Properties

Label 8624.2.a.ch.1.1
Level $8624$
Weight $2$
Character 8624.1
Self dual yes
Analytic conductor $68.863$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8624,2,Mod(1,8624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8624.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.8629867032\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 8624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.87939 q^{3} +2.34730 q^{5} +5.29086 q^{9} -1.00000 q^{11} -0.184793 q^{13} -6.75877 q^{15} -3.92127 q^{17} -0.773318 q^{19} -8.35504 q^{23} +0.509800 q^{25} -6.59627 q^{27} -8.17024 q^{29} -2.65270 q^{31} +2.87939 q^{33} -6.82295 q^{37} +0.532089 q^{39} +0.426022 q^{41} -1.18479 q^{43} +12.4192 q^{45} +7.68004 q^{47} +11.2909 q^{51} +6.55438 q^{53} -2.34730 q^{55} +2.22668 q^{57} -0.204393 q^{59} +14.5817 q^{61} -0.433763 q^{65} -3.75877 q^{67} +24.0574 q^{69} +9.96585 q^{71} +0.120615 q^{73} -1.46791 q^{75} -0.327696 q^{79} +3.12061 q^{81} -3.35504 q^{83} -9.20439 q^{85} +23.5253 q^{87} -4.65270 q^{89} +7.63816 q^{93} -1.81521 q^{95} +13.1206 q^{97} -5.29086 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 6 q^{5} - 3 q^{11} + 3 q^{13} - 9 q^{15} - 3 q^{17} - 9 q^{19} + 3 q^{25} - 6 q^{27} - 3 q^{29} - 9 q^{31} + 3 q^{33} - 3 q^{39} + 9 q^{41} + 3 q^{45} + 3 q^{47} + 18 q^{51} + 9 q^{53} - 6 q^{55}+ \cdots + 45 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.87939 −1.66241 −0.831207 0.555963i \(-0.812350\pi\)
−0.831207 + 0.555963i \(0.812350\pi\)
\(4\) 0 0
\(5\) 2.34730 1.04974 0.524871 0.851182i \(-0.324113\pi\)
0.524871 + 0.851182i \(0.324113\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 5.29086 1.76362
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −0.184793 −0.0512522 −0.0256261 0.999672i \(-0.508158\pi\)
−0.0256261 + 0.999672i \(0.508158\pi\)
\(14\) 0 0
\(15\) −6.75877 −1.74511
\(16\) 0 0
\(17\) −3.92127 −0.951049 −0.475524 0.879703i \(-0.657742\pi\)
−0.475524 + 0.879703i \(0.657742\pi\)
\(18\) 0 0
\(19\) −0.773318 −0.177411 −0.0887057 0.996058i \(-0.528273\pi\)
−0.0887057 + 0.996058i \(0.528273\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.35504 −1.74215 −0.871073 0.491154i \(-0.836575\pi\)
−0.871073 + 0.491154i \(0.836575\pi\)
\(24\) 0 0
\(25\) 0.509800 0.101960
\(26\) 0 0
\(27\) −6.59627 −1.26945
\(28\) 0 0
\(29\) −8.17024 −1.51718 −0.758588 0.651570i \(-0.774111\pi\)
−0.758588 + 0.651570i \(0.774111\pi\)
\(30\) 0 0
\(31\) −2.65270 −0.476440 −0.238220 0.971211i \(-0.576564\pi\)
−0.238220 + 0.971211i \(0.576564\pi\)
\(32\) 0 0
\(33\) 2.87939 0.501237
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.82295 −1.12169 −0.560843 0.827922i \(-0.689523\pi\)
−0.560843 + 0.827922i \(0.689523\pi\)
\(38\) 0 0
\(39\) 0.532089 0.0852024
\(40\) 0 0
\(41\) 0.426022 0.0665335 0.0332667 0.999447i \(-0.489409\pi\)
0.0332667 + 0.999447i \(0.489409\pi\)
\(42\) 0 0
\(43\) −1.18479 −0.180679 −0.0903396 0.995911i \(-0.528795\pi\)
−0.0903396 + 0.995911i \(0.528795\pi\)
\(44\) 0 0
\(45\) 12.4192 1.85135
\(46\) 0 0
\(47\) 7.68004 1.12025 0.560125 0.828408i \(-0.310753\pi\)
0.560125 + 0.828408i \(0.310753\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 11.2909 1.58104
\(52\) 0 0
\(53\) 6.55438 0.900313 0.450157 0.892950i \(-0.351368\pi\)
0.450157 + 0.892950i \(0.351368\pi\)
\(54\) 0 0
\(55\) −2.34730 −0.316509
\(56\) 0 0
\(57\) 2.22668 0.294931
\(58\) 0 0
\(59\) −0.204393 −0.0266097 −0.0133048 0.999911i \(-0.504235\pi\)
−0.0133048 + 0.999911i \(0.504235\pi\)
\(60\) 0 0
\(61\) 14.5817 1.86700 0.933499 0.358580i \(-0.116739\pi\)
0.933499 + 0.358580i \(0.116739\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.433763 −0.0538017
\(66\) 0 0
\(67\) −3.75877 −0.459207 −0.229603 0.973284i \(-0.573743\pi\)
−0.229603 + 0.973284i \(0.573743\pi\)
\(68\) 0 0
\(69\) 24.0574 2.89617
\(70\) 0 0
\(71\) 9.96585 1.18273 0.591365 0.806404i \(-0.298589\pi\)
0.591365 + 0.806404i \(0.298589\pi\)
\(72\) 0 0
\(73\) 0.120615 0.0141169 0.00705844 0.999975i \(-0.497753\pi\)
0.00705844 + 0.999975i \(0.497753\pi\)
\(74\) 0 0
\(75\) −1.46791 −0.169500
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.327696 −0.0368687 −0.0184343 0.999830i \(-0.505868\pi\)
−0.0184343 + 0.999830i \(0.505868\pi\)
\(80\) 0 0
\(81\) 3.12061 0.346735
\(82\) 0 0
