Properties

Label 847.2.n.f.753.3
Level $847$
Weight $2$
Character 847.753
Analytic conductor $6.763$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,2,Mod(9,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(3\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 753.3
Character \(\chi\) \(=\) 847.753
Dual form 847.2.n.f.9.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02517 - 1.13856i) q^{2} +(2.63045 - 1.17115i) q^{3} +(-0.0363024 - 0.345394i) q^{4} +(-2.29600 + 0.488030i) q^{5} +(1.36322 - 4.19556i) q^{6} +(2.64186 + 0.143384i) q^{7} +(2.04850 + 1.48832i) q^{8} +(3.54028 - 3.93187i) q^{9} +(-1.79813 + 3.11446i) q^{10} +(-0.500000 - 0.866025i) q^{12} +(0.0571040 + 0.175748i) q^{13} +(2.87160 - 2.86094i) q^{14} +(-5.46796 + 3.97271i) q^{15} +(4.47403 - 0.950983i) q^{16} +(2.62384 + 2.91407i) q^{17} +(-0.847315 - 8.06166i) q^{18} +(0.0808338 - 0.769082i) q^{19} +(0.251913 + 0.775308i) q^{20} +(7.11721 - 2.71686i) q^{21} +(-4.17752 - 7.23567i) q^{23} +(7.13154 + 1.51585i) q^{24} +(0.465726 - 0.207354i) q^{25} +(0.258642 + 0.115155i) q^{26} +(2.03836 - 6.27342i) q^{27} +(-0.0463820 - 0.917688i) q^{28} +(-6.60987 + 4.80235i) q^{29} +(-1.08240 + 10.2983i) q^{30} +(-2.59474 - 0.551528i) q^{31} +(0.971782 - 1.68317i) q^{32} +6.00774 q^{34} +(-6.13570 + 0.960100i) q^{35} +(-1.48657 - 1.08005i) q^{36} +(-6.23307 - 2.77514i) q^{37} +(-0.792781 - 0.880472i) q^{38} +(0.356037 + 0.395419i) q^{39} +(-5.42971 - 2.41746i) q^{40} +(0.344659 + 0.250409i) q^{41} +(4.20302 - 10.8886i) q^{42} -1.18479 q^{43} +(-6.20961 + 10.7554i) q^{45} +(-12.5209 - 2.66141i) q^{46} +(0.802783 - 7.63797i) q^{47} +(10.6550 - 7.74128i) q^{48} +(6.95888 + 0.757600i) q^{49} +(0.241361 - 0.742831i) q^{50} +(10.3147 + 4.59241i) q^{51} +(0.0586293 - 0.0261035i) q^{52} +(-6.41115 - 1.36273i) q^{53} +(-5.05303 - 8.75211i) q^{54} +(5.19846 + 4.22567i) q^{56} +(-0.688082 - 2.11770i) q^{57} +(-1.30844 + 12.4490i) q^{58} +(-0.0213649 - 0.203273i) q^{59} +(1.57065 + 1.74438i) q^{60} +(14.2631 - 3.03171i) q^{61} +(-3.28799 + 2.38886i) q^{62} +(9.91669 - 9.87986i) q^{63} +(1.90671 + 5.86825i) q^{64} +(-0.216881 - 0.375650i) q^{65} +(-1.87939 + 3.25519i) q^{67} +(0.911252 - 1.01205i) q^{68} +(-19.4628 - 14.1406i) q^{69} +(-5.19698 + 7.97015i) q^{70} +(-3.07962 + 9.47809i) q^{71} +(13.1042 - 2.78538i) q^{72} +(0.0126077 + 0.119954i) q^{73} +(-9.54962 + 4.25177i) q^{74} +(0.982224 - 1.09087i) q^{75} -0.268571 q^{76} +0.815207 q^{78} +(-0.219271 + 0.243526i) q^{79} +(-9.80826 + 4.36692i) q^{80} +(-0.326193 - 3.10352i) q^{81} +(0.638441 - 0.135705i) q^{82} +(-1.03676 + 3.19083i) q^{83} +(-1.19676 - 2.35961i) q^{84} +(-7.44651 - 5.41021i) q^{85} +(-1.21461 + 1.34896i) q^{86} +(-11.7626 + 20.3735i) q^{87} +(2.32635 + 4.02936i) q^{89} +(5.87977 + 18.0961i) q^{90} +(0.125662 + 0.472490i) q^{91} +(-2.34750 + 1.70556i) q^{92} +(-7.47124 + 1.58806i) q^{93} +(-7.87333 - 8.74422i) q^{94} +(0.189741 + 1.80526i) q^{95} +(0.584969 - 5.56561i) q^{96} +(4.05449 + 12.4784i) q^{97} +(7.99660 - 7.14647i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 3 q^{3} + 6 q^{5} - 6 q^{6} + 6 q^{8} + 12 q^{10} - 12 q^{12} + 6 q^{13} + 12 q^{14} - 18 q^{15} - 6 q^{16} + 3 q^{17} + 12 q^{18} - 9 q^{19} - 12 q^{20} + 48 q^{21} - 6 q^{24} + 3 q^{25} + 9 q^{26}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02517 1.13856i 0.724903 0.805086i −0.262227 0.965006i \(-0.584457\pi\)
0.987130 + 0.159920i \(0.0511236\pi\)
\(3\) 2.63045 1.17115i 1.51869 0.676165i 0.533215 0.845980i \(-0.320984\pi\)
0.985476 + 0.169815i \(0.0543171\pi\)
\(4\) −0.0363024 0.345394i −0.0181512 0.172697i
\(5\) −2.29600 + 0.488030i −1.02680 + 0.218254i −0.690372 0.723454i \(-0.742553\pi\)
−0.336431 + 0.941708i \(0.609220\pi\)
\(6\) 1.36322 4.19556i 0.556532 1.71283i
\(7\) 2.64186 + 0.143384i 0.998530 + 0.0541939i
\(8\) 2.04850 + 1.48832i 0.724255 + 0.526202i
\(9\) 3.54028 3.93187i 1.18009 1.31062i
\(10\) −1.79813 + 3.11446i −0.568620 + 0.984878i
\(11\) 0 0
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 0.0571040 + 0.175748i 0.0158378 + 0.0487438i 0.958663 0.284544i \(-0.0918421\pi\)
−0.942825 + 0.333287i \(0.891842\pi\)
\(14\) 2.87160 2.86094i 0.767468 0.764618i
\(15\) −5.46796 + 3.97271i −1.41182 + 1.02575i
\(16\) 4.47403 0.950983i 1.11851 0.237746i
\(17\) 2.62384 + 2.91407i 0.636376 + 0.706767i 0.971934 0.235252i \(-0.0755917\pi\)
−0.335559 + 0.942019i \(0.608925\pi\)
\(18\) −0.847315 8.06166i −0.199714 1.90015i
\(19\) 0.0808338 0.769082i 0.0185445 0.176440i −0.981329 0.192336i \(-0.938394\pi\)
0.999874 + 0.0158966i \(0.00506027\pi\)
\(20\) 0.251913 + 0.775308i 0.0563295 + 0.173364i
\(21\) 7.11721 2.71686i 1.55310 0.592867i
\(22\) 0 0
\(23\) −4.17752 7.23567i −0.871073 1.50874i −0.860888 0.508794i \(-0.830091\pi\)
−0.0101847 0.999948i \(-0.503242\pi\)
\(24\) 7.13154 + 1.51585i 1.45572 + 0.309423i
