
\(319\) −12.7791 2.67083i −0.715492 0.149538i
\(320\) −10.6781 1.53105i −0.596924 0.0855885i
\(321\) 0 0
\(322\) 11.8970 + 2.82547i 0.662994 + 0.157458i
\(323\) 0.529105 + 0.171917i 0.0294402 + 0.00956569i
\(324\) 0 0
\(325\) −6.65275 + 9.15673i −0.369028 + 0.507924i
\(326\) 9.26386 + 10.7930i 0.513077 + 0.597771i
\(327\) 0 0
\(328\) −13.8912 + 8.65331i −0.767014 + 0.477799i
\(329\) 15.9667i 0.880275i
\(330\) 0 0
\(331\) 33.9735i 1.86735i 0.358115 + 0.933677i \(0.383419\pi\)
−0.358115 + 0.933677i \(0.616581\pi\)
\(332\) −6.45246 3.24805i −0.354125 0.178260i
\(333\) 0 0
\(334\) 23.5097 20.1788i 1.28639 1.10413i
\(335\) 3.89396 5.35958i 0.212750 0.292825i
\(336\) 0 0
\(337\) −16.2590 5.28286i −0.885683 0.287776i −0.169368 0.985553i \(-0.554173\pi\)
−0.716315 + 0.697777i \(0.754173\pi\)
\(338\) 0.113093 0.476192i 0.00615145 0.0259014i
\(339\) 0 0
\(340\) −0.167699 + 0.0864821i −0.00909474 + 0.00469015i
\(341\) −8.22863 9.07647i −0.445605 0.491518i
\(342\) 0 0
\(343\) 14.9502 10.8619i 0.807232 0.586489i
\(344\) 5.20290 1.28953i 0.280521 0.0695270i
\(345\) 0 0
\(346\) 15.4438 6.44132i 0.830265 0.346287i
\(347\) 2.02180 + 1.46893i 0.108536 + 0.0788561i 0.640729 0.767767i \(-0.278632\pi\)
−0.532193 + 0.846623i \(0.678632\pi\)
\(348\) 0 0
\(349\) −6.66811 + 2.16660i −0.356936 + 0.115975i −0.481995 0.876174i \(-0.660088\pi\)
0.125060 + 0.992149i \(0.460088\pi\)
\(350\) −7.30318 + 0.592741i −0.390372 + 0.0316833i
\(351\) 0 0
\(352\) 16.3462 9.20887i 0.871253 0.490835i
\(353\) −17.9431 −0.955017 −0.477509 0.878627i \(-0.658460\pi\)
−0.477509 + 0.878627i \(0.658460\pi\)
\(354\) 0 0
\(355\) −8.94560 + 2.90660i −0.474783 + 0.154266i
\(356\) 10.6529 1.74069i 0.564605 0.0922566i
\(357\) 0 0
\(358\) −1.21867 + 0.508283i −0.0644086 + 0.0268636i
\(359\) 2.99112 9.20572i 0.157865 0.485859i −0.840575 0.541696i \(-0.817783\pi\)
0.998440 + 0.0558363i \(0.0177825\pi\)
\(360\) 0 0
\(361\) −35.7804 + 25.9960i −1.88318 + 1.36821i
\(362\) −22.7509 13.8654i −1.19576 0.728748i
\(363\) 0 0
\(364\) −10.2965 + 5.30988i −0.539681 + 0.278313i
\(365\) 8.02262 + 11.0422i 0.419923 + 0.577975i
\(366\) 0 0
\(367\) −29.4325 9.56319i −1.53636 0.499194i −0.585992 0.810317i \(-0.699295\pi\)
−0.950370 + 0.311122i \(0.899295\pi\)
\(368\) 6.76058 + 20.1348i 0.352419 + 1.04960i
\(369\) 0 0
\(370\) 9.95349 8.54325i 0.517457 0.444143i
\(371\) 1.95624 + 6.02070i 0.101563 + 0.312579i
\(372\) 0 0
\(373\) 4.92658i 0.255088i −0.991833 0.127544i \(-0.959291\pi\)
0.991833 0.127544i \(-0.0407095\pi\)
\(374\) 0.139544 0.297020i 0.00721567 0.0153586i
\(375\) 0 0
\(376\) −23.5400 + 14.6639i −1.21398 + 0.756231i
\(377\) 4.32696 + 13.3170i 0.222850 + 0.685861i
\(378\) 0 0
\(379\) −2.36592 + 3.25642i −0.121529 + 0.167271i −0.865447 0.501000i \(-0.832965\pi\)
0.743918 + 0.668271i \(0.232965\pi\)
\(380\) 3.25098 21.1961i 0.166772 1.08734i
\(381\) 0 0
\(382\) −28.1299 6.68070i −1.43925 0.341814i
\(383\) 7.04690 + 9.69922i 0.360080 + 0.495607i 0.950171 0.311729i \(-0.100908\pi\)
−0.590091 + 0.807337i \(0.700908\pi\)
\(384\) 0 0
\(385\) −5.39523 + 4.89125i −0.274966 + 0.249281i
\(386\) 12.7625 20.9412i 0.649594 1.06588i
\(387\) 0 0
\(388\) −10.3101 + 10.4114i −0.523415 + 0.528559i
\(389\) −4.24498 + 13.0647i −0.215229 + 0.662407i 0.783908 + 0.620877i \(0.213223\pi\)
−0.999137 + 0.0415304i \(0.986777\pi\)
\(390\) 0 0
\(391\) 0.300556 + 0.218367i 0.0151998 + 0.0110433i
\(392\) 11.3972 + 4.62323i 0.575644 + 0.233508i
\(393\) 0 0
\(394\) −0.399423 4.92131i −0.0201226 0.247932i
\(395\) −8.09663 −0.407386
\(396\) 0 0
\(397\) −12.1547 −0.610027 −0.305014 0.952348i \(-0.598661\pi\)
−0.305014 + 0.952348i \(0.598661\pi\)
\(398\) 1.28888 + 15.8803i 0.0646056 + 0.796008i
\(399\) 0 0
\(400\) −7.58114 10.2228i −0.379057 0.511141i
\(401\) −23.2839 16.9167i −1.16274 0.844782i −0.172620 0.984989i \(-0.555223\pi\)
−0.990122 + 0.140207i \(0.955223\pi\)
\(402\) 0 0
\(403\) −4.06049 + 12.4969i −0.202267 + 0.622515i
\(404\) 13.6038 + 13.4714i 0.676816 + 0.670230i
\(405\) 0 0
\(406\) −4.71741 + 7.74052i −0.234121 + 0.384156i
\(407\) −4.66723 + 22.3312i −0.231346 + 1.10692i
\(408\) 0 0
\(409\) 11.1416 + 15.3351i 0.550917 + 0.758272i 0.990136 0.140108i \(-0.0447449\pi\)
