Properties

Label 44.2.g.a.19.3
Level $44$
Weight $2$
Character 44.19
Analytic conductor $0.351$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [44,2,Mod(7,44)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(44, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("44.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 44.g (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.351341768894\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 19.3
Root \(-0.544389 - 1.30524i\) of defining polynomial
Character \(\chi\) \(=\) 44.19
Dual form 44.2.g.a.7.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.544389 - 1.30524i) q^{2} +(-0.704424 + 0.228881i) q^{3} +(-1.40728 - 1.42111i) q^{4} +(1.09089 + 0.792578i) q^{5} +(-0.0847364 + 1.04404i) q^{6} +(-0.503194 + 1.54867i) q^{7} +(-2.62099 + 1.06320i) q^{8} +(-1.98322 + 1.44090i) q^{9} +O(q^{10})\) \(q+(0.544389 - 1.30524i) q^{2} +(-0.704424 + 0.228881i) q^{3} +(-1.40728 - 1.42111i) q^{4} +(1.09089 + 0.792578i) q^{5} +(-0.0847364 + 1.04404i) q^{6} +(-0.503194 + 1.54867i) q^{7} +(-2.62099 + 1.06320i) q^{8} +(-1.98322 + 1.44090i) q^{9} +(1.62837 - 0.992398i) q^{10} +(3.29726 - 0.357912i) q^{11} +(1.31659 + 0.678965i) q^{12} +(-2.09089 - 2.87786i) q^{13} +(1.74745 + 1.49987i) q^{14} +(-0.949856 - 0.308627i) q^{15} +(-0.0391135 + 3.99981i) q^{16} +(-0.0411247 + 0.0566033i) q^{17} +(0.801066 + 3.37298i) q^{18} +(-2.45716 - 7.56236i) q^{19} +(-0.408849 - 2.66566i) q^{20} -1.20609i q^{21} +(1.32783 - 4.49854i) q^{22} +5.30988i q^{23} +(1.60295 - 1.34884i) q^{24} +(-0.983224 - 3.02605i) q^{25} +(-4.89455 + 1.16243i) q^{26} +(2.37331 - 3.26658i) q^{27} +(2.90897 - 1.46432i) q^{28} +(3.74364 + 1.21638i) q^{29} +(-0.919921 + 1.07177i) q^{30} +(2.17121 + 2.98842i) q^{31} +(5.19940 + 2.22850i) q^{32} +(-2.24075 + 1.00680i) q^{33} +(0.0514928 + 0.0844916i) q^{34} +(-1.77637 + 1.29061i) q^{35} +(4.83863 + 0.790633i) q^{36} +(-2.12561 + 6.54194i) q^{37} +(-11.2083 - 0.909689i) q^{38} +(2.13156 + 1.54867i) q^{39} +(-3.70188 - 0.917509i) q^{40} +(5.50305 - 1.78805i) q^{41} +(-1.57424 - 0.656583i) q^{42} -1.89516 q^{43} +(-5.14880 - 4.18208i) q^{44} -3.30550 q^{45} +(6.93064 + 2.89064i) q^{46} +(-9.32545 + 3.03002i) q^{47} +(-0.887929 - 2.82652i) q^{48} +(3.51794 + 2.55593i) q^{49} +(-4.48497 - 0.364009i) q^{50} +(0.0160138 - 0.0492854i) q^{51} +(-1.14729 + 7.02135i) q^{52} +(3.14518 - 2.28511i) q^{53} +(-2.97166 - 4.87602i) q^{54} +(3.88062 + 2.22289i) q^{55} +(-0.327678 - 4.59405i) q^{56} +(3.46177 + 4.76471i) q^{57} +(3.62566 - 4.22415i) q^{58} +(4.62366 + 1.50232i) q^{59} +(0.898122 + 1.78418i) q^{60} +(0.791173 - 1.08896i) q^{61} +(5.08257 - 1.20708i) q^{62} +(-1.23353 - 3.79641i) q^{63} +(5.73922 - 5.57328i) q^{64} -4.79662i q^{65} +(0.0942773 + 3.47280i) q^{66} -4.91303i q^{67} +(0.138314 - 0.0212140i) q^{68} +(-1.21533 - 3.74041i) q^{69} +(0.717514 + 3.02118i) q^{70} +(4.10014 - 5.64335i) q^{71} +(3.66606 - 5.88514i) q^{72} +(-9.62677 - 3.12793i) q^{73} +(7.38163 + 6.33578i) q^{74} +(1.38521 + 1.90658i) q^{75} +(-7.28904 + 14.1343i) q^{76} +(-1.10487 + 5.28646i) q^{77} +(3.18178 - 1.93911i) q^{78} +(-4.85779 + 3.52939i) q^{79} +(-3.21283 + 4.33235i) q^{80} +(1.34841 - 4.14999i) q^{81} +(0.661971 - 8.15617i) q^{82} +(-2.92211 - 2.12304i) q^{83} +(-1.71399 + 1.69731i) q^{84} +(-0.0897250 + 0.0291534i) q^{85} +(-1.03170 + 2.47363i) q^{86} -2.91552 q^{87} +(-8.26156 + 4.44372i) q^{88} -5.39711 q^{89} +(-1.79948 + 4.31446i) q^{90} +(5.50899 - 1.78998i) q^{91} +(7.54592 - 7.47249i) q^{92} +(-2.21345 - 1.60816i) q^{93} +(-1.12177 + 13.8214i) q^{94} +(3.31327 - 10.1972i) q^{95} +(-4.17265 - 0.379765i) q^{96} +(-5.92705 + 4.30625i) q^{97} +(5.25122 - 3.20032i) q^{98} +(-6.02348 + 5.46083i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 5 q^{2} - q^{4} - 6 q^{5} - 5 q^{6} - 5 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 5 q^{2} - q^{4} - 6 q^{5} - 5 q^{6} - 5 q^{8} - 10 q^{9} - 22 q^{12} - 10 q^{13} + 8 q^{14} + 23 q^{16} - 10 q^{17} + 20 q^{18} + 16 q^{20} + 17 q^{22} + 25 q^{24} + 6 q^{25} - 4 q^{26} + 20 q^{28} - 10 q^{29} - 12 q^{33} - 6 q^{34} - 30 q^{36} + 18 q^{37} - 38 q^{38} - 40 q^{40} + 10 q^{41} - 26 q^{42} - 28 q^{44} + 40 q^{45} - 30 q^{46} - 36 q^{48} + 6 q^{49} - 15 q^{50} - 10 q^{52} + 38 q^{53} - 12 q^{56} + 30 q^{58} + 52 q^{60} - 10 q^{61} + 70 q^{62} + 23 q^{64} + 36 q^{66} + 60 q^{68} - 16 q^{69} + 12 q^{70} + 45 q^{72} - 30 q^{73} + 40 q^{74} + 2 q^{77} + 4 q^{78} - 28 q^{80} - 4 q^{81} - 59 q^{82} - 10 q^{84} - 50 q^{85} - 39 q^{86} - 53 q^{88} - 36 q^{89} - 50 q^{90} + 36 q^{92} - 38 q^{93} - 30 q^{94} - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/44\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.544389 1.30524i 0.384941 0.922941i
\(3\) −0.704424 + 0.228881i −0.406700 + 0.132145i −0.505221 0.862990i \(-0.668589\pi\)
0.0985210 + 0.995135i \(0.468589\pi\)
\(4\) −1.40728 1.42111i −0.703641 0.710556i
\(5\) 1.09089 + 0.792578i 0.487861 + 0.354452i 0.804361 0.594141i \(-0.202508\pi\)
−0.316500 + 0.948592i \(0.602508\pi\)
\(6\) −0.0847364 + 1.04404i −0.0345935 + 0.426228i
\(7\) −0.503194 + 1.54867i −0.190189 + 0.585343i −0.999999 0.00134995i \(-0.999570\pi\)
0.809810 + 0.586693i \(0.199570\pi\)
\(8\) −2.62099 + 1.06320i −0.926661 + 0.375898i
\(9\) −1.98322 + 1.44090i −0.661075 + 0.480299i
\(10\) 1.62837 0.992398i 0.514936 0.313824i
\(11\) 3.29726 0.357912i 0.994160 0.107915i
\(12\) 1.31659 + 0.678965i 0.380067 + 0.196000i
\(13\) −2.09089 2.87786i −0.579909 0.798176i 0.413777 0.910378i \(-0.364209\pi\)
−0.993685 + 0.112203i \(0.964209\pi\)
\(14\) 1.74745 + 1.49987i 0.467025 + 0.400856i
\(15\) −0.949856 0.308627i −0.245252 0.0796871i
\(16\) −0.0391135 + 3.99981i −0.00977837 + 0.999952i
\(17\) −0.0411247 + 0.0566033i −0.00997420 + 0.0137283i −0.813975 0.580900i \(-0.802701\pi\)
0.804001 + 0.594628i \(0.202701\pi\)
\(18\) 0.801066 + 3.37298i 0.188813 + 0.795020i
\(19\) −2.45716 7.56236i −0.563711 1.73493i −0.671749 0.740778i \(-0.734457\pi\)
0.108038 0.994147i \(-0.465543\pi\)
\(20\) −0.408849 2.66566i −0.0914213 0.596059i
\(21\) 1.20609i 0.263191i
\(22\) 1.32783 4.49854i 0.283094 0.959092i
\(23\) 5.30988i 1.10719i 0.832787 + 0.553593i \(0.186744\pi\)
−0.832787 + 0.553593i \(0.813256\pi\)
\(24\) 1.60295 1.34884i 0.327200 0.275331i
\(25\) −0.983224 3.02605i −0.196645 0.605210i
\(26\) −4.89455 + 1.16243i −0.959900 + 0.227971i
\(27\) 2.37331 3.26658i 0.456744 0.628654i
\(28\) 2.90897 1.46432i 0.549744 0.276731i
\(29\) 3.74364 + 1.21638i 0.695177 + 0.225877i 0.635228 0.772325i \(-0.280906\pi\)
0.0599489 + 0.998201i \(0.480906\pi\)
\(30\) −0.919921 + 1.07177i −0.167954 + 0.195678i
\(31\) 2.17121 + 2.98842i 0.389961 + 0.536735i 0.958189 0.286136i \(-0.0923708\pi\)
−0.568228 + 0.822871i \(0.692371\pi\)
\(32\) 5.19940 + 2.22850i 0.919133 + 0.393947i
\(33\) −2.24075 + 1.00680i −0.390064 + 0.175262i
\(34\) 0.0514928 + 0.0844916i 0.00883095 + 0.0144902i
\(35\) −1.77637 + 1.29061i −0.300262 + 0.218153i
\(36\) 4.83863 + 0.790633i 0.806438 + 0.131772i
\(37\) −2.12561 + 6.54194i −0.349448 + 1.07549i 0.609712 + 0.792623i \(0.291285\pi\)
−0.959159 + 0.282866i \(0.908715\pi\)
\(38\) −11.2083 0.909689i −1.81823 0.147571i
\(39\) 2.13156 + 1.54867i 0.341323 + 0.247986i
\(40\) −3.70188 0.917509i −0.585319 0.145071i
\(41\) 5.50305 1.78805i 0.859432 0.279246i 0.154041 0.988065i \(-0.450771\pi\)
0.705391 + 0.708818i \(0.250771\pi\)
\(42\) −1.57424 0.656583i −0.242910 0.101313i
\(43\) −1.89516 −0.289009 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(44\) −5.14880 4.18208i −0.776211 0.630473i
\(45\) −3.30550 −0.492755
\(46\) 6.93064 + 2.89064i 1.02187 + 0.426201i
\(47\) −9.32545 + 3.03002i −1.36026 + 0.441974i −0.896129 0.443794i \(-0.853632\pi\)
−0.464128 + 0.885768i \(0.653632\pi\)
\(48\) −0.887929 2.82652i −0.128162 0.407972i
\(49\) 3.51794 + 2.55593i 0.502563 + 0.365133i
\(50\) −4.48497 0.364009i −0.634270 0.0514786i
\(51\) 0.0160138 0.0492854i 0.00224238 0.00690134i
\(52\) −1.14729 + 7.02135i −0.159101 + 0.973686i
\(53\) 3.14518 2.28511i 0.432023 0.313883i −0.350434 0.936587i \(-0.613966\pi\)
0.782457 + 0.622704i \(0.213966\pi\)