\(25\) 0.465726 0.207354i 0.0931451 0.0414709i
\(26\) 0.258642 + 0.115155i 0.0507238 + 0.0225837i
\(27\) 2.03836 6.27342i 0.392282 1.20732i
\(28\) −0.0463820 0.917688i −0.00876538 0.173427i
\(29\) −6.60987 + 4.80235i −1.22742 + 0.891774i −0.996694 0.0812446i \(-0.974111\pi\)
−0.230727 + 0.973018i \(0.574111\pi\)
\(30\) −1.08240 + 10.2983i −0.197618 + 1.88021i
\(31\) −2.59474 0.551528i −0.466028 0.0990574i −0.0310880 0.999517i \(-0.509897\pi\)
−0.434940 + 0.900459i \(0.643231\pi\)
\(32\) 0.971782 1.68317i 0.171788 0.297546i
\(33\) 0 0
\(34\) 6.00774 1.03032
\(35\) −6.13570 + 0.960100i −1.03712 + 0.162287i
\(36\) −1.48657 1.08005i −0.247761 0.180009i
\(37\) −6.23307 2.77514i −1.02471 0.456231i −0.175609 0.984460i \(-0.556189\pi\)
−0.849102 + 0.528229i \(0.822856\pi\)
\(38\) −0.792781 0.880472i −0.128606 0.142831i
\(39\) 0.356037 + 0.395419i 0.0570115 + 0.0633177i
\(40\) −5.42971 2.41746i −0.858513 0.382235i
\(41\) 0.344659 + 0.250409i 0.0538267 + 0.0391074i 0.614373 0.789016i \(-0.289409\pi\)
−0.560547 + 0.828123i \(0.689409\pi\)
\(42\) 4.20302 10.8886i 0.648540 1.68015i
\(43\) −1.18479 −0.180679 −0.0903396 0.995911i \(-0.528795\pi\)
−0.0903396 + 0.995911i \(0.528795\pi\)
\(44\) 0 0
\(45\) −6.20961 + 10.7554i −0.925674 + 1.60331i
\(46\) −12.5209 2.66141i −1.84611 0.392403i
\(47\) 0.802783 7.63797i 0.117098 1.11411i −0.765321 0.643649i \(-0.777420\pi\)
0.882419 0.470464i \(-0.155914\pi\)
\(48\) 10.6550 7.74128i 1.53791 1.11736i
\(49\) 6.95888 + 0.757600i 0.994126 + 0.108229i
\(50\) 0.241361 0.742831i 0.0341335 0.105052i
\(51\) 10.3147 + 4.59241i 1.44435 + 0.643065i
\(52\) 0.0586293 0.0261035i 0.00813042 0.00361990i
\(53\) −6.41115 1.36273i −0.880639 0.187186i −0.254665 0.967029i \(-0.581965\pi\)
−0.625974 + 0.779844i \(0.715298\pi\)
\(54\) −5.05303 8.75211i −0.687631 1.19101i
\(55\) 0 0
\(56\) 5.19846 + 4.22567i 0.694674 + 0.564679i
\(57\) −0.688082 2.11770i −0.0911387 0.280496i
\(58\) −1.30844 + 12.4490i −0.171806 + 1.63463i
\(59\) −0.0213649 0.203273i −0.00278147 0.0264639i 0.993043 0.117751i \(-0.0375685\pi\)
−0.995825 + 0.0912873i \(0.970902\pi\)
\(60\) 1.57065 + 1.74438i 0.202770 + 0.225199i
\(61\) 14.2631 3.03171i 1.82620 0.388171i 0.838547 0.544830i \(-0.183406\pi\)
0.987653 + 0.156659i \(0.0500724\pi\)
\(62\) −3.28799 + 2.38886i −0.417575 + 0.303386i
\(63\) 9.91669 9.87986i 1.24939 1.24475i
\(64\) 1.90671 + 5.86825i 0.238339 + 0.733531i
\(65\) −0.216881 0.375650i −0.0269008 0.0465936i
\(66\) 0 0
\(67\) −1.87939 + 3.25519i −0.229603 + 0.397685i −0.957691 0.287800i \(-0.907076\pi\)
0.728087 + 0.685485i \(0.240410\pi\)
\(68\) 0.911252 1.01205i 0.110505 0.122729i
\(69\) −19.4628 14.1406i −2.34305 1.70232i
\(70\) −5.19698 + 7.97015i −0.621158 + 0.952615i
\(71\) −3.07962 + 9.47809i −0.365483 + 1.12484i 0.584194 + 0.811614i \(0.301411\pi\)
−0.949678 + 0.313228i \(0.898589\pi\)
\(72\) 13.1042 2.78538i 1.54434 0.328260i
\(73\) 0.0126077 + 0.119954i 0.00147562 + 0.0140396i 0.995235 0.0975061i \(-0.0310865\pi\)
−0.993759 + 0.111546i \(0.964420\pi\)
\(74\) −9.54962 + 4.25177i −1.11012 + 0.494258i
\(75\) 0.982224 1.09087i 0.113417 0.125963i
\(76\) −0.268571 −0.0308072
\(77\) 0 0
\(78\) 0.815207 0.0923041
\(79\) −0.219271 + 0.243526i −0.0246700 + 0.0273988i −0.755354 0.655318i \(-0.772535\pi\)
0.730684 + 0.682716i \(0.239201\pi\)
\(80\) −9.80826 + 4.36692i −1.09660 + 0.488237i
\(81\) −0.326193 3.10352i −0.0362437 0.344836i
\(82\) 0.638441 0.135705i 0.0705040 0.0149861i
\(83\) −1.03676 + 3.19083i −0.113800 + 0.350239i −0.991695 0.128614i \(-0.958947\pi\)
0.877895 + 0.478853i \(0.158947\pi\)
\(84\) −1.19676 2.35961i −0.130577 0.257455i
\(85\) −7.44651 5.41021i −0.807687 0.586819i
\(86\) −1.21461 + 1.34896i −0.130975 + 0.145462i
\(87\) −11.7626 + 20.3735i −1.26109 + 2.18427i
\(88\) 0 0
\(89\) 2.32635 + 4.02936i 0.246593 + 0.427111i 0.962578 0.271004i \(-0.0873557\pi\)
−0.715985 + 0.698115i \(0.754022\pi\)
\(90\) 5.87977 + 18.0961i 0.619782 + 1.90749i
\(91\) 0.125662 + 0.472490i 0.0131729 + 0.0495304i
\(92\) −2.34750 + 1.70556i −0.244744 + 0.177817i
\(93\) −7.47124 + 1.58806i −0.774732 + 0.164674i
\(94\) −7.87333 8.74422i −0.812072 0.901898i
\(95\) 0.189741 + 1.80526i 0.0194670 + 0.185216i
\(96\) 0.584969 5.56561i 0.0597032 0.568038i
\(97\) 4.05449 + 12.4784i 0.411671 + 1.26699i 0.915194 + 0.403012i \(0.132037\pi\)
−0.503523 + 0.863982i \(0.667963\pi\)
\(98\) 7.99660 7.14647i 0.807778 0.721902i
\(99\) 0 0
\(100\) −0.0885259 0.153331i −0.00885259 0.0153331i
\(101\) −5.77271 1.22703i −0.574406 0.122094i −0.0884555 0.996080i \(-0.528193\pi\)
−0.485950 + 0.873986i \(0.661526\pi\)
\(102\) 15.8031 7.03597i 1.56474 0.696665i
\(103\) 0.841626 + 0.374716i 0.0829279 + 0.0369219i 0.447781 0.894143i \(-0.352214\pi\)
−0.364854 + 0.931065i \(0.618881\pi\)
\(104\) −0.144592 + 0.445010i −0.0141785 + 0.0436368i
\(105\) −15.0152 + 9.71133i −1.46534 + 0.947729i