−0.439219 + 0.898380i \(0.644745\pi\)
\(410\) 10.7355 + 2.54961i 0.530186 + 0.125916i
\(411\) 0 0
\(412\) −20.4044 3.12955i −1.00525 0.154182i
\(413\) 4.65320 6.40457i 0.228969 0.315149i
\(414\) 0 0
\(415\) 1.50503 + 4.63200i 0.0738790 + 0.227376i
\(416\) −17.2847 10.3036i −0.847452 0.505176i
\(417\) 0 0
\(418\) 17.9876 + 32.6717i 0.879800 + 1.59803i
\(419\) 15.3705i 0.750898i 0.926843 + 0.375449i \(0.122512\pi\)
−0.926843 + 0.375449i \(0.877488\pi\)
\(420\) 0 0
\(421\) 5.97047 + 18.3752i 0.290983 + 0.895553i 0.984541 + 0.175153i \(0.0560419\pi\)
−0.693558 + 0.720400i \(0.743958\pi\)
\(422\) −2.94354 + 2.52649i −0.143289 + 0.122988i
\(423\) 0 0
\(424\) −7.07978 + 8.41353i −0.343825 + 0.408597i
\(425\) −0.211719 0.0687918i −0.0102699 0.00333689i
\(426\) 0 0
\(427\) −1.28832 1.77322i −0.0623463 0.0858123i
\(428\) 10.1542 + 19.6902i 0.490824 + 0.951763i
\(429\) 0 0
\(430\) −3.08602 1.88075i −0.148821 0.0906980i
\(431\) −21.9276 + 15.9313i −1.05621 + 0.767385i −0.973384 0.229179i \(-0.926396\pi\)
−0.0828305 + 0.996564i \(0.526396\pi\)
\(432\) 0 0
\(433\) 1.34612 4.14294i 0.0646905 0.199097i −0.913487 0.406868i \(-0.866621\pi\)
0.978177 + 0.207771i \(0.0666209\pi\)
\(434\) −7.85101 + 3.27450i −0.376860 + 0.157181i
\(435\) 0 0
\(436\) 2.88959 + 17.6841i 0.138386 + 0.846917i
\(437\) −40.1552 + 13.0472i −1.92088 + 0.624133i
\(438\) 0 0
\(439\) 24.0996 1.15021 0.575105 0.818080i \(-0.304961\pi\)
0.575105 + 0.818080i \(0.304961\pi\)
\(440\) −12.1662 3.46213i −0.580002 0.165050i
\(441\) 0 0
\(442\) −0.350821 + 0.0284733i −0.0166869 + 0.00135434i
\(443\) −21.9169 + 7.12124i −1.04130 + 0.338340i −0.779250 0.626713i \(-0.784400\pi\)
−0.262054 + 0.965053i \(0.584400\pi\)
\(444\) 0 0
\(445\) −5.88765 4.27763i −0.279102 0.202779i
\(446\) −30.9677 + 12.9160i −1.46637 + 0.611592i
\(447\) 0 0
\(448\) −2.22636 12.8353i −0.105186 0.606411i
\(449\) −3.05281 + 2.21800i −0.144071 + 0.104674i −0.657486 0.753467i \(-0.728380\pi\)
0.513415 + 0.858140i \(0.328380\pi\)
\(450\) 0 0
\(451\) −17.5050 + 7.86527i −0.824278 + 0.370361i
\(452\) −10.1047 19.5941i −0.475283 0.921628i
\(453\) 0 0
\(454\) −0.261697 + 1.10191i −0.0122821 + 0.0517151i
\(455\) 7.42839 + 2.41363i 0.348248 + 0.113153i
\(456\) 0 0
\(457\) 20.7236 28.5236i 0.969409 1.33428i 0.0270646 0.999634i \(-0.491384\pi\)
0.942345 0.334644i \(-0.108616\pi\)
\(458\) 25.3140 21.7274i 1.18284 1.01526i
\(459\) 0 0
\(460\) 6.43860 12.7907i 0.300201 0.596369i
\(461\) 38.5074i 1.79347i −0.442571 0.896734i \(-0.645933\pi\)
0.442571 0.896734i \(-0.354067\pi\)
\(462\) 0 0
\(463\) 10.7672i 0.500394i −0.968195 0.250197i \(-0.919505\pi\)
0.968195 0.250197i \(-0.0804954\pi\)
\(464\) −15.7444 + 0.153962i −0.730917 + 0.00714752i
\(465\) 0 0
\(466\) −16.1112 18.7706i −0.746335 0.869532i
\(467\) 12.1553 16.7304i 0.562481 0.774189i −0.429158 0.903229i \(-0.641190\pi\)
0.991639 + 0.129040i \(0.0411897\pi\)
\(468\) 0 0
\(469\) 7.60867 + 2.47221i 0.351336 + 0.114156i
\(470\) 18.1923 + 4.32057i 0.839147 + 0.199293i
\(471\) 0 0
\(472\) 13.7159 + 0.978304i 0.631323 + 0.0450301i
\(473\) 6.24883 0.678301i 0.287321 0.0311883i
\(474\) 0 0
\(475\) 20.4682 14.8710i 0.939144 0.682328i
\(476\) −0.161907 0.160331i −0.00742098 0.00734877i
\(477\) 0 0
\(478\) 3.63922 + 8.72546i 0.166454 + 0.399093i
\(479\) 9.23398 + 6.70888i 0.421911 + 0.306536i 0.778406 0.627761i \(-0.216028\pi\)
−0.356495 + 0.934297i \(0.616028\pi\)
\(480\) 0 0
\(481\) 23.2712 7.56128i 1.06108 0.344765i
\(482\) −0.490399 6.04223i −0.0223371 0.275216i
\(483\) 0 0
\(484\) 20.4451 8.12385i 0.929324 0.369266i
\(485\) 9.87880 0.448573
\(486\) 0 0
\(487\) 3.80894 1.23760i 0.172600 0.0560810i −0.221442 0.975173i \(-0.571076\pi\)
0.394042 + 0.919092i \(0.371076\pi\)
\(488\) 1.43109 3.52792i 0.0647825 0.159701i
\(489\) 0 0
\(490\) −3.19200 7.65320i −0.144200 0.345736i
\(491\) 3.45914 10.6461i 0.156109 0.480454i −0.842163 0.539223i \(-0.818718\pi\)
0.998272 + 0.0587698i \(0.0187178\pi\)
\(492\) 0 0
\(493\) −0.222807 + 0.161879i −0.0100347 + 0.00729066i
\(494\) 20.8174 34.1581i 0.936619 1.53684i
\(495\) 0 0
\(496\) −12.0380 8.56754i −0.540523 0.384694i