\(54\) −2.97166 4.87602i −0.404391 0.663543i
\(55\) 3.88062 + 2.22289i 0.523262 + 0.299734i
\(56\) −0.327678 4.59405i −0.0437878 0.613906i
\(57\) 3.46177 + 4.76471i 0.458522 + 0.631102i
\(58\) 3.62566 4.22415i 0.476073 0.554658i
\(59\) 4.62366 + 1.50232i 0.601950 + 0.195585i 0.594110 0.804384i \(-0.297504\pi\)
0.00783982 + 0.999969i \(0.497504\pi\)
\(60\) 0.898122 + 1.78418i 0.115947 + 0.230336i
\(61\) 0.791173 1.08896i 0.101299 0.139427i −0.755358 0.655312i \(-0.772537\pi\)
0.856657 + 0.515886i \(0.172537\pi\)
\(62\) 5.08257 1.20708i 0.645487 0.153300i
\(63\) −1.23353 3.79641i −0.155410 0.478303i
\(64\) 5.73922 5.57328i 0.717402 0.696659i
\(65\) 4.79662i 0.594948i
\(66\) 0.0942773 + 3.47280i 0.0116047 + 0.427472i
\(67\) 4.91303i 0.600223i −0.953904 0.300111i \(-0.902976\pi\)
0.953904 0.300111i \(-0.0970238\pi\)
\(68\) 0.138314 0.0212140i 0.0167730 0.00257258i
\(69\) −1.21533 3.74041i −0.146309 0.450292i
\(70\) 0.717514 + 3.02118i 0.0857593 + 0.361100i
\(71\) 4.10014 5.64335i 0.486597 0.669743i −0.493159 0.869939i \(-0.664158\pi\)
0.979756 + 0.200196i \(0.0641580\pi\)
\(72\) 3.66606 5.88514i 0.432049 0.693571i
\(73\) −9.62677 3.12793i −1.12673 0.366096i −0.314397 0.949292i \(-0.601802\pi\)
−0.812332 + 0.583195i \(0.801802\pi\)
\(74\) 7.38163 + 6.33578i 0.858097 + 0.736519i
\(75\) 1.38521 + 1.90658i 0.159951 + 0.220153i
\(76\) −7.28904 + 14.1343i −0.836110 + 1.62131i
\(77\) −1.10487 + 5.28646i −0.125912 + 0.602449i
\(78\) 3.18178 1.93911i 0.360266 0.219561i
\(79\) −4.85779 + 3.52939i −0.546544 + 0.397088i −0.826510 0.562923i \(-0.809677\pi\)
0.279966 + 0.960010i \(0.409677\pi\)
\(80\) −3.21283 + 4.33235i −0.359205 + 0.484371i
\(81\) 1.34841 4.14999i 0.149824 0.461110i
\(82\) 0.661971 8.15617i 0.0731025 0.900699i
\(83\) −2.92211 2.12304i −0.320744 0.233034i 0.415749 0.909479i \(-0.363519\pi\)
−0.736493 + 0.676446i \(0.763519\pi\)
\(84\) −1.71399 + 1.69731i −0.187012 + 0.185192i
\(85\) −0.0897250 + 0.0291534i −0.00973205 + 0.00316213i
\(86\) −1.03170 + 2.47363i −0.111251 + 0.266738i
\(87\) −2.91552 −0.312576
\(88\) −8.26156 + 4.44372i −0.880685 + 0.473703i
\(89\) −5.39711 −0.572093 −0.286046 0.958216i \(-0.592341\pi\)
−0.286046 + 0.958216i \(0.592341\pi\)
\(90\) −1.79948 + 4.31446i −0.189682 + 0.454784i
\(91\) 5.50899 1.78998i 0.577499 0.187641i
\(92\) 7.54592 7.47249i 0.786717 0.779061i
\(93\) −2.21345 1.60816i −0.229524 0.166759i
\(94\) −1.12177 + 13.8214i −0.115702 + 1.42557i
\(95\) 3.31327 10.1972i 0.339934 1.04621i
\(96\) −4.17265 0.379765i −0.425869 0.0387596i
\(97\) −5.92705 + 4.30625i −0.601801 + 0.437234i −0.846518 0.532361i \(-0.821305\pi\)
0.244717 + 0.969595i \(0.421305\pi\)
\(98\) 5.25122 3.20032i 0.530454 0.323281i
\(99\) −6.02348 + 5.46083i −0.605383 + 0.548834i
\(100\) −2.91668 + 5.65578i −0.291668 + 0.565578i
\(101\) −5.62667 7.74445i −0.559875 0.770602i 0.431436 0.902144i \(-0.358007\pi\)
−0.991311 + 0.131542i \(0.958007\pi\)
\(102\) −0.0556114 0.0477322i −0.00550635 0.00472619i
\(103\) 9.81631 + 3.18951i 0.967230 + 0.314272i 0.749697 0.661781i \(-0.230199\pi\)
0.217533 + 0.976053i \(0.430199\pi\)
\(104\) 8.53995 + 5.31983i 0.837411 + 0.521652i
\(105\) 0.955923 1.31571i 0.0932885 0.128401i
\(106\) −1.27040 5.34919i −0.123392 0.519559i
\(107\) 3.42303 + 10.5350i 0.330917 + 1.01846i 0.968699 + 0.248240i \(0.0798522\pi\)
−0.637782 + 0.770217i \(0.720148\pi\)
\(108\) −7.98210 + 1.22426i −0.768078 + 0.117805i
\(109\) 8.95933i 0.858149i 0.903269 + 0.429074i \(0.141160\pi\)
−0.903269 + 0.429074i \(0.858840\pi\)
\(110\) 5.01396 3.85501i 0.478062 0.367560i
\(111\) 5.09482i 0.483579i
\(112\) −6.17471 2.07325i −0.583455 0.195904i
\(113\) 3.40631 + 10.4836i 0.320439 + 0.986210i 0.973457 + 0.228868i \(0.0735025\pi\)
−0.653018 + 0.757342i \(0.726498\pi\)
\(114\) 8.10362 1.92457i 0.758974 0.180252i
\(115\) −4.20849 + 5.79249i −0.392444 + 0.540153i
\(116\) −3.53974 7.03192i −0.328657 0.652898i
\(117\) 8.29341 + 2.69469i 0.766726 + 0.249124i
\(118\) 4.47795 5.21713i 0.412229 0.480275i
\(119\) −0.0669662 0.0921710i −0.00613878 0.00844931i
\(120\) 2.81770 0.200977i 0.257219 0.0183466i
\(121\) 10.7438 2.36026i 0.976709 0.214569i
\(122\) −0.990640 1.62548i −0.0896883 0.147164i
\(123\) −3.46723 + 2.51909i −0.312630 + 0.227139i
\(124\) 1.19136 7.29108i 0.106988 0.654758i
\(125\) 3.40921 10.4925i 0.304929 0.938474i
\(126\) −5.62673 0.456677i −0.501269 0.0406840i
\(127\) −8.32668 6.04969i −0.738874 0.536823i 0.153485 0.988151i \(-0.450950\pi\)
−0.892358 + 0.451328i \(0.850950\pi\)
\(128\) −4.15008 10.5251i −0.366818 0.930293i
\(129\) 1.33500 0.433767i 0.117540 0.0381910i
\(130\) −6.26073 2.61123i −0.549102 0.229020i
\(131\) −1.86768 −0.163180 −0.0815901 0.996666i \(-0.526000\pi\)
−0.0815901 + 0.996666i \(0.526000\pi\)
\(132\) 4.58414 + 1.76750i 0.398998 + 0.153841i
\(133\) 12.9480 1.12274
\(134\) −6.41267 2.67460i −0.553970 0.231050i
\(135\) 5.17804 1.68245i 0.445655 0.144802i
\(136\) 0.0476070 0.192081i 0.00408227 0.0164708i
\(137\) 1.01489 + 0.737362i 0.0867080 + 0.0629971i 0.630295 0.776356i \(-0.282934\pi\)
−0.543587 + 0.839353i \(0.682934\pi\)
\(138\) −5.54373 0.449940i −0.471913 0.0383014i
\(139\) −1.94407 + 5.98323i −0.164894 + 0.507491i −0.999028 0.0440698i \(-0.985968\pi\)
0.834135 + 0.551561i \(0.185968\pi\)
\(140\) 4.33396 + 0.708169i 0.366286 + 0.0598512i
\(141\) 5.87556 4.26884i 0.494811 0.359501i
\(142\) −5.13384 8.42382i −0.430822 0.706912i
\(143\) −7.92422 8.74070i −0.662657 0.730934i
\(144\) −5.68574 7.98888i −0.473812 0.665740i
\(145\) 3.11982 + 4.29407i 0.259087 + 0.356603i
\(146\) −9.32339 + 10.8624i −0.771609 + 0.898979i
\(147\) −3.06313 0.995271i −0.252643 0.0820886i
\(148\) 12.2882 6.18564i 1.01008 0.508456i
\(149\) −10.0839 + 13.8792i −0.826102 + 1.13703i 0.162534 + 0.986703i \(0.448033\pi\)
−0.988636 + 0.150329i \(0.951967\pi\)
\(150\) 3.24264 0.770109i 0.264760 0.0628791i
\(151\) 3.75712 + 11.5632i 0.305750 + 0.941002i 0.979396 + 0.201948i \(0.0647271\pi\)
−0.673646 + 0.739054i \(0.735273\pi\)
\(152\) 14.4805 + 17.2085i 1.17452 + 1.39579i
\(153\) 0.171513i 0.0138660i
\(154\) 6.29861 + 4.32001i 0.507556 + 0.348116i
\(155\) 4.98089i 0.400074i
\(156\) −0.798877 5.20860i −0.0639613 0.417022i
\(157\) −1.63833 5.04225i −0.130753 0.402415i 0.864153 0.503230i \(-0.167855\pi\)
−0.994905 + 0.100815i \(0.967855\pi\)
\(158\) 1.96216 + 8.26192i 0.156101 + 0.657283i
\(159\) −1.69252 + 2.32956i −0.134226 + 0.184746i
\(160\) 3.90571 + 6.55198i 0.308774 + 0.517980i
\(161\) −8.22325 2.67190i −0.648083 0.210575i
\(162\) −4.68266 4.01921i −0.367904 0.315779i
\(163\) −5.91168 8.13673i −0.463039 0.637318i 0.512097 0.858928i \(-0.328869\pi\)
−0.975135 + 0.221610i \(0.928869\pi\)
\(164\) −10.2854 5.30415i −0.803152 0.414185i
\(165\) −3.24238 0.677657i −0.252419 0.0527555i
\(166\) −4.36183 + 2.65829i −0.338544 + 0.206323i
\(167\) 17.7237 12.8770i 1.37150 0.996451i 0.373879 0.927478i \(-0.378028\pi\)
0.997618 0.0689735i \(-0.0219724\pi\)
\(168\) 1.28232 + 3.16116i 0.0989329 + 0.243889i
\(169\) 0.106946 0.329146i 0.00822661 0.0253189i
\(170\) −0.0107932 + 0.132983i −0.000827798 + 0.0101993i
\(171\) 15.7697 + 11.4573i 1.20594 + 0.876165i
\(172\) 2.66702 + 2.69323i 0.203359 + 0.205357i
\(173\) −11.2531 + 3.65635i −0.855557 + 0.277987i −0.703772 0.710426i \(-0.748502\pi\)
−0.151785 + 0.988413i \(0.548502\pi\)
\(174\) −1.58718 + 3.80544i −0.120323 + 0.288490i
\(175\) 5.18111 0.391655
\(176\) 1.30261 + 13.2024i 0.0981882 + 0.995168i
\(177\) −3.60087 −0.270658
\(178\) −2.93813 + 7.04450i −0.220222 + 0.528008i
\(179\) −0.887979 + 0.288522i −0.0663707 + 0.0215651i −0.342014 0.939695i \(-0.611109\pi\)
0.275643 + 0.961260i \(0.411109\pi\)
\(180\) 4.65177 + 4.69749i 0.346723 + 0.350130i
\(181\) −15.2414 11.0736i −1.13289 0.823091i −0.146775 0.989170i \(-0.546889\pi\)
−0.986113 + 0.166079i \(0.946889\pi\)
\(182\) 0.662685 8.16497i 0.0491215 0.605228i
\(183\) −0.308080 + 0.948172i −0.0227739 + 0.0700909i
\(184\) −5.64545 13.9172i −0.416188 1.02599i
\(185\) −7.50380 + 5.45183i −0.551691 + 0.400827i
\(186\) −3.30401 + 2.01361i −0.242262 + 0.147645i
\(187\) −0.115340 + 0.201355i −0.00843447 + 0.0147245i
\(188\) 17.4295 + 8.98840i 1.27118 + 0.655547i
