Properties

Label 4851.2.a.bj.1.3
Level $4851$
Weight $2$
Character 4851.1
Self dual yes
Analytic conductor $38.735$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4851,2,Mod(1,4851)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4851, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4851.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4851.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.7354300205\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 4851.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.53209 q^{2} +0.347296 q^{4} -2.34730 q^{5} -2.53209 q^{8} -3.59627 q^{10} -1.00000 q^{11} -0.184793 q^{13} -4.57398 q^{16} +3.92127 q^{17} +0.773318 q^{19} -0.815207 q^{20} -1.53209 q^{22} -8.35504 q^{23} +0.509800 q^{25} -0.283119 q^{26} +8.17024 q^{29} +2.65270 q^{31} -1.94356 q^{32} +6.00774 q^{34} -6.82295 q^{37} +1.18479 q^{38} +5.94356 q^{40} -0.426022 q^{41} +1.18479 q^{43} -0.347296 q^{44} -12.8007 q^{46} +7.68004 q^{47} +0.781059 q^{50} -0.0641778 q^{52} -6.55438 q^{53} +2.34730 q^{55} +12.5175 q^{58} -0.204393 q^{59} +14.5817 q^{61} +4.06418 q^{62} +6.17024 q^{64} +0.433763 q^{65} +3.75877 q^{67} +1.36184 q^{68} +9.96585 q^{71} +0.120615 q^{73} -10.4534 q^{74} +0.268571 q^{76} +0.327696 q^{79} +10.7365 q^{80} -0.652704 q^{82} -3.35504 q^{83} -9.20439 q^{85} +1.81521 q^{86} +2.53209 q^{88} +4.65270 q^{89} -2.90167 q^{92} +11.7665 q^{94} -1.81521 q^{95} +13.1206 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{5} - 3 q^{8} + 3 q^{10} - 3 q^{11} + 3 q^{13} - 6 q^{16} + 3 q^{17} + 9 q^{19} - 6 q^{20} + 3 q^{25} - 9 q^{26} + 3 q^{29} + 9 q^{31} + 9 q^{32} - 6 q^{34} + 3 q^{40} - 9 q^{41} - 24 q^{46} + 3 q^{47}+ \cdots + 45 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53209 1.08335 0.541675 0.840588i \(-0.317790\pi\)
0.541675 + 0.840588i \(0.317790\pi\)
\(3\) 0 0
\(4\) 0.347296 0.173648
\(5\) −2.34730 −1.04974 −0.524871 0.851182i \(-0.675887\pi\)
−0.524871 + 0.851182i \(0.675887\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −2.53209 −0.895229
\(9\) 0 0
\(10\) −3.59627 −1.13724
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −0.184793 −0.0512522 −0.0256261 0.999672i \(-0.508158\pi\)
−0.0256261 + 0.999672i \(0.508158\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.57398 −1.14349
\(17\) 3.92127 0.951049 0.475524 0.879703i \(-0.342258\pi\)
0.475524 + 0.879703i \(0.342258\pi\)
\(18\) 0 0
\(19\) 0.773318 0.177411 0.0887057 0.996058i \(-0.471727\pi\)
0.0887057 + 0.996058i \(0.471727\pi\)
\(20\) −0.815207 −0.182286
\(21\) 0 0
\(22\) −1.53209 −0.326642
\(23\) −8.35504 −1.74215 −0.871073 0.491154i \(-0.836575\pi\)
−0.871073 + 0.491154i \(0.836575\pi\)
\(24\) 0 0
\(25\) 0.509800 0.101960
\(26\) −0.283119 −0.0555241
\(27\) 0 0
\(28\) 0 0
\(29\) 8.17024 1.51718 0.758588 0.651570i \(-0.225889\pi\)
0.758588 + 0.651570i \(0.225889\pi\)
\(30\) 0 0
\(31\) 2.65270 0.476440 0.238220 0.971211i \(-0.423436\pi\)
0.238220 + 0.971211i \(0.423436\pi\)
\(32\) −1.94356 −0.343577
\(33\) 0 0
\(34\) 6.00774 1.03032
\(35\) 0 0
\(36\) 0 0
\(37\) −6.82295 −1.12169 −0.560843 0.827922i \(-0.689523\pi\)
−0.560843 + 0.827922i \(0.689523\pi\)
\(38\) 1.18479 0.192199
\(39\) 0 0
\(40\) 5.94356 0.939760
\(41\) −0.426022 −0.0665335 −0.0332667 0.999447i \(-0.510591\pi\)
−0.0332667 + 0.999447i \(0.510591\pi\)
\(42\) 0 0
\(43\) 1.18479 0.180679 0.0903396 0.995911i \(-0.471205\pi\)
0.0903396 + 0.995911i \(0.471205\pi\)
\(44\) −0.347296 −0.0523569
\(45\) 0 0
\(46\) −12.8007 −1.88735
\(47\) 7.68004 1.12025 0.560125 0.828408i \(-0.310753\pi\)
0.560125 + 0.828408i \(0.310753\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.781059 0.110458
\(51\) 0 0
\(52\) −0.0641778 −0.00889986
\(53\) −6.55438 −0.900313 −0.450157 0.892950i \(-0.648632\pi\)
−0.450157 + 0.892950i \(0.648632\pi\)
\(54\) 0 0
\(55\) 2.34730 0.316509
\(56\) 0 0
\(57\) 0 0
\(58\) 12.5175 1.64363
\(59\) −0.204393 −0.0266097 −0.0133048 0.999911i \(-0.504235\pi\)
−0.0133048 + 0.999911i \(0.504235\pi\)
\(60\) 0 0
\(61\) 14.5817 1.86700 0.933499 0.358580i \(-0.116739\pi\)
0.933499 + 0.358580i \(0.116739\pi\)
\(62\) 4.06418 0.516151
\(63\) 0 0
\(64\) 6.17024 0.771281
\(65\) 0.433763 0.0538017
\(66\) 0 0
\(67\) 3.75877 0.459207 0.229603 0.973284i \(-0.426257\pi\)
0.229603 + 0.973284i \(0.426257\pi\)
\(68\) 1.36184 0.165148
\(69\) 0 0
\(70\) 0 0
\(71\) 9.96585 1.18273 0.591365 0.806404i \(-0.298589\pi\)
0.591365 + 0.806404i \(0.298589\pi\)
\(72\) 0 0
\(73\) 0.120615 0.0141169 0.00705844 0.999975i \(-0.497753\pi\)
0.00705844 + 0.999975i \(0.497753\pi\)
\(74\) −10.4534 −1.21518
\(75\) 0 0
\(76\) 0.268571 0.0308072
\(77\) 0 0