\(497\) −6.67654 9.18946i −0.299484 0.412204i
\(498\) 0 0
\(499\) −37.4389 12.1646i −1.67599 0.544564i −0.691867 0.722025i \(-0.743211\pi\)
−0.984128 + 0.177462i \(0.943211\pi\)
\(500\) −3.34511 + 21.8098i −0.149598 + 0.975365i
\(501\) 0 0
\(502\) 4.51117 + 5.25583i 0.201343 + 0.234579i
\(503\) −5.97544 18.3905i −0.266432 0.819993i −0.991360 0.131168i \(-0.958127\pi\)
0.724928 0.688824i \(-0.241873\pi\)
\(504\) 0 0
\(505\) 12.9079i 0.574395i
\(506\) 4.68185 + 24.4615i 0.208134 + 1.08745i
\(507\) 0 0
\(508\) 18.3866 + 9.25547i 0.815772 + 0.410645i
\(509\) 13.2867 + 40.8921i 0.588920 + 1.81251i 0.582921 + 0.812529i \(0.301910\pi\)
0.00599915 + 0.999982i \(0.498090\pi\)
\(510\) 0 0
\(511\) −9.68826 + 13.3347i −0.428583 + 0.589895i
\(512\) 16.8786 15.0703i 0.745934 0.666020i
\(513\) 0 0
\(514\) 4.04693 17.0401i 0.178502 0.751605i
\(515\) 8.18058 + 11.2596i 0.360479 + 0.496157i
\(516\) 0 0
\(517\) −29.6639 + 13.3285i −1.30462 + 0.586185i
\(518\) 13.5264 + 8.24359i 0.594317 + 0.362202i
\(519\) 0 0
\(520\) 3.26379 + 13.1685i 0.143127 + 0.577475i
\(521\) 4.55221 14.0103i 0.199436 0.613801i −0.800460 0.599386i \(-0.795411\pi\)
0.999896 0.0144150i \(-0.00458858\pi\)
\(522\) 0 0
\(523\) 32.7270 + 23.7776i 1.43105 + 1.03972i 0.989819 + 0.142329i \(0.0454591\pi\)
0.441234 + 0.897392i \(0.354541\pi\)
\(524\) −3.68648 + 0.602371i −0.161045 + 0.0263147i
\(525\) 0 0
\(526\) 23.8907 1.93902i 1.04169 0.0845453i
\(527\) −0.258445 −0.0112580
\(528\) 0 0
\(529\) −5.19479 −0.225860
\(530\) 7.38925 0.599726i 0.320968 0.0260504i
\(531\) 0 0
\(532\) 25.5571 4.17604i 1.10804 0.181055i
\(533\) 16.6520 + 12.0984i 0.721280 + 0.524040i
\(534\) 0 0
\(535\) 4.61566 14.2055i 0.199552 0.614159i
\(536\) 3.34300 + 13.4881i 0.144396 + 0.582595i
\(537\) 0 0
\(538\) 4.77584 + 2.91060i 0.205901 + 0.125485i
\(539\) 12.5144 + 7.16845i 0.539031 + 0.308767i
\(540\) 0 0
\(541\) −9.83661 13.5389i −0.422909 0.582084i 0.543399 0.839475i \(-0.317137\pi\)
−0.966307 + 0.257391i \(0.917137\pi\)
\(542\) 7.75691 32.6614i 0.333188 1.40293i
\(543\) 0 0
\(544\) 0.0876832 0.385950i 0.00375939 0.0165475i
\(545\) 7.10097 9.77365i 0.304172 0.418657i
\(546\) 0 0
\(547\) 2.87078 + 8.83536i 0.122746 + 0.377773i 0.993484 0.113975i \(-0.0363583\pi\)
−0.870738 + 0.491747i \(0.836358\pi\)
\(548\) −2.24103 1.12810i −0.0957322 0.0481899i
\(549\) 0 0
\(550\) −7.19766 13.0735i −0.306909 0.557455i
\(551\) 31.2996i 1.33341i
\(552\) 0 0
\(553\) −3.02146 9.29909i −0.128485 0.395437i
\(554\) −13.8265 16.1088i −0.587430 0.684397i
\(555\) 0 0
\(556\) 1.90752 12.4369i 0.0808968 0.527440i
\(557\) −12.6129 4.09818i −0.534425 0.173645i 0.0293567 0.999569i \(-0.490654\pi\)
−0.563782 + 0.825924i \(0.690654\pi\)
\(558\) 0 0
\(559\) −3.96257 5.45401i −0.167599 0.230680i
\(560\) −5.09271 + 7.15563i −0.215206 + 0.302380i
\(561\) 0 0
\(562\) −4.22549 + 6.93336i −0.178241 + 0.292466i
\(563\) −19.0155 + 13.8156i −0.801408 + 0.582257i −0.911327 0.411684i \(-0.864941\pi\)
0.109919 + 0.993941i \(0.464941\pi\)
\(564\) 0 0
\(565\) −4.59312 + 14.1362i −0.193234 + 0.594713i
\(566\) 6.09431 + 14.6118i 0.256163 + 0.614181i
\(567\) 0 0
\(568\) 7.41642 18.2829i 0.311186 0.767134i
\(569\) 12.2494 3.98008i 0.513523 0.166854i −0.0407811 0.999168i \(-0.512985\pi\)
0.554304 + 0.832315i \(0.312985\pi\)
\(570\) 0 0
\(571\) 20.4261 0.854806 0.427403 0.904061i \(-0.359429\pi\)
0.427403 + 0.904061i \(0.359429\pi\)
\(572\) −18.4601 14.6968i −0.771855 0.614506i
\(573\) 0 0
\(574\) 1.07793 + 13.2813i 0.0449921 + 0.554349i
\(575\) 16.0680 5.22080i 0.670080 0.217722i
\(576\) 0 0
\(577\) −5.53777 4.02342i −0.230540 0.167497i 0.466518 0.884512i \(-0.345508\pi\)
−0.697058 + 0.717014i \(0.745508\pi\)
\(578\) 9.25194 + 22.1826i 0.384830 + 0.922675i
\(579\) 0 0
\(580\) 7.54291 + 7.46951i 0.313202 + 0.310155i
\(581\) −4.75828 + 3.45709i −0.197407 + 0.143424i
\(582\) 0 0
\(583\) −9.55259 + 8.66028i −0.395628 + 0.358672i
\(584\) −28.5573 2.03689i −1.18171 0.0842873i
\(585\) 0 0
\(586\) −7.29648 1.73288i −0.301415 0.0715844i
\(587\) 0.607533 + 0.197399i 0.0250756 + 0.00814754i 0.321528 0.946900i \(-0.395804\pi\)
−0.296452 + 0.955048i \(0.595804\pi\)
\(588\) 0 0