\(189\) 3.86463 + 5.31920i 0.281110 + 0.386915i
\(190\) −11.5060 9.87584i −0.834736 0.716468i
\(191\) −19.4435 6.31757i −1.40688 0.457124i −0.495472 0.868624i \(-0.665005\pi\)
−0.911410 + 0.411500i \(0.865005\pi\)
\(192\) −2.76722 + 5.23955i −0.199707 + 0.378132i
\(193\) 10.1927 14.0291i 0.733690 1.00984i −0.265267 0.964175i \(-0.585460\pi\)
0.998957 0.0456628i \(-0.0145400\pi\)
\(194\) 2.39406 + 10.0805i 0.171883 + 0.723736i
\(195\) 1.09786 + 3.37886i 0.0786192 + 0.241965i
\(196\) −1.31847 8.59630i −0.0941764 0.614022i
\(197\) 3.49133i 0.248747i 0.992235 + 0.124374i \(0.0396921\pi\)
−0.992235 + 0.124374i \(0.960308\pi\)
\(198\) 3.84855 + 10.8349i 0.273505 + 0.770001i
\(199\) 11.2660i 0.798625i −0.916815 0.399313i \(-0.869249\pi\)
0.916815 0.399313i \(-0.130751\pi\)
\(200\) 5.79432 + 6.88590i 0.409720 + 0.486907i
\(201\) 1.12450 + 3.46086i 0.0793162 + 0.244110i
\(202\) −13.1714 + 3.12815i −0.926739 + 0.220096i
\(203\) −3.76755 + 5.18559i −0.264430 + 0.363957i
\(204\) −0.0925760 + 0.0466011i −0.00648161 + 0.00326273i
\(205\) 7.42039 + 2.41103i 0.518262 + 0.168394i
\(206\) 9.50696 11.0763i 0.662381 0.771720i
\(207\) −7.65098 10.5307i −0.531780 0.731932i
\(208\) 11.5927 8.25060i 0.803808 0.572076i
\(209\) −10.8086 24.0556i −0.747643 1.66396i
\(210\) −1.19693 1.96397i −0.0825957 0.135526i
\(211\) 2.21909 1.61227i 0.152769 0.110993i −0.508775 0.860899i \(-0.669902\pi\)
0.661544 + 0.749906i \(0.269902\pi\)
\(212\) −7.67354 1.25386i −0.527021 0.0861154i
\(213\) −1.59658 + 4.91376i −0.109396 + 0.336685i
\(214\) 15.6141 + 1.26727i 1.06736 + 0.0866290i
\(215\) −2.06741 1.50206i −0.140996 0.102440i
\(216\) −2.74741 + 11.0850i −0.186937 + 0.754238i
\(217\) −5.72061 + 1.85874i −0.388341 + 0.126180i
\(218\) 11.6940 + 4.87736i 0.792021 + 0.330336i
\(219\) 7.49726 0.506618
\(220\) −2.30215 8.64302i −0.155211 0.582712i
\(221\) 0.248884 0.0167417
\(222\) −6.64994 2.77356i −0.446315 0.186149i
\(223\) 22.5646 7.33167i 1.51103 0.490965i 0.567821 0.823152i \(-0.307787\pi\)
0.943213 + 0.332187i \(0.107787\pi\)
\(224\) −6.06752 + 6.93079i −0.405403 + 0.463083i
\(225\) 6.31018 + 4.58462i 0.420679 + 0.305641i
\(226\) 15.5379 + 1.26108i 1.03356 + 0.0838861i
\(227\) −0.247473 + 0.761643i −0.0164254 + 0.0505520i −0.958933 0.283632i \(-0.908461\pi\)
0.942508 + 0.334184i \(0.108461\pi\)
\(228\) 1.89950 11.6249i 0.125798 0.769875i
\(229\) 19.0839 13.8652i 1.26110 0.916241i 0.262286 0.964990i \(-0.415524\pi\)
0.998811 + 0.0487497i \(0.0155237\pi\)
\(230\) 5.26951 + 8.64644i 0.347461 + 0.570129i
\(231\) −0.431676 3.97680i −0.0284022 0.261654i
\(232\) −11.1053 + 0.792103i −0.729100 + 0.0520041i
\(233\) 10.2812 + 14.1509i 0.673547 + 0.927058i 0.999834 0.0182127i \(-0.00579761\pi\)
−0.326287 + 0.945271i \(0.605798\pi\)
\(234\) 8.03204 9.35789i 0.525071 0.611745i
\(235\) −12.5746 4.08572i −0.820274 0.266523i
\(236\) −4.37184 8.68492i −0.284582 0.565340i
\(237\) 2.61413 3.59805i 0.169806 0.233718i
\(238\) −0.156761 + 0.0372298i −0.0101613 + 0.00241325i
\(239\) 2.06577 + 6.35778i 0.133623 + 0.411251i 0.995373 0.0960826i \(-0.0306313\pi\)
−0.861750 + 0.507333i \(0.830631\pi\)
\(240\) 1.27160 3.78717i 0.0820815 0.244461i
\(241\) 4.28655i 0.276121i −0.990424 0.138061i \(-0.955913\pi\)
0.990424 0.138061i \(-0.0440868\pi\)
\(242\) 2.76811 15.3081i 0.177941 0.984041i
\(243\) 15.3451i 0.984391i
\(244\) −2.66093 + 0.408124i −0.170349 + 0.0261275i
\(245\) 1.81191 + 5.57648i 0.115759 + 0.356268i
\(246\) 1.40049 + 5.89692i 0.0892918 + 0.375974i
\(247\) −16.6258 + 22.8834i −1.05787 + 1.45604i
\(248\) −8.86801 5.52419i −0.563119 0.350786i
\(249\) 2.54433 + 0.826703i 0.161240 + 0.0523902i
\(250\) −11.8392 10.1618i −0.748777 0.642688i
\(251\) 2.87878 + 3.96230i 0.181707 + 0.250098i 0.890148 0.455672i \(-0.150601\pi\)
−0.708441 + 0.705770i \(0.750601\pi\)
\(252\) −3.65920 + 7.09560i −0.230508 + 0.446981i
\(253\) 1.90047 + 17.5080i 0.119482 + 1.10072i
\(254\) −12.4292 + 7.57491i −0.779879 + 0.475292i
\(255\) 0.0565318 0.0410728i 0.00354016 0.00257208i
\(256\) −15.9969 0.312893i −0.999809 0.0195558i
\(257\) −3.82696 + 11.7782i −0.238719 + 0.734702i 0.757887 + 0.652386i \(0.226232\pi\)
−0.996606 + 0.0823161i \(0.973768\pi\)
\(258\) 0.160589 1.97862i 0.00999783 0.123184i
\(259\) −9.06173 6.58373i −0.563068 0.409093i
\(260\) −6.81654 + 6.75020i −0.422744 + 0.418630i
\(261\) −9.17716 + 2.98184i −0.568052 + 0.184571i
\(262\) −1.01675 + 2.43777i −0.0628148 + 0.150606i
\(263\) 16.9489 1.04511 0.522556 0.852605i \(-0.324979\pi\)
0.522556 + 0.852605i \(0.324979\pi\)
\(264\) 4.80256 5.02118i 0.295577 0.309033i
\(265\) 5.24217 0.322024
\(266\) 7.04877 16.9003i 0.432188 1.03622i
\(267\) 3.80186 1.23530i 0.232670 0.0755990i
\(268\) −6.98197 + 6.91403i −0.426492 + 0.422341i
\(269\) −3.19947 2.32455i −0.195075 0.141730i 0.485960 0.873981i \(-0.338470\pi\)
−0.681035 + 0.732251i \(0.738470\pi\)
\(270\) 0.622875 7.67447i 0.0379070 0.467054i
\(271\) −7.33528 + 22.5757i −0.445587 + 1.37137i 0.436252 + 0.899824i \(0.356305\pi\)
−0.881839 + 0.471550i \(0.843695\pi\)
\(272\) −0.224794 0.166705i −0.0136301 0.0101080i
\(273\) −3.47097 + 2.52181i −0.210073 + 0.152627i
\(274\) 1.51493 0.923261i 0.0915200 0.0557763i
\(275\) −4.32500 9.62576i −0.260807 0.580455i
\(276\) −3.60522 + 6.99093i −0.217009 + 0.420804i
\(277\) −8.82329 12.1442i −0.530140 0.729675i 0.457012 0.889461i \(-0.348920\pi\)
−0.987152 + 0.159786i \(0.948920\pi\)
\(278\) 6.75120 + 5.79467i 0.404910 + 0.347541i
\(279\) −8.61200 2.79821i −0.515587 0.167524i
\(280\) 3.28368 5.27131i 0.196238 0.315021i
\(281\) 3.37468 4.64485i 0.201317 0.277089i −0.696408 0.717647i \(-0.745219\pi\)
0.897724 + 0.440558i \(0.145219\pi\)
\(282\) −2.37326 9.99290i −0.141326 0.595068i
\(283\) −3.45938 10.6469i −0.205639 0.632890i −0.999687 0.0250353i \(-0.992030\pi\)
0.794048 0.607855i \(-0.207970\pi\)
\(284\) −13.7899 + 2.11504i −0.818279 + 0.125505i
\(285\) 7.94150i 0.470414i
\(286\) −15.7225 + 5.58464i −0.929693 + 0.330227i
\(287\) 9.42215i 0.556172i
\(288\) −13.5226 + 3.07218i −0.796828 + 0.181030i
\(289\) 5.25178 + 16.1633i 0.308928 + 0.950783i
\(290\) 7.30317 1.73446i 0.428857 0.101851i
\(291\) 3.18954 4.39002i 0.186974 0.257348i
\(292\) 9.10245 + 18.0826i 0.532681 + 1.05820i
\(293\) 5.04336 + 1.63869i 0.294636 + 0.0957331i 0.452605 0.891711i \(-0.350495\pi\)
−0.157969 + 0.987444i \(0.550495\pi\)
\(294\) −2.96660 + 3.45629i −0.173015 + 0.201575i
\(295\) 3.85320 + 5.30348i 0.224342 + 0.308780i
\(296\) −1.38419 19.4063i −0.0804542 1.12797i
\(297\) 6.65627 11.6202i 0.386236 0.674272i
\(298\) 12.6261 + 20.7175i 0.731413 + 1.20013i
\(299\) 15.2811 11.1024i 0.883729 0.642066i
\(300\) 0.760080 4.65164i 0.0438832 0.268563i
\(301\) 0.953632 2.93498i 0.0549664 0.169169i
\(302\) 17.1381 + 1.39096i 0.986185 + 0.0800407i
\(303\) 5.73613 + 4.16754i 0.329532 + 0.239419i
\(304\) 30.3441 9.53238i 1.74035 0.546720i
\(305\) 1.72617 0.560865i 0.0988400 0.0321150i
\(306\) −0.223866 0.0933699i −0.0127975 0.00533760i
\(307\) 2.27014 0.129564 0.0647820 0.997899i \(-0.479365\pi\)
0.0647820 + 0.997899i \(0.479365\pi\)
\(308\) 9.06752 5.86940i 0.516670 0.334440i
\(309\) −7.64487 −0.434901
\(310\) 6.50123 + 2.71154i 0.369245 + 0.154005i
\(311\) −19.1795 + 6.23180i −1.08757 + 0.353373i −0.797307 0.603574i \(-0.793743\pi\)
−0.290263 + 0.956947i \(0.593743\pi\)
\(312\) −7.23336 1.79278i −0.409508 0.101496i
\(313\) −1.24741 0.906296i −0.0705078 0.0512269i 0.551973 0.833862i \(-0.313875\pi\)
−0.622481 + 0.782635i \(0.713875\pi\)
\(314\) −7.47321 0.606540i −0.421738 0.0342290i
\(315\) 1.66331 5.11913i 0.0937168 0.288431i
\(316\) 11.8519 + 1.93661i 0.666724 + 0.108943i
\(317\) 13.6418 9.91136i 0.766201 0.556678i −0.134605 0.990899i \(-0.542977\pi\)
0.900806 + 0.434222i \(0.142977\pi\)
\(318\) 2.11923 + 3.47732i 0.118841 + 0.194999i
\(319\) 12.7791 + 2.67083i 0.715492 + 0.149538i
\(320\) 10.6781 1.53105i 0.596924 0.0855885i
\(321\) −4.82253 6.63765i −0.269167 0.370477i
\(322\) −7.96410 + 9.27874i −0.443822 + 0.517084i
\(323\) 0.529105 + 0.171917i 0.0294402 + 0.00956569i
\(324\) −7.79520 + 3.92396i −0.433067 + 0.217998i
\(325\) −6.65275 + 9.15673i −0.369028 + 0.507924i