\(78\) 0 0
\(79\) 0.327696 0.0368687 0.0184343 0.999830i \(-0.494132\pi\)
0.0184343 + 0.999830i \(0.494132\pi\)
\(80\) 10.7365 1.20038
\(81\) 0 0
\(82\) −0.652704 −0.0720791
\(83\) −3.35504 −0.368263 −0.184132 0.982902i \(-0.558947\pi\)
−0.184132 + 0.982902i \(0.558947\pi\)
\(84\) 0 0
\(85\) −9.20439 −0.998357
\(86\) 1.81521 0.195739
\(87\) 0 0
\(88\) 2.53209 0.269922
\(89\) 4.65270 0.493186 0.246593 0.969119i \(-0.420689\pi\)
0.246593 + 0.969119i \(0.420689\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.90167 −0.302520
\(93\) 0 0
\(94\) 11.7665 1.21362
\(95\) −1.81521 −0.186236
\(96\) 0 0
\(97\) 13.1206 1.33220 0.666098 0.745864i \(-0.267963\pi\)
0.666098 + 0.745864i \(0.267963\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.177052 0.0177052
\(101\) 5.90167 0.587239 0.293619 0.955922i \(-0.405140\pi\)
0.293619 + 0.955922i \(0.405140\pi\)
\(102\) 0 0
\(103\) 0.921274 0.0907759 0.0453879 0.998969i \(-0.485548\pi\)
0.0453879 + 0.998969i \(0.485548\pi\)
\(104\) 0.467911 0.0458825
\(105\) 0 0
\(106\) −10.0419 −0.975354
\(107\) 10.3473 1.00031 0.500155 0.865936i \(-0.333276\pi\)
0.500155 + 0.865936i \(0.333276\pi\)
\(108\) 0 0
\(109\) 0.475652 0.0455592 0.0227796 0.999741i \(-0.492748\pi\)
0.0227796 + 0.999741i \(0.492748\pi\)
\(110\) 3.59627 0.342891
\(111\) 0 0
\(112\) 0 0
\(113\) 3.14290 0.295659 0.147830 0.989013i \(-0.452771\pi\)
0.147830 + 0.989013i \(0.452771\pi\)
\(114\) 0 0
\(115\) 19.6117 1.82880
\(116\) 2.83750 0.263455
\(117\) 0 0
\(118\) −0.313148 −0.0288276
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 22.3405 2.02261
\(123\) 0 0
\(124\) 0.921274 0.0827329
\(125\) 10.5398 0.942711
\(126\) 0 0
\(127\) −0.445622 −0.0395426 −0.0197713 0.999805i \(-0.506294\pi\)
−0.0197713 + 0.999805i \(0.506294\pi\)
\(128\) 13.3405 1.17914
\(129\) 0 0
\(130\) 0.664563 0.0582860
\(131\) 12.0865 1.05600 0.528000 0.849245i \(-0.322942\pi\)
0.528000 + 0.849245i \(0.322942\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 5.75877 0.497482
\(135\) 0 0
\(136\) −9.92902 −0.851406
\(137\) 16.3482 1.39672 0.698362 0.715745i \(-0.253913\pi\)
0.698362 + 0.715745i \(0.253913\pi\)
\(138\) 0 0
\(139\) −20.7297 −1.75827 −0.879134 0.476575i \(-0.841878\pi\)
−0.879134 + 0.476575i \(0.841878\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 15.2686 1.28131
\(143\) 0.184793 0.0154531
\(144\) 0 0
\(145\) −19.1780 −1.59264
\(146\) 0.184793 0.0152935
\(147\) 0 0
\(148\) −2.36959 −0.194779
\(149\) 0.714193 0.0585090 0.0292545 0.999572i \(-0.490687\pi\)
0.0292545 + 0.999572i \(0.490687\pi\)
\(150\) 0 0
\(151\) −9.54488 −0.776751 −0.388376 0.921501i \(-0.626964\pi\)
−0.388376 + 0.921501i \(0.626964\pi\)
\(152\) −1.95811 −0.158824
\(153\) 0 0
\(154\) 0 0
\(155\) −6.22668 −0.500139
\(156\) 0 0
\(157\) 9.24123 0.737530 0.368765 0.929523i \(-0.379781\pi\)
0.368765 + 0.929523i \(0.379781\pi\)
\(158\) 0.502059 0.0399417
\(159\) 0 0
\(160\) 4.56212 0.360667
\(161\) 0 0
\(162\) 0 0
\(163\) −8.80335 −0.689531 −0.344766 0.938689i \(-0.612042\pi\)
−0.344766 + 0.938689i \(0.612042\pi\)
\(164\) −0.147956 −0.0115534
\(165\) 0 0
\(166\) −5.14022 −0.398958
\(167\) −8.38238 −0.648648 −0.324324 0.945946i \(-0.605137\pi\)
−0.324324 + 0.945946i \(0.605137\pi\)
\(168\) 0 0
\(169\) −12.9659 −0.997373
\(170\) −14.1019 −1.08157
\(171\) 0 0
\(172\) 0.411474 0.0313746
\(173\) −5.44562 −0.414023 −0.207012 0.978339i \(-0.566374\pi\)
−0.207012 + 0.978339i \(0.566374\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.57398 0.344777
\(177\) 0 0
\(178\) 7.12836 0.534293
\(179\) 10.0915 0.754276 0.377138 0.926157i \(-0.376908\pi\)
0.377138 + 0.926157i \(0.376908\pi\)
\(180\) 0 0
\(181\) 19.8794 1.47762 0.738812 0.673912i \(-0.235387\pi\)
0.738812 + 0.673912i \(0.235387\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 21.1557 1.55962
\(185\) 16.0155 1.17748
\(186\) 0 0
\(187\) −3.92127 −0.286752
\(188\) 2.66725 0.194529
\(189\) 0 0
\(190\) −2.78106 −0.201759
\(191\) 25.3851 1.83680 0.918399 0.395654i \(-0.129482\pi\)
0.918399 + 0.395654i \(0.129482\pi\)
\(192\) 0 0
\(193\) −7.73143 −0.556520 −0.278260 0.960506i \(-0.589758\pi\)
−0.278260 + 0.960506i \(0.589758\pi\)
\(194\) 20.1019 1.44324
\(195\) 0 0
\(196\) 0 0
\(197\) 5.37464 0.382927 0.191464 0.981500i \(-0.438677\pi\)
0.191464 + 0.981500i \(0.438677\pi\)
\(198\) 0 0
\(199\) 8.78106 0.622473 0.311236 0.950333i \(-0.399257\pi\)
0.311236 + 0.950333i \(0.399257\pi\)
\(200\) −1.29086 −0.0912775
\(201\) 0 0
\(202\) 9.04189 0.636185
\(203\) 0 0
\(204\) 0 0
\(205\) 1.00000 0.0698430
\(206\) 1.41147 0.0983421
\(207\) 0 0
\(208\) 0.845237 0.0586066
\(209\) −0.773318 −0.0534916