\(83\) −3.35504 −0.368263 −0.184132 0.982902i \(-0.558947\pi\)
−0.184132 + 0.982902i \(0.558947\pi\)
\(84\) 0 0
\(85\) −9.20439 −0.998357
\(86\) 0 0
\(87\) 23.5253 2.52217
\(88\) 0 0
\(89\) −4.65270 −0.493186 −0.246593 0.969119i \(-0.579311\pi\)
−0.246593 + 0.969119i \(0.579311\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.63816 0.792040
\(94\) 0 0
\(95\) −1.81521 −0.186236
\(96\) 0 0
\(97\) 13.1206 1.33220 0.666098 0.745864i \(-0.267963\pi\)
0.666098 + 0.745864i \(0.267963\pi\)
\(98\) 0 0
\(99\) −5.29086 −0.531751
\(100\) 0 0
\(101\) −5.90167 −0.587239 −0.293619 0.955922i \(-0.594860\pi\)
−0.293619 + 0.955922i \(0.594860\pi\)
\(102\) 0 0
\(103\) −0.921274 −0.0907759 −0.0453879 0.998969i \(-0.514452\pi\)
−0.0453879 + 0.998969i \(0.514452\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.3473 1.00031 0.500155 0.865936i \(-0.333276\pi\)
0.500155 + 0.865936i \(0.333276\pi\)
\(108\) 0 0
\(109\) 0.475652 0.0455592 0.0227796 0.999741i \(-0.492748\pi\)
0.0227796 + 0.999741i \(0.492748\pi\)
\(110\) 0 0
\(111\) 19.6459 1.86471
\(112\) 0 0
\(113\) −3.14290 −0.295659 −0.147830 0.989013i \(-0.547229\pi\)
−0.147830 + 0.989013i \(0.547229\pi\)
\(114\) 0 0
\(115\) −19.6117 −1.82880
\(116\) 0 0
\(117\) −0.977711 −0.0903894
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −1.22668 −0.110606
\(124\) 0 0
\(125\) −10.5398 −0.942711
\(126\) 0 0
\(127\) 0.445622 0.0395426 0.0197713 0.999805i \(-0.493706\pi\)
0.0197713 + 0.999805i \(0.493706\pi\)
\(128\) 0 0
\(129\) 3.41147 0.300364
\(130\) 0 0
\(131\) 12.0865 1.05600 0.528000 0.849245i \(-0.322942\pi\)
0.528000 + 0.849245i \(0.322942\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −15.4834 −1.33260
\(136\) 0 0
\(137\) −16.3482 −1.39672 −0.698362 0.715745i \(-0.746087\pi\)
−0.698362 + 0.715745i \(0.746087\pi\)
\(138\) 0 0
\(139\) 20.7297 1.75827 0.879134 0.476575i \(-0.158122\pi\)
0.879134 + 0.476575i \(0.158122\pi\)
\(140\) 0 0
\(141\) −22.1138 −1.86232
\(142\) 0 0
\(143\) 0.184793 0.0154531
\(144\) 0 0
\(145\) −19.1780 −1.59264
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.714193 −0.0585090 −0.0292545 0.999572i \(-0.509313\pi\)
−0.0292545 + 0.999572i \(0.509313\pi\)
\(150\) 0 0
\(151\) 9.54488 0.776751 0.388376 0.921501i \(-0.373036\pi\)
0.388376 + 0.921501i \(0.373036\pi\)
\(152\) 0 0
\(153\) −20.7469 −1.67729
\(154\) 0 0
\(155\) −6.22668 −0.500139
\(156\) 0 0
\(157\) 9.24123 0.737530 0.368765 0.929523i \(-0.379781\pi\)
0.368765 + 0.929523i \(0.379781\pi\)
\(158\) 0 0
\(159\) −18.8726 −1.49669
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.80335 0.689531 0.344766 0.938689i \(-0.387958\pi\)
0.344766 + 0.938689i \(0.387958\pi\)
\(164\) 0 0
\(165\) 6.75877 0.526170
\(166\) 0 0
\(167\) −8.38238 −0.648648 −0.324324 0.945946i \(-0.605137\pi\)
−0.324324 + 0.945946i \(0.605137\pi\)
\(168\) 0 0
\(169\) −12.9659 −0.997373
\(170\) 0 0
\(171\) −4.09152 −0.312886
\(172\) 0 0
\(173\) 5.44562 0.414023 0.207012 0.978339i \(-0.433626\pi\)
0.207012 + 0.978339i \(0.433626\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.588526 0.0442363
\(178\) 0 0
\(179\) 10.0915 0.754276 0.377138 0.926157i \(-0.376908\pi\)
0.377138 + 0.926157i \(0.376908\pi\)
\(180\) 0 0
\(181\) 19.8794 1.47762 0.738812 0.673912i \(-0.235387\pi\)
0.738812 + 0.673912i \(0.235387\pi\)
\(182\) 0 0
\(183\) −41.9864 −3.10372
\(184\) 0 0
\(185\) −16.0155 −1.17748
\(186\) 0 0
\(187\) 3.92127 0.286752
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 25.3851 1.83680 0.918399 0.395654i \(-0.129482\pi\)
0.918399 + 0.395654i \(0.129482\pi\)
\(192\) 0 0
\(193\) −7.73143 −0.556520 −0.278260 0.960506i \(-0.589758\pi\)
−0.278260 + 0.960506i \(0.589758\pi\)
\(194\) 0 0
\(195\) 1.24897 0.0894406
\(196\) 0 0
\(197\) −5.37464 −0.382927 −0.191464 0.981500i \(-0.561323\pi\)
−0.191464 + 0.981500i \(0.561323\pi\)
\(198\) 0 0
\(199\) −8.78106 −0.622473 −0.311236 0.950333i \(-0.600743\pi\)
−0.311236 + 0.950333i \(0.600743\pi\)
\(200\) 0 0
\(201\) 10.8229 0.763392
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.00000 0.0698430
\(206\) 0 0
\(207\) −44.2053 −3.07248
\(208\) 0 0
\(209\) 0.773318 0.0534916
\(210\) 0 0
\(211\) −4.24123 −0.291978 −0.145989 0.989286i \(-0.546636\pi\)
−0.145989 + 0.989286i \(0.546636\pi\)
\(212\) 0 0
\(213\) −28.6955 −1.96619
\(214\) 0 0
\(215\) −2.78106 −0.189667