\(106\) −8.12406 + 5.90247i −0.789078 + 0.573299i
\(107\) −1.08159 + 10.2906i −0.104561 + 0.994831i 0.808911 + 0.587930i \(0.200057\pi\)
−0.913472 + 0.406901i \(0.866610\pi\)
\(108\) −2.24080 0.476296i −0.215621 0.0458316i
\(109\) 0.237826 0.411927i 0.0227796 0.0394554i −0.854411 0.519598i \(-0.826082\pi\)
0.877190 + 0.480143i \(0.159415\pi\)
\(110\) 0 0
\(111\) −19.6459 −1.86471
\(112\) 11.9561 1.87087i 1.12975 0.176780i
\(113\) 2.54266 + 1.84735i 0.239194 + 0.173784i 0.700924 0.713236i \(-0.252771\pi\)
−0.461730 + 0.887020i \(0.652771\pi\)
\(114\) −3.11654 1.38757i −0.291890 0.129958i
\(115\) 13.1228 + 14.5744i 1.22371 + 1.35907i
\(116\) 1.89866 + 2.10867i 0.176286 + 0.195785i
\(117\) 0.893184 + 0.397671i 0.0825749 + 0.0367647i
\(118\) −0.253342 0.184064i −0.0233220 0.0169444i
\(119\) 6.51401 + 8.07480i 0.597138 + 0.740216i
\(120\) −17.1138 −1.56227
\(121\) 0 0
\(122\) 11.1702 19.3474i 1.01131 1.75163i
\(123\) 1.19988 + 0.255041i 0.108189 + 0.0229963i
\(124\) −0.0962994 + 0.916227i −0.00864794 + 0.0822797i
\(125\) 8.52690 6.19516i 0.762669 0.554112i
\(126\) −1.08258 21.4193i −0.0964438 1.90818i
\(127\) 0.137705 0.423812i 0.0122193 0.0376072i −0.944761 0.327760i \(-0.893706\pi\)
0.956980 + 0.290153i \(0.0937062\pi\)
\(128\) 12.1871 + 5.42607i 1.07720 + 0.479601i
\(129\) −3.11654 + 1.38757i −0.274396 + 0.122169i
\(130\) −0.650041 0.138170i −0.0570124 0.0121184i
\(131\) −6.04323 10.4672i −0.528000 0.914522i −0.999467 0.0326389i \(-0.989609\pi\)
0.471467 0.881883i \(-0.343724\pi\)
\(132\) 0 0
\(133\) 0.323826 2.02022i 0.0280792 0.175175i
\(134\) 1.77956 + 5.47692i 0.153730 + 0.473133i
\(135\) −1.61846 + 15.3986i −0.139294 + 1.32530i
\(136\) 1.03786 + 9.87462i 0.0889962 + 0.846742i
\(137\) −10.9391 12.1491i −0.934590 1.03797i −0.999197 0.0400571i \(-0.987246\pi\)
0.0646069 0.997911i \(-0.479421\pi\)
\(138\) −36.0526 + 7.66322i −3.06900 + 0.652336i
\(139\) −16.7707 + 12.1846i −1.42247 + 1.03348i −0.431111 + 0.902299i \(0.641878\pi\)
−0.991358 + 0.131185i \(0.958122\pi\)
\(140\) 0.554353 + 2.08438i 0.0468514 + 0.176162i
\(141\) −6.83354 21.0315i −0.575488 1.77117i
\(142\) 7.63429 + 13.2230i 0.640655 + 1.10965i
\(143\) 0 0
\(144\) 12.1001 20.9581i 1.00834 1.74650i
\(145\) 12.8326 14.2520i 1.06569 1.18357i
\(146\) 0.149500 + 0.108618i 0.0123727 + 0.00898932i
\(147\) 19.1923 6.15708i 1.58295 0.507827i
\(148\) −0.732242 + 2.25361i −0.0601899 + 0.185246i
\(149\) −0.698586 + 0.148489i −0.0572304 + 0.0121647i −0.236438 0.971647i \(-0.575980\pi\)
0.179207 + 0.983811i \(0.442647\pi\)
\(150\) −0.235081 2.23665i −0.0191943 0.182622i
\(151\) 8.71968 3.88225i 0.709598 0.315933i −0.0200094 0.999800i \(-0.506370\pi\)
0.729607 + 0.683866i \(0.239703\pi\)
\(152\) 1.31023 1.45516i 0.106274 0.118029i
\(153\) 20.7469 1.67729
\(154\) 0 0
\(155\) 6.22668 0.500139
\(156\) 0.123650 0.137328i 0.00989995 0.0109950i
\(157\) 8.44228 3.75875i 0.673768 0.299981i −0.0411871 0.999151i \(-0.513114\pi\)
0.714955 + 0.699171i \(0.246447\pi\)
\(158\) 0.0524795 + 0.499309i 0.00417504 + 0.0397229i
\(159\) −18.4602 + 3.92383i −1.46399 + 0.311180i
\(160\) −1.40977 + 4.33883i −0.111452 + 0.343015i
\(161\) −9.99896 19.7146i −0.788028 1.55373i
\(162\) −3.86796 2.81024i −0.303895 0.220793i
\(163\) −5.89059 + 6.54216i −0.461387 + 0.512422i −0.928275 0.371895i \(-0.878708\pi\)
0.466888 + 0.884316i \(0.345375\pi\)
\(164\) 0.0739780 0.128134i 0.00577671 0.0100056i
\(165\) 0 0
\(166\) 2.57011 + 4.45156i 0.199479 + 0.345508i
\(167\) −2.59030 7.97212i −0.200443 0.616901i −0.999870 0.0161370i \(-0.994863\pi\)
0.799427 0.600764i \(-0.205137\pi\)
\(168\) 18.6232 + 5.02723i 1.43681 + 0.387859i
\(169\) 10.4896 7.62114i 0.806892 0.586241i
\(170\) −13.7938 + 2.93196i −1.05794 + 0.224871i
\(171\) −2.73776 3.04059i −0.209362 0.232520i
\(172\) 0.0430108 + 0.409220i 0.00327954 + 0.0312027i
\(173\) 0.569223 5.41579i 0.0432772 0.411755i −0.951340 0.308142i \(-0.900293\pi\)
0.994618 0.103613i \(-0.0330404\pi\)
\(174\) 11.1378 + 34.2788i 0.844358 + 2.59867i
\(175\) 1.26011 0.481025i 0.0952557 0.0363620i
\(176\) 0 0
\(177\) −0.294263 0.509678i −0.0221182 0.0383098i
\(178\) 6.97258 + 1.48207i 0.522617 + 0.111086i
\(179\) −9.21906 + 4.10459i −0.689065 + 0.306792i −0.721235 0.692691i \(-0.756425\pi\)
0.0321696 + 0.999482i \(0.489758\pi\)
\(180\) 3.94026 + 1.75432i 0.293689 + 0.130759i
\(181\) 6.14307 18.9064i 0.456611 1.40530i −0.412623 0.910902i \(-0.635387\pi\)
0.869234 0.494401i \(-0.164613\pi\)
\(182\) 0.666785 + 0.341308i 0.0494254 + 0.0252994i
\(183\) 33.9677 24.6790i 2.51096 1.82432i
\(184\) 2.21137 21.0398i 0.163025 1.55107i
\(185\) 15.6655 + 3.32981i 1.15175 + 0.244812i
\(186\) −5.85117 + 10.1345i −0.429028 + 0.743099i
\(187\) 0 0
\(188\) −2.66725 −0.194529
\(189\) 6.28457 16.2813i 0.457135 1.18429i
\(190\) 2.24992 + 1.63467i 0.163227 + 0.118591i