\(210\) 0 0
\(211\) 4.24123 0.291978 0.145989 0.989286i \(-0.453364\pi\)
0.145989 + 0.989286i \(0.453364\pi\)
\(212\) −2.27631 −0.156338
\(213\) 0 0
\(214\) 15.8530 1.08369
\(215\) −2.78106 −0.189667
\(216\) 0 0
\(217\) 0 0
\(218\) 0.728741 0.0493566
\(219\) 0 0
\(220\) 0.815207 0.0549613
\(221\) −0.724622 −0.0487434
\(222\) 0 0
\(223\) −18.0351 −1.20772 −0.603859 0.797091i \(-0.706371\pi\)
−0.603859 + 0.797091i \(0.706371\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4.81521 0.320303
\(227\) −18.2053 −1.20833 −0.604165 0.796859i \(-0.706493\pi\)
−0.604165 + 0.796859i \(0.706493\pi\)
\(228\) 0 0
\(229\) 19.2412 1.27150 0.635748 0.771897i \(-0.280692\pi\)
0.635748 + 0.771897i \(0.280692\pi\)
\(230\) 30.0469 1.98124
\(231\) 0 0
\(232\) −20.6878 −1.35822
\(233\) −9.32501 −0.610902 −0.305451 0.952208i \(-0.598807\pi\)
−0.305451 + 0.952208i \(0.598807\pi\)
\(234\) 0 0
\(235\) −18.0273 −1.17597
\(236\) −0.0709849 −0.00462072
\(237\) 0 0
\(238\) 0 0
\(239\) −11.1898 −0.723811 −0.361905 0.932215i \(-0.617874\pi\)
−0.361905 + 0.932215i \(0.617874\pi\)
\(240\) 0 0
\(241\) 20.2044 1.30148 0.650740 0.759301i \(-0.274459\pi\)
0.650740 + 0.759301i \(0.274459\pi\)
\(242\) 1.53209 0.0984864
\(243\) 0 0
\(244\) 5.06418 0.324201
\(245\) 0 0
\(246\) 0 0
\(247\) −0.142903 −0.00909273
\(248\) −6.71688 −0.426522
\(249\) 0 0
\(250\) 16.1480 1.02129
\(251\) 5.89218 0.371911 0.185956 0.982558i \(-0.440462\pi\)
0.185956 + 0.982558i \(0.440462\pi\)
\(252\) 0 0
\(253\) 8.35504 0.525277
\(254\) −0.682733 −0.0428385
\(255\) 0 0
\(256\) 8.09833 0.506145
\(257\) 2.73648 0.170697 0.0853485 0.996351i \(-0.472800\pi\)
0.0853485 + 0.996351i \(0.472800\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.150644 0.00934256
\(261\) 0 0
\(262\) 18.5175 1.14402
\(263\) −6.19759 −0.382160 −0.191080 0.981575i \(-0.561199\pi\)
−0.191080 + 0.981575i \(0.561199\pi\)
\(264\) 0 0
\(265\) 15.3851 0.945097
\(266\) 0 0
\(267\) 0 0
\(268\) 1.30541 0.0797404
\(269\) 4.20945 0.256654 0.128327 0.991732i \(-0.459039\pi\)
0.128327 + 0.991732i \(0.459039\pi\)
\(270\) 0 0
\(271\) 25.5817 1.55398 0.776989 0.629514i \(-0.216746\pi\)
0.776989 + 0.629514i \(0.216746\pi\)
\(272\) −17.9358 −1.08752
\(273\) 0 0
\(274\) 25.0469 1.51314
\(275\) −0.509800 −0.0307421
\(276\) 0 0
\(277\) −15.3577 −0.922756 −0.461378 0.887204i \(-0.652645\pi\)
−0.461378 + 0.887204i \(0.652645\pi\)
\(278\) −31.7597 −1.90482
\(279\) 0 0
\(280\) 0 0
\(281\) −19.2540 −1.14860 −0.574299 0.818645i \(-0.694725\pi\)
−0.574299 + 0.818645i \(0.694725\pi\)
\(282\) 0 0
\(283\) −27.0651 −1.60885 −0.804427 0.594052i \(-0.797527\pi\)
−0.804427 + 0.594052i \(0.797527\pi\)
\(284\) 3.46110 0.205379
\(285\) 0 0
\(286\) 0.283119 0.0167412
\(287\) 0 0
\(288\) 0 0
\(289\) −1.62361 −0.0955063
\(290\) −29.3824 −1.72539
\(291\) 0 0
\(292\) 0.0418891 0.00245137
\(293\) −4.03508 −0.235732 −0.117866 0.993030i \(-0.537605\pi\)
−0.117866 + 0.993030i \(0.537605\pi\)
\(294\) 0 0
\(295\) 0.479771 0.0279333
\(296\) 17.2763 1.00417
\(297\) 0 0
\(298\) 1.09421 0.0633857
\(299\) 1.54395 0.0892888
\(300\) 0 0
\(301\) 0 0
\(302\) −14.6236 −0.841494
\(303\) 0 0
\(304\) −3.53714 −0.202869
\(305\) −34.2276 −1.95987
\(306\) 0 0
\(307\) 2.92902 0.167168 0.0835839 0.996501i \(-0.473363\pi\)
0.0835839 + 0.996501i \(0.473363\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −9.53983 −0.541826
\(311\) −15.6236 −0.885934 −0.442967 0.896538i \(-0.646074\pi\)
−0.442967 + 0.896538i \(0.646074\pi\)
\(312\) 0 0
\(313\) −21.9760 −1.24215 −0.621077 0.783749i \(-0.713305\pi\)
−0.621077 + 0.783749i \(0.713305\pi\)
\(314\) 14.1584 0.799004
\(315\) 0 0
\(316\) 0.113808 0.00640218
\(317\) 3.01186 0.169163 0.0845814 0.996417i \(-0.473045\pi\)
0.0845814 + 0.996417i \(0.473045\pi\)
\(318\) 0 0
\(319\) −8.17024 −0.457446
\(320\) −14.4834 −0.809646
\(321\) 0 0
\(322\) 0 0
\(323\) 3.03239 0.168727
\(324\) 0 0
\(325\) −0.0942073 −0.00522568
\(326\) −13.4875 −0.747004
\(327\) 0 0
\(328\) 1.07873 0.0595627
\(329\) 0 0
\(330\) 0 0
\(331\) 27.4688 1.50982 0.754912 0.655826i \(-0.227679\pi\)
0.754912 + 0.655826i \(0.227679\pi\)
\(332\) −1.16519 −0.0639482
\(333\) 0 0
\(334\) −12.8425 −0.702713
\(335\) −8.82295 −0.482049
\(336\) 0 0
\(337\) 17.2422 0.939240 0.469620 0.882869i \(-0.344391\pi\)
0.469620 + 0.882869i \(0.344391\pi\)
\(338\) −19.8648 −1.08050
\(339\) 0 0
\(340\) −3.19665 −0.173363
\(341\) −2.65270 −0.143652
\(342\) 0 0
\(343\) 0 0
\(344\) −3.00000 −0.161749
\(345\) 0 0
\(346\) −8.34318 −0.448532
\(347\) 11.4311 0.613652 0.306826 0.951766i \(-0.400733\pi\)
0.306826 + 0.951766i \(0.400733\pi\)
\(348\) 0 0
\(349\) 28.3209 1.51598 0.757991 0.652265i \(-0.226181\pi\)