\(589\) 17.2645 23.7625i 0.711370 0.979117i
\(590\) −6.03813 7.03484i −0.248586 0.289620i
\(591\) 0 0
\(592\) 0.269046 + 27.5131i 0.0110577 + 1.13078i
\(593\) 17.0480i 0.700077i 0.936735 + 0.350039i \(0.113832\pi\)
−0.936735 + 0.350039i \(0.886168\pi\)
\(594\) 0 0
\(595\) 0.153624i 0.00629799i
\(596\) 15.4274 30.6475i 0.631930 1.25537i
\(597\) 0 0
\(598\) 20.2698 17.3979i 0.828892 0.711452i
\(599\) 1.16656 1.60564i 0.0476645 0.0656045i −0.784519 0.620104i \(-0.787090\pi\)
0.832184 + 0.554500i \(0.187090\pi\)
\(600\) 0 0
\(601\) 15.6571 + 5.08729i 0.638665 + 0.207515i 0.610410 0.792086i \(-0.291005\pi\)
0.0282553 + 0.999601i \(0.491005\pi\)
\(602\) 1.00845 4.24618i 0.0411012 0.173061i
\(603\) 0 0
\(604\) −11.1453 21.6120i −0.453496 0.879380i
\(605\) −13.5910 5.94052i −0.552552 0.241516i
\(606\) 0 0
\(607\) −23.2353 + 16.8814i −0.943091 + 0.685196i −0.949163 0.314786i \(-0.898067\pi\)
0.00607141 + 0.999982i \(0.498067\pi\)
\(608\) 29.6285 + 33.8440i 1.20159 + 1.37255i
\(609\) 0 0
\(610\) −2.36900 + 0.988064i −0.0959180 + 0.0400055i
\(611\) 28.2185 + 20.5019i 1.14160 + 0.829419i
\(612\) 0 0
\(613\) 6.32812 2.05613i 0.255590 0.0830464i −0.178419 0.983955i \(-0.557098\pi\)
0.434010 + 0.900908i \(0.357098\pi\)
\(614\) −3.19995 + 0.259714i −0.129139 + 0.0104812i
\(615\) 0 0
\(616\) −0.563830 15.2650i −0.0227174 0.615046i
\(617\) 17.8948 0.720416 0.360208 0.932872i \(-0.382706\pi\)
0.360208 + 0.932872i \(0.382706\pi\)
\(618\) 0 0
\(619\) 22.1005 7.18088i 0.888293 0.288624i 0.170897 0.985289i \(-0.445334\pi\)
0.717397 + 0.696665i \(0.245334\pi\)
\(620\) 1.60645 + 9.83139i 0.0645167 + 0.394838i
\(621\) 0 0
\(622\) −26.3221 + 10.9784i −1.05542 + 0.440195i
\(623\) 2.71579 8.35835i 0.108806 0.334870i
\(624\) 0 0
\(625\) −0.835407 + 0.606959i −0.0334163 + 0.0242784i
\(626\) −1.86201 1.13479i −0.0744208 0.0453552i
\(627\) 0 0
\(628\) −4.86001 9.42411i −0.193935 0.376063i
\(629\) 0.282881 + 0.389352i 0.0112792 + 0.0155245i
\(630\) 0 0
\(631\) 44.0545 + 14.3142i 1.75378 + 0.569838i 0.996526 0.0832806i \(-0.0265398\pi\)
0.757255 + 0.653119i \(0.226540\pi\)
\(632\) 10.9349 12.9949i 0.434966 0.516908i
\(633\) 0 0
\(634\) −18.0953 + 15.5315i −0.718657 + 0.616836i
\(635\) −4.28864 13.1991i −0.170190 0.523790i
\(636\) 0 0
\(637\) 15.4683i 0.612877i
\(638\) −18.3187 2.30276i −0.725244 0.0911673i
\(639\) 0 0
\(640\) −15.2268 0.936520i −0.601892 0.0370192i
\(641\) −8.39773 25.8456i −0.331691 1.02084i −0.968329 0.249676i \(-0.919676\pi\)
0.636639 0.771162i \(-0.280324\pi\)
\(642\) 0 0
\(643\) 18.2352 25.0987i 0.719128 0.989794i −0.280425 0.959876i \(-0.590475\pi\)
0.999552 0.0299182i \(-0.00952467\pi\)
\(644\) 17.0930 + 2.62166i 0.673558 + 0.103308i
\(645\) 0 0
\(646\) 0.765482 + 0.181798i 0.0301175 + 0.00715275i
\(647\) −24.7877 34.1173i −0.974505 1.34129i −0.939738 0.341895i \(-0.888931\pi\)
−0.0347664 0.999395i \(-0.511069\pi\)
\(648\) 0 0
\(649\) 15.7831 + 3.29867i 0.619541 + 0.129484i
\(650\) −8.33001 + 13.6682i −0.326730 + 0.536112i
\(651\) 0 0
\(652\) 14.2929 + 14.1538i 0.559753 + 0.554306i
\(653\) 1.25077 3.84947i 0.0489464 0.150641i −0.923596 0.383367i \(-0.874764\pi\)
0.972542 + 0.232726i \(0.0747644\pi\)
\(654\) 0 0
\(655\) 2.03744 + 1.48028i 0.0796093 + 0.0578395i
\(656\) −18.5908 + 13.7867i −0.725848 + 0.538281i
\(657\) 0 0
\(658\) 1.82666 + 22.5064i 0.0712107 + 0.877390i
\(659\) 6.46292 0.251760 0.125880 0.992045i \(-0.459825\pi\)
0.125880 + 0.992045i \(0.459825\pi\)
\(660\) 0 0
\(661\) 26.6232 1.03552 0.517761 0.855525i \(-0.326766\pi\)
0.517761 + 0.855525i \(0.326766\pi\)
\(662\) 3.88671 + 47.8884i 0.151061 + 1.86123i
\(663\) 0 0
\(664\) −9.46685 3.84020i −0.367385 0.149029i
\(665\) −14.1249 10.2623i −0.547740 0.397956i
\(666\) 0 0
\(667\) 6.45884 19.8783i 0.250087 0.769690i
\(668\) 30.8302 31.1332i 1.19286 1.20458i
\(669\) 0 0
\(670\) 4.87569 8.00023i 0.188364 0.309076i
\(671\) 2.21895 3.87374i 0.0856616 0.149544i
\(672\) 0 0
\(673\) −4.89033 6.73096i −0.188508 0.259460i 0.704294 0.709909i \(-0.251264\pi\)
−0.892802 + 0.450449i \(0.851264\pi\)
\(674\) −23.5227 5.58651i −0.906060 0.215184i
\(675\) 0 0
\(676\) 0.104935 0.684168i 0.00403597 0.0263142i