\(326\) −13.8386 + 3.28660i −0.766450 + 0.182028i
\(327\) −2.05062 6.31117i −0.113400 0.349009i
\(328\) −12.5224 + 10.5373i −0.691434 + 0.581825i
\(329\) 15.9667i 0.880275i
\(330\) −2.64962 + 3.86316i −0.145857 + 0.212660i
\(331\) 33.9735i 1.86735i −0.358115 0.933677i \(-0.616581\pi\)
0.358115 0.933677i \(-0.383419\pi\)
\(332\) 1.09516 + 7.14036i 0.0601049 + 0.391878i
\(333\) −5.21071 16.0369i −0.285545 0.878818i
\(334\) −7.15895 30.1436i −0.391721 1.64939i
\(335\) 3.89396 5.35958i 0.212750 0.292825i
\(336\) 4.82414 + 0.0471745i 0.263179 + 0.00257358i
\(337\) −16.2590 5.28286i −0.885683 0.287776i −0.169368 0.985553i \(-0.554173\pi\)
−0.716315 + 0.697777i \(0.754173\pi\)
\(338\) −0.371393 0.318773i −0.0202011 0.0173390i
\(339\) −4.79898 6.60523i −0.260645 0.358747i
\(340\) 0.167699 + 0.0864821i 0.00909474 + 0.00469015i
\(341\) 8.22863 + 9.07647i 0.445605 + 0.491518i
\(342\) 23.5394 14.3459i 1.27286 0.775738i
\(343\) −14.9502 + 10.8619i −0.807232 + 0.586489i
\(344\) 4.96720 2.01493i 0.267814 0.108638i
\(345\) 1.63877 5.04362i 0.0882284 0.271539i
\(346\) −1.35365 + 16.6784i −0.0727729 + 0.896638i
\(347\) 2.02180 + 1.46893i 0.108536 + 0.0788561i 0.640729 0.767767i \(-0.278632\pi\)
−0.532193 + 0.846623i \(0.678632\pi\)
\(348\) 4.10296 + 4.14328i 0.219942 + 0.222103i
\(349\) −6.66811 + 2.16660i −0.356936 + 0.115975i −0.481995 0.876174i \(-0.660088\pi\)
0.125060 + 0.992149i \(0.460088\pi\)
\(350\) 2.82054 6.76257i 0.150764 0.361475i
\(351\) −14.3631 −0.766646
\(352\) 17.9414 + 5.48701i 0.956278 + 0.292459i
\(353\) 17.9431 0.955017 0.477509 0.878627i \(-0.341540\pi\)
0.477509 + 0.878627i \(0.341540\pi\)
\(354\) −1.96027 + 4.69999i −0.104187 + 0.249802i
\(355\) 8.94560 2.90660i 0.474783 0.154266i
\(356\) 7.59526 + 7.66989i 0.402548 + 0.406504i
\(357\) 0.0682688 + 0.0496002i 0.00361317 + 0.00262512i
\(358\) −0.106816 + 1.31609i −0.00564542 + 0.0695575i
\(359\) 2.99112 9.20572i 0.157865 0.485859i −0.840575 0.541696i \(-0.817783\pi\)
0.998440 + 0.0558363i \(0.0177825\pi\)
\(360\) 8.66370 3.51441i 0.456617 0.185225i
\(361\) −35.7804 + 25.9960i −1.88318 + 1.36821i
\(362\) −22.7509 + 13.8654i −1.19576 + 0.728748i
\(363\) −7.02797 + 4.12168i −0.368873 + 0.216332i
\(364\) −10.2965 5.30988i −0.539681 0.278313i
\(365\) −8.02262 11.0422i −0.419923 0.577975i
\(366\) 1.06987 + 0.918291i 0.0559232 + 0.0479998i
\(367\) 29.4325 + 9.56319i 1.53636 + 0.499194i 0.950370 0.311122i \(-0.100705\pi\)
0.585992 + 0.810317i \(0.300705\pi\)
\(368\) −21.2385 0.207688i −1.10713 0.0108265i
\(369\) −8.33739 + 11.4754i −0.434027 + 0.597387i
\(370\) 3.03094 + 12.7621i 0.157571 + 0.663473i
\(371\) 1.95624 + 6.02070i 0.101563 + 0.312579i
\(372\) 0.829566 + 5.40869i 0.0430110 + 0.280428i
\(373\) 4.92658i 0.255088i −0.991833 0.127544i \(-0.959291\pi\)
0.991833 0.127544i \(-0.0407095\pi\)
\(374\) 0.200026 + 0.260161i 0.0103431 + 0.0134526i
\(375\) 8.17145i 0.421972i
\(376\) 21.2204 17.8565i 1.09436 0.920877i
\(377\) −4.32696 13.3170i −0.222850 0.685861i
\(378\) 9.04667 2.14854i 0.465311 0.110509i
\(379\) 2.36592 3.25642i 0.121529 0.167271i −0.743918 0.668271i \(-0.767035\pi\)
0.865447 + 0.501000i \(0.167035\pi\)
\(380\) −19.1541 + 9.64181i −0.982582 + 0.494614i
\(381\) 7.25018 + 2.35573i 0.371438 + 0.120688i
\(382\) −18.8307 + 21.9391i −0.963464 + 1.12250i
\(383\) 7.04690 + 9.69922i 0.360080 + 0.495607i 0.950171 0.311729i \(-0.100908\pi\)
−0.590091 + 0.807337i \(0.700908\pi\)
\(384\) 5.33240 + 6.46423i 0.272118 + 0.329877i
\(385\) −5.39523 + 4.89125i −0.274966 + 0.249281i
\(386\) −12.7625 20.9412i −0.649594 1.06588i
\(387\) 3.75853 2.73073i 0.191057 0.138811i
\(388\) 14.4607 + 2.36288i 0.734131 + 0.119957i
\(389\) 4.24498 13.0647i 0.215229 0.662407i −0.783908 0.620877i \(-0.786777\pi\)
0.999137 0.0415304i \(-0.0132233\pi\)
\(390\) 5.00787 + 0.406449i 0.253583 + 0.0205813i
\(391\) −0.300556 0.218367i −0.0151998 0.0110433i
\(392\) −11.9380 2.95882i −0.602958 0.149443i
\(393\) 1.31564 0.427478i 0.0663654 0.0215634i
\(394\) 4.55701 + 1.90064i 0.229579 + 0.0957529i
\(395\) −8.09663 −0.407386
\(396\) 16.2372 + 0.875116i 0.815949 + 0.0439763i
\(397\) −12.1547 −0.610027 −0.305014 0.952348i \(-0.598661\pi\)
−0.305014 + 0.952348i \(0.598661\pi\)
\(398\) −14.7048 6.13308i −0.737084 0.307424i
\(399\) −9.12092 + 2.96357i −0.456617 + 0.148364i
\(400\) 12.1421 3.81435i 0.607104 0.190717i
\(401\) 23.2839 + 16.9167i 1.16274 + 0.844782i 0.990122 0.140207i \(-0.0447768\pi\)
0.172620 + 0.984989i \(0.444777\pi\)
\(402\) 5.12941 + 0.416313i 0.255832 + 0.0207638i
\(403\) 4.06049 12.4969i 0.202267 0.622515i
\(404\) −3.08741 + 18.8948i −0.153604 + 0.940049i
\(405\) 4.76016 3.45846i 0.236534 0.171852i
\(406\) 4.71741 + 7.74052i 0.234121 + 0.384156i
\(407\) −4.66723 + 22.3312i −0.231346 + 1.10692i
\(408\) 0.0104281 + 0.146203i 0.000516269 + 0.00723811i
\(409\) 11.1416 + 15.3351i 0.550917 + 0.758272i 0.990136 0.140108i \(-0.0447449\pi\)
−0.439219 + 0.898380i \(0.644745\pi\)
\(410\) 7.18654 8.37282i 0.354918 0.413504i
\(411\) −0.883682 0.287126i −0.0435888 0.0141629i
\(412\) −9.28167 18.4386i −0.457275 0.908405i
\(413\) −4.65320 + 6.40457i −0.228969 + 0.315149i
\(414\) −17.9101 + 4.25356i −0.880235 + 0.209051i
\(415\) −1.50503 4.63200i −0.0738790 0.227376i
\(416\) −4.45805 19.6227i −0.218574 0.962083i
\(417\) 4.65970i 0.228186i
\(418\) −37.2823 + 1.01212i −1.82354 + 0.0495042i
\(419\) 15.3705i 0.750898i 0.926843 + 0.375449i \(0.122512\pi\)
−0.926843 + 0.375449i \(0.877488\pi\)
\(420\) −3.21503 + 0.493110i −0.156877 + 0.0240613i
\(421\) 5.97047 + 18.3752i 0.290983 + 0.895553i 0.984541 + 0.175153i \(0.0560419\pi\)
−0.693558 + 0.720400i \(0.743958\pi\)
\(422\) −0.896339 3.77414i −0.0436331 0.183722i
\(423\) 14.1285 19.4462i 0.686952 0.945508i
\(424\) −5.81397 + 9.33320i −0.282351 + 0.453260i
\(425\) 0.211719 + 0.0687918i 0.0102699 + 0.00333689i
\(426\) 5.54446 + 4.75891i 0.268630 + 0.230570i
\(427\) 1.28832 + 1.77322i 0.0623463 + 0.0858123i
\(428\) 10.1542 19.6902i 0.490824 0.951763i
\(429\) 7.58260 + 4.34345i 0.366091 + 0.209704i
\(430\) −3.08602 + 1.88075i −0.148821 + 0.0906980i
\(431\) −21.9276 + 15.9313i −1.05621 + 0.767385i −0.973384 0.229179i \(-0.926396\pi\)
−0.0828305 + 0.996564i \(0.526396\pi\)
\(432\) 12.9729 + 9.62056i 0.624158 + 0.462869i
\(433\) 1.34612 4.14294i 0.0646905 0.199097i −0.913487 0.406868i \(-0.866621\pi\)
0.978177 + 0.207771i \(0.0666209\pi\)
\(434\) −0.688142 + 8.47863i −0.0330319 + 0.406987i
\(435\) −3.18051 2.31078i −0.152494 0.110793i
\(436\) 12.7322 12.6083i 0.609762 0.603829i
\(437\) 40.1552 13.0472i 1.92088 0.624133i
\(438\) 4.08142 9.78569i 0.195018 0.467578i
\(439\) −24.0996 −1.15021 −0.575105 0.818080i \(-0.695039\pi\)
−0.575105 + 0.818080i \(0.695039\pi\)
\(440\) −12.5344 1.70031i −0.597556 0.0810592i
\(441\) −10.6597 −0.507605
\(442\) 0.135489 0.324852i 0.00644458 0.0154516i
\(443\) −21.9169 + 7.12124i −1.04130 + 0.338340i −0.779250 0.626713i \(-0.784400\pi\)
−0.262054 + 0.965053i \(0.584400\pi\)
\(444\) −7.24030 + 7.16985i −0.343609 + 0.340266i
\(445\) −5.88765 4.27763i −0.279102 0.202779i
\(446\) 2.71433 33.4434i 0.128527 1.58359i
\(447\) 3.92662 12.0849i 0.185723 0.571595i
\(448\) 5.74323 + 11.6926i 0.271342 + 0.552423i
\(449\) 3.05281 2.21800i 0.144071 0.104674i −0.513415 0.858140i \(-0.671620\pi\)
0.657486 + 0.753467i \(0.271620\pi\)
\(450\) 9.41920 5.74046i 0.444025 0.270608i
\(451\) 17.5050 7.86527i 0.824278 0.370361i
\(452\) 10.1047 19.5941i 0.475283 0.921628i
\(453\) −5.29321 7.28548i −0.248697 0.342302i
\(454\) 0.859403 + 0.737640i 0.0403338 + 0.0346192i
\(455\) 7.42839 + 2.41363i 0.348248 + 0.113153i
\(456\) −14.1391 8.80774i −0.662125 0.412460i
\(457\) 20.7236 28.5236i 0.969409 1.33428i 0.0270646 0.999634i \(-0.491384\pi\)
0.942345 0.334644i \(-0.108616\pi\)
\(458\) −7.70837 32.4570i −0.360188 1.51662i
\(459\) 0.0872976 + 0.268674i 0.00407470 + 0.0125406i
\(460\) 14.1543 2.17094i 0.659948 0.101220i
\(461\) 38.5074i 1.79347i 0.442571 + 0.896734i \(0.354067\pi\)
−0.442571 + 0.896734i \(0.645933\pi\)
\(462\) −5.42566 1.60149i −0.252425 0.0745078i
\(463\) 10.7672i 0.500394i 0.968195 + 0.250197i \(0.0804954\pi\)