\(191\) −23.1904 10.3250i −1.67800 0.747093i −0.999927 0.0120984i \(-0.996149\pi\)
−0.678073 0.734995i \(-0.737184\pi\)
\(192\) 11.8881 + 13.2031i 0.857951 + 0.952851i
\(193\) 5.17334 + 5.74557i 0.372385 + 0.413575i 0.899987 0.435916i \(-0.143576\pi\)
−0.527602 + 0.849491i \(0.676909\pi\)
\(194\) 18.3640 + 8.17620i 1.31846 + 0.587017i
\(195\) −1.01044 0.734126i −0.0723590 0.0525719i
\(196\) 0.00904656 2.43106i 0.000646183 0.173647i
\(197\) 5.37464 0.382927 0.191464 0.981500i \(-0.438677\pi\)
0.191464 + 0.981500i \(0.438677\pi\)
\(198\) 0 0
\(199\) −4.39053 + 7.60462i −0.311236 + 0.539077i −0.978630 0.205628i \(-0.934076\pi\)
0.667394 + 0.744705i \(0.267410\pi\)
\(200\) 1.26265 + 0.268385i 0.0892829 + 0.0189777i
\(201\) −1.13131 + 10.7637i −0.0797962 + 0.759210i
\(202\) −7.31504 + 5.31469i −0.514685 + 0.373940i
\(203\) −18.1509 + 11.7394i −1.27395 + 0.823945i
\(204\) 1.21174 3.72935i 0.0848388 0.261107i
\(205\) −0.913545 0.406737i −0.0638048 0.0284077i
\(206\) 1.28945 0.574098i 0.0898399 0.0399993i
\(207\) −43.2393 9.19080i −3.00534 0.638805i
\(208\) 0.422618 + 0.731997i 0.0293033 + 0.0507548i
\(209\) 0 0
\(210\) −4.33615 + 27.0515i −0.299223 + 1.86673i
\(211\) −1.31061 4.03365i −0.0902263 0.277688i 0.895754 0.444550i \(-0.146636\pi\)
−0.985980 + 0.166862i \(0.946636\pi\)
\(212\) −0.237939 + 2.26384i −0.0163417 + 0.155481i
\(213\) 2.99950 + 28.5383i 0.205522 + 1.95541i
\(214\) 10.6077 + 11.7811i 0.725128 + 0.805337i
\(215\) 2.72029 0.578215i 0.185522 0.0394339i
\(216\) 13.5125 9.81739i 0.919407 0.667988i
\(217\) −6.77586 1.82910i −0.459975 0.124168i
\(218\) −0.225193 0.693074i −0.0152520 0.0469409i
\(219\) 0.173648 + 0.300767i 0.0117341 + 0.0203240i
\(220\) 0 0
\(221\) −0.362311 + 0.627541i −0.0243717 + 0.0422130i
\(222\) −20.1403 + 22.3681i −1.35173 + 1.50125i
\(223\) 14.5907 + 10.6008i 0.977065 + 0.709879i 0.957051 0.289921i \(-0.0936289\pi\)
0.0200140 + 0.999800i \(0.493629\pi\)
\(224\) 2.80865 4.30738i 0.187661 0.287799i
\(225\) 0.833506 2.56527i 0.0555670 0.171018i
\(226\) 4.70998 1.00114i 0.313303 0.0665947i
\(227\) 1.90297 + 18.1056i 0.126305 + 1.20171i 0.855646 + 0.517561i \(0.173160\pi\)
−0.729342 + 0.684150i \(0.760173\pi\)
\(228\) −0.706462 + 0.314537i −0.0467866 + 0.0208307i
\(229\) 12.8749 14.2990i 0.850797 0.944906i −0.148232 0.988953i \(-0.547358\pi\)
0.999029 + 0.0440467i \(0.0140250\pi\)
\(230\) 30.0469 1.98124
\(231\) 0 0
\(232\) −20.6878 −1.35822
\(233\) −6.23965 + 6.92983i −0.408773 + 0.453988i −0.912015 0.410157i \(-0.865474\pi\)
0.503242 + 0.864146i \(0.332140\pi\)
\(234\) 1.36844 0.609267i 0.0894575 0.0398291i
\(235\) 1.88437 + 17.9286i 0.122923 + 1.16953i
\(236\) −0.0694337 + 0.0147586i −0.00451975 + 0.000960702i
\(237\) −0.291577 + 0.897382i −0.0189400 + 0.0582912i
\(238\) 15.8716 + 0.861412i 1.02880 + 0.0558370i
\(239\) 9.05277 + 6.57723i 0.585575 + 0.425445i 0.840730 0.541455i \(-0.182126\pi\)
−0.255154 + 0.966900i \(0.582126\pi\)
\(240\) −20.6858 + 22.9739i −1.33526 + 1.48296i
\(241\) 10.1022 17.4975i 0.650740 1.12711i −0.332204 0.943208i \(-0.607792\pi\)
0.982944 0.183907i \(-0.0588744\pi\)
\(242\) 0 0
\(243\) 5.40167 + 9.35597i 0.346518 + 0.600186i
\(244\) −1.56492 4.81632i −0.100184 0.308333i
\(245\) −16.3473 + 1.65669i −1.04439 + 0.105842i
\(246\) 1.52045 1.10467i 0.0969406 0.0704315i
\(247\) 0.139781 0.0297113i 0.00889403 0.00189048i
\(248\) −4.49447 4.99162i −0.285399 0.316968i
\(249\) 1.00979 + 9.60752i 0.0639929 + 0.608852i
\(250\) 1.68792 16.0595i 0.106753 1.01569i
\(251\) −1.82078 5.60379i −0.114927 0.353708i 0.877005 0.480481i \(-0.159538\pi\)
−0.991932 + 0.126773i \(0.959538\pi\)
\(252\) −3.77244 3.06650i −0.237641 0.193171i
\(253\) 0 0
\(254\) −0.341367 0.591264i −0.0214192 0.0370992i
\(255\) −25.9238 5.51028i −1.62341 0.345067i
\(256\) 7.39819 3.29389i 0.462387 0.205868i
\(257\) −2.49990 1.11303i −0.155940 0.0694287i 0.327283 0.944926i \(-0.393867\pi\)
−0.483222 + 0.875498i \(0.660534\pi\)
\(258\) −1.61513 + 4.97087i −0.100554 + 0.309473i
\(259\) −16.0690 8.22527i −0.998480 0.511093i
\(260\) −0.121874 + 0.0885465i −0.00755829 + 0.00549142i
\(261\) −4.51852 + 42.9908i −0.279689 + 2.66106i
\(262\) −18.1129 3.85001i −1.11902 0.237855i
\(263\) 3.09879 5.36727i 0.191080 0.330960i −0.754529 0.656267i \(-0.772134\pi\)
0.945608 + 0.325307i \(0.105468\pi\)
\(264\) 0 0
\(265\) 15.3851 0.945097
\(266\) −1.96817 2.43976i −0.120676 0.149591i
\(267\) 10.8383 + 7.87452i 0.663296 + 0.481913i
\(268\) 1.19255 + 0.530957i 0.0728465 + 0.0324334i
\(269\) −2.81667 3.12823i −0.171735 0.190731i 0.651133 0.758964i \(-0.274294\pi\)
−0.822868 + 0.568232i \(0.807627\pi\)
\(270\) 15.8731 + 17.6288i 0.966004 + 1.07286i
\(271\) −23.3701 10.4050i −1.41963 0.632060i −0.453769 0.891119i \(-0.649921\pi\)
−0.965861 + 0.259059i \(0.916587\pi\)
\(272\) 14.5104 + 10.5424i 0.879821 + 0.639228i
\(273\) 0.883904 + 1.09569i 0.0534963 + 0.0663144i