0.757991 + 0.652265i \(0.226181\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.94356 0.103592
\(353\) −16.4361 −0.874807 −0.437403 0.899265i \(-0.644102\pi\)
−0.437403 + 0.899265i \(0.644102\pi\)
\(354\) 0 0
\(355\) −23.3928 −1.24156
\(356\) 1.61587 0.0856408
\(357\) 0 0
\(358\) 15.4611 0.817145
\(359\) −24.8631 −1.31222 −0.656112 0.754664i \(-0.727800\pi\)
−0.656112 + 0.754664i \(0.727800\pi\)
\(360\) 0 0
\(361\) −18.4020 −0.968525
\(362\) 30.4570 1.60078
\(363\) 0 0
\(364\) 0 0
\(365\) −0.283119 −0.0148191
\(366\) 0 0
\(367\) 4.29860 0.224385 0.112193 0.993686i \(-0.464213\pi\)
0.112193 + 0.993686i \(0.464213\pi\)
\(368\) 38.2158 1.99213
\(369\) 0 0
\(370\) 24.5371 1.27563
\(371\) 0 0
\(372\) 0 0
\(373\) −2.72967 −0.141337 −0.0706686 0.997500i \(-0.522513\pi\)
−0.0706686 + 0.997500i \(0.522513\pi\)
\(374\) −6.00774 −0.310653
\(375\) 0 0
\(376\) −19.4466 −1.00288
\(377\) −1.50980 −0.0777587
\(378\) 0 0
\(379\) −16.4584 −0.845412 −0.422706 0.906267i \(-0.638920\pi\)
−0.422706 + 0.906267i \(0.638920\pi\)
\(380\) −0.630415 −0.0323396
\(381\) 0 0
\(382\) 38.8922 1.98990
\(383\) 7.85978 0.401616 0.200808 0.979631i \(-0.435643\pi\)
0.200808 + 0.979631i \(0.435643\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −11.8452 −0.602907
\(387\) 0 0
\(388\) 4.55674 0.231334
\(389\) −9.64321 −0.488930 −0.244465 0.969658i \(-0.578612\pi\)
−0.244465 + 0.969658i \(0.578612\pi\)
\(390\) 0 0
\(391\) −32.7624 −1.65687
\(392\) 0 0
\(393\) 0 0
\(394\) 8.23442 0.414844
\(395\) −0.769200 −0.0387026
\(396\) 0 0
\(397\) −9.43376 −0.473467 −0.236733 0.971575i \(-0.576077\pi\)
−0.236733 + 0.971575i \(0.576077\pi\)
\(398\) 13.4534 0.674356
\(399\) 0 0
\(400\) −2.33181 −0.116591
\(401\) 18.2199 0.909857 0.454929 0.890528i \(-0.349665\pi\)
0.454929 + 0.890528i \(0.349665\pi\)
\(402\) 0 0
\(403\) −0.490200 −0.0244186
\(404\) 2.04963 0.101973
\(405\) 0 0
\(406\) 0 0
\(407\) 6.82295 0.338201
\(408\) 0 0
\(409\) 6.41147 0.317027 0.158513 0.987357i \(-0.449330\pi\)
0.158513 + 0.987357i \(0.449330\pi\)
\(410\) 1.53209 0.0756645
\(411\) 0 0
\(412\) 0.319955 0.0157631
\(413\) 0 0
\(414\) 0 0
\(415\) 7.87527 0.386582
\(416\) 0.359156 0.0176091
\(417\) 0 0
\(418\) −1.18479 −0.0579501
\(419\) −1.62092 −0.0791871 −0.0395935 0.999216i \(-0.512606\pi\)
−0.0395935 + 0.999216i \(0.512606\pi\)
\(420\) 0 0
\(421\) 31.1489 1.51810 0.759052 0.651030i \(-0.225663\pi\)
0.759052 + 0.651030i \(0.225663\pi\)
\(422\) 6.49794 0.316315
\(423\) 0 0
\(424\) 16.5963 0.805986
\(425\) 1.99907 0.0969690
\(426\) 0 0
\(427\) 0 0
\(428\) 3.59358 0.173702
\(429\) 0 0
\(430\) −4.26083 −0.205475
\(431\) −34.2080 −1.64774 −0.823871 0.566777i \(-0.808190\pi\)
−0.823871 + 0.566777i \(0.808190\pi\)
\(432\) 0 0
\(433\) −20.4979 −0.985068 −0.492534 0.870293i \(-0.663929\pi\)
−0.492534 + 0.870293i \(0.663929\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.165192 0.00791127
\(437\) −6.46110 −0.309077
\(438\) 0 0
\(439\) 31.3218 1.49491 0.747455 0.664313i \(-0.231276\pi\)
0.747455 + 0.664313i \(0.231276\pi\)
\(440\) −5.94356 −0.283348
\(441\) 0 0
\(442\) −1.11019 −0.0528061
\(443\) 29.3979 1.39673 0.698367 0.715740i \(-0.253910\pi\)
0.698367 + 0.715740i \(0.253910\pi\)
\(444\) 0 0
\(445\) −10.9213 −0.517718
\(446\) −27.6313 −1.30838
\(447\) 0 0
\(448\) 0 0
\(449\) 6.90074 0.325666 0.162833 0.986654i \(-0.447937\pi\)
0.162833 + 0.986654i \(0.447937\pi\)
\(450\) 0 0
\(451\) 0.426022 0.0200606
\(452\) 1.09152 0.0513407
\(453\) 0 0
\(454\) −27.8922 −1.30904
\(455\) 0 0
\(456\) 0 0
\(457\) 12.3746 0.578861 0.289431 0.957199i \(-0.406534\pi\)
0.289431 + 0.957199i \(0.406534\pi\)
\(458\) 29.4793 1.37748
\(459\) 0 0
\(460\) 6.81109 0.317569
\(461\) −20.0942 −0.935881 −0.467940 0.883760i \(-0.655004\pi\)
−0.467940 + 0.883760i \(0.655004\pi\)
\(462\) 0 0
\(463\) 8.69190 0.403947 0.201974 0.979391i \(-0.435265\pi\)
0.201974 + 0.979391i \(0.435265\pi\)
\(464\) −37.3705 −1.73488
\(465\) 0 0
\(466\) −14.2867 −0.661820
\(467\) −4.76920 −0.220692 −0.110346 0.993893i \(-0.535196\pi\)
−0.110346 + 0.993893i \(0.535196\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −27.6195 −1.27399
\(471\) 0 0
\(472\) 0.517541 0.0238218
\(473\) −1.18479 −0.0544768
\(474\) 0 0
\(475\) 0.394238 0.0180889
\(476\) 0 0
\(477\) 0 0
\(478\) −17.1438 −0.784141
\(479\) 39.6141 1.81001 0.905007 0.425396i \(-0.139865\pi\)
0.905007 + 0.425396i \(0.139865\pi\)
\(480\) 0 0
\(481\) 1.26083 0.0574889
\(482\) 30.9549 1.40996
\(483\) 0 0
\(484\) 0.347296 0.0157862
\(485\) −30.7980 −1.39846
\(486\) 0 0
\(487\) 5.15570 0.233627 0.116813 0.993154i \(-0.462732\pi\)