−0.968195 + 0.250197i \(0.919505\pi\)
\(464\) −5.01172 + 14.9263i −0.232663 + 0.692935i
\(465\) −1.14003 3.50866i −0.0528677 0.162710i
\(466\) 24.0673 5.71586i 1.11490 0.264782i
\(467\) 12.1553 16.7304i 0.562481 0.774189i −0.429158 0.903229i \(-0.641190\pi\)
0.991639 + 0.129040i \(0.0411897\pi\)
\(468\) −7.84171 15.5780i −0.362483 0.720095i
\(469\) 7.60867 + 2.47221i 0.351336 + 0.114156i
\(470\) −12.1783 + 14.1886i −0.561742 + 0.654469i
\(471\) 2.30815 + 3.17690i 0.106354 + 0.146384i
\(472\) −13.7159 + 0.978304i −0.631323 + 0.0450301i
\(473\) −6.24883 + 0.678301i −0.287321 + 0.0311883i
\(474\) −3.27320 5.37080i −0.150343 0.246689i
\(475\) −20.4682 + 14.8710i −0.939144 + 0.682328i
\(476\) −0.0367450 + 0.224877i −0.00168420 + 0.0103072i
\(477\) −2.94499 + 9.06375i −0.134842 + 0.415001i
\(478\) 9.42299 + 0.764788i 0.430997 + 0.0349806i
\(479\) 9.23398 + 6.70888i 0.421911 + 0.306536i 0.778406 0.627761i \(-0.216028\pi\)
−0.356495 + 0.934297i \(0.616028\pi\)
\(480\) −4.25091 3.72143i −0.194026 0.169859i
\(481\) 23.2712 7.56128i 1.06108 0.344765i
\(482\) −5.59496 2.33355i −0.254843 0.106290i
\(483\) 6.40421 0.291401
\(484\) −18.4737 11.9466i −0.839716 0.543026i
\(485\) −9.87880 −0.448573
\(486\) 20.0290 + 8.35372i 0.908535 + 0.378932i
\(487\) −3.80894 + 1.23760i −0.172600 + 0.0560810i −0.394042 0.919092i \(-0.628924\pi\)
0.221442 + 0.975173i \(0.428924\pi\)
\(488\) −0.915883 + 3.69532i −0.0414601 + 0.167279i
\(489\) 6.02668 + 4.37864i 0.272536 + 0.198009i
\(490\) 8.26501 + 0.670804i 0.373375 + 0.0303039i
\(491\) 3.45914 10.6461i 0.156109 0.480454i −0.842163 0.539223i \(-0.818718\pi\)
0.998272 + 0.0587698i \(0.0187178\pi\)
\(492\) 8.45928 + 1.38225i 0.381374 + 0.0623166i
\(493\) −0.222807 + 0.161879i −0.0100347 + 0.00729066i
\(494\) 20.8174 + 34.1581i 0.936619 + 1.53684i
\(495\) −10.8991 + 1.18308i −0.489877 + 0.0531755i
\(496\) −12.0380 + 8.56754i −0.540523 + 0.384694i
\(497\) 6.67654 + 9.18946i 0.299484 + 0.412204i
\(498\) 2.46415 2.87091i 0.110421 0.128648i
\(499\) 37.4389 + 12.1646i 1.67599 + 0.544564i 0.984128 0.177462i \(-0.0567886\pi\)
0.691867 + 0.722025i \(0.256789\pi\)
\(500\) −19.7087 + 9.92099i −0.881398 + 0.443680i
\(501\) −9.53767 + 13.1275i −0.426112 + 0.586492i
\(502\) 6.73892 1.60046i 0.300773 0.0714319i
\(503\) −5.97544 18.3905i −0.266432 0.819993i −0.991360 0.131168i \(-0.958127\pi\)
0.724928 0.688824i \(-0.241873\pi\)
\(504\) 7.26941 + 8.63888i 0.323805 + 0.384807i
\(505\) 12.9079i 0.574395i
\(506\) 23.8867 + 7.05061i 1.06189 + 0.313438i
\(507\) 0.256336i 0.0113843i
\(508\) 3.12071 + 20.3468i 0.138459 + 0.902742i
\(509\) −13.2867 40.8921i −0.588920 1.81251i −0.582921 0.812529i \(-0.698090\pi\)
−0.00599915 0.999982i \(-0.501910\pi\)
\(510\) −0.0228344 0.0961469i −0.00101112 0.00425746i
\(511\) 9.68826 13.3347i 0.428583 0.589895i
\(512\) −9.11695 + 20.7094i −0.402916 + 0.915237i
\(513\) −30.5347 9.92132i −1.34814 0.438037i
\(514\) 13.2899 + 11.4070i 0.586194 + 0.503140i
\(515\) 8.18058 + 11.2596i 0.360479 + 0.496157i
\(516\) −2.49515 1.28675i −0.109843 0.0566458i
\(517\) −29.6639 + 13.3285i −1.30462 + 0.586185i
\(518\) −13.5264 + 8.24359i −0.594317 + 0.362202i
\(519\) 7.09009 5.15125i 0.311220 0.226115i
\(520\) 5.09977 + 12.5719i 0.223640 + 0.551315i
\(521\) −4.55221 + 14.0103i −0.199436 + 0.613801i 0.800460 + 0.599386i \(0.204589\pi\)
−0.999896 + 0.0144150i \(0.995411\pi\)
\(522\) −1.10394 + 13.6016i −0.0483180 + 0.595328i
\(523\) −32.7270 23.7776i −1.43105 1.03972i −0.989819 0.142329i \(-0.954541\pi\)
−0.441234 0.897392i \(-0.645459\pi\)
\(524\) 2.62836 + 2.65419i 0.114820 + 0.115949i
\(525\) −3.64970 + 1.18586i −0.159286 + 0.0517552i
\(526\) 9.22676 22.1223i 0.402306 0.964576i
\(527\) −0.258445 −0.0112580
\(528\) −3.93937 9.00194i −0.171439 0.391759i
\(529\) −5.19479 −0.225860
\(530\) 2.85378 6.84227i 0.123960 0.297209i
\(531\) −11.3344 + 3.68278i −0.491873 + 0.159819i
\(532\) −18.2215 18.4006i −0.790004 0.797767i
\(533\) −16.6520 12.0984i −0.721280 0.524040i
\(534\) 0.457332 5.63480i 0.0197907 0.243842i
\(535\) −4.61566 + 14.2055i −0.199552 + 0.614159i
\(536\) 5.22353 + 12.8770i 0.225622 + 0.556203i
\(537\) 0.559477 0.406484i 0.0241432 0.0175411i
\(538\) −4.77584 + 2.91060i −0.205901 + 0.125485i
\(539\) 12.5144 + 7.16845i 0.539031 + 0.308767i
\(540\) −9.67791 4.99089i −0.416471 0.214774i
\(541\) −9.83661 13.5389i −0.422909 0.582084i 0.543399 0.839475i \(-0.317137\pi\)
−0.966307 + 0.257391i \(0.917137\pi\)
\(542\) 25.4733 + 21.8642i 1.09417 + 0.939148i
\(543\) 13.2710 + 4.31200i 0.569512 + 0.185046i
\(544\) −0.339964 + 0.202657i −0.0145759 + 0.00868884i
\(545\) −7.10097 + 9.77365i −0.304172 + 0.418657i
\(546\) 1.40200 + 5.90328i 0.0600000 + 0.252637i
\(547\) −2.87078 8.83536i −0.122746 0.377773i 0.870738 0.491747i \(-0.163642\pi\)
−0.993484 + 0.113975i \(0.963642\pi\)
\(548\) −0.380366 2.47995i −0.0162484 0.105938i
\(549\) 3.29964i 0.140825i
\(550\) −14.9184 + 0.404995i −0.636122 + 0.0172690i
\(551\) 31.2996i 1.33341i
\(552\) 7.16217 + 8.51144i 0.304842 + 0.362271i
\(553\) −3.02146 9.29909i −0.128485 0.395437i
\(554\) −20.6544 + 4.90530i −0.877520 + 0.208406i
\(555\) 4.03804 5.55788i 0.171405 0.235919i
\(556\) 11.2387 5.65736i 0.476627 0.239925i
\(557\) 12.6129 + 4.09818i 0.534425 + 0.173645i 0.563782 0.825924i \(-0.309346\pi\)
−0.0293567 + 0.999569i \(0.509346\pi\)
\(558\) −8.34059 + 9.71738i −0.353086 + 0.411369i
\(559\) 3.96257 + 5.45401i 0.167599 + 0.230680i
\(560\) −5.09271 7.15563i −0.215206 0.302380i
\(561\) 0.0351618 0.168238i 0.00148453 0.00710302i
\(562\) −4.22549 6.93336i −0.178241 0.292466i
\(563\) −19.0155 + 13.8156i −0.801408 + 0.582257i −0.911327 0.411684i \(-0.864941\pi\)
0.109919 + 0.993941i \(0.464941\pi\)
\(564\) −14.3351 2.34235i −0.603615 0.0986309i
\(565\) −4.59312 + 14.1362i −0.193234 + 0.594713i
\(566\) −15.7799 1.28073i −0.663279 0.0538330i
\(567\) 5.74846 + 4.17650i 0.241413 + 0.175396i
\(568\) −4.74643 + 19.1505i −0.199156 + 0.803535i
\(569\) −12.2494 + 3.98008i −0.513523 + 0.166854i −0.554304 0.832315i \(-0.687015\pi\)
0.0407811 + 0.999168i \(0.487015\pi\)
\(570\) 10.3655 + 4.32326i 0.434164 + 0.181081i
\(571\) −20.4261 −0.854806 −0.427403 0.904061i \(-0.640571\pi\)
−0.427403 + 0.904061i \(0.640571\pi\)
\(572\) −1.26988 + 23.5618i −0.0530965 + 0.985169i
\(573\) 15.1424 0.632585
\(574\) 12.2981 + 5.12931i 0.513314 + 0.214093i
\(575\) 16.0680 5.22080i 0.670080 0.217722i
\(576\) −3.35164 + 19.3227i −0.139652 + 0.805111i
\(577\) −5.53777 4.02342i −0.230540 0.167497i 0.466518 0.884512i \(-0.345508\pi\)
−0.697058 + 0.717014i \(0.745508\pi\)
\(578\) 23.9559 + 1.94431i 0.996436 + 0.0808727i
\(579\) −3.96902 + 12.2154i −0.164947 + 0.507654i
\(580\) 1.71188 10.4766i 0.0710818 0.435016i
\(581\) 4.75828 3.45709i 0.197407 0.143424i
\(582\) −3.99367 6.55298i −0.165543 0.271630i
\(583\) 9.55259 8.66028i 0.395628 0.358672i
\(584\) 28.5573 2.03689i 1.18171 0.0842873i
\(585\) 6.91144 + 9.51278i 0.285753 + 0.393305i
\(586\) 4.88442 5.69069i 0.201773 0.235080i
\(587\) 0.607533 + 0.197399i 0.0250756 + 0.00814754i 0.321528 0.946900i \(-0.395804\pi\)
−0.296452 + 0.955048i \(0.595804\pi\)
\(588\) 2.89630 + 5.75367i 0.119441 + 0.237277i
\(589\) 17.2645 23.7625i 0.711370 0.979117i
\(590\) 9.01993 2.14219i 0.371345 0.0881924i
\(591\) −0.799100 2.45938i −0.0328706 0.101165i
\(592\) −26.0834 8.75790i −1.07202 0.359947i
\(593\) 17.0480i 0.700077i −0.936735 0.350039i \(-0.886168\pi\)
0.936735 0.350039i \(-0.113832\pi\)
\(594\) −11.5435 15.0139i −0.473636 0.616028i
\(595\) 0.153624i 0.00629799i
\(596\) 33.9148 5.20173i 1.38920 0.213071i
\(597\) 2.57858 + 7.93604i 0.105534 + 0.324801i
\(598\) −6.17236 25.9894i −0.252406 1.06279i
\(599\) 1.16656 1.60564i 0.0476645 0.0656045i −0.784519 0.620104i \(-0.787090\pi\)
0.832184 + 0.554500i \(0.187090\pi\)
\(600\) −5.65771 3.52439i −0.230975 0.143882i
\(601\) 15.6571 + 5.08729i 0.638665 + 0.207515i 0.610410 0.792086i \(-0.291005\pi\)
0.0282553 + 0.999601i \(0.491005\pi\)
\(602\) −3.31169 2.84248i −0.134975 0.115851i
\(603\) 7.07917 + 9.74365i 0.288286 + 0.396792i
\(604\) 11.1453 21.6120i 0.453496 0.879380i
\(605\) 13.5910 + 5.94052i 0.552552 + 0.241516i