\(677\) 8.97132 12.3480i 0.344796 0.474571i −0.601039 0.799220i \(-0.705246\pi\)
0.945834 + 0.324649i \(0.105246\pi\)
\(678\) 0 0
\(679\) 3.68652 + 11.3459i 0.141476 + 0.435417i
\(680\) −0.226491 + 0.141089i −0.00868552 + 0.00541051i
\(681\) 0 0
\(682\) −12.6373 11.8526i −0.483907 0.453860i
\(683\) 32.9156i 1.25948i 0.776806 + 0.629740i \(0.216839\pi\)
−0.776806 + 0.629740i \(0.783161\pi\)
\(684\) 0 0
\(685\) 0.522718 + 1.60876i 0.0199720 + 0.0614676i
\(686\) 19.8308 17.0211i 0.757142 0.649868i
\(687\) 0 0
\(688\) 7.18636 2.41293i 0.273978 0.0919922i
\(689\) 13.1524 + 4.27349i 0.501068 + 0.162807i
\(690\) 0 0
\(691\) −26.7545 36.8244i −1.01779 1.40087i −0.913742 0.406294i \(-0.866821\pi\)
−0.104047 0.994572i \(-0.533179\pi\)
\(692\) 21.0324 10.8464i 0.799531 0.412318i
\(693\) 0 0
\(694\) 3.01794 + 1.83926i 0.114559 + 0.0698175i
\(695\) −6.86294 + 4.98622i −0.260326 + 0.189138i
\(696\) 0 0
\(697\) −0.125102 + 0.385024i −0.00473857 + 0.0145838i
\(698\) −9.15135 + 3.81685i −0.346384 + 0.144470i
\(699\) 0 0
\(700\) −10.2266 + 1.67103i −0.386529 + 0.0631590i
\(701\) 47.6330 15.4769i 1.79907 0.584555i 0.799210 0.601052i \(-0.205252\pi\)
0.999864 + 0.0164975i \(0.00525154\pi\)
\(702\) 0 0
\(703\) −54.6955 −2.06288
\(704\) 21.9877 14.8507i 0.828691 0.559707i
\(705\) 0 0
\(706\) −25.2923 + 2.05277i −0.951887 + 0.0772570i
\(707\) 14.8249 4.81691i 0.557548 0.181158i
\(708\) 0 0
\(709\) 6.87556 + 4.99539i 0.258217 + 0.187606i 0.709361 0.704846i \(-0.248984\pi\)
−0.451144 + 0.892451i \(0.648984\pi\)
\(710\) −12.2770 + 5.12049i −0.460747 + 0.192169i
\(711\) 0 0
\(712\) 14.8170 3.67239i 0.555291 0.137628i
\(713\) 15.8681 11.5289i 0.594266 0.431759i
\(714\) 0 0
\(715\) 1.71677 + 15.8157i 0.0642036 + 0.591474i
\(716\) −1.65966 + 0.855885i −0.0620243 + 0.0319859i
\(717\) 0 0
\(718\) 3.16305 13.3184i 0.118044 0.497038i
\(719\) −6.94019 2.25500i −0.258825 0.0840974i 0.176730 0.984259i \(-0.443448\pi\)
−0.435555 + 0.900162i \(0.643448\pi\)
\(720\) 0 0
\(721\) −9.87901 + 13.5973i −0.367914 + 0.506390i
\(722\) −47.4612 + 40.7368i −1.76632 + 1.51607i
\(723\) 0 0
\(724\) −33.6554 16.9415i −1.25079 0.629627i
\(725\) 12.5244i 0.465146i
\(726\) 0 0
\(727\) 1.85004i 0.0686140i −0.999411 0.0343070i \(-0.989078\pi\)
0.999411 0.0343070i \(-0.0109224\pi\)
\(728\) −13.9062 + 8.66265i −0.515398 + 0.321059i
\(729\) 0 0
\(730\) 12.5718 + 14.6470i 0.465303 + 0.542110i
\(731\) 0.0779378 0.107272i 0.00288264 0.00396761i
\(732\) 0 0
\(733\) 17.9690 + 5.83849i 0.663701 + 0.215650i 0.621446 0.783457i \(-0.286546\pi\)
0.0422555 + 0.999107i \(0.486546\pi\)
\(734\) −42.5814 10.1129i −1.57171 0.373273i
\(735\) 0 0
\(736\) 11.8331 + 27.6082i 0.436173 + 1.01765i
\(737\) 1.75843 + 16.1995i 0.0647728 + 0.596717i
\(738\) 0 0
\(739\) −12.7166 + 9.23916i −0.467788 + 0.339868i −0.796579 0.604535i \(-0.793359\pi\)
0.328791 + 0.944403i \(0.393359\pi\)
\(740\) 13.0528 13.1811i 0.479832 0.484547i
\(741\) 0 0
\(742\) 3.44627 + 8.26284i 0.126517 + 0.303339i
\(743\) 4.69746 + 3.41290i 0.172333 + 0.125207i 0.670608 0.741812i \(-0.266033\pi\)
−0.498275 + 0.867019i \(0.666033\pi\)
\(744\) 0 0
\(745\) −22.0008 + 7.14848i −0.806045 + 0.261900i
\(746\) −0.563621 6.94440i −0.0206356 0.254252i
\(747\) 0 0
\(748\) 0.162719 0.434638i 0.00594958 0.0158919i
\(749\) 18.0377 0.659083
\(750\) 0 0
\(751\) −2.85643 + 0.928110i −0.104233 + 0.0338672i −0.360669 0.932694i \(-0.617452\pi\)
0.256436 + 0.966561i \(0.417452\pi\)
\(752\) −31.5039 + 23.3630i −1.14883 + 0.851959i
\(753\) 0 0
\(754\) 7.62271 + 18.2763i 0.277603 + 0.665585i
\(755\) −5.06615 + 15.5920i −0.184376 + 0.567451i
\(756\) 0 0
\(757\) 21.1049 15.3336i 0.767071 0.557310i −0.134000 0.990981i \(-0.542782\pi\)
0.901071 + 0.433672i \(0.142782\pi\)
\(758\) −2.96241 + 4.86085i −0.107600 + 0.176554i
\(759\) 0 0
\(760\) 2.15759 30.2495i 0.0782639 1.09726i
\(761\) 18.7813 + 25.8502i 0.680820 + 0.937068i 0.999943 0.0106450i \(-0.00338846\pi\)
−0.319123 + 0.947713i \(0.603388\pi\)
\(762\) 0 0
\(763\) 13.8751 + 4.50828i 0.502311 + 0.163211i
\(764\) −40.4156 6.19879i −1.46218 0.224265i
\(765\) 0 0
\(766\) 11.0428 + 12.8656i 0.398992 + 0.464854i
\(767\) −5.34410 16.4474i −0.192964 0.593883i