0.116813 + 0.993154i \(0.462732\pi\)
\(488\) −36.9222 −1.67139
\(489\) 0 0
\(490\) 0 0
\(491\) −10.1925 −0.459983 −0.229991 0.973193i \(-0.573870\pi\)
−0.229991 + 0.973193i \(0.573870\pi\)
\(492\) 0 0
\(493\) 32.0378 1.44291
\(494\) −0.218941 −0.00985061
\(495\) 0 0
\(496\) −12.1334 −0.544806
\(497\) 0 0
\(498\) 0 0
\(499\) 5.88981 0.263664 0.131832 0.991272i \(-0.457914\pi\)
0.131832 + 0.991272i \(0.457914\pi\)
\(500\) 3.66044 0.163700
\(501\) 0 0
\(502\) 9.02734 0.402910
\(503\) 12.8348 0.572276 0.286138 0.958188i \(-0.407628\pi\)
0.286138 + 0.958188i \(0.407628\pi\)
\(504\) 0 0
\(505\) −13.8530 −0.616449
\(506\) 12.8007 0.569059
\(507\) 0 0
\(508\) −0.154763 −0.00686650
\(509\) −32.2131 −1.42782 −0.713910 0.700238i \(-0.753077\pi\)
−0.713910 + 0.700238i \(0.753077\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −14.2736 −0.630811
\(513\) 0 0
\(514\) 4.19253 0.184925
\(515\) −2.16250 −0.0952913
\(516\) 0 0
\(517\) −7.68004 −0.337768
\(518\) 0 0
\(519\) 0 0
\(520\) −1.09833 −0.0481648
\(521\) −18.5280 −0.811725 −0.405863 0.913934i \(-0.633029\pi\)
−0.405863 + 0.913934i \(0.633029\pi\)
\(522\) 0 0
\(523\) −37.2422 −1.62849 −0.814243 0.580524i \(-0.802848\pi\)
−0.814243 + 0.580524i \(0.802848\pi\)
\(524\) 4.19759 0.183372
\(525\) 0 0
\(526\) −9.49525 −0.414013
\(527\) 10.4020 0.453117
\(528\) 0 0
\(529\) 46.8066 2.03507
\(530\) 23.5713 1.02387
\(531\) 0 0
\(532\) 0 0
\(533\) 0.0787257 0.00340999
\(534\) 0 0
\(535\) −24.2882 −1.05007
\(536\) −9.51754 −0.411095
\(537\) 0 0
\(538\) 6.44924 0.278047
\(539\) 0 0
\(540\) 0 0
\(541\) 36.1566 1.55449 0.777247 0.629195i \(-0.216615\pi\)
0.777247 + 0.629195i \(0.216615\pi\)
\(542\) 39.1935 1.68350
\(543\) 0 0
\(544\) −7.62124 −0.326758
\(545\) −1.11650 −0.0478254
\(546\) 0 0
\(547\) 12.7980 0.547202 0.273601 0.961843i \(-0.411785\pi\)
0.273601 + 0.961843i \(0.411785\pi\)
\(548\) 5.67768 0.242538
\(549\) 0 0
\(550\) −0.781059 −0.0333045
\(551\) 6.31820 0.269164
\(552\) 0 0
\(553\) 0 0
\(554\) −23.5294 −0.999668
\(555\) 0 0
\(556\) −7.19934 −0.305320
\(557\) 30.6587 1.29905 0.649525 0.760340i \(-0.274968\pi\)
0.649525 + 0.760340i \(0.274968\pi\)
\(558\) 0 0
\(559\) −0.218941 −0.00926021
\(560\) 0 0
\(561\) 0 0
\(562\) −29.4989 −1.24433
\(563\) 14.5047 0.611302 0.305651 0.952144i \(-0.401126\pi\)
0.305651 + 0.952144i \(0.401126\pi\)
\(564\) 0 0
\(565\) −7.37733 −0.310366
\(566\) −41.4662 −1.74295
\(567\) 0 0
\(568\) −25.2344 −1.05881
\(569\) −19.0051 −0.796733 −0.398367 0.917226i \(-0.630423\pi\)
−0.398367 + 0.917226i \(0.630423\pi\)
\(570\) 0 0
\(571\) −21.0009 −0.878862 −0.439431 0.898276i \(-0.644820\pi\)
−0.439431 + 0.898276i \(0.644820\pi\)
\(572\) 0.0641778 0.00268341
\(573\) 0 0
\(574\) 0 0
\(575\) −4.25940 −0.177629
\(576\) 0 0
\(577\) −5.18748 −0.215958 −0.107979 0.994153i \(-0.534438\pi\)
−0.107979 + 0.994153i \(0.534438\pi\)
\(578\) −2.48751 −0.103467
\(579\) 0 0
\(580\) −6.66044 −0.276560
\(581\) 0 0
\(582\) 0 0
\(583\) 6.55438 0.271455
\(584\) −0.305407 −0.0126378
\(585\) 0 0
\(586\) −6.18210 −0.255380
\(587\) −8.33813 −0.344151 −0.172076 0.985084i \(-0.555047\pi\)
−0.172076 + 0.985084i \(0.555047\pi\)
\(588\) 0 0
\(589\) 2.05138 0.0845258
\(590\) 0.735051 0.0302616
\(591\) 0 0
\(592\) 31.2080 1.28264
\(593\) −6.10195 −0.250577 −0.125288 0.992120i \(-0.539986\pi\)
−0.125288 + 0.992120i \(0.539986\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.248037 0.0101600
\(597\) 0 0
\(598\) 2.36547 0.0967311
\(599\) 13.8503 0.565907 0.282954 0.959134i \(-0.408686\pi\)
0.282954 + 0.959134i \(0.408686\pi\)
\(600\) 0 0
\(601\) 31.2695 1.27551 0.637755 0.770239i \(-0.279863\pi\)
0.637755 + 0.770239i \(0.279863\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.31490 −0.134881
\(605\) −2.34730 −0.0954312
\(606\) 0 0
\(607\) 37.7962 1.53410 0.767051 0.641587i \(-0.221724\pi\)
0.767051 + 0.641587i \(0.221724\pi\)
\(608\) −1.50299 −0.0609544
\(609\) 0 0
\(610\) −52.4397 −2.12322
\(611\) −1.41921 −0.0574153
\(612\) 0 0
\(613\) 21.1343 0.853608 0.426804 0.904344i \(-0.359639\pi\)
0.426804 + 0.904344i \(0.359639\pi\)
\(614\) 4.48751 0.181101
\(615\) 0 0
\(616\) 0 0
\(617\) −23.7743 −0.957115 −0.478558 0.878056i \(-0.658840\pi\)
−0.478558 + 0.878056i \(0.658840\pi\)
\(618\) 0 0
\(619\) 13.5021 0.542694 0.271347 0.962482i \(-0.412531\pi\)
0.271347 + 0.962482i \(0.412531\pi\)
\(620\) −2.16250 −0.0868482
\(621\) 0 0
\(622\) −23.9368 −0.959776
\(623\) 0 0
\(624\) 0 0
\(625\) −27.2891 −1.09156
\(626\) −33.6691 −1.34569
\(627\) 0 0
\(628\) 3.20945 0.128071
\(629\) −26.7547 −1.06678
\(630\) 0 0
\(631\) −38.2354 −1.52213 −0.761063 0.648678i \(-0.775322\pi\)