\(606\) 8.56231 5.21824i 0.347820 0.211976i
\(607\) 23.2353 16.8814i 0.943091 0.685196i −0.00607141 0.999982i \(-0.501933\pi\)
0.949163 + 0.314786i \(0.101933\pi\)
\(608\) 4.07698 44.7956i 0.165343 1.81670i
\(609\) 1.46707 4.51518i 0.0594487 0.182964i
\(610\) 0.207643 2.55838i 0.00840723 0.103586i
\(611\) 28.2185 + 20.5019i 1.14160 + 0.829419i
\(612\) −0.243740 + 0.241368i −0.00985259 + 0.00975671i
\(613\) 6.32812 2.05613i 0.255590 0.0830464i −0.178419 0.983955i \(-0.557098\pi\)
0.434010 + 0.900908i \(0.357098\pi\)
\(614\) 1.23584 2.96307i 0.0498745 0.119580i
\(615\) −5.77894 −0.233029
\(616\) −2.72470 15.0305i −0.109781 0.605596i
\(617\) −17.8948 −0.720416 −0.360208 0.932872i \(-0.617294\pi\)
−0.360208 + 0.932872i \(0.617294\pi\)
\(618\) −4.16178 + 9.97836i −0.167411 + 0.401388i
\(619\) −22.1005 + 7.18088i −0.888293 + 0.288624i −0.717397 0.696665i \(-0.754666\pi\)
−0.170897 + 0.985289i \(0.554666\pi\)
\(620\) 7.07839 7.00951i 0.284275 0.281509i
\(621\) 17.3452 + 12.6020i 0.696037 + 0.505700i
\(622\) −2.30714 + 28.4263i −0.0925077 + 1.13979i
\(623\) 2.71579 8.35835i 0.108806 0.334870i
\(624\) −6.27776 + 8.46527i −0.251312 + 0.338882i
\(625\) −0.835407 + 0.606959i −0.0334163 + 0.0242784i
\(626\) −1.86201 + 1.13479i −0.0744208 + 0.0453552i
\(627\) 13.1197 + 14.4715i 0.523950 + 0.577935i
\(628\) −4.86001 + 9.42411i −0.193935 + 0.376063i
\(629\) −0.282881 0.389352i −0.0112792 0.0155245i
\(630\) −5.77619 4.95781i −0.230129 0.197524i
\(631\) −44.0545 14.3142i −1.75378 0.569838i −0.757255 0.653119i \(-0.773460\pi\)
−0.996526 + 0.0832806i \(0.973460\pi\)
\(632\) 8.97979 14.4153i 0.357197 0.573410i
\(633\) −1.19417 + 1.64363i −0.0474639 + 0.0653284i
\(634\) −5.51022 23.2014i −0.218839 0.921446i
\(635\) −4.28864 13.1991i −0.170190 0.523790i
\(636\) 5.69241 0.873082i 0.225719 0.0346199i
\(637\) 15.4683i 0.612877i
\(638\) 10.4429 15.2258i 0.413437 0.602794i
\(639\) 17.0999i 0.676462i
\(640\) 3.81465 14.7709i 0.150787 0.583873i
\(641\) 8.39773 + 25.8456i 0.331691 + 1.02084i 0.968329 + 0.249676i \(0.0803242\pi\)
−0.636639 + 0.771162i \(0.719676\pi\)
\(642\) −11.2890 + 2.68108i −0.445542 + 0.105814i
\(643\) −18.2352 + 25.0987i −0.719128 + 0.989794i 0.280425 + 0.959876i \(0.409525\pi\)
−0.999552 + 0.0299182i \(0.990475\pi\)
\(644\) 7.77537 + 15.4463i 0.306393 + 0.608668i
\(645\) 1.80013 + 0.584897i 0.0708800 + 0.0230303i
\(646\) 0.512430 0.597017i 0.0201613 0.0234893i
\(647\) −24.7877 34.1173i −0.974505 1.34129i −0.939738 0.341895i \(-0.888931\pi\)
−0.0347664 0.999395i \(-0.511069\pi\)
\(648\) 0.878082 + 12.3107i 0.0344943 + 0.483611i
\(649\) 15.7831 + 3.29867i 0.619541 + 0.129484i
\(650\) 8.33001 + 13.6682i 0.326730 + 0.536112i
\(651\) 3.60431 2.61868i 0.141264 0.102634i
\(652\) −3.24380 + 19.8518i −0.127037 + 0.777458i
\(653\) −1.25077 + 3.84947i −0.0489464 + 0.150641i −0.972542 0.232726i \(-0.925236\pi\)
0.923596 + 0.383367i \(0.125236\pi\)
\(654\) −9.35391 0.759181i −0.365767 0.0296863i
\(655\) −2.03744 1.48028i −0.0796093 0.0578395i
\(656\) 6.93661 + 22.0811i 0.270829 + 0.862121i
\(657\) 23.5991 7.66780i 0.920687 0.299149i
\(658\) −20.8404 8.69211i −0.812442 0.338854i
\(659\) 6.46292 0.251760 0.125880 0.992045i \(-0.459825\pi\)
0.125880 + 0.992045i \(0.459825\pi\)
\(660\) 3.59992 + 5.56143i 0.140127 + 0.216479i
\(661\) 26.6232 1.03552 0.517761 0.855525i \(-0.326766\pi\)
0.517761 + 0.855525i \(0.326766\pi\)
\(662\) −44.3435 18.4948i −1.72346 0.718821i
\(663\) −0.175320 + 0.0569648i −0.00680885 + 0.00221233i
\(664\) 9.91605 + 2.45769i 0.384817 + 0.0953767i
\(665\) 14.1249 + 10.2623i 0.547740 + 0.397956i
\(666\) −23.7686 1.92911i −0.921015 0.0747514i
\(667\) −6.45884 + 19.8783i −0.250087 + 0.769690i
\(668\) −43.2418 7.06572i −1.67308 0.273381i
\(669\) −14.2169 + 10.3292i −0.549659 + 0.399350i
\(670\) −4.87569 8.00023i −0.188364 0.309076i
\(671\) 2.21895 3.87374i 0.0856616 0.149544i
\(672\) 2.68778 6.27096i 0.103683 0.241908i
\(673\) −4.89033 6.73096i −0.188508 0.259460i 0.704294 0.709909i \(-0.251264\pi\)
−0.892802 + 0.450449i \(0.851264\pi\)
\(674\) −15.7466 + 18.3459i −0.606536 + 0.706657i
\(675\) −12.2183 3.96998i −0.470284 0.152805i
\(676\) −0.618256 + 0.311219i −0.0237791 + 0.0119700i
\(677\) −8.97132 + 12.3480i −0.344796 + 0.474571i −0.945834 0.324649i \(-0.894754\pi\)
0.601039 + 0.799220i \(0.294754\pi\)
\(678\) −11.2339 + 2.66799i −0.431435 + 0.102464i
\(679\) −3.68652 11.3459i −0.141476 0.435417i
\(680\) 0.204173 0.171806i 0.00782967 0.00658848i
\(681\) 0.593162i 0.0227300i
\(682\) 16.3265 5.79918i 0.625174 0.222062i
\(683\) 32.9156i 1.25948i 0.776806 + 0.629740i \(0.216839\pi\)
−0.776806 + 0.629740i \(0.783161\pi\)
\(684\) −5.91023 38.5342i −0.225983 1.47339i
\(685\) 0.522718 + 1.60876i 0.0199720 + 0.0614676i
\(686\) 6.03868 + 25.4266i 0.230558 + 0.970792i
\(687\) −10.2696 + 14.1349i −0.391811 + 0.539282i
\(688\) 0.0741263 7.58027i 0.00282604 0.288995i
\(689\) −13.1524 4.27349i −0.501068 0.162807i
\(690\) −5.69098 4.88467i −0.216652 0.185956i
\(691\) 26.7545 + 36.8244i 1.01779 + 1.40087i 0.913742 + 0.406294i \(0.133179\pi\)
0.104047 + 0.994572i \(0.466821\pi\)
\(692\) 21.0324 + 10.8464i 0.799531 + 0.412318i
\(693\) −5.42604 12.0762i −0.206118 0.458739i
\(694\) 3.01794 1.83926i 0.114559 0.0698175i
\(695\) −6.86294 + 4.98622i −0.260326 + 0.189138i
\(696\) 7.64156 3.09978i 0.289652 0.117497i
\(697\) −0.125102 + 0.385024i −0.00473857 + 0.0145838i
\(698\) −0.802118 + 9.88293i −0.0303606 + 0.374074i
\(699\) −10.4812 7.61507i −0.396437 0.288028i
\(700\) −7.29129 7.36294i −0.275585 0.278293i
\(701\) −47.6330 + 15.4769i −1.79907 + 0.584555i −0.999864 0.0164975i \(-0.994748\pi\)
−0.799210 + 0.601052i \(0.794748\pi\)
\(702\) −7.81911 + 18.7473i −0.295113 + 0.707569i
\(703\) 54.6955 2.06288
\(704\) 16.9289 20.4307i 0.638033 0.770009i
\(705\) 9.79298 0.368825
\(706\) 9.76804 23.4200i 0.367625 0.881425i
\(707\) 14.8249 4.81691i 0.557548 0.181158i
\(708\) 5.06744 + 5.11724i 0.190446 + 0.192318i
\(709\) 6.87556 + 4.99539i 0.258217 + 0.187606i 0.709361 0.704846i \(-0.248984\pi\)
−0.451144 + 0.892451i \(0.648984\pi\)
\(710\) 1.07608 13.2584i 0.0403846 0.497580i
\(711\) 4.54860 13.9991i 0.170586 0.525009i
\(712\) 14.1458 5.73820i 0.530136 0.215048i
\(713\) −15.8681 + 11.5289i −0.594266 + 0.431759i
\(714\) 0.101905 0.0621052i 0.00381369 0.00232423i
\(715\) −1.71677 15.8157i −0.0642036 0.591474i
\(716\) 1.65966 + 0.855885i 0.0620243 + 0.0319859i
\(717\) −2.91036 4.00576i −0.108689 0.149598i
\(718\) −10.3873 8.91561i −0.387651 0.332728i
\(719\) −6.94019 2.25500i −0.258825 0.0840974i 0.176730 0.984259i \(-0.443448\pi\)
−0.435555 + 0.900162i \(0.643448\pi\)
\(720\) 0.129290 13.2214i 0.00481834 0.492732i
\(721\) −9.87901 + 13.5973i −0.367914 + 0.506390i
\(722\) 14.4524 + 60.8537i 0.537864 + 2.26474i
\(723\) 0.981112 + 3.01955i 0.0364879 + 0.112298i
\(724\) 5.71226 + 37.2434i 0.212294 + 1.38414i
\(725\) 12.5244i 0.465146i
\(726\) 1.55381 + 11.4170i 0.0576674 + 0.423723i
\(727\) 1.85004i 0.0686140i 0.999411 + 0.0343070i \(0.0109224\pi\)
−0.999411 + 0.0343070i \(0.989078\pi\)
\(728\) −12.5359 + 10.5487i −0.464612 + 0.390960i
\(729\) 0.533026 + 1.64049i 0.0197417 + 0.0607587i
\(730\) −18.7801 + 4.46017i −0.695082 + 0.165078i
\(731\) 0.0779378 0.107272i 0.00288264 0.00396761i
\(732\) 1.78101 0.896530i 0.0658282 0.0331367i
\(733\) 17.9690 + 5.83849i 0.663701 + 0.215650i 0.621446 0.783457i \(-0.286546\pi\)
0.0422555 + 0.999107i \(0.486546\pi\)
\(734\) 28.5049 33.2102i 1.05214 1.22581i
\(735\) −2.55271 3.51350i −0.0941580 0.129597i
\(736\) −11.8331 + 27.6082i −0.436173 + 1.01765i
\(737\) −1.75843 16.1995i −0.0647728 0.596717i
\(738\) 10.4394 + 17.1293i 0.384278 + 0.630540i
\(739\) 12.7166 9.23916i 0.467788 0.339868i −0.328791 0.944403i \(-0.606641\pi\)
0.796579 + 0.604535i \(0.206641\pi\)
\(740\) 18.3076 + 2.99147i 0.673002 + 0.109969i
\(741\) 6.47402 19.9250i 0.237829 0.731963i
\(742\) 8.92339 + 0.724240i 0.327588 + 0.0265877i
\(743\) 4.69746 + 3.41290i 0.172333 + 0.125207i 0.670608 0.741812i \(-0.266033\pi\)
−0.498275 + 0.867019i \(0.666033\pi\)
\(744\) 7.51123 + 1.86165i 0.275375 + 0.0682515i
\(745\) −22.0008 + 7.14848i −0.806045 + 0.261900i