\(768\) 0 0
\(769\) 22.3560i 0.806176i 0.915161 + 0.403088i \(0.132063\pi\)
−0.915161 + 0.403088i \(0.867937\pi\)
\(770\) −7.04542 + 7.51184i −0.253899 + 0.270708i
\(771\) 0 0
\(772\) 15.5940 30.9784i 0.561239 1.11494i
\(773\) −1.56889 4.82855i −0.0564291 0.173671i 0.918869 0.394562i \(-0.129104\pi\)
−0.975299 + 0.220891i \(0.929104\pi\)
\(774\) 0 0
\(775\) −6.90832 + 9.50848i −0.248154 + 0.341555i
\(776\) −13.3418 + 15.8552i −0.478942 + 0.569169i
\(777\) 0 0
\(778\) −4.48898 + 18.9014i −0.160938 + 0.677648i
\(779\) −27.0438 37.2225i −0.968943 1.33364i
\(780\) 0 0
\(781\) 11.4994 20.0751i 0.411480 0.718343i
\(782\) 0.448640 + 0.273421i 0.0160433 + 0.00977750i
\(783\) 0 0
\(784\) 16.5941 + 5.21292i 0.592647 + 0.186176i
\(785\) −2.20914 + 6.79904i −0.0788476 + 0.242668i
\(786\) 0 0
\(787\) −2.38155 1.73029i −0.0848930 0.0616783i 0.544529 0.838742i \(-0.316708\pi\)
−0.629422 + 0.777064i \(0.716708\pi\)
\(788\) −1.12604 6.89127i −0.0401134 0.245491i
\(789\) 0 0
\(790\) −11.4128 + 0.926288i −0.406051 + 0.0329559i
\(791\) −17.9496 −0.638215
\(792\) 0 0
\(793\) −4.78812 −0.170031
\(794\) −17.1330 + 1.39055i −0.608028 + 0.0493487i
\(795\) 0 0
\(796\) 3.63355 + 22.2371i 0.128788 + 0.788173i
\(797\) 6.06111 + 4.40365i 0.214695 + 0.155985i 0.689936 0.723871i \(-0.257639\pi\)
−0.475240 + 0.879856i \(0.657639\pi\)
\(798\) 0 0
\(799\) −0.211997 + 0.652460i −0.00749992 + 0.0230824i
\(800\) −11.8557 13.5425i −0.419164 0.478801i
\(801\) 0 0
\(802\) −34.7558 21.1817i −1.22727 0.747952i
\(803\) −32.8615 6.86804i −1.15966 0.242368i
\(804\) 0 0
\(805\) −6.85298 9.43231i −0.241536 0.332445i
\(806\) −4.29388 + 18.0799i −0.151245 + 0.636837i
\(807\) 0 0
\(808\) 20.7169 + 17.4327i 0.728816 + 0.613281i
\(809\) −23.4091 + 32.2199i −0.823022 + 1.13279i 0.166160 + 0.986099i \(0.446863\pi\)
−0.989182 + 0.146694i \(0.953137\pi\)
\(810\) 0 0
\(811\) −13.1790 40.5607i −0.462777 1.42428i −0.861757 0.507321i \(-0.830636\pi\)
0.398981 0.916959i \(-0.369364\pi\)
\(812\) −5.76401 + 11.4506i −0.202277 + 0.401836i
\(813\) 0 0
\(814\) −4.02404 + 32.0116i −0.141042 + 1.12201i
\(815\) 13.5617i 0.475047i
\(816\) 0 0
\(817\) 4.65671 + 14.3319i 0.162918 + 0.501409i
\(818\) 17.4594 + 20.3414i 0.610452 + 0.711220i
\(819\) 0 0
\(820\) 15.4242 + 2.36570i 0.538635 + 0.0826138i
\(821\) 18.3658 + 5.96742i 0.640972 + 0.208264i 0.611429 0.791299i \(-0.290595\pi\)
0.0295426 + 0.999564i \(0.490595\pi\)
\(822\) 0 0
\(823\) 5.83041 + 8.02487i 0.203235 + 0.279729i 0.898453 0.439070i \(-0.144692\pi\)
−0.695218 + 0.718799i \(0.744692\pi\)
\(824\) −29.1196 2.07700i −1.01443 0.0723557i
\(825\) 0 0
\(826\) 5.82633 9.56010i 0.202724 0.332638i
\(827\) 35.2981 25.6455i 1.22743 0.891783i 0.230738 0.973016i \(-0.425886\pi\)
0.996695 + 0.0812332i \(0.0258859\pi\)
\(828\) 0 0
\(829\) −8.69871 + 26.7719i −0.302119 + 0.929826i 0.678618 + 0.734491i \(0.262579\pi\)
−0.980737 + 0.195335i \(0.937421\pi\)
\(830\) 2.65138 + 6.35699i 0.0920306 + 0.220654i
\(831\) 0 0
\(832\) −25.5429 12.5463i −0.885541 0.434965i
\(833\) 0.289348 0.0940150i 0.0100253 0.00325743i
\(834\) 0 0
\(835\) −29.5406 −1.02229
\(836\) 29.0927 + 43.9955i 1.00619 + 1.52162i
\(837\) 0 0
\(838\) 1.75845 + 21.6659i 0.0607446 + 0.748437i
\(839\) 33.2421 10.8010i 1.14764 0.372892i 0.327388 0.944890i \(-0.393831\pi\)
0.820255 + 0.571998i \(0.193831\pi\)
\(840\) 0 0
\(841\) −10.9262 7.93837i −0.376767 0.273737i
\(842\) 10.5180 + 25.2183i 0.362476 + 0.869079i
\(843\) 0 0
\(844\) −3.86011 + 3.89804i −0.132870 + 0.134176i
\(845\) −0.377540 + 0.274299i −0.0129878 + 0.00943617i
\(846\) 0 0
\(847\) 1.75095 17.8263i 0.0601634 0.612518i
\(848\) −9.01697 + 12.6695i −0.309644 + 0.435072i
\(849\) 0 0
\(850\) −0.306305 0.0727458i −0.0105062 0.00249516i
\(851\) −34.7369 11.2867i −1.19077 0.386903i
\(852\) 0 0
\(853\) −15.9973 + 22.0183i −0.547736 + 0.753894i −0.989703 0.143138i \(-0.954281\pi\)
0.441967 + 0.897031i \(0.354281\pi\)
\(854\) −2.01886 2.35211i −0.0690838 0.0804875i
\(855\) 0 0
\(856\) 16.5658 + 26.5932i 0.566209 + 0.908938i
\(857\) 37.5541i 1.28282i −0.767197 0.641412i \(-0.778349\pi\)
0.767197 0.641412i \(-0.221651\pi\)
\(858\) 0 0