−0.761063 + 0.648678i \(0.775322\pi\)
\(632\) −0.829755 −0.0330059
\(633\) 0 0
\(634\) 4.61444 0.183263
\(635\) 1.04601 0.0415096
\(636\) 0 0
\(637\) 0 0
\(638\) −12.5175 −0.495574
\(639\) 0 0
\(640\) −31.3141 −1.23780
\(641\) −38.5553 −1.52284 −0.761422 0.648257i \(-0.775498\pi\)
−0.761422 + 0.648257i \(0.775498\pi\)
\(642\) 0 0
\(643\) 19.2627 0.759647 0.379823 0.925059i \(-0.375985\pi\)
0.379823 + 0.925059i \(0.375985\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.64590 0.182790
\(647\) −39.7844 −1.56408 −0.782042 0.623225i \(-0.785822\pi\)
−0.782042 + 0.623225i \(0.785822\pi\)
\(648\) 0 0
\(649\) 0.204393 0.00802312
\(650\) −0.144334 −0.00566124
\(651\) 0 0
\(652\) −3.05737 −0.119736
\(653\) −4.76651 −0.186528 −0.0932640 0.995641i \(-0.529730\pi\)
−0.0932640 + 0.995641i \(0.529730\pi\)
\(654\) 0 0
\(655\) −28.3705 −1.10853
\(656\) 1.94862 0.0760807
\(657\) 0 0
\(658\) 0 0
\(659\) 38.3550 1.49410 0.747050 0.664768i \(-0.231470\pi\)
0.747050 + 0.664768i \(0.231470\pi\)
\(660\) 0 0
\(661\) −10.3628 −0.403065 −0.201533 0.979482i \(-0.564592\pi\)
−0.201533 + 0.979482i \(0.564592\pi\)
\(662\) 42.0847 1.63567
\(663\) 0 0
\(664\) 8.49525 0.329680
\(665\) 0 0
\(666\) 0 0
\(667\) −68.2627 −2.64314
\(668\) −2.91117 −0.112637
\(669\) 0 0
\(670\) −13.5175 −0.522228
\(671\) −14.5817 −0.562921
\(672\) 0 0
\(673\) −25.6168 −0.987455 −0.493728 0.869617i \(-0.664366\pi\)
−0.493728 + 0.869617i \(0.664366\pi\)
\(674\) 26.4165 1.01753
\(675\) 0 0
\(676\) −4.50299 −0.173192
\(677\) −41.8375 −1.60795 −0.803973 0.594666i \(-0.797284\pi\)
−0.803973 + 0.594666i \(0.797284\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 23.3063 0.893757
\(681\) 0 0
\(682\) −4.06418 −0.155625
\(683\) 46.0428 1.76178 0.880890 0.473321i \(-0.156945\pi\)
0.880890 + 0.473321i \(0.156945\pi\)
\(684\) 0 0
\(685\) −38.3741 −1.46620
\(686\) 0 0
\(687\) 0 0
\(688\) −5.41921 −0.206606
\(689\) 1.21120 0.0461430
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) −1.89124 −0.0718943
\(693\) 0 0
\(694\) 17.5134 0.664800
\(695\) 48.6587 1.84573
\(696\) 0 0
\(697\) −1.67055 −0.0632766
\(698\) 43.3901 1.64234
\(699\) 0 0
\(700\) 0 0
\(701\) 32.8144 1.23938 0.619691 0.784846i \(-0.287258\pi\)
0.619691 + 0.784846i \(0.287258\pi\)
\(702\) 0 0
\(703\) −5.27631 −0.199000
\(704\) −6.17024 −0.232550
\(705\) 0 0
\(706\) −25.1816 −0.947722
\(707\) 0 0
\(708\) 0 0
\(709\) 7.40198 0.277987 0.138994 0.990293i \(-0.455613\pi\)
0.138994 + 0.990293i \(0.455613\pi\)
\(710\) −35.8399 −1.34505
\(711\) 0 0
\(712\) −11.7811 −0.441514
\(713\) −22.1634 −0.830027
\(714\) 0 0
\(715\) −0.433763 −0.0162218
\(716\) 3.50475 0.130979
\(717\) 0 0
\(718\) −38.0925 −1.42160
\(719\) 14.1370 0.527222 0.263611 0.964629i \(-0.415086\pi\)
0.263611 + 0.964629i \(0.415086\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −28.1935 −1.04925
\(723\) 0 0
\(724\) 6.90404 0.256587
\(725\) 4.16519 0.154691
\(726\) 0 0
\(727\) 15.2790 0.566667 0.283333 0.959021i \(-0.408560\pi\)
0.283333 + 0.959021i \(0.408560\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −0.433763 −0.0160543
\(731\) 4.64590 0.171835
\(732\) 0 0
\(733\) 1.34493 0.0496762 0.0248381 0.999691i \(-0.492093\pi\)
0.0248381 + 0.999691i \(0.492093\pi\)
\(734\) 6.58584 0.243088
\(735\) 0 0
\(736\) 16.2385 0.598561
\(737\) −3.75877 −0.138456
\(738\) 0 0
\(739\) −25.6536 −0.943684 −0.471842 0.881683i \(-0.656411\pi\)
−0.471842 + 0.881683i \(0.656411\pi\)
\(740\) 5.56212 0.204468
\(741\) 0 0
\(742\) 0 0
\(743\) 6.08109 0.223094 0.111547 0.993759i \(-0.464420\pi\)
0.111547 + 0.993759i \(0.464420\pi\)
\(744\) 0 0
\(745\) −1.67642 −0.0614194
\(746\) −4.18210 −0.153118
\(747\) 0 0
\(748\) −1.36184 −0.0497940
\(749\) 0 0
\(750\) 0 0
\(751\) 20.8108 0.759396 0.379698 0.925111i \(-0.376028\pi\)
0.379698 + 0.925111i \(0.376028\pi\)
\(752\) −35.1284 −1.28100
\(753\) 0 0
\(754\) −2.31315 −0.0842399
\(755\) 22.4047 0.815389
\(756\) 0 0
\(757\) −5.25402 −0.190961 −0.0954804 0.995431i \(-0.530439\pi\)
−0.0954804 + 0.995431i \(0.530439\pi\)
\(758\) −25.2158 −0.915877
\(759\) 0 0
\(760\) 4.59627 0.166724
\(761\) 40.9813 1.48557 0.742786 0.669529i \(-0.233504\pi\)
0.742786 + 0.669529i \(0.233504\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 8.81614 0.318957
\(765\) 0 0
\(766\) 12.0419 0.435091
\(767\) 0.0377703 0.00136381
\(768\) 0 0
\(769\) 47.5580 1.71499 0.857493 0.514496i \(-0.172021\pi\)
0.857493 + 0.514496i \(0.172021\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.68510 −0.0966388
\(773\) −20.4929 −0.737078 −0.368539 0.929612i \(-0.620142\pi\)
−0.368539 + 0.929612i \(0.620142\pi\)
\(774\) 0 0
\(775\) 1.35235 0.0485778