\(746\) −6.43034 2.68197i −0.235432 0.0981940i
\(747\) 8.85428 0.323961
\(748\) 0.448463 0.119452i 0.0163974 0.00436761i
\(749\) −18.0377 −0.659083
\(750\) 10.6657 + 4.44844i 0.389455 + 0.162434i
\(751\) 2.85643 0.928110i 0.104233 0.0338672i −0.256436 0.966561i \(-0.582548\pi\)
0.360669 + 0.932694i \(0.382548\pi\)
\(752\) −11.7548 37.4185i −0.428652 1.36451i
\(753\) −2.93478 2.13224i −0.106949 0.0777033i
\(754\) −19.7374 1.60192i −0.718793 0.0583387i
\(755\) −5.06615 + 15.5920i −0.184376 + 0.567451i
\(756\) 2.12056 12.9777i 0.0771239 0.471994i
\(757\) 21.1049 15.3336i 0.767071 0.557310i −0.134000 0.990981i \(-0.542782\pi\)
0.901071 + 0.433672i \(0.142782\pi\)
\(758\) −2.96241 4.86085i −0.107600 0.176554i
\(759\) −5.34600 11.8981i −0.194047 0.431874i
\(760\) 2.15759 + 30.2495i 0.0782639 + 1.09726i
\(761\) −18.7813 25.8502i −0.680820 0.937068i 0.319123 0.947713i \(-0.396612\pi\)
−0.999943 + 0.0106450i \(0.996612\pi\)
\(762\) 7.02169 8.18077i 0.254369 0.296358i
\(763\) −13.8751 4.50828i −0.502311 0.163211i
\(764\) 18.3845 + 36.5220i 0.665128 + 1.32132i
\(765\) 0.135938 0.187102i 0.00491484 0.00676470i
\(766\) 16.4960 3.91772i 0.596026 0.141553i
\(767\) −5.34410 16.4474i −0.192964 0.593883i
\(768\) 11.3402 3.44099i 0.409206 0.124166i
\(769\) 22.3560i 0.806176i 0.915161 + 0.403088i \(0.132063\pi\)
−0.915161 + 0.403088i \(0.867937\pi\)
\(770\) 3.44714 + 9.70479i 0.124226 + 0.349736i
\(771\) 9.17275i 0.330348i
\(772\) −34.2810 + 5.25790i −1.23380 + 0.189236i
\(773\) 1.56889 + 4.82855i 0.0564291 + 0.173671i 0.975299 0.220891i \(-0.0708964\pi\)
−0.918869 + 0.394562i \(0.870896\pi\)
\(774\) −1.51815 6.39234i −0.0545687 0.229768i
\(775\) 6.90832 9.50848i 0.248154 0.341555i
\(776\) 10.9564 17.5883i 0.393310 0.631383i
\(777\) 7.89020 + 2.56368i 0.283059 + 0.0919715i
\(778\) −14.7416 12.6530i −0.528513 0.453632i
\(779\) −27.0438 37.2225i −0.968943 1.33364i
\(780\) 3.25674 6.31519i 0.116610 0.226120i
\(781\) 11.4994 20.0751i 0.411480 0.718343i
\(782\) −0.448640 + 0.273421i −0.0160433 + 0.00977750i
\(783\) 12.8582 9.34206i 0.459516 0.333858i
\(784\) −10.3608 + 13.9711i −0.370030 + 0.498969i
\(785\) 2.20914 6.79904i 0.0788476 0.242668i
\(786\) 0.158261 1.94994i 0.00564497 0.0695520i
\(787\) 2.38155 + 1.73029i 0.0848930 + 0.0616783i 0.629422 0.777064i \(-0.283292\pi\)
−0.544529 + 0.838742i \(0.683292\pi\)
\(788\) 4.96157 4.91329i 0.176749 0.175029i
\(789\) −11.9392 + 3.87928i −0.425046 + 0.138106i
\(790\) −4.40771 + 10.5680i −0.156819 + 0.375993i
\(791\) −17.9496 −0.638215
\(792\) 9.98157 20.7169i 0.354680 0.736145i
\(793\) −4.78812 −0.170031
\(794\) −6.61688 + 15.8648i −0.234824 + 0.563019i
\(795\) −3.69271 + 1.19983i −0.130967 + 0.0425537i
\(796\) −16.0102 + 15.8544i −0.567468 + 0.561946i
\(797\) −6.06111 4.40365i −0.214695 0.155985i 0.475240 0.879856i \(-0.342361\pi\)
−0.689936 + 0.723871i \(0.742361\pi\)
\(798\) −1.09717 + 13.5183i −0.0388394 + 0.478542i
\(799\) 0.211997 0.652460i 0.00749992 0.0230824i
\(800\) 1.63139 17.9248i 0.0576783 0.633737i
\(801\) 10.7037 7.77668i 0.378196 0.274775i
\(802\) 34.7558 21.1817i 1.22727 0.747952i
\(803\) −32.8615 6.86804i −1.15966 0.242368i
\(804\) 3.33578 6.46845i 0.117644 0.228125i
\(805\) −6.85298 9.43231i −0.241536 0.332445i
\(806\) −14.1009 12.1031i −0.496684 0.426312i
\(807\) 2.78583 + 0.905170i 0.0980658 + 0.0318635i
\(808\) 22.9814 + 14.3159i 0.808482 + 0.503631i
\(809\) 23.4091 32.2199i 0.823022 1.13279i −0.166160 0.986099i \(-0.553137\pi\)
0.989182 0.146694i \(-0.0468631\pi\)
\(810\) −1.92273 8.09588i −0.0675578 0.284460i
\(811\) 13.1790 + 40.5607i 0.462777 + 1.42428i 0.861757 + 0.507321i \(0.169364\pi\)
−0.398981 + 0.916959i \(0.630636\pi\)
\(812\) 12.6713 1.94348i 0.444676 0.0682028i
\(813\) 17.5818i 0.616619i
\(814\) 26.6068 + 18.2487i 0.932567 + 0.639617i
\(815\) 13.5617i 0.475047i
\(816\) 0.196506 + 0.0659799i 0.00687908 + 0.00230976i
\(817\) 4.65671 + 14.3319i 0.162918 + 0.501409i
\(818\) 26.0813 6.19417i 0.911911 0.216574i
\(819\) −8.34638 + 11.4878i −0.291646 + 0.401416i
\(820\) −7.01624 13.9382i −0.245018 0.486743i
\(821\) −18.3658 5.96742i −0.640972 0.208264i −0.0295426 0.999564i \(-0.509405\pi\)
−0.611429 + 0.791299i \(0.709405\pi\)
\(822\) −0.855834 + 0.997106i −0.0298506 + 0.0347781i
\(823\) −5.83041 8.02487i −0.203235 0.279729i 0.695218 0.718799i \(-0.255308\pi\)
−0.898453 + 0.439070i \(0.855308\pi\)
\(824\) −29.1196 + 2.07700i −1.01443 + 0.0723557i
\(825\) 5.24979 + 5.79071i 0.182774 + 0.201607i
\(826\) 5.82633 + 9.56010i 0.202724 + 0.332638i
\(827\) 35.2981 25.6455i 1.22743 0.891783i 0.230738 0.973016i \(-0.425886\pi\)
0.996695 + 0.0812332i \(0.0258859\pi\)
\(828\) −4.19817 + 25.6925i −0.145896 + 0.892877i
\(829\) −8.69871 + 26.7719i −0.302119 + 0.929826i 0.678618 + 0.734491i \(0.262579\pi\)
−0.980737 + 0.195335i \(0.937421\pi\)
\(830\) −6.86518 0.557191i −0.238294 0.0193404i
\(831\) 8.99492 + 6.53519i 0.312030 + 0.226703i
\(832\) −28.0392 4.86357i −0.972084 0.168614i
\(833\) −0.289348 + 0.0940150i −0.0100253 + 0.00325743i
\(834\) −6.08200 2.53669i −0.210603 0.0878382i
\(835\) 29.5406 1.02229
\(836\) −18.9750 + 49.2132i −0.656264 + 1.70207i
\(837\) 14.9149 0.515533
\(838\) 20.0621 + 8.36753i 0.693035 + 0.289051i
\(839\) 33.2421 10.8010i 1.14764 0.372892i 0.327388 0.944890i \(-0.393831\pi\)
0.820255 + 0.571998i \(0.193831\pi\)
\(840\) −1.10660 + 4.46482i −0.0381814 + 0.154051i
\(841\) −10.9262 7.93837i −0.376767 0.273737i
\(842\) 27.2342 + 2.21038i 0.938554 + 0.0761749i
\(843\) −1.31409 + 4.04435i −0.0452596 + 0.139295i
\(844\) −5.41410 0.884666i −0.186361 0.0304515i
\(845\) 0.377540 0.274299i 0.0129878 0.00943617i
\(846\) −17.6905 29.0273i −0.608212 0.997980i
\(847\) −1.75095 + 17.8263i −0.0601634 + 0.612518i
\(848\) 9.01697 + 12.6695i 0.309644 + 0.435072i
\(849\) 4.87374 + 6.70812i 0.167266 + 0.230222i
\(850\) 0.205047 0.238894i 0.00703306 0.00819400i
\(851\) −34.7369 11.2867i −1.19077 0.386903i
\(852\) 9.22984 4.64613i 0.316209 0.159174i
\(853\) −15.9973 + 22.0183i −0.547736 + 0.753894i −0.989703 0.143138i \(-0.954281\pi\)
0.441967 + 0.897031i \(0.354281\pi\)
\(854\) 3.01582 0.716242i 0.103199 0.0245093i
\(855\) 8.12215 + 24.9974i 0.277772 + 0.854893i
\(856\) −20.1725 23.9728i −0.689483 0.819374i
\(857\) 37.5541i 1.28282i 0.767197 + 0.641412i \(0.221651\pi\)
−0.767197 + 0.641412i \(0.778349\pi\)
\(858\) 9.79711 7.53255i 0.334468 0.257157i
\(859\) 4.50293i 0.153638i −0.997045 0.0768190i \(-0.975524\pi\)
0.997045 0.0768190i \(-0.0244764\pi\)
\(860\) 0.774833 + 5.05184i 0.0264216 + 0.172266i
\(861\) −2.15655 6.63719i −0.0734952 0.226195i
\(862\) 8.85701 + 37.2935i 0.301671 + 1.27022i
\(863\) −10.6014 + 14.5915i −0.360875 + 0.496702i −0.950392 0.311054i \(-0.899318\pi\)
0.589517 + 0.807756i \(0.299318\pi\)
\(864\) 19.6194 11.6953i 0.667465 0.397884i
\(865\) −15.1738 4.93028i −0.515926 0.167634i
\(866\) −4.67470 4.01237i −0.158853 0.136346i
\(867\) −7.39896 10.1838i −0.251282 0.345860i
\(868\) 10.6920 + 5.51386i 0.362910 + 0.187152i
\(869\) −14.7542 + 13.3760i −0.500501 + 0.453749i
\(870\) −4.74754 + 2.89336i −0.160957 + 0.0980940i
\(871\) −14.1390 + 10.2726i −0.479083 + 0.348074i
\(872\) −9.52555 23.4824i −0.322576 0.795213i
\(873\) 5.54980 17.0805i 0.187832 0.578089i
\(874\) 4.83034 59.5148i 0.163389 2.01312i
\(875\) 14.5339 + 10.5595i 0.491335 + 0.356976i
\(876\) −10.5508 10.6544i −0.356477 0.359980i
\(877\) −12.9541 + 4.20903i −0.437428 + 0.142129i −0.519449 0.854502i \(-0.673863\pi\)
0.0820206 + 0.996631i \(0.473863\pi\)
\(878\) −13.1195 + 31.4556i −0.442762 + 1.06158i
\(879\) −3.92773 −0.132479
\(880\) −9.04292 + 15.4348i −0.304837 + 0.520306i
\(881\) 5.44549 0.183463 0.0917317 0.995784i \(-0.470760\pi\)
0.0917317 + 0.995784i \(0.470760\pi\)
\(882\) −5.80302 + 13.9134i −0.195398 + 0.468489i
\(883\) 26.8480 8.72345i 0.903508 0.293568i 0.179824 0.983699i \(-0.442447\pi\)
0.723684 + 0.690131i \(0.242447\pi\)
\(884\) −0.350250 0.353691i −0.0117802 0.0118959i
\(885\) −3.92816 2.85397i −0.132044 0.0959352i
\(886\) −2.63642 + 32.4835i −0.0885723 + 1.09130i
\(887\) −13.1145 + 40.3623i −0.440342 + 1.35523i 0.447171 + 0.894449i \(0.352432\pi\)