\(274\) −25.0469 −1.51314
\(275\) 0 0
\(276\) −4.17752 + 7.23567i −0.251457 + 0.435536i
\(277\) −15.0221 3.19305i −0.902592 0.191852i −0.266836 0.963742i \(-0.585978\pi\)
−0.635756 + 0.771890i \(0.719312\pi\)
\(278\) −3.31979 + 31.5857i −0.199108 + 1.89439i
\(279\) −11.3546 + 8.24961i −0.679783 + 0.493891i
\(280\) −13.9979 7.16514i −0.836537 0.428199i
\(281\) −5.94982 + 18.3117i −0.354937 + 1.09238i 0.601110 + 0.799166i \(0.294725\pi\)
−0.956046 + 0.293216i \(0.905275\pi\)
\(282\) −30.9512 13.7804i −1.84312 0.820609i
\(283\) 24.7252 11.0084i 1.46976 0.654380i 0.493258 0.869883i \(-0.335806\pi\)
0.976503 + 0.215503i \(0.0691392\pi\)
\(284\) 3.38547 + 0.719604i 0.200891 + 0.0427006i
\(285\) 2.61334 + 4.52644i 0.154801 + 0.268123i
\(286\) 0 0
\(287\) 0.874638 + 0.710966i 0.0516282 + 0.0419670i
\(288\) −3.17766 9.77983i −0.187245 0.576282i
\(289\) 0.169713 1.61471i 0.00998313 0.0949831i
\(290\) −3.07129 29.2214i −0.180353 1.71594i
\(291\) 25.2793 + 28.0755i 1.48190 + 1.64581i
\(292\) 0.0409737 0.00870923i 0.00239780 0.000509669i
\(293\) 3.26445 2.37176i 0.190711 0.138560i −0.488333 0.872658i \(-0.662395\pi\)
0.679044 + 0.734098i \(0.262395\pi\)
\(294\) 12.6650 28.1636i 0.738641 1.64254i
\(295\) 0.148257 + 0.456289i 0.00863187 + 0.0265662i
\(296\) −8.63816 14.9617i −0.502083 0.869633i
\(297\) 0 0
\(298\) −0.547104 + 0.947611i −0.0316929 + 0.0548936i
\(299\) 1.03310 1.14738i 0.0597459 0.0663545i
\(300\) −0.412437 0.299653i −0.0238121 0.0173005i
\(301\) −3.13006 0.169880i −0.180414 0.00979171i
\(302\) 4.51894 13.9079i 0.260036 0.800308i
\(303\) −16.6219 + 3.53308i −0.954900 + 0.202970i
\(304\) −0.369732 3.51776i −0.0212056 0.201758i
\(305\) −31.2685 + 13.9216i −1.79043 + 0.797150i
\(306\) 21.2691 23.6217i 1.21587 1.35036i
\(307\) −2.92902 −0.167168 −0.0835839 0.996501i \(-0.526637\pi\)
−0.0835839 + 0.996501i \(0.526637\pi\)
\(308\) 0 0
\(309\) 2.65270 0.150907
\(310\) 6.38339 7.08948i 0.362552 0.402655i
\(311\) 14.2729 6.35469i 0.809341 0.360342i 0.0400154 0.999199i \(-0.487259\pi\)
0.769325 + 0.638857i \(0.220593\pi\)
\(312\) 0.140831 + 1.33992i 0.00797298 + 0.0758578i
\(313\) 21.4957 4.56906i 1.21501 0.258258i 0.444555 0.895752i \(-0.353362\pi\)
0.770456 + 0.637493i \(0.220029\pi\)
\(314\) 4.37518 13.4654i 0.246906 0.759898i
\(315\) −17.9471 + 27.5238i −1.01120 + 1.55079i
\(316\) 0.0920723 + 0.0668944i 0.00517947 + 0.00376311i
\(317\) −2.01533 + 2.23825i −0.113192 + 0.125713i −0.797078 0.603877i \(-0.793622\pi\)
0.683886 + 0.729589i \(0.260289\pi\)
\(318\) −14.4572 + 25.0407i −0.810721 + 1.40421i
\(319\) 0 0
\(320\) −7.24170 12.5430i −0.404823 0.701174i
\(321\) 9.20681 + 28.3356i 0.513874 + 1.58154i
\(322\) −32.6970 8.82637i −1.82213 0.491874i
\(323\) 2.45326 1.78240i 0.136503 0.0991752i
\(324\) −1.06009 + 0.225330i −0.0588942 + 0.0125183i
\(325\) 0.0630370 + 0.0700096i 0.00349666 + 0.00388344i
\(326\) 1.40983 + 13.4136i 0.0780832 + 0.742912i
\(327\) 0.143161 1.36208i 0.00791680 0.0753233i
\(328\) 0.333345 + 1.02593i 0.0184059 + 0.0566475i
\(329\) 3.21600 20.0634i 0.177304 1.10613i
\(330\) 0 0
\(331\) −13.7344 23.7887i −0.754912 1.30755i −0.945418 0.325860i \(-0.894346\pi\)
0.190506 0.981686i \(-0.438987\pi\)
\(332\) 1.13973 + 0.242257i 0.0625508 + 0.0132956i
\(333\) −32.9783 + 14.6829i −1.80720 + 0.804618i
\(334\) −11.7323 5.22354i −0.641960 0.285819i
\(335\) 2.72644 8.39112i 0.148961 0.458456i
\(336\) 29.2589 18.9236i 1.59620 1.03237i
\(337\) 13.9492 10.1347i 0.759862 0.552072i −0.139006 0.990291i \(-0.544391\pi\)
0.898868 + 0.438220i \(0.144391\pi\)
\(338\) 2.07644 19.7560i 0.112943 1.07459i
\(339\) 8.85187 + 1.88152i 0.480768 + 0.102190i
\(340\) −1.59833 + 2.76838i −0.0866814 + 0.150137i
\(341\) 0 0
\(342\) −6.26857 −0.338965
\(343\) 18.2758 + 2.99927i 0.986800 + 0.161945i
\(344\) −2.42705 1.76336i −0.130858 0.0950738i
\(345\) 51.5877 + 22.9683i 2.77739 + 1.23657i
\(346\) −5.58268 6.20019i −0.300126 0.333324i
\(347\) 7.64888 + 8.49494i 0.410613 + 0.456032i 0.912606 0.408839i \(-0.134066\pi\)
−0.501993 + 0.864872i \(0.667400\pi\)
\(348\) 7.46389 + 3.32314i 0.400106 + 0.178139i
\(349\) 22.9121 + 16.6466i 1.22646 + 0.891072i 0.996619 0.0821572i \(-0.0261810\pi\)
0.229836 + 0.973229i \(0.426181\pi\)
\(350\) 0.744151 1.92785i 0.0397766 0.103048i
\(351\) 1.21894 0.0650622
\(352\) 0 0
\(353\) −8.21806 + 14.2341i −0.437403 + 0.757605i −0.997488 0.0708303i \(-0.977435\pi\)
0.560085 + 0.828435i \(0.310768\pi\)
\(354\) −0.881970 0.187469i −0.0468762 0.00996384i
\(355\) 2.44521 23.2647i 0.129778 1.23476i
\(356\) 1.30726 0.949783i 0.0692848 0.0503384i
\(357\) 26.5916 + 13.6115i 1.40738 + 0.720395i
\(358\) −4.77774 + 14.7044i −0.252512 + 0.777151i
\(359\) −22.7136 10.1127i −1.19878 0.533729i −0.292438 0.956284i \(-0.594467\pi\)
−0.906337 + 0.422555i \(0.861133\pi\)
\(360\) −28.7279 + 12.7905i −1.51409 + 0.674117i