\(776\) −33.2226 −1.19262
\(777\) 0 0
\(778\) −14.7743 −0.529683
\(779\) −0.329451 −0.0118038
\(780\) 0 0
\(781\) −9.96585 −0.356606
\(782\) −50.1949 −1.79497
\(783\) 0 0
\(784\) 0 0
\(785\) −21.6919 −0.774217
\(786\) 0 0
\(787\) −19.1206 −0.681576 −0.340788 0.940140i \(-0.610694\pi\)
−0.340788 + 0.940140i \(0.610694\pi\)
\(788\) 1.86659 0.0664946
\(789\) 0 0
\(790\) −1.17848 −0.0419285
\(791\) 0 0
\(792\) 0 0
\(793\) −2.69459 −0.0956878
\(794\) −14.4534 −0.512931
\(795\) 0 0
\(796\) 3.04963 0.108091
\(797\) 52.5144 1.86015 0.930077 0.367365i \(-0.119740\pi\)
0.930077 + 0.367365i \(0.119740\pi\)
\(798\) 0 0
\(799\) 30.1156 1.06541
\(800\) −0.990829 −0.0350311
\(801\) 0 0
\(802\) 27.9145 0.985694
\(803\) −0.120615 −0.00425640
\(804\) 0 0
\(805\) 0 0
\(806\) −0.751030 −0.0264539
\(807\) 0 0
\(808\) −14.9436 −0.525713
\(809\) −40.6715 −1.42993 −0.714967 0.699159i \(-0.753558\pi\)
−0.714967 + 0.699159i \(0.753558\pi\)
\(810\) 0 0
\(811\) −20.5648 −0.722128 −0.361064 0.932541i \(-0.617586\pi\)
−0.361064 + 0.932541i \(0.617586\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 10.4534 0.366390
\(815\) 20.6641 0.723831
\(816\) 0 0
\(817\) 0.916222 0.0320545
\(818\) 9.82295 0.343451
\(819\) 0 0
\(820\) 0.347296 0.0121281
\(821\) −6.36278 −0.222062 −0.111031 0.993817i \(-0.535415\pi\)
−0.111031 + 0.993817i \(0.535415\pi\)
\(822\) 0 0
\(823\) −2.50887 −0.0874536 −0.0437268 0.999044i \(-0.513923\pi\)
−0.0437268 + 0.999044i \(0.513923\pi\)
\(824\) −2.33275 −0.0812651
\(825\) 0 0
\(826\) 0 0
\(827\) 41.2645 1.43491 0.717453 0.696607i \(-0.245308\pi\)
0.717453 + 0.696607i \(0.245308\pi\)
\(828\) 0 0
\(829\) −46.7779 −1.62466 −0.812331 0.583196i \(-0.801802\pi\)
−0.812331 + 0.583196i \(0.801802\pi\)
\(830\) 12.0656 0.418803
\(831\) 0 0
\(832\) −1.14022 −0.0395298
\(833\) 0 0
\(834\) 0 0
\(835\) 19.6759 0.680913
\(836\) −0.268571 −0.00928871
\(837\) 0 0
\(838\) −2.48339 −0.0857874
\(839\) −16.5439 −0.571161 −0.285580 0.958355i \(-0.592186\pi\)
−0.285580 + 0.958355i \(0.592186\pi\)
\(840\) 0 0
\(841\) 37.7529 1.30182
\(842\) 47.7229 1.64464
\(843\) 0 0
\(844\) 1.47296 0.0507015
\(845\) 30.4347 1.04699
\(846\) 0 0
\(847\) 0 0
\(848\) 29.9796 1.02950
\(849\) 0 0
\(850\) 3.06275 0.105051
\(851\) 57.0060 1.95414
\(852\) 0 0
\(853\) 13.2163 0.452516 0.226258 0.974067i \(-0.427351\pi\)
0.226258 + 0.974067i \(0.427351\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −26.2003 −0.895507
\(857\) 50.7211 1.73260 0.866300 0.499524i \(-0.166492\pi\)
0.866300 + 0.499524i \(0.166492\pi\)
\(858\) 0 0
\(859\) 55.1124 1.88041 0.940205 0.340609i \(-0.110633\pi\)
0.940205 + 0.340609i \(0.110633\pi\)
\(860\) −0.965852 −0.0329353
\(861\) 0 0
\(862\) −52.4097 −1.78508
\(863\) −10.5202 −0.358113 −0.179056 0.983839i \(-0.557304\pi\)
−0.179056 + 0.983839i \(0.557304\pi\)
\(864\) 0 0
\(865\) 12.7825 0.434618
\(866\) −31.4047 −1.06717
\(867\) 0 0
\(868\) 0 0
\(869\) −0.327696 −0.0111163
\(870\) 0 0
\(871\) −0.694593 −0.0235354
\(872\) −1.20439 −0.0407859
\(873\) 0 0
\(874\) −9.89899 −0.334838
\(875\) 0 0
\(876\) 0 0
\(877\) −39.6536 −1.33901 −0.669504 0.742808i \(-0.733493\pi\)
−0.669504 + 0.742808i \(0.733493\pi\)
\(878\) 47.9878 1.61951
\(879\) 0 0
\(880\) −10.7365 −0.361927
\(881\) −25.0077 −0.842532 −0.421266 0.906937i \(-0.638414\pi\)
−0.421266 + 0.906937i \(0.638414\pi\)
\(882\) 0 0
\(883\) 50.9341 1.71407 0.857034 0.515260i \(-0.172305\pi\)
0.857034 + 0.515260i \(0.172305\pi\)
\(884\) −0.251659 −0.00846420
\(885\) 0 0
\(886\) 45.0401 1.51315
\(887\) −32.0360 −1.07566 −0.537832 0.843052i \(-0.680757\pi\)
−0.537832 + 0.843052i \(0.680757\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −16.7324 −0.560870
\(891\) 0 0
\(892\) −6.26352 −0.209718
\(893\) 5.93912 0.198745
\(894\) 0 0
\(895\) −23.6878 −0.791795
\(896\) 0 0
\(897\) 0 0
\(898\) 10.5725 0.352810
\(899\) 21.6732 0.722843
\(900\) 0 0
\(901\) −25.7015 −0.856242
\(902\) 0.652704 0.0217327
\(903\) 0 0
\(904\) −7.95811 −0.264683
\(905\) −46.6628 −1.55112
\(906\) 0 0
\(907\) −16.4730 −0.546976 −0.273488 0.961875i \(-0.588177\pi\)
−0.273488 + 0.961875i \(0.588177\pi\)
\(908\) −6.32264 −0.209824
\(909\) 0 0
\(910\) 0 0
\(911\) 45.3979 1.50410 0.752049 0.659107i \(-0.229066\pi\)
0.752049 + 0.659107i \(0.229066\pi\)
\(912\) 0 0
\(913\) 3.35504 0.111036
\(914\) 18.9590 0.627109
\(915\) 0 0
\(916\) 6.68241 0.220793
\(917\) 0 0
\(918\) 0 0
\(919\) −12.3209 −0.406429 −0.203214 0.979134i \(-0.565139\pi\)
−0.203214 + 0.979134i \(0.565139\pi\)
\(920\) −49.6587 −1.63720
\(921\) 0 0
\(922\) −30.7861 −1.01389
\(923\) −1.84161 −0.0606175
\(924\) 0 0
\(925\) −3.47834 −0.114367
\(926\) 13.3168 0.437616