−0.887512 + 0.460784i \(0.847568\pi\)
\(888\) 5.41680 + 13.3535i 0.181776 + 0.448114i
\(889\) 13.5589 9.85113i 0.454751 0.330396i
\(890\) −8.78849 + 5.35608i −0.294591 + 0.179536i
\(891\) 2.96073 14.1662i 0.0991883 0.474586i
\(892\) −42.1738 21.7490i −1.41208 0.728211i
\(893\) 45.8283 + 63.0772i 1.53358 + 2.11080i
\(894\) −13.6360 11.7040i −0.456057 0.391441i
\(895\) −1.19736 0.389047i −0.0400234 0.0130044i
\(896\) 18.3881 1.13096i 0.614305 0.0377827i
\(897\) −8.22325 + 11.3183i −0.274566 + 0.377908i
\(898\) −1.23310 5.19210i −0.0411489 0.173263i
\(899\) 4.49318 + 13.8286i 0.149856 + 0.461209i
\(900\) −2.36496 15.4193i −0.0788320 0.513977i
\(901\) 0.272002i 0.00906169i
\(902\) −0.736506 27.1299i −0.0245230 0.903327i
\(903\) 2.28574i 0.0760646i
\(904\) −20.0740 23.8558i −0.667653 0.793430i
\(905\) −7.85008 24.1601i −0.260946 0.803108i
\(906\) −12.3908 + 2.94276i −0.411658 + 0.0977666i
\(907\) −20.3902 + 28.0647i −0.677046 + 0.931873i −0.999894 0.0145776i \(-0.995360\pi\)
0.322848 + 0.946451i \(0.395360\pi\)
\(908\) 1.43064 0.720161i 0.0474776 0.0238994i
\(909\) 22.3179 + 7.25153i 0.740238 + 0.240518i
\(910\) 7.19429 8.38185i 0.238488 0.277856i
\(911\) 17.4380 + 24.0014i 0.577748 + 0.795202i 0.993446 0.114300i \(-0.0364627\pi\)
−0.415698 + 0.909503i \(0.636463\pi\)
\(912\) −19.1933 + 13.6600i −0.635555 + 0.452329i
\(913\) −10.3948 5.95434i −0.344018 0.197060i
\(914\) −25.9483 42.5771i −0.858294 1.40833i
\(915\) −1.08758 + 0.790174i −0.0359543 + 0.0261224i
\(916\) −46.5604 7.60798i −1.53840 0.251375i
\(917\) 0.939807 2.89243i 0.0310352 0.0955164i
\(918\) 0.398207 + 0.0323193i 0.0131428 + 0.00106670i
\(919\) −17.4823 12.7016i −0.576687 0.418988i 0.260841 0.965382i \(-0.416000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(920\) 4.87186 19.6565i 0.160620 0.648057i
\(921\) −1.59915 + 0.519594i −0.0526936 + 0.0171212i
\(922\) 50.2612 + 20.9630i 1.65527 + 0.690379i
\(923\) −24.8137 −0.816754
\(924\) −5.04398 + 6.20994i −0.165935 + 0.204292i
\(925\) 21.8862 0.719614
\(926\) 14.0537 + 5.86154i 0.461834 + 0.192622i
\(927\) −24.0637 + 7.81877i −0.790356 + 0.256802i
\(928\) 16.7540 + 14.6672i 0.549976 + 0.481474i
\(929\) −38.2024 27.7557i −1.25338 0.910635i −0.254968 0.966949i \(-0.582065\pi\)
−0.998413 + 0.0563145i \(0.982065\pi\)
\(930\) −5.20025 0.422062i −0.170523 0.0138400i
\(931\) 10.6848 32.8843i 0.350179 1.07774i
\(932\) 5.64142 34.5251i 0.184791 1.13091i
\(933\) 12.0842 8.77967i 0.395618 0.287433i
\(934\) −15.2199 24.9734i −0.498009 0.817154i
\(935\) −0.285412 + 0.128240i −0.00933397 + 0.00419390i
\(936\) −24.6020 + 1.75477i −0.804140 + 0.0573565i
\(937\) 27.2659 + 37.5283i 0.890738 + 1.22600i 0.973329 + 0.229412i \(0.0736804\pi\)
−0.0825914 + 0.996583i \(0.526320\pi\)
\(938\) 7.36889 8.58527i 0.240603 0.280319i
\(939\) 1.08614 + 0.352908i 0.0354449 + 0.0115167i
\(940\) 11.8897 + 23.6196i 0.387799 + 0.770387i
\(941\) 23.1708 31.8919i 0.755347 1.03965i −0.242240 0.970216i \(-0.577882\pi\)
0.997587 0.0694293i \(-0.0221178\pi\)
\(942\) 5.40314 1.28322i 0.176044 0.0418094i
\(943\) 9.49432 + 29.2205i 0.309178 + 0.951551i
\(944\) −6.18984 + 18.4350i −0.201462 + 0.600008i
\(945\) 8.86568i 0.288401i
\(946\) −2.51645 + 8.52545i −0.0818167 + 0.277186i
\(947\) 24.9488i 0.810725i −0.914156 0.405363i \(-0.867145\pi\)
0.914156 0.405363i \(-0.132855\pi\)
\(948\) −8.79205 + 1.34849i −0.285552 + 0.0437970i
\(949\) 11.1268 + 34.2447i 0.361190 + 1.11163i
\(950\) 8.26752 + 34.8114i 0.268234 + 1.12943i
\(951\) −7.34110 + 10.1042i −0.238052 + 0.327650i
\(952\) 0.273514 + 0.170381i 0.00886464 + 0.00552209i
\(953\) 38.9090 + 12.6423i 1.26039 + 0.409524i 0.861632 0.507534i \(-0.169443\pi\)
0.398754 + 0.917058i \(0.369443\pi\)
\(954\) 10.2271 + 8.77811i 0.331115 + 0.284202i
\(955\) −16.2035 22.3023i −0.524334 0.721684i
\(956\) 6.12800 11.8829i 0.198194 0.384320i
\(957\) −9.61321 + 1.04350i −0.310751 + 0.0337316i
\(958\) 13.7835 8.40029i 0.445326 0.271401i
\(959\) −1.65262 + 1.20070i −0.0533658 + 0.0387725i
\(960\) −7.17149 + 3.52253i −0.231459 + 0.113689i
\(961\) 5.36305 16.5058i 0.173002 0.532445i
\(962\) 2.79933 34.4907i 0.0902542 1.11203i
\(963\) −21.9685 15.9610i −0.707925 0.514337i
\(964\) −6.09167 + 6.03239i −0.196199 + 0.194290i
\(965\) 22.2383 7.22567i 0.715877 0.232603i
\(966\) 3.48638 8.35900i 0.112172 0.268946i
\(967\) −23.6696 −0.761164 −0.380582 0.924747i \(-0.624276\pi\)
−0.380582 + 0.924747i \(0.624276\pi\)
\(968\) −25.6500 + 17.6090i −0.824422 + 0.565975i
\(969\) −0.412063 −0.0132374
\(970\) −5.37791 + 12.8942i −0.172674 + 0.414007i
\(971\) 51.2925 16.6659i 1.64606 0.534836i 0.668176 0.744004i \(-0.267076\pi\)
0.977880 + 0.209168i \(0.0670755\pi\)
\(972\) 21.8071 21.5949i 0.699465 0.692658i
\(973\) −8.28781 6.02145i −0.265695 0.193039i
\(974\) −0.458184 + 5.64530i −0.0146812 + 0.180887i
\(975\) 2.59056 7.97291i 0.0829642 0.255338i
\(976\) 4.32467 + 3.20713i 0.138429 + 0.102658i
\(977\) 7.76321 5.64030i 0.248367 0.180449i −0.456636 0.889654i \(-0.650946\pi\)
0.705003 + 0.709204i \(0.250946\pi\)
\(978\) 8.99601 5.48256i 0.287661 0.175313i
\(979\) −17.7957 + 1.93169i −0.568752 + 0.0617371i
\(980\) 5.37494 10.4226i 0.171696 0.332938i
\(981\) −12.9095 17.7684i −0.412168 0.567300i
\(982\) −12.0126 10.3106i −0.383338 0.329026i
\(983\) 33.5747 + 10.9091i 1.07087 + 0.347945i 0.790824 0.612043i \(-0.209652\pi\)
0.280041 + 0.959988i \(0.409652\pi\)
\(984\) 6.40930 10.2889i 0.204321 0.327997i
\(985\) −2.76715 + 3.80866i −0.0881688 + 0.121354i
\(986\) 0.0899965 + 0.378941i 0.00286607 + 0.0120679i
\(987\) 3.65449 + 11.2474i 0.116324 + 0.358007i
\(988\) 55.9171 8.57636i 1.77896 0.272850i
\(989\) 10.0631i 0.319987i
\(990\) −4.38914 + 14.8699i −0.139496 + 0.472598i
\(991\) 17.8021i 0.565502i −0.959193 0.282751i \(-0.908753\pi\)
0.959193 0.282751i \(-0.0912471\pi\)
\(992\) 4.62931 + 20.3765i 0.146981 + 0.646955i
\(993\) 7.77591 + 23.9318i 0.246761 + 0.759452i
\(994\) 15.6291 3.71182i 0.495723 0.117732i
\(995\) 8.92918 12.2900i 0.283074 0.389618i
\(996\) −2.40575 4.77918i −0.0762293 0.151434i
\(997\) −59.8586 19.4492i −1.89574 0.615963i −0.973144 0.230197i \(-0.926063\pi\)
−0.922596 0.385766i \(-0.873937\pi\)
\(998\) 36.2590 42.2443i 1.14776 1.33722i
\(999\) 16.3251 + 22.4695i 0.516503 + 0.710905i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 44.2.g.a.19.3 yes 16
3.2 odd 2 396.2.r.a.19.2 16
4.3 odd 2 inner 44.2.g.a.19.1 yes 16
8.3 odd 2 704.2.u.c.63.2 16
8.5 even 2 704.2.u.c.63.3 16
11.2 odd 10 484.2.c.d.483.13 16
11.3 even 5 484.2.g.j.215.1 16
11.4 even 5 484.2.g.i.403.4 16
11.5 even 5 484.2.g.f.475.3 16
11.6 odd 10 484.2.g.j.475.2 16
11.7 odd 10 inner 44.2.g.a.7.1 16
11.8 odd 10 484.2.g.f.215.4 16
11.9 even 5 484.2.c.d.483.4 16
11.10 odd 2 484.2.g.i.239.2 16
12.11 even 2 396.2.r.a.19.4 16
33.29 even 10 396.2.r.a.271.4 16
44.3 odd 10 484.2.g.j.215.2 16
44.7 even 10 inner 44.2.g.a.7.3 yes 16
44.15 odd 10 484.2.g.i.403.2 16
44.19 even 10 484.2.g.f.215.3 16
44.27 odd 10 484.2.g.f.475.4 16
44.31 odd 10 484.2.c.d.483.14 16
44.35 even 10 484.2.c.d.483.3 16
44.39 even 10 484.2.g.j.475.1 16
44.43 even 2 484.2.g.i.239.4 16
88.29 odd 10 704.2.u.c.447.2 16
88.51 even 10 704.2.u.c.447.3 16
132.95 odd 10 396.2.r.a.271.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.7.1 16 11.7 odd 10 inner
44.2.g.a.7.3 yes 16 44.7 even 10 inner
44.2.g.a.19.1 yes 16 4.3 odd 2 inner
44.2.g.a.19.3 yes 16 1.1 even 1 trivial
396.2.r.a.19.2 16 3.2 odd 2
396.2.r.a.19.4 16 12.11 even 2
396.2.r.a.271.2 16 132.95 odd 10
396.2.r.a.271.4 16 33.29 even 10
484.2.c.d.483.3 16 44.35 even 10
484.2.c.d.483.4 16 11.9 even 5
484.2.c.d.483.13 16 11.2 odd 10
484.2.c.d.483.14 16 44.31 odd 10
484.2.g.f.215.3 16 44.19 even 10
484.2.g.f.215.4 16 11.8 odd 10
484.2.g.f.475.3 16 11.5 even 5
484.2.g.f.475.4 16 44.27 odd 10
484.2.g.i.239.2 16 11.10 odd 2
484.2.g.i.239.4 16 44.43 even 2
484.2.g.i.403.2 16 44.15 odd 10
484.2.g.i.403.4 16 11.4 even 5
484.2.g.j.215.1 16 11.3 even 5
484.2.g.j.215.2 16 44.3 odd 10
484.2.g.j.475.1 16 44.39 even 10
484.2.g.j.475.2 16 11.6 odd 10
704.2.u.c.63.2 16 8.3 odd 2
704.2.u.c.63.3 16 8.5 even 2
704.2.u.c.447.2 16 88.29 odd 10
704.2.u.c.447.3 16 88.51 even 10