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −0.347296 −0.0234681
\(220\) 0 0
\(221\) 0.724622 0.0487434
\(222\) 0 0
\(223\) 18.0351 1.20772 0.603859 0.797091i \(-0.293629\pi\)
0.603859 + 0.797091i \(0.293629\pi\)
\(224\) 0 0
\(225\) 2.69728 0.179819
\(226\) 0 0
\(227\) −18.2053 −1.20833 −0.604165 0.796859i \(-0.706493\pi\)
−0.604165 + 0.796859i \(0.706493\pi\)
\(228\) 0 0
\(229\) 19.2412 1.27150 0.635748 0.771897i \(-0.280692\pi\)
0.635748 + 0.771897i \(0.280692\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.32501 0.610902 0.305451 0.952208i \(-0.401193\pi\)
0.305451 + 0.952208i \(0.401193\pi\)
\(234\) 0 0
\(235\) 18.0273 1.17597
\(236\) 0 0
\(237\) 0.943563 0.0612910
\(238\) 0 0
\(239\) −11.1898 −0.723811 −0.361905 0.932215i \(-0.617874\pi\)
−0.361905 + 0.932215i \(0.617874\pi\)
\(240\) 0 0
\(241\) 20.2044 1.30148 0.650740 0.759301i \(-0.274459\pi\)
0.650740 + 0.759301i \(0.274459\pi\)
\(242\) 0 0
\(243\) 10.8033 0.693035
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.142903 0.00909273
\(248\) 0 0
\(249\) 9.66044 0.612206
\(250\) 0 0
\(251\) 5.89218 0.371911 0.185956 0.982558i \(-0.440462\pi\)
0.185956 + 0.982558i \(0.440462\pi\)
\(252\) 0 0
\(253\) 8.35504 0.525277
\(254\) 0 0
\(255\) 26.5030 1.65968
\(256\) 0 0
\(257\) −2.73648 −0.170697 −0.0853485 0.996351i \(-0.527200\pi\)
−0.0853485 + 0.996351i \(0.527200\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −43.2276 −2.67572
\(262\) 0 0
\(263\) −6.19759 −0.382160 −0.191080 0.981575i \(-0.561199\pi\)
−0.191080 + 0.981575i \(0.561199\pi\)
\(264\) 0 0
\(265\) 15.3851 0.945097
\(266\) 0 0
\(267\) 13.3969 0.819879
\(268\) 0 0
\(269\) −4.20945 −0.256654 −0.128327 0.991732i \(-0.540961\pi\)
−0.128327 + 0.991732i \(0.540961\pi\)
\(270\) 0 0
\(271\) −25.5817 −1.55398 −0.776989 0.629514i \(-0.783254\pi\)
−0.776989 + 0.629514i \(0.783254\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.509800 −0.0307421
\(276\) 0 0
\(277\) −15.3577 −0.922756 −0.461378 0.887204i \(-0.652645\pi\)
−0.461378 + 0.887204i \(0.652645\pi\)
\(278\) 0 0
\(279\) −14.0351 −0.840258
\(280\) 0 0
\(281\) 19.2540 1.14860 0.574299 0.818645i \(-0.305275\pi\)
0.574299 + 0.818645i \(0.305275\pi\)
\(282\) 0 0
\(283\) 27.0651 1.60885 0.804427 0.594052i \(-0.202473\pi\)
0.804427 + 0.594052i \(0.202473\pi\)
\(284\) 0 0
\(285\) 5.22668 0.309602
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.62361 −0.0955063
\(290\) 0 0
\(291\) −37.7793 −2.21466
\(292\) 0 0
\(293\) 4.03508 0.235732 0.117866 0.993030i \(-0.462395\pi\)
0.117866 + 0.993030i \(0.462395\pi\)
\(294\) 0 0
\(295\) −0.479771 −0.0279333
\(296\) 0 0
\(297\) 6.59627 0.382754
\(298\) 0 0
\(299\) 1.54395 0.0892888
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 16.9932 0.976233
\(304\) 0 0
\(305\) 34.2276 1.95987
\(306\) 0 0
\(307\) −2.92902 −0.167168 −0.0835839 0.996501i \(-0.526637\pi\)
−0.0835839 + 0.996501i \(0.526637\pi\)
\(308\) 0 0
\(309\) 2.65270 0.150907
\(310\) 0 0
\(311\) −15.6236 −0.885934 −0.442967 0.896538i \(-0.646074\pi\)
−0.442967 + 0.896538i \(0.646074\pi\)
\(312\) 0 0
\(313\) −21.9760 −1.24215 −0.621077 0.783749i \(-0.713305\pi\)
−0.621077 + 0.783749i \(0.713305\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.01186 −0.169163 −0.0845814 0.996417i \(-0.526955\pi\)
−0.0845814 + 0.996417i \(0.526955\pi\)
\(318\) 0 0
\(319\) 8.17024 0.457446
\(320\) 0 0
\(321\) −29.7939 −1.66293
\(322\) 0 0
\(323\) 3.03239 0.168727
\(324\) 0 0
\(325\) −0.0942073 −0.00522568
\(326\) 0 0
\(327\) −1.36959 −0.0757382
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −27.4688 −1.50982 −0.754912 0.655826i \(-0.772321\pi\)
−0.754912 + 0.655826i \(0.772321\pi\)
\(332\) 0 0
\(333\) −36.0993 −1.97823
\(334\) 0 0
\(335\) −8.82295 −0.482049
\(336\) 0 0
\(337\) 17.2422 0.939240 0.469620 0.882869i \(-0.344391\pi\)
0.469620 + 0.882869i \(0.344391\pi\)
\(338\) 0 0
\(339\) 9.04963 0.491508
\(340\) 0 0
\(341\) 2.65270 0.143652
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 56.4698 3.04023
\(346\) 0 0
\(347\) 11.4311 0.613652 0.306826 0.951766i \(-0.400733\pi\)
0.306826 + 0.951766i \(0.400733\pi\)
\(348\) 0 0
\(349\) 28.3209 1.51598 0.757991 0.652265i \(-0.226181\pi\)
0.757991 + 0.652265i \(0.226181\pi\)
\(350\) 0 0
\(351\) 1.21894 0.0650622
\(352\) 0 0
\(353\) 16.4361 0.874807 0.437403 0.899265i \(-0.355898\pi\)