\(361\) 17.9999 + 3.82599i 0.947361 + 0.201368i
\(362\) −15.2285 26.3765i −0.800392 1.38632i
\(363\) 0 0
\(364\) 0.158633 0.0605553i 0.00831465 0.00317396i
\(365\) −0.0874885 0.269262i −0.00457935 0.0140938i
\(366\) 6.72399 63.9745i 0.351469 3.34400i
\(367\) −0.449326 4.27505i −0.0234546 0.223156i −0.999970 0.00770943i \(-0.997546\pi\)
0.976516 0.215446i \(-0.0691207\pi\)
\(368\) −25.5713 28.3998i −1.33300 1.48044i
\(369\) 2.20477 0.468638i 0.114776 0.0243963i
\(370\) 19.8510 14.4226i 1.03200 0.749794i
\(371\) −16.7420 4.51940i −0.869201 0.234636i
\(372\) 0.819731 + 2.52287i 0.0425010 + 0.130805i
\(373\) −1.36484 2.36397i −0.0706686 0.122402i 0.828526 0.559951i \(-0.189180\pi\)
−0.899195 + 0.437549i \(0.855847\pi\)
\(374\) 0 0
\(375\) 15.1741 26.2823i 0.783588 1.35721i
\(376\) 13.0123 14.4516i 0.671057 0.745285i
\(377\) −1.22145 0.887438i −0.0629081 0.0457054i
\(378\) −12.0945 23.8464i −0.622075 1.22653i
\(379\) −5.08593 + 15.6529i −0.261247 + 0.804035i 0.731288 + 0.682069i \(0.238920\pi\)
−0.992534 + 0.121965i \(0.961080\pi\)
\(380\) 0.616639 0.131071i 0.0316329 0.00672378i
\(381\) −0.134122 1.27609i −0.00687130 0.0653760i
\(382\) −35.5298 + 15.8189i −1.81786 + 0.809364i
\(383\) −5.25922 + 5.84096i −0.268734 + 0.298459i −0.862374 0.506271i \(-0.831023\pi\)
0.593641 + 0.804730i \(0.297690\pi\)
\(384\) 38.4124 1.96022
\(385\) 0 0
\(386\) 11.8452 0.602907
\(387\) −4.19449 + 4.65846i −0.213218 + 0.236803i
\(388\) 4.16279 1.85339i 0.211334 0.0940918i
\(389\) −1.00799 9.59038i −0.0511071 0.486252i −0.989900 0.141769i \(-0.954721\pi\)
0.938793 0.344483i \(-0.111946\pi\)
\(390\) −1.87172 + 0.397846i −0.0947781 + 0.0201457i
\(391\) 10.1241 31.1589i 0.512000 1.57577i
\(392\) 13.1277 + 11.9090i 0.663051 + 0.601496i
\(393\) −28.1551 20.4559i −1.42024 1.03186i
\(394\) 5.50990 6.11937i 0.277585 0.308289i
\(395\) 0.384600 0.666146i 0.0193513 0.0335175i
\(396\) 0 0
\(397\) 4.71688 + 8.16988i 0.236733 + 0.410034i 0.959775 0.280770i \(-0.0905898\pi\)
−0.723042 + 0.690805i \(0.757257\pi\)
\(398\) 4.15732 + 12.7949i 0.208388 + 0.641351i
\(399\) −1.51418 5.69333i −0.0758036 0.285023i
\(400\) 1.88648 1.37061i 0.0943239 0.0685303i
\(401\) 17.8217 3.78812i 0.889975 0.189170i 0.259836 0.965653i \(-0.416331\pi\)
0.630138 + 0.776483i \(0.282998\pi\)
\(402\) 11.0953 + 12.3226i 0.553385 + 0.614596i
\(403\) −0.0512398 0.487514i −0.00255244 0.0242848i
\(404\) −0.214245 + 2.03840i −0.0106591 + 0.101414i
\(405\) 2.26355 + 6.96650i 0.112477 + 0.346168i
\(406\) −5.24170 + 32.7009i −0.260141 + 1.62292i
\(407\) 0 0
\(408\) 14.2947 + 24.7592i 0.707695 + 1.22576i
\(409\) 6.27137 + 1.33302i 0.310099 + 0.0659136i 0.360333 0.932824i \(-0.382663\pi\)
−0.0502334 + 0.998738i \(0.515997\pi\)
\(410\) −1.39963 + 0.623157i −0.0691229 + 0.0307755i
\(411\) −43.0032 19.1463i −2.12119 0.944415i
\(412\) 0.0988716 0.304295i 0.00487105 0.0149916i
\(413\) −0.0272970 0.540083i −0.00134320 0.0265758i
\(414\) −54.7919 + 39.8086i −2.69287 + 1.95649i
\(415\) 0.823190 7.83212i 0.0404088 0.384464i
\(416\) 0.351308 + 0.0746727i 0.0172243 + 0.00366113i
\(417\) −29.8444 + 51.6919i −1.46148 + 2.53137i
\(418\) 0 0
\(419\) 1.62092 0.0791871 0.0395935 0.999216i \(-0.487394\pi\)
0.0395935 + 0.999216i \(0.487394\pi\)
\(420\) 3.89932 + 4.83362i 0.190267 + 0.235857i
\(421\) −25.2000 18.3089i −1.22817 0.892319i −0.231420 0.972854i \(-0.574337\pi\)
−0.996752 + 0.0805348i \(0.974337\pi\)
\(422\) −5.93616 2.64295i −0.288968 0.128657i
\(423\) −27.1895 30.1970i −1.32200 1.46823i
\(424\) −11.1051 12.3334i −0.539310 0.598964i
\(425\) 1.82624 + 0.813094i 0.0885856 + 0.0394408i
\(426\) 35.5677 + 25.8414i 1.72326 + 1.25202i
\(427\) 38.1158 5.96427i 1.84455 0.288631i
\(428\) 3.59358 0.173702
\(429\) 0 0
\(430\) 2.13041 3.68999i 0.102738 0.177947i
\(431\) 33.4605 + 7.11225i 1.61173 + 0.342585i 0.923707 0.383099i \(-0.125143\pi\)
0.688028 + 0.725684i \(0.258477\pi\)
\(432\) 3.15375 30.0059i 0.151735 1.44366i
\(433\) 16.5832 12.0484i 0.796937 0.579009i −0.113077 0.993586i \(-0.536071\pi\)
0.910014 + 0.414578i \(0.136071\pi\)
\(434\) −9.02894 + 5.83961i −0.433403 + 0.280310i
\(435\) 17.0642 52.5181i 0.818164 2.51805i
\(436\) −0.150911 0.0671897i −0.00722730 0.00321780i
\(437\) −5.90251 + 2.62797i −0.282355 + 0.125713i
\(438\) 0.520461 + 0.110628i 0.0248686 + 0.00528599i
\(439\) 15.6609 + 27.1255i 0.747455 + 1.29463i 0.949039 + 0.315158i \(0.102058\pi\)
−0.201585 + 0.979471i \(0.564609\pi\)
\(440\) 0 0
\(441\) 27.6152 24.6793i 1.31501 1.17521i
\(442\) 0.343066 + 1.05585i 0.0163180 + 0.0502216i
\(443\) 3.07291 29.2368i 0.145999 1.38908i −0.638819 0.769357i \(-0.720577\pi\)
0.784818 0.619726i \(-0.212756\pi\)
\(444\) 0.713192 + 6.78557i 0.0338466 + 0.322029i
\(445\) −7.30776 8.11609i −0.346421 0.384739i
\(446\) 27.0275 5.74488i 1.27979 0.272028i
\(447\) −1.66369 + 1.20874i −0.0786900 + 0.0571716i