\(927\) 0 0
\(928\) −15.8794 −0.521266
\(929\) −5.93313 −0.194660 −0.0973299 0.995252i \(-0.531030\pi\)
−0.0973299 + 0.995252i \(0.531030\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.23854 −0.106082
\(933\) 0 0
\(934\) −7.30684 −0.239087
\(935\) 9.20439 0.301016
\(936\) 0 0
\(937\) −45.0242 −1.47088 −0.735438 0.677593i \(-0.763023\pi\)
−0.735438 + 0.677593i \(0.763023\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −6.26083 −0.204206
\(941\) 6.06242 0.197629 0.0988147 0.995106i \(-0.468495\pi\)
0.0988147 + 0.995106i \(0.468495\pi\)
\(942\) 0 0
\(943\) 3.55943 0.115911
\(944\) 0.934889 0.0304280
\(945\) 0 0
\(946\) −1.81521 −0.0590175
\(947\) 18.9426 0.615553 0.307776 0.951459i \(-0.400415\pi\)
0.307776 + 0.951459i \(0.400415\pi\)
\(948\) 0 0
\(949\) −0.0222887 −0.000723522 0
\(950\) 0.604007 0.0195966
\(951\) 0 0
\(952\) 0 0
\(953\) 12.4970 0.404818 0.202409 0.979301i \(-0.435123\pi\)
0.202409 + 0.979301i \(0.435123\pi\)
\(954\) 0 0
\(955\) −59.5863 −1.92817
\(956\) −3.88619 −0.125688
\(957\) 0 0
\(958\) 60.6923 1.96088
\(959\) 0 0
\(960\) 0 0
\(961\) −23.9632 −0.773005
\(962\) 1.93170 0.0622806
\(963\) 0 0
\(964\) 7.01691 0.226000
\(965\) 18.1480 0.584203
\(966\) 0 0
\(967\) −18.5294 −0.595865 −0.297933 0.954587i \(-0.596297\pi\)
−0.297933 + 0.954587i \(0.596297\pi\)
\(968\) −2.53209 −0.0813844
\(969\) 0 0
\(970\) −47.1852 −1.51503
\(971\) −41.4739 −1.33096 −0.665480 0.746415i \(-0.731773\pi\)
−0.665480 + 0.746415i \(0.731773\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 7.89899 0.253100
\(975\) 0 0
\(976\) −66.6965 −2.13490
\(977\) 22.2321 0.711267 0.355633 0.934626i \(-0.384265\pi\)
0.355633 + 0.934626i \(0.384265\pi\)
\(978\) 0 0
\(979\) −4.65270 −0.148701
\(980\) 0 0
\(981\) 0 0
\(982\) −15.6159 −0.498322
\(983\) −35.4124 −1.12948 −0.564740 0.825269i \(-0.691024\pi\)
−0.564740 + 0.825269i \(0.691024\pi\)
\(984\) 0 0
\(985\) −12.6159 −0.401975
\(986\) 49.0847 1.56318
\(987\) 0 0
\(988\) −0.0496299 −0.00157894
\(989\) −9.89899 −0.314769
\(990\) 0 0
\(991\) 45.5725 1.44766 0.723830 0.689979i \(-0.242380\pi\)
0.723830 + 0.689979i \(0.242380\pi\)
\(992\) −5.15570 −0.163694
\(993\) 0 0
\(994\) 0 0
\(995\) −20.6117 −0.653436
\(996\) 0 0
\(997\) 22.8367 0.723245 0.361622 0.932325i \(-0.382223\pi\)
0.361622 + 0.932325i \(0.382223\pi\)
\(998\) 9.02372 0.285641
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4851.2.a.bj.1.3 3
3.2 odd 2 539.2.a.j.1.1 3
7.2 even 3 693.2.i.h.298.1 6
7.4 even 3 693.2.i.h.100.1 6
7.6 odd 2 4851.2.a.bk.1.3 3
12.11 even 2 8624.2.a.ch.1.1 3
21.2 odd 6 77.2.e.a.67.3 yes 6
21.5 even 6 539.2.e.m.67.3 6
21.11 odd 6 77.2.e.a.23.3 6
21.17 even 6 539.2.e.m.177.3 6
21.20 even 2 539.2.a.g.1.1 3
33.32 even 2 5929.2.a.x.1.3 3
84.11 even 6 1232.2.q.m.177.3 6
84.23 even 6 1232.2.q.m.529.3 6
84.83 odd 2 8624.2.a.co.1.3 3
231.2 even 30 847.2.n.f.81.1 24
231.32 even 6 847.2.e.c.485.1 6
231.53 odd 30 847.2.n.g.807.1 24
231.65 even 6 847.2.e.c.606.1 6
231.74 even 30 847.2.n.f.9.3 24
231.86 odd 30 847.2.n.g.81.3 24
231.95 even 30 847.2.n.f.632.1 24
231.107 even 30 847.2.n.f.130.1 24
231.116 even 30 847.2.n.f.366.1 24
231.128 even 30 847.2.n.f.753.3 24
231.137 odd 30 847.2.n.g.366.3 24
231.149 even 30 847.2.n.f.487.3 24
231.158 odd 30 847.2.n.g.632.3 24
231.170 odd 30 847.2.n.g.487.1 24
231.179 odd 30 847.2.n.g.9.1 24
231.191 odd 30 847.2.n.g.753.1 24
231.200 even 30 847.2.n.f.807.3 24
231.212 odd 30 847.2.n.g.130.3 24
231.230 odd 2 5929.2.a.u.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.a.23.3 6 21.11 odd 6
77.2.e.a.67.3 yes 6 21.2 odd 6
539.2.a.g.1.1 3 21.20 even 2
539.2.a.j.1.1 3 3.2 odd 2
539.2.e.m.67.3 6 21.5 even 6
539.2.e.m.177.3 6 21.17 even 6
693.2.i.h.100.1 6 7.4 even 3
693.2.i.h.298.1 6 7.2 even 3
847.2.e.c.485.1 6 231.32 even 6
847.2.e.c.606.1 6 231.65 even 6
847.2.n.f.9.3 24 231.74 even 30
847.2.n.f.81.1 24 231.2 even 30
847.2.n.f.130.1 24 231.107 even 30
847.2.n.f.366.1 24 231.116 even 30
847.2.n.f.487.3 24 231.149 even 30
847.2.n.f.632.1 24 231.95 even 30
847.2.n.f.753.3 24 231.128 even 30
847.2.n.f.807.3 24 231.200 even 30
847.2.n.g.9.1 24 231.179 odd 30
847.2.n.g.81.3 24 231.86 odd 30
847.2.n.g.130.3 24 231.212 odd 30
847.2.n.g.366.3 24 231.137 odd 30
847.2.n.g.487.1 24 231.170 odd 30
847.2.n.g.632.3 24 231.158 odd 30
847.2.n.g.753.1 24 231.191 odd 30
847.2.n.g.807.1 24 231.53 odd 30
1232.2.q.m.177.3 6 84.11 even 6
1232.2.q.m.529.3 6 84.23 even 6
4851.2.a.bj.1.3 3 1.1 even 1 trivial
4851.2.a.bk.1.3 3 7.6 odd 2
5929.2.a.u.1.3 3 231.230 odd 2
5929.2.a.x.1.3 3 33.32 even 2
8624.2.a.ch.1.1 3 12.11 even 2
8624.2.a.co.1.3 3 84.83 odd 2