0.437403 + 0.899265i \(0.355898\pi\)
\(354\) 0 0
\(355\) 23.3928 1.24156
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −24.8631 −1.31222 −0.656112 0.754664i \(-0.727800\pi\)
−0.656112 + 0.754664i \(0.727800\pi\)
\(360\) 0 0
\(361\) −18.4020 −0.968525
\(362\) 0 0
\(363\) −2.87939 −0.151129
\(364\) 0 0
\(365\) 0.283119 0.0148191
\(366\) 0 0
\(367\) −4.29860 −0.224385 −0.112193 0.993686i \(-0.535787\pi\)
−0.112193 + 0.993686i \(0.535787\pi\)
\(368\) 0 0
\(369\) 2.25402 0.117340
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2.72967 −0.141337 −0.0706686 0.997500i \(-0.522513\pi\)
−0.0706686 + 0.997500i \(0.522513\pi\)
\(374\) 0 0
\(375\) 30.3482 1.56718
\(376\) 0 0
\(377\) 1.50980 0.0777587
\(378\) 0 0
\(379\) 16.4584 0.845412 0.422706 0.906267i \(-0.361080\pi\)
0.422706 + 0.906267i \(0.361080\pi\)
\(380\) 0 0
\(381\) −1.28312 −0.0657362
\(382\) 0 0
\(383\) 7.85978 0.401616 0.200808 0.979631i \(-0.435643\pi\)
0.200808 + 0.979631i \(0.435643\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.26857 −0.318649
\(388\) 0 0
\(389\) 9.64321 0.488930 0.244465 0.969658i \(-0.421388\pi\)
0.244465 + 0.969658i \(0.421388\pi\)
\(390\) 0 0
\(391\) 32.7624 1.65687
\(392\) 0 0
\(393\) −34.8016 −1.75551
\(394\) 0 0
\(395\) −0.769200 −0.0387026
\(396\) 0 0
\(397\) −9.43376 −0.473467 −0.236733 0.971575i \(-0.576077\pi\)
−0.236733 + 0.971575i \(0.576077\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.2199 −0.909857 −0.454929 0.890528i \(-0.650335\pi\)
−0.454929 + 0.890528i \(0.650335\pi\)
\(402\) 0 0
\(403\) 0.490200 0.0244186
\(404\) 0 0
\(405\) 7.32501 0.363983
\(406\) 0 0
\(407\) 6.82295 0.338201
\(408\) 0 0
\(409\) 6.41147 0.317027 0.158513 0.987357i \(-0.449330\pi\)
0.158513 + 0.987357i \(0.449330\pi\)
\(410\) 0 0
\(411\) 47.0729 2.32193
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −7.87527 −0.386582
\(416\) 0 0
\(417\) −59.6887 −2.92297
\(418\) 0 0
\(419\) −1.62092 −0.0791871 −0.0395935 0.999216i \(-0.512606\pi\)
−0.0395935 + 0.999216i \(0.512606\pi\)
\(420\) 0 0
\(421\) 31.1489 1.51810 0.759052 0.651030i \(-0.225663\pi\)
0.759052 + 0.651030i \(0.225663\pi\)
\(422\) 0 0
\(423\) 40.6340 1.97569
\(424\) 0 0
\(425\) −1.99907 −0.0969690
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.532089 −0.0256895
\(430\) 0 0
\(431\) −34.2080 −1.64774 −0.823871 0.566777i \(-0.808190\pi\)
−0.823871 + 0.566777i \(0.808190\pi\)
\(432\) 0 0
\(433\) −20.4979 −0.985068 −0.492534 0.870293i \(-0.663929\pi\)
−0.492534 + 0.870293i \(0.663929\pi\)
\(434\) 0 0
\(435\) 55.2208 2.64764
\(436\) 0 0
\(437\) 6.46110 0.309077
\(438\) 0 0
\(439\) −31.3218 −1.49491 −0.747455 0.664313i \(-0.768724\pi\)
−0.747455 + 0.664313i \(0.768724\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.3979 1.39673 0.698367 0.715740i \(-0.253910\pi\)
0.698367 + 0.715740i \(0.253910\pi\)
\(444\) 0 0
\(445\) −10.9213 −0.517718
\(446\) 0 0
\(447\) 2.05644 0.0972661
\(448\) 0 0
\(449\) −6.90074 −0.325666 −0.162833 0.986654i \(-0.552063\pi\)
−0.162833 + 0.986654i \(0.552063\pi\)
\(450\) 0 0
\(451\) −0.426022 −0.0200606
\(452\) 0 0
\(453\) −27.4834 −1.29128
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.3746 0.578861 0.289431 0.957199i \(-0.406534\pi\)
0.289431 + 0.957199i \(0.406534\pi\)
\(458\) 0 0
\(459\) 25.8658 1.20731
\(460\) 0 0
\(461\) 20.0942 0.935881 0.467940 0.883760i \(-0.344996\pi\)
0.467940 + 0.883760i \(0.344996\pi\)
\(462\) 0 0
\(463\) −8.69190 −0.403947 −0.201974 0.979391i \(-0.564735\pi\)
−0.201974 + 0.979391i \(0.564735\pi\)
\(464\) 0 0
\(465\) 17.9290 0.831438
\(466\) 0 0
\(467\) −4.76920 −0.220692 −0.110346 0.993893i \(-0.535196\pi\)
−0.110346 + 0.993893i \(0.535196\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −26.6091 −1.22608
\(472\) 0 0
\(473\) 1.18479 0.0544768
\(474\) 0 0
\(475\) −0.394238 −0.0180889
\(476\) 0 0
\(477\) 34.6783 1.58781
\(478\) 0 0
\(479\) 39.6141 1.81001 0.905007 0.425396i \(-0.139865\pi\)
0.905007 + 0.425396i \(0.139865\pi\)
\(480\) 0 0
\(481\) 1.26083 0.0574889
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 30.7980 1.39846
\(486\) 0 0
\(487\) −5.15570 −0.233627 −0.116813 0.993154i \(-0.537268\pi\)
−0.116813 + 0.993154i \(0.537268\pi\)
\(488\) 0 0
\(489\) −25.3482 −1.14629
\(490\) 0 0
\(491\) −10.1925 −0.459983 −0.229991 0.973193i \(-0.573870\pi\)