\(448\) 4.19586 + 15.7765i 0.198236 + 0.745370i
\(449\) −2.13245 6.56299i −0.100636 0.309727i 0.888045 0.459756i \(-0.152063\pi\)
−0.988682 + 0.150029i \(0.952063\pi\)
\(450\) −2.06624 3.57883i −0.0974034 0.168708i
\(451\) 0 0
\(452\) 0.545759 0.945283i 0.0256704 0.0444624i
\(453\) 18.3900 20.4241i 0.864037 0.959610i
\(454\) 22.5652 + 16.3946i 1.05904 + 0.769437i
\(455\) −0.519109 1.02351i −0.0243362 0.0479830i
\(456\) 1.74229 5.36220i 0.0815900 0.251108i
\(457\) 12.1042 2.57283i 0.566212 0.120352i 0.0840929 0.996458i \(-0.473201\pi\)
0.482119 + 0.876106i \(0.339867\pi\)
\(458\) −3.08142 29.3178i −0.143985 1.36993i
\(459\) 23.6296 10.5206i 1.10293 0.491058i
\(460\) 4.55751 5.06163i 0.212495 0.235999i
\(461\) −20.0942 −0.935881 −0.467940 0.883760i \(-0.655004\pi\)
−0.467940 + 0.883760i \(0.655004\pi\)
\(462\) 0 0
\(463\) 8.69190 0.403947 0.201974 0.979391i \(-0.435265\pi\)
0.201974 + 0.979391i \(0.435265\pi\)
\(464\) −25.0058 + 27.7717i −1.16086 + 1.28927i
\(465\) 16.3790 7.29239i 0.759557 0.338176i
\(466\) 1.49337 + 14.2085i 0.0691791 + 0.658195i
\(467\) −4.66498 + 0.991572i −0.215870 + 0.0458845i −0.314577 0.949232i \(-0.601863\pi\)
0.0987072 + 0.995117i \(0.468529\pi\)
\(468\) 0.104928 0.322937i 0.00485032 0.0149277i
\(469\) −5.43182 + 8.33030i −0.250818 + 0.384657i
\(470\) 22.3446 + 16.2343i 1.03068 + 0.748834i
\(471\) 17.8049 19.7744i 0.820408 0.911156i
\(472\) 0.258770 0.448204i 0.0119109 0.0206302i
\(473\) 0 0
\(474\) 0.722811 + 1.25195i 0.0331998 + 0.0575038i
\(475\) −0.121826 0.374942i −0.00558977 0.0172035i
\(476\) 2.55251 2.54303i 0.116994 0.116560i
\(477\) −28.0553 + 20.3834i −1.28457 + 0.933291i
\(478\) 16.7692 3.56440i 0.767005 0.163032i
\(479\) 26.5070 + 29.4390i 1.21114 + 1.34510i 0.921699 + 0.387906i \(0.126802\pi\)
0.289438 + 0.957197i \(0.406532\pi\)
\(480\) 1.37310 + 13.0641i 0.0626730 + 0.596293i
\(481\) 0.131793 1.25392i 0.00600923 0.0571740i
\(482\) −9.56560 29.4399i −0.435701 1.34095i
\(483\) −49.3906 40.1481i −2.24735 1.82680i
\(484\) 0 0
\(485\) −15.3990 26.6718i −0.699232 1.21111i
\(486\) 16.1900 + 3.44129i 0.734393 + 0.156100i
\(487\) 4.70996 2.09701i 0.213429 0.0950246i −0.297238 0.954804i \(-0.596065\pi\)
0.510666 + 0.859779i \(0.329399\pi\)
\(488\) 33.7301 + 15.0176i 1.52689 + 0.679815i
\(489\) −7.83303 + 24.1076i −0.354222 + 1.09018i
\(490\) −14.8725 + 20.3109i −0.671872 + 0.917552i
\(491\) 8.24593 5.99102i 0.372134 0.270371i −0.385961 0.922515i \(-0.626130\pi\)
0.758095 + 0.652144i \(0.226130\pi\)
\(492\) 0.0445314 0.423688i 0.00200763 0.0191013i
\(493\) −31.3377 6.66103i −1.41138 0.299998i
\(494\) 0.109470 0.189608i 0.00492531 0.00853088i
\(495\) 0 0
\(496\) −12.1334 −0.544806
\(497\) −9.49493 + 24.5982i −0.425906 + 1.10338i
\(498\) 11.9740 + 8.69961i 0.536567 + 0.389839i
\(499\) 5.38061 + 2.39560i 0.240869 + 0.107242i 0.523621 0.851951i \(-0.324581\pi\)
−0.282752 + 0.959193i \(0.591247\pi\)
\(500\) −2.44932 2.72024i −0.109537 0.121653i
\(501\) −16.1502 17.9366i −0.721538 0.801349i
\(502\) −8.24689 3.67175i −0.368077 0.163878i
\(503\) −10.3836 7.54411i −0.462981 0.336375i 0.331719 0.943378i \(-0.392372\pi\)
−0.794699 + 0.607003i \(0.792372\pi\)
\(504\) 35.0188 5.47966i 1.55986 0.244084i
\(505\) 13.8530 0.616449
\(506\) 0 0
\(507\) 18.6668 32.3319i 0.829024 1.43591i
\(508\) −0.151381 0.0321770i −0.00671645 0.00142763i
\(509\) −3.36718 + 32.0366i −0.149248 + 1.42000i 0.621778 + 0.783193i \(0.286411\pi\)
−0.771026 + 0.636804i \(0.780256\pi\)
\(510\) −32.8501 + 23.8670i −1.45463 + 1.05685i
\(511\) 0.0161083 + 0.318710i 0.000712590 + 0.0140989i
\(512\) −4.41079 + 13.5750i −0.194931 + 0.599937i
\(513\) −4.66001 2.07477i −0.205744 0.0916033i
\(514\) −3.83007 + 1.70526i −0.168937 + 0.0752157i
\(515\) −2.11525 0.449610i −0.0932090 0.0198122i
\(516\) 0.592396 + 1.02606i 0.0260788 + 0.0451698i
\(517\) 0 0
\(518\) −25.8384 + 9.86332i −1.13528 + 0.433370i
\(519\) −4.84540 14.9126i −0.212689 0.654591i
\(520\) 0.114806 1.09231i 0.00503459 0.0479009i
\(521\) −1.93670 18.4265i −0.0848484 0.807278i −0.951352 0.308107i \(-0.900304\pi\)
0.866503 0.499171i \(-0.166362\pi\)
\(522\) 44.3155 + 49.2174i 1.93964 + 2.15419i
\(523\) −36.4283 + 7.74308i −1.59290 + 0.338581i −0.917148 0.398548i \(-0.869514\pi\)
−0.675752 + 0.737129i \(0.736181\pi\)
\(524\) −3.39592 + 2.46728i −0.148351 + 0.107784i
\(525\) 2.75132 2.74110i 0.120077 0.119631i
\(526\) −2.93419 9.03052i −0.127937 0.393749i
\(527\) −5.20099 9.00838i −0.226559 0.392411i
\(528\) 0 0
\(529\) −23.4033 + 40.5357i −1.01754 + 1.76242i
\(530\) 15.7723 17.5169i 0.685104 0.760885i
\(531\) −0.874882 0.635639i −0.0379667 0.0275844i
\(532\) −0.709527 0.0385086i −0.0307619 0.00166956i
\(533\) −0.0243276 + 0.0748726i −0.00105374 + 0.00324309i
\(534\) 20.0768 4.26745i 0.868806 0.184670i
\(535\) −2.53881 24.1551i −0.109762 1.04432i
\(536\) −8.69471 + 3.87113i −0.375554 + 0.167207i