\(859\) 4.50293i 0.153638i 0.997045 + 0.0768190i \(0.0244764\pi\)
−0.997045 + 0.0768190i \(0.975524\pi\)
\(860\) −4.56515 2.29802i −0.155670 0.0783617i
\(861\) 0 0
\(862\) −29.0860 + 24.9651i −0.990675 + 0.850313i
\(863\) −10.6014 + 14.5915i −0.360875 + 0.496702i −0.950392 0.311054i \(-0.899318\pi\)
0.589517 + 0.807756i \(0.299318\pi\)
\(864\) 0 0
\(865\) −15.1738 4.93028i −0.515926 0.167634i
\(866\) 1.42349 5.99380i 0.0483723 0.203677i
\(867\) 0 0
\(868\) −10.6920 + 5.51386i −0.362910 + 0.187152i
\(869\) 14.7542 13.3760i 0.500501 0.453749i
\(870\) 0 0
\(871\) 14.1390 10.2726i 0.479083 0.348074i
\(872\) 6.09625 + 24.5966i 0.206445 + 0.832946i
\(873\) 0 0
\(874\) −55.1093 + 22.9850i −1.86410 + 0.777479i
\(875\) 14.5339 + 10.5595i 0.491335 + 0.356976i
\(876\) 0 0
\(877\) −12.9541 + 4.20903i −0.437428 + 0.142129i −0.519449 0.854502i \(-0.673863\pi\)
0.0820206 + 0.996631i \(0.473863\pi\)
\(878\) 33.9702 2.75709i 1.14644 0.0930473i
\(879\) 0 0
\(880\) −17.5453 3.48827i −0.591453 0.117590i
\(881\) −5.44549 −0.183463 −0.0917317 0.995784i \(-0.529240\pi\)
−0.0917317 + 0.995784i \(0.529240\pi\)
\(882\) 0 0
\(883\) −26.8480 + 8.72345i −0.903508 + 0.293568i −0.723684 0.690131i \(-0.757553\pi\)
−0.179824 + 0.983699i \(0.557553\pi\)
\(884\) −0.491252 + 0.0802708i −0.0165226 + 0.00269980i
\(885\) 0 0
\(886\) −30.0789 + 12.5453i −1.01052 + 0.421469i
\(887\) −13.1145 + 40.3623i −0.440342 + 1.35523i 0.447171 + 0.894449i \(0.352432\pi\)
−0.887512 + 0.460784i \(0.847568\pi\)
\(888\) 0 0
\(889\) 13.5589 9.85113i 0.454751 0.330396i
\(890\) −8.78849 5.35608i −0.294591 0.179536i
\(891\) 0 0
\(892\) −42.1738 + 21.7490i −1.41208 + 0.728211i
\(893\) −45.8283 63.0772i −1.53358 2.11080i
\(894\) 0 0
\(895\) 1.19736 + 0.389047i 0.0400234 + 0.0130044i
\(896\) −4.60664 17.8377i −0.153897 0.595914i
\(897\) 0 0
\(898\) −4.04943 + 3.47570i −0.135131 + 0.115986i
\(899\) 4.49318 + 13.8286i 0.149856 + 0.461209i
\(900\) 0 0
\(901\) 0.272002i 0.00906169i
\(902\) −23.7749 + 13.0894i −0.791616 + 0.435828i
\(903\) 0 0
\(904\) −16.4849 26.4634i −0.548281 0.880159i
\(905\) 7.85008 + 24.1601i 0.260946 + 0.803108i
\(906\) 0 0
\(907\) 20.3902 28.0647i 0.677046 0.931873i −0.322848 0.946451i \(-0.604640\pi\)
0.999894 + 0.0145776i \(0.00464034\pi\)
\(908\) −0.242820 + 1.58317i −0.00805827 + 0.0525392i
\(909\) 0 0
\(910\) 10.7470 + 2.55236i 0.356261 + 0.0846100i
\(911\) 17.4380 + 24.0014i 0.577748 + 0.795202i 0.993446 0.114300i \(-0.0364627\pi\)
−0.415698 + 0.909503i \(0.636463\pi\)
\(912\) 0 0
\(913\) −10.3948 5.95434i −0.344018 0.197060i
\(914\) 25.9483 42.5771i 0.858294 1.40833i
\(915\) 0 0
\(916\) 33.1963 33.5225i 1.09684 1.10762i
\(917\) −0.939807 + 2.89243i −0.0310352 + 0.0955164i
\(918\) 0 0
\(919\) 17.4823 + 12.7016i 0.576687 + 0.418988i 0.837528 0.546394i \(-0.184000\pi\)
−0.260841 + 0.965382i \(0.584000\pi\)
\(920\) 7.61241 18.7661i 0.250974 0.618699i
\(921\) 0 0
\(922\) −4.40540 54.2792i −0.145084 1.78759i
\(923\) −24.8137 −0.816754
\(924\) 0 0
\(925\) 21.8862 0.719614
\(926\) −1.23181 15.1772i −0.0404798 0.498754i
\(927\) 0 0
\(928\) −22.1754 + 2.01825i −0.727943 + 0.0662523i
\(929\) 38.2024 + 27.7557i 1.25338 + 0.910635i 0.998413 0.0563145i \(-0.0179350\pi\)
0.254968 + 0.966949i \(0.417935\pi\)
\(930\) 0 0
\(931\) −10.6848 + 32.8843i −0.350179 + 1.07774i
\(932\) −24.8574 24.6155i −0.814230 0.806307i
\(933\) 0 0
\(934\) 15.2199 24.9734i 0.498009 0.817154i
\(935\) −0.285412 + 0.128240i −0.00933397 + 0.00419390i
\(936\) 0 0
\(937\) 27.2659 + 37.5283i 0.890738 + 1.22600i 0.973329 + 0.229412i \(0.0736804\pi\)
−0.0825914 + 0.996583i \(0.526320\pi\)
\(938\) 11.0079 + 2.61431i 0.359419 + 0.0853602i
\(939\) 0 0
\(940\) 26.1377 + 4.00891i 0.852518 + 0.130756i
\(941\) −23.1708 + 31.8919i −0.755347 + 1.03965i 0.242240 + 0.970216i \(0.422118\pi\)
−0.997587 + 0.0694293i \(0.977882\pi\)
\(942\) 0 0
\(943\) −9.49432 29.2205i −0.309178 0.951551i
\(944\) 19.4455 0.190154i 0.632897 0.00618900i
\(945\) 0 0
\(946\) 8.73061 1.67101i 0.283857 0.0543292i
\(947\) 24.9488i 0.810725i −0.914156 0.405363i \(-0.867145\pi\)
0.914156 0.405363i \(-0.132855\pi\)
\(948\) 0 0
\(949\) 11.1268 + 34.2447i 0.361190 + 1.11163i