−0.229991 + 0.973193i \(0.573870\pi\)
\(492\) 0 0
\(493\) 32.0378 1.44291
\(494\) 0 0
\(495\) −12.4192 −0.558202
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5.88981 −0.263664 −0.131832 0.991272i \(-0.542086\pi\)
−0.131832 + 0.991272i \(0.542086\pi\)
\(500\) 0 0
\(501\) 24.1361 1.07832
\(502\) 0 0
\(503\) 12.8348 0.572276 0.286138 0.958188i \(-0.407628\pi\)
0.286138 + 0.958188i \(0.407628\pi\)
\(504\) 0 0
\(505\) −13.8530 −0.616449
\(506\) 0 0
\(507\) 37.3337 1.65805
\(508\) 0 0
\(509\) 32.2131 1.42782 0.713910 0.700238i \(-0.246923\pi\)
0.713910 + 0.700238i \(0.246923\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 5.10101 0.225215
\(514\) 0 0
\(515\) −2.16250 −0.0952913
\(516\) 0 0
\(517\) −7.68004 −0.337768
\(518\) 0 0
\(519\) −15.6800 −0.688278
\(520\) 0 0
\(521\) 18.5280 0.811725 0.405863 0.913934i \(-0.366971\pi\)
0.405863 + 0.913934i \(0.366971\pi\)
\(522\) 0 0
\(523\) 37.2422 1.62849 0.814243 0.580524i \(-0.197152\pi\)
0.814243 + 0.580524i \(0.197152\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.4020 0.453117
\(528\) 0 0
\(529\) 46.8066 2.03507
\(530\) 0 0
\(531\) −1.08141 −0.0469294
\(532\) 0 0
\(533\) −0.0787257 −0.00340999
\(534\) 0 0
\(535\) 24.2882 1.05007
\(536\) 0 0
\(537\) −29.0574 −1.25392
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 36.1566 1.55449 0.777247 0.629195i \(-0.216615\pi\)
0.777247 + 0.629195i \(0.216615\pi\)
\(542\) 0 0
\(543\) −57.2404 −2.45642
\(544\) 0 0
\(545\) 1.11650 0.0478254
\(546\) 0 0
\(547\) −12.7980 −0.547202 −0.273601 0.961843i \(-0.588215\pi\)
−0.273601 + 0.961843i \(0.588215\pi\)
\(548\) 0 0
\(549\) 77.1498 3.29267
\(550\) 0 0
\(551\) 6.31820 0.269164
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 46.1147 1.95746
\(556\) 0 0
\(557\) −30.6587 −1.29905 −0.649525 0.760340i \(-0.725032\pi\)
−0.649525 + 0.760340i \(0.725032\pi\)
\(558\) 0 0
\(559\) 0.218941 0.00926021
\(560\) 0 0
\(561\) −11.2909 −0.476700
\(562\) 0 0
\(563\) 14.5047 0.611302 0.305651 0.952144i \(-0.401126\pi\)
0.305651 + 0.952144i \(0.401126\pi\)
\(564\) 0 0
\(565\) −7.37733 −0.310366
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.0051 0.796733 0.398367 0.917226i \(-0.369577\pi\)
0.398367 + 0.917226i \(0.369577\pi\)
\(570\) 0 0
\(571\) 21.0009 0.878862 0.439431 0.898276i \(-0.355180\pi\)
0.439431 + 0.898276i \(0.355180\pi\)
\(572\) 0 0
\(573\) −73.0934 −3.05352
\(574\) 0 0
\(575\) −4.25940 −0.177629
\(576\) 0 0
\(577\) −5.18748 −0.215958 −0.107979 0.994153i \(-0.534438\pi\)
−0.107979 + 0.994153i \(0.534438\pi\)
\(578\) 0 0
\(579\) 22.2618 0.925167
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.55438 −0.271455
\(584\) 0 0
\(585\) −2.29498 −0.0948857
\(586\) 0 0
\(587\) −8.33813 −0.344151 −0.172076 0.985084i \(-0.555047\pi\)
−0.172076 + 0.985084i \(0.555047\pi\)
\(588\) 0 0
\(589\) 2.05138 0.0845258
\(590\) 0 0
\(591\) 15.4757 0.636583
\(592\) 0 0
\(593\) 6.10195 0.250577 0.125288 0.992120i \(-0.460014\pi\)
0.125288 + 0.992120i \(0.460014\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 25.2841 1.03481
\(598\) 0 0
\(599\) 13.8503 0.565907 0.282954 0.959134i \(-0.408686\pi\)
0.282954 + 0.959134i \(0.408686\pi\)
\(600\) 0 0
\(601\) 31.2695 1.27551 0.637755 0.770239i \(-0.279863\pi\)
0.637755 + 0.770239i \(0.279863\pi\)
\(602\) 0 0
\(603\) −19.8871 −0.809866
\(604\) 0 0
\(605\) 2.34730 0.0954312
\(606\) 0 0
\(607\) −37.7962 −1.53410 −0.767051 0.641587i \(-0.778276\pi\)
−0.767051 + 0.641587i \(0.778276\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.41921 −0.0574153
\(612\) 0 0
\(613\) 21.1343 0.853608 0.426804 0.904344i \(-0.359639\pi\)
0.426804 + 0.904344i \(0.359639\pi\)
\(614\) 0 0
\(615\) −2.87939 −0.116108
\(616\) 0 0
\(617\) 23.7743 0.957115 0.478558 0.878056i \(-0.341160\pi\)
0.478558 + 0.878056i \(0.341160\pi\)
\(618\) 0 0
\(619\) −13.5021 −0.542694 −0.271347 0.962482i \(-0.587469\pi\)
−0.271347 + 0.962482i \(0.587469\pi\)
\(620\) 0 0
\(621\) 55.1121 2.21157
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −27.2891 −1.09156
\(626\) 0 0
\(627\) −2.22668 −0.0889251
\(628\) 0 0
\(629\) 26.7547 1.06678
\(630\) 0 0
\(631\) 38.2354 1.52213 0.761063 0.648678i \(-0.224678\pi\)
0.761063 + 0.648678i \(0.224678\pi\)
\(632\) 0 0
\(633\) 12.2121 0.485389
\(634\) 0 0
\(635\) 1.04601 0.0415096
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 52.7279 2.08588
\(640\) 0 0
\(641\) 38.5553 1.52284 0.761422 0.648257i \(-0.224502\pi\)
0.761422 + 0.648257i \(0.224502\pi\)
\(642\) 0 0
\(643\) −19.2627 −0.759647 −0.379823 0.925059i \(-0.624015\pi\)
−0.379823 + 0.925059i \(0.624015\pi\)
\(644\) 0 0
\(645\) 8.00774 0.315304
\(646\) 0 0
\(647\) −39.7844 −1.56408 −0.782042 0.623225i \(-0.785822\pi\)
−0.782042 + 0.623225i \(0.785822\pi\)
\(648\) 0 0
\(649\) 0.204393 0.00802312
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.76651 0.186528 0.0932640 0.995641i \(-0.470270\pi\)
0.0932640 + 0.995641i \(0.470270\pi\)
\(654\) 0 0
\(655\) 28.3705 1.10853
\(656\) 0 0
\(657\) 0.638156 0.0248968
\(658\) 0 0
\(659\) 38.3550 1.49410 0.747050 0.664768i \(-0.231470\pi\)
0.747050 + 0.664768i \(0.231470\pi\)
\(660\) 0 0
\(661\) −10.3628 −0.403065 −0.201533 0.979482i \(-0.564592\pi\)
−0.201533 + 0.979482i \(0.564592\pi\)
\(662\) 0 0
\(663\) −2.08647 −0.0810316
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 68.2627 2.64314
\(668\) 0 0
\(669\) −51.9299 −2.00773
\(670\) 0 0
\(671\) −14.5817 −0.562921
\(672\) 0 0
\(673\) −25.6168 −0.987455 −0.493728 0.869617i \(-0.664366\pi\)
−0.493728 + 0.869617i \(0.664366\pi\)
\(674\) 0 0
\(675\) −3.36278 −0.129433
\(676\) 0 0
\(677\) 41.8375 1.60795 0.803973 0.594666i \(-0.202716\pi\)
0.803973 + 0.594666i \(0.202716\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 52.4201 2.00874
\(682\) 0 0
\(683\) 46.0428 1.76178 0.880890 0.473321i \(-0.156945\pi\)
0.880890 + 0.473321i \(0.156945\pi\)
\(684\) 0 0
\(685\) −38.3741 −1.46620
\(686\) 0 0
\(687\) −55.4029 −2.11375
\(688\) 0 0
\(689\) −1.21120 −0.0461430
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 48.6587 1.84573
\(696\) 0 0
\(697\) −1.67055 −0.0632766
\(698\) 0 0
\(699\) −26.8503 −1.01557
\(700\) 0 0
\(701\) −32.8144 −1.23938 −0.619691 0.784846i \(-0.712742\pi\)
−0.619691 + 0.784846i \(0.712742\pi\)
\(702\) 0 0
\(703\) 5.27631 0.199000
\(704\) 0 0
\(705\) −51.9077 −1.95496
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 7.40198 0.277987 0.138994 0.990293i \(-0.455613\pi\)
0.138994 + 0.990293i \(0.455613\pi\)
\(710\) 0 0
\(711\) −1.73379 −0.0650223
\(712\) 0 0
\(713\) 22.1634 0.830027
\(714\) 0 0
\(715\) 0.433763 0.0162218
\(716\) 0 0
\(717\) 32.2199 1.20327
\(718\) 0 0
\(719\) 14.1370 0.527222 0.263611 0.964629i \(-0.415086\pi\)
0.263611 + 0.964629i \(0.415086\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −58.1762 −2.16360
\(724\) 0 0
\(725\) −4.16519 −0.154691
\(726\) 0 0
\(727\) −15.2790 −0.566667 −0.283333 0.959021i \(-0.591440\pi\)
−0.283333 + 0.959021i \(0.591440\pi\)
\(728\) 0 0
\(729\) −40.4688 −1.49885
\(730\) 0 0
\(731\) 4.64590 0.171835
\(732\) 0 0
\(733\) 1.34493 0.0496762 0.0248381 0.999691i \(-0.492093\pi\)
0.0248381 + 0.999691i \(0.492093\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.75877 0.138456
\(738\) 0 0
\(739\) 25.6536 0.943684 0.471842 0.881683i \(-0.343589\pi\)
0.471842 + 0.881683i \(0.343589\pi\)
\(740\) 0 0
\(741\) −0.411474 −0.0151159
\(742\) 0 0
\(743\) 6.08109 0.223094 0.111547 0.993759i \(-0.464420\pi\)
0.111547 + 0.993759i \(0.464420\pi\)
\(744\) 0 0
\(745\) −1.67642 −0.0614194
\(746\) 0 0
\(747\) −17.7510 −0.649476
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.8108 −0.759396 −0.379698 0.925111i \(-0.623972\pi\)
−0.379698 + 0.925111i \(0.623972\pi\)
\(752\) 0 0
\(753\) −16.9659 −0.618270
\(754\) 0 0
\(755\) 22.4047 0.815389
\(756\) 0 0
\(757\) −5.25402 −0.190961 −0.0954804 0.995431i \(-0.530439\pi\)
−0.0954804 + 0.995431i \(0.530439\pi\)
\(758\) 0 0
\(759\) −24.0574 −0.873227
\(760\) 0 0
\(761\) −40.9813 −1.48557 −0.742786 0.669529i \(-0.766496\pi\)
−0.742786 + 0.669529i \(0.766496\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −48.6991 −1.76072
\(766\) 0 0
\(767\) 0.0377703 0.00136381
\(768\) 0 0
\(769\) 47.5580 1.71499 0.857493 0.514496i \(-0.172021\pi\)
0.857493 + 0.514496i \(0.172021\pi\)
\(770\) 0 0
\(771\) 7.87939 0.283769
\(772\) 0 0
\(773\) 20.4929 0.737078 0.368539 0.929612i \(-0.379858\pi\)
0.368539 + 0.929612i \(0.379858\pi\)
\(774\) 0 0
\(775\) −1.35235 −0.0485778
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.329451 −0.0118038
\(780\) 0 0
\(781\) −9.96585 −0.356606
\(782\) 0 0
\(783\) 53.8931 1.92598
\(784\) 0 0
\(785\) 21.6919 0.774217