\(950\) 27.1502 23.3035i 0.880868 0.756065i
\(951\) 0 0
\(952\) −0.246563 0.207477i −0.00799115 0.00672436i
\(953\) −38.9090 12.6423i −1.26039 0.409524i −0.398754 0.917058i \(-0.630557\pi\)
−0.861632 + 0.507534i \(0.830557\pi\)
\(954\) 0 0
\(955\) 16.2035 + 22.3023i 0.524334 + 0.721684i
\(956\) 6.12800 + 11.8829i 0.198194 + 0.384320i
\(957\) 0 0
\(958\) 13.7835 + 8.40029i 0.445326 + 0.271401i
\(959\) −1.65262 + 1.20070i −0.0533658 + 0.0387725i
\(960\) 0 0
\(961\) 5.36305 16.5058i 0.173002 0.532445i
\(962\) 31.9376 13.3205i 1.02971 0.429472i
\(963\) 0 0
\(964\) −1.38251 8.46089i −0.0445277 0.272507i
\(965\) −22.2383 + 7.22567i −0.715877 + 0.232603i
\(966\) 0 0
\(967\) 23.6696 0.761164 0.380582 0.924747i \(-0.375724\pi\)
0.380582 + 0.924747i \(0.375724\pi\)
\(968\) 27.8896 13.7902i 0.896406 0.443234i
\(969\) 0 0
\(970\) 13.9249 1.13018i 0.447103 0.0362878i
\(971\) 51.2925 16.6659i 1.64606 0.534836i 0.668176 0.744004i \(-0.267076\pi\)
0.977880 + 0.209168i \(0.0670755\pi\)
\(972\) 0 0
\(973\) −8.28781 6.02145i −0.265695 0.193039i
\(974\) 5.22741 2.18025i 0.167497 0.0698598i
\(975\) 0 0
\(976\) 1.61363 5.13660i 0.0516509 0.164419i
\(977\) −7.76321 + 5.64030i −0.248367 + 0.180449i −0.705003 0.709204i \(-0.749054\pi\)
0.456636 + 0.889654i \(0.349054\pi\)
\(978\) 0 0
\(979\) 17.7957 1.93169i 0.568752 0.0617371i
\(980\) −5.37494 10.4226i −0.171696 0.332938i
\(981\) 0 0
\(982\) 3.65797 15.4023i 0.116730 0.491508i
\(983\) 33.5747 + 10.9091i 1.07087 + 0.347945i 0.790824 0.612043i \(-0.209652\pi\)
0.280041 + 0.959988i \(0.409652\pi\)
\(984\) 0 0
\(985\) −2.76715 + 3.80866i −0.0881688 + 0.121354i
\(986\) −0.295545 + 0.253671i −0.00941206 + 0.00807854i
\(987\) 0 0
\(988\) 25.4359 50.5301i 0.809225 1.60758i
\(989\) 10.0631i 0.319987i
\(990\) 0 0
\(991\) 17.8021i 0.565502i 0.959193 + 0.282751i \(0.0912471\pi\)
−0.959193 + 0.282751i \(0.908753\pi\)
\(992\) −17.9487 10.6994i −0.569872 0.339707i
\(993\) 0 0
\(994\) −10.4624 12.1894i −0.331848 0.386626i
\(995\) 8.92918 12.2900i 0.283074 0.389618i
\(996\) 0 0
\(997\) −59.8586 19.4492i −1.89574 0.615963i −0.973144 0.230197i \(-0.926063\pi\)
−0.922596 0.385766i \(-0.873937\pi\)
\(998\) −54.1647 12.8638i −1.71455 0.407198i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.r.a.19.4 16
3.2 odd 2 44.2.g.a.19.1 yes 16
4.3 odd 2 inner 396.2.r.a.19.2 16
11.7 odd 10 inner 396.2.r.a.271.2 16
12.11 even 2 44.2.g.a.19.3 yes 16
24.5 odd 2 704.2.u.c.63.2 16
24.11 even 2 704.2.u.c.63.3 16
33.2 even 10 484.2.c.d.483.3 16
33.5 odd 10 484.2.g.f.475.4 16
33.8 even 10 484.2.g.f.215.3 16
33.14 odd 10 484.2.g.j.215.2 16
33.17 even 10 484.2.g.j.475.1 16
33.20 odd 10 484.2.c.d.483.14 16
33.26 odd 10 484.2.g.i.403.2 16
33.29 even 10 44.2.g.a.7.3 yes 16
33.32 even 2 484.2.g.i.239.4 16
44.7 even 10 inner 396.2.r.a.271.4 16
132.35 odd 10 484.2.c.d.483.13 16
132.47 even 10 484.2.g.j.215.1 16
132.59 even 10 484.2.g.i.403.4 16
132.71 even 10 484.2.g.f.475.3 16
132.83 odd 10 484.2.g.j.475.2 16
132.95 odd 10 44.2.g.a.7.1 16
132.107 odd 10 484.2.g.f.215.4 16
132.119 even 10 484.2.c.d.483.4 16
132.131 odd 2 484.2.g.i.239.2 16
264.29 even 10 704.2.u.c.447.3 16
264.227 odd 10 704.2.u.c.447.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.7.1 16 132.95 odd 10
44.2.g.a.7.3 yes 16 33.29 even 10
44.2.g.a.19.1 yes 16 3.2 odd 2
44.2.g.a.19.3 yes 16 12.11 even 2
396.2.r.a.19.2 16 4.3 odd 2 inner
396.2.r.a.19.4 16 1.1 even 1 trivial
396.2.r.a.271.2 16 11.7 odd 10 inner
396.2.r.a.271.4 16 44.7 even 10 inner
484.2.c.d.483.3 16 33.2 even 10
484.2.c.d.483.4 16 132.119 even 10
484.2.c.d.483.13 16 132.35 odd 10
484.2.c.d.483.14 16 33.20 odd 10
484.2.g.f.215.3 16 33.8 even 10
484.2.g.f.215.4 16 132.107 odd 10
484.2.g.f.475.3 16 132.71 even 10
484.2.g.f.475.4 16 33.5 odd 10
484.2.g.i.239.2 16 132.131 odd 2
484.2.g.i.239.4 16 33.32 even 2
484.2.g.i.403.2 16 33.26 odd 10
484.2.g.i.403.4 16 132.59 even 10
484.2.g.j.215.1 16 132.47 even 10
484.2.g.j.215.2 16 33.14 odd 10
484.2.g.j.475.1 16 33.17 even 10
484.2.g.j.475.2 16 132.83 odd 10
704.2.u.c.63.2 16 24.5 odd 2
704.2.u.c.63.3 16 24.11 even 2
704.2.u.c.447.2 16 264.227 odd 10
704.2.u.c.447.3 16 264.29 even 10