\(786\) 0 0
\(787\) 19.1206 0.681576 0.340788 0.940140i \(-0.389306\pi\)
0.340788 + 0.940140i \(0.389306\pi\)
\(788\) 0 0
\(789\) 17.8452 0.635307
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.69459 −0.0956878
\(794\) 0 0
\(795\) −44.2995 −1.57114
\(796\) 0 0
\(797\) −52.5144 −1.86015 −0.930077 0.367365i \(-0.880260\pi\)
−0.930077 + 0.367365i \(0.880260\pi\)
\(798\) 0 0
\(799\) −30.1156 −1.06541
\(800\) 0 0
\(801\) −24.6168 −0.869792
\(802\) 0 0
\(803\) −0.120615 −0.00425640
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.1206 0.426666
\(808\) 0 0
\(809\) 40.6715 1.42993 0.714967 0.699159i \(-0.246442\pi\)
0.714967 + 0.699159i \(0.246442\pi\)
\(810\) 0 0
\(811\) 20.5648 0.722128 0.361064 0.932541i \(-0.382414\pi\)
0.361064 + 0.932541i \(0.382414\pi\)
\(812\) 0 0
\(813\) 73.6596 2.58336
\(814\) 0 0
\(815\) 20.6641 0.723831
\(816\) 0 0
\(817\) 0.916222 0.0320545
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.36278 0.222062 0.111031 0.993817i \(-0.464585\pi\)
0.111031 + 0.993817i \(0.464585\pi\)
\(822\) 0 0
\(823\) 2.50887 0.0874536 0.0437268 0.999044i \(-0.486077\pi\)
0.0437268 + 0.999044i \(0.486077\pi\)
\(824\) 0 0
\(825\) 1.46791 0.0511061
\(826\) 0 0
\(827\) 41.2645 1.43491 0.717453 0.696607i \(-0.245308\pi\)
0.717453 + 0.696607i \(0.245308\pi\)
\(828\) 0 0
\(829\) −46.7779 −1.62466 −0.812331 0.583196i \(-0.801802\pi\)
−0.812331 + 0.583196i \(0.801802\pi\)
\(830\) 0 0
\(831\) 44.2208 1.53400
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −19.6759 −0.680913
\(836\) 0 0
\(837\) 17.4979 0.604817
\(838\) 0 0
\(839\) −16.5439 −0.571161 −0.285580 0.958355i \(-0.592186\pi\)
−0.285580 + 0.958355i \(0.592186\pi\)
\(840\) 0 0
\(841\) 37.7529 1.30182
\(842\) 0 0
\(843\) −55.4397 −1.90945
\(844\) 0 0
\(845\) −30.4347 −1.04699
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −77.9309 −2.67458
\(850\) 0 0
\(851\) 57.0060 1.95414
\(852\) 0 0
\(853\) 13.2163 0.452516 0.226258 0.974067i \(-0.427351\pi\)
0.226258 + 0.974067i \(0.427351\pi\)
\(854\) 0 0
\(855\) −9.60401 −0.328450
\(856\) 0 0
\(857\) −50.7211 −1.73260 −0.866300 0.499524i \(-0.833508\pi\)
−0.866300 + 0.499524i \(0.833508\pi\)
\(858\) 0 0
\(859\) −55.1124 −1.88041 −0.940205 0.340609i \(-0.889367\pi\)
−0.940205 + 0.340609i \(0.889367\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.5202 −0.358113 −0.179056 0.983839i \(-0.557304\pi\)
−0.179056 + 0.983839i \(0.557304\pi\)
\(864\) 0 0
\(865\) 12.7825 0.434618
\(866\) 0 0
\(867\) 4.67499 0.158771
\(868\) 0 0
\(869\) 0.327696 0.0111163
\(870\) 0 0
\(871\) 0.694593 0.0235354
\(872\) 0 0
\(873\) 69.4193 2.34949
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −39.6536 −1.33901 −0.669504 0.742808i \(-0.733493\pi\)
−0.669504 + 0.742808i \(0.733493\pi\)
\(878\) 0 0
\(879\) −11.6186 −0.391884
\(880\) 0 0
\(881\) 25.0077 0.842532 0.421266 0.906937i \(-0.361586\pi\)
0.421266 + 0.906937i \(0.361586\pi\)
\(882\) 0 0
\(883\) −50.9341 −1.71407 −0.857034 0.515260i \(-0.827695\pi\)
−0.857034 + 0.515260i \(0.827695\pi\)
\(884\) 0 0
\(885\) 1.38144 0.0464368
\(886\) 0 0
\(887\) −32.0360 −1.07566 −0.537832 0.843052i \(-0.680757\pi\)
−0.537832 + 0.843052i \(0.680757\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −3.12061 −0.104545
\(892\) 0 0
\(893\) −5.93912 −0.198745
\(894\) 0 0
\(895\) 23.6878 0.791795
\(896\) 0 0
\(897\) −4.44562 −0.148435
\(898\) 0 0
\(899\) 21.6732 0.722843
\(900\) 0 0
\(901\) −25.7015 −0.856242
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 46.6628 1.55112
\(906\) 0 0
\(907\) 16.4730 0.546976 0.273488 0.961875i \(-0.411823\pi\)
0.273488 + 0.961875i \(0.411823\pi\)
\(908\) 0 0
\(909\) −31.2249 −1.03567
\(910\) 0 0
\(911\) 45.3979 1.50410 0.752049 0.659107i \(-0.229066\pi\)
0.752049 + 0.659107i \(0.229066\pi\)
\(912\) 0 0
\(913\) 3.35504 0.111036
\(914\) 0 0
\(915\) −98.5545 −3.25811
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 12.3209 0.406429 0.203214 0.979134i \(-0.434861\pi\)
0.203214 + 0.979134i \(0.434861\pi\)
\(920\) 0 0
\(921\) 8.43376 0.277902
\(922\) 0 0
\(923\) −1.84161 −0.0606175
\(924\) 0 0
\(925\) −3.47834 −0.114367
\(926\) 0 0
\(927\) −4.87433 −0.160094
\(928\) 0 0
\(929\) 5.93313 0.194660 0.0973299 0.995252i \(-0.468970\pi\)
0.0973299 + 0.995252i \(0.468970\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 44.9864 1.47279
\(934\) 0 0
\(935\) 9.20439 0.301016
\(936\) 0 0
\(937\) −45.0242 −1.47088 −0.735438 0.677593i \(-0.763023\pi\)
−0.735438 + 0.677593i \(0.763023\pi\)
\(938\) 0 0
\(939\) 63.2772 2.06497
\(940\) 0 0
\(941\) −6.06242 −0.197629 −0.0988147 0.995106i \(-0.531505\pi\)
−0.0988147 + 0.995106i \(0.531505\pi\)
\(942\) 0 0
\(943\) −3.55943 −0.115911
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.9426 0.615553 0.307776 0.951459i \(-0.400415\pi\)
0.307776 + 0.951459i \(0.400415\pi\)
\(948\) 0 0
\(949\) −0.0222887 −0.000723522 0
\(950\) 0 0
\(951\) 8.67230 0.281219
\(952\) 0 0
\(953\) −12.4970 −0.404818 −0.202409 0.979301i \(-0.564877\pi\)
−0.202409 + 0.979301i \(0.564877\pi\)
\(954\) 0 0
\(955\) 59.5863 1.92817
\(956\) 0 0
\(957\) −23.5253 −0.760464
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −23.9632 −0.773005
\(962\) 0 0
\(963\) 54.7461 1.76417
\(964\) 0 0
\(965\) −18.1480 −0.584203
\(966\) 0 0
\(967\) 18.5294 0.595865 0.297933 0.954587i \(-0.403703\pi\)
0.297933 + 0.954587i \(0.403703\pi\)
\(968\) 0 0
\(969\) −8.73143 −0.280494
\(970\) 0 0
\(971\) −41.4739 −1.33096 −0.665480 0.746415i \(-0.731773\pi\)
−0.665480 + 0.746415i \(0.731773\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.271259 0.00868724
\(976\) 0 0
\(977\) −22.2321 −0.711267 −0.355633 0.934626i \(-0.615735\pi\)
−0.355633 + 0.934626i \(0.615735\pi\)
\(978\) 0 0
\(979\) 4.65270 0.148701
\(980\) 0 0
\(981\) 2.51661 0.0803491
\(982\) 0 0
\(983\) −35.4124 −1.12948 −0.564740 0.825269i \(-0.691024\pi\)
−0.564740 + 0.825269i \(0.691024\pi\)
\(984\) 0 0
\(985\) −12.6159 −0.401975
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.89899 0.314769
\(990\) 0 0
\(991\) −45.5725 −1.44766 −0.723830 0.689979i \(-0.757620\pi\)
−0.723830 + 0.689979i \(0.757620\pi\)
\(992\) 0 0
\(993\) 79.0934 2.50995
\(994\) 0 0
\(995\) −20.6117 −0.653436
\(996\) 0 0
\(997\) 22.8367 0.723245 0.361622 0.932325i \(-0.382223\pi\)
0.361622 + 0.932325i \(0.382223\pi\)
\(998\) 0 0
\(999\) 45.0060 1.42393
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8624.2.a.ch.1.1 3
4.3 odd 2 539.2.a.j.1.1 3
7.2 even 3 1232.2.q.m.529.3 6
7.4 even 3 1232.2.q.m.177.3 6
7.6 odd 2 8624.2.a.co.1.3 3
12.11 even 2 4851.2.a.bj.1.3 3
28.3 even 6 539.2.e.m.177.3 6
28.11 odd 6 77.2.e.a.23.3 6
28.19 even 6 539.2.e.m.67.3 6
28.23 odd 6 77.2.e.a.67.3 yes 6
28.27 even 2 539.2.a.g.1.1 3
44.43 even 2 5929.2.a.x.1.3 3
84.11 even 6 693.2.i.h.100.1 6
84.23 even 6 693.2.i.h.298.1 6
84.83 odd 2 4851.2.a.bk.1.3 3
308.39 even 30 847.2.n.f.366.1 24
308.51 even 30 847.2.n.f.753.3 24
308.79 even 30 847.2.n.f.81.1 24
308.95 even 30 847.2.n.f.632.1 24
308.107 even 30 847.2.n.f.130.1 24
308.123 even 30 847.2.n.f.807.3 24
308.135 odd 30 847.2.n.g.130.3 24
308.151 even 30 847.2.n.f.9.3 24
308.163 odd 30 847.2.n.g.81.3 24
308.179 odd 30 847.2.n.g.9.1 24
308.191 odd 30 847.2.n.g.753.1 24
308.207 odd 30 847.2.n.g.807.1 24
308.219 even 6 847.2.e.c.606.1 6
308.235 odd 30 847.2.n.g.632.3 24
308.247 odd 30 847.2.n.g.487.1 24
308.263 even 6 847.2.e.c.485.1 6
308.291 odd 30 847.2.n.g.366.3 24
308.303 even 30 847.2.n.f.487.3 24
308.307 odd 2 5929.2.a.u.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.a.23.3 6 28.11 odd 6
77.2.e.a.67.3 yes 6 28.23 odd 6
539.2.a.g.1.1 3 28.27 even 2
539.2.a.j.1.1 3 4.3 odd 2
539.2.e.m.67.3 6 28.19 even 6
539.2.e.m.177.3 6 28.3 even 6
693.2.i.h.100.1 6 84.11 even 6
693.2.i.h.298.1 6 84.23 even 6
847.2.e.c.485.1 6 308.263 even 6
847.2.e.c.606.1 6 308.219 even 6
847.2.n.f.9.3 24 308.151 even 30
847.2.n.f.81.1 24 308.79 even 30
847.2.n.f.130.1 24 308.107 even 30
847.2.n.f.366.1 24 308.39 even 30
847.2.n.f.487.3 24 308.303 even 30
847.2.n.f.632.1 24 308.95 even 30
847.2.n.f.753.3 24 308.51 even 30
847.2.n.f.807.3 24 308.123 even 30
847.2.n.g.9.1 24 308.179 odd 30
847.2.n.g.81.3 24 308.163 odd 30
847.2.n.g.130.3 24 308.135 odd 30
847.2.n.g.366.3 24 308.291 odd 30
847.2.n.g.487.1 24 308.247 odd 30
847.2.n.g.632.3 24 308.235 odd 30
847.2.n.g.753.1 24 308.191 odd 30
847.2.n.g.807.1 24 308.207 odd 30
1232.2.q.m.177.3 6 7.4 even 3
1232.2.q.m.529.3 6 7.2 even 3
4851.2.a.bj.1.3 3 12.11 even 2
4851.2.a.bk.1.3 3 84.83 odd 2
5929.2.a.u.1.3 3 308.307 odd 2
5929.2.a.x.1.3 3 44.43 even 2
8624.2.a.ch.1.1 3 1.1 even 1 trivial
8624.2.a.co.1.3 3 7.6 odd 2