\(537\) −19.4432 + 21.5938i −0.839035 + 0.931843i
\(538\) −6.44924 −0.278047
\(539\) 0 0
\(540\) 5.37733 0.231403
\(541\) −24.1935 + 26.8696i −1.04016 + 1.15521i −0.0524971 + 0.998621i \(0.516718\pi\)
−0.987663 + 0.156594i \(0.949949\pi\)
\(542\) −35.8050 + 15.9414i −1.53796 + 0.684743i
\(543\) −5.98325 56.9268i −0.256766 2.44296i
\(544\) 7.45470 1.58455i 0.319618 0.0679368i
\(545\) −0.345016 + 1.06185i −0.0147789 + 0.0454847i
\(546\) 2.15367 + 0.116887i 0.0921684 + 0.00500232i
\(547\) 10.3538 + 7.52246i 0.442696 + 0.321637i 0.786705 0.617329i \(-0.211785\pi\)
−0.344010 + 0.938966i \(0.611785\pi\)
\(548\) −3.79911 + 4.21934i −0.162290 + 0.180241i
\(549\) 38.5749 66.8137i 1.64634 2.85154i
\(550\) 0 0
\(551\) 3.15910 + 5.47172i 0.134582 + 0.233103i
\(552\) −18.8239 57.9340i −0.801198 2.46583i
\(553\) −0.614203 + 0.611921i −0.0261186 + 0.0260215i
\(554\) −19.0357 + 13.8302i −0.808749 + 0.587590i
\(555\) 45.1070 9.58779i 1.91469 0.406979i
\(556\) 4.81730 + 5.35015i 0.204299 + 0.226897i
\(557\) −3.20471 30.4907i −0.135788 1.29193i −0.824069 0.566490i \(-0.808301\pi\)
0.688281 0.725444i \(-0.258366\pi\)
\(558\) −2.24767 + 21.3852i −0.0951517 + 0.905308i
\(559\) −0.0676564 0.208225i −0.00286156 0.00880698i
\(560\) −26.5382 + 10.1305i −1.12145 + 0.428090i
\(561\) 0 0
\(562\) 14.7494 + 25.5468i 0.622167 + 1.07763i
\(563\) −14.1878 3.01571i −0.597944 0.127097i −0.101010 0.994885i \(-0.532207\pi\)
−0.496934 + 0.867789i \(0.665541\pi\)
\(564\) −7.01607 + 3.12376i −0.295430 + 0.131534i
\(565\) −6.73952 3.00063i −0.283534 0.126237i
\(566\) 12.8137 39.4367i 0.538602 1.65765i
\(567\) −0.416763 8.24585i −0.0175024 0.346293i
\(568\) −20.4151 + 14.8324i −0.856598 + 0.622355i
\(569\) 1.98657 18.9009i 0.0832813 0.792369i −0.870561 0.492061i \(-0.836244\pi\)
0.953842 0.300308i \(-0.0970895\pi\)
\(570\) 7.83275 + 1.66490i 0.328078 + 0.0697351i
\(571\) −10.5005 + 18.1873i −0.439431 + 0.761117i −0.997646 0.0685799i \(-0.978153\pi\)
0.558215 + 0.829696i \(0.311487\pi\)
\(572\) 0 0
\(573\) −73.0934 −3.05352
\(574\) 1.70613 0.266971i 0.0712125 0.0111432i
\(575\) −3.44593 2.50361i −0.143705 0.104408i
\(576\) 29.8235 + 13.2783i 1.24265 + 0.553262i
\(577\) −3.47110 3.85505i −0.144504 0.160488i 0.666548 0.745462i \(-0.267771\pi\)
−0.811052 + 0.584974i \(0.801105\pi\)
\(578\) −1.66447 1.84858i −0.0692328 0.0768908i
\(579\) 20.3371 + 9.05467i 0.845182 + 0.376299i
\(580\) −5.38841 3.91491i −0.223742 0.162558i
\(581\) −3.19650 + 8.28108i −0.132613 + 0.343557i
\(582\) 57.8813 2.39926
\(583\) 0 0
\(584\) −0.152704 + 0.264490i −0.00631892 + 0.0109447i
\(585\) −2.24483 0.477153i −0.0928122 0.0197278i
\(586\) 0.646206 6.14824i 0.0266945 0.253981i
\(587\) −6.74568 + 4.90103i −0.278424 + 0.202287i −0.718230 0.695806i \(-0.755047\pi\)
0.439806 + 0.898093i \(0.355047\pi\)
\(588\) −2.82334 6.40537i −0.116433 0.264153i
\(589\) −0.633913 + 1.95098i −0.0261199 + 0.0803888i
\(590\) 0.671503 + 0.298972i 0.0276453 + 0.0123085i
\(591\) 14.1377 6.29451i 0.581548 0.258922i
\(592\) −30.5260 6.48851i −1.25461 0.266676i
\(593\) 3.05097 + 5.28444i 0.125288 + 0.217006i 0.921846 0.387557i \(-0.126681\pi\)
−0.796557 + 0.604563i \(0.793348\pi\)
\(594\) 0 0
\(595\) −18.8969 15.3607i −0.774698 0.629729i
\(596\) 0.0766475 + 0.235897i 0.00313961 + 0.00966271i
\(597\) −2.64290 + 25.1455i −0.108167 + 1.02914i
\(598\) −0.247259 2.35251i −0.0101112 0.0962012i
\(599\) −9.26765 10.2928i −0.378666 0.420551i 0.523442 0.852061i \(-0.324648\pi\)
−0.902108 + 0.431510i \(0.857981\pi\)
\(600\) 3.63566 0.772783i 0.148425 0.0315487i
\(601\) 25.2976 18.3798i 1.03191 0.749726i 0.0632191 0.998000i \(-0.479863\pi\)
0.968690 + 0.248274i \(0.0798633\pi\)
\(602\) −3.40225 + 3.38962i −0.138666 + 0.138151i
\(603\) 6.14546 + 18.9138i 0.250262 + 0.770229i
\(604\) −1.65745 2.87079i −0.0674407 0.116811i
\(605\) 0 0
\(606\) −13.0175 + 22.5470i −0.528801 + 0.915911i
\(607\) −25.2906 + 28.0881i −1.02651 + 1.14006i −0.0364652 + 0.999335i \(0.511610\pi\)
−0.990049 + 0.140724i \(0.955057\pi\)
\(608\) −1.21595 0.883437i −0.0493132 0.0358281i
\(609\) −33.9965 + 52.1374i −1.37761 + 2.11271i
\(610\) −16.2048 + 49.8732i −0.656112 + 2.01931i
\(611\) 1.38820 0.295071i 0.0561606 0.0119373i
\(612\) −0.753162 7.16586i −0.0304448 0.289663i
\(613\) −19.3072 + 8.59611i −0.779810 + 0.347194i −0.757735 0.652563i \(-0.773694\pi\)
−0.0220750 + 0.999756i \(0.507027\pi\)
\(614\) −3.00273 + 3.33487i −0.121180 + 0.134584i
\(615\) −2.87939 −0.116108
\(616\) 0 0
\(617\) 23.7743 0.957115 0.478558 0.878056i \(-0.341160\pi\)
0.478558 + 0.878056i \(0.341160\pi\)
\(618\) 2.71947 3.02027i 0.109393 0.121493i
\(619\) 12.3347 5.49178i 0.495775 0.220733i −0.143589 0.989637i \(-0.545864\pi\)
0.639364 + 0.768904i \(0.279198\pi\)
\(620\) −0.226043 2.15066i −0.00907811 0.0863725i
\(621\) −53.9077 + 11.4584i −2.16324 + 0.459811i
\(622\) 7.39686 22.7652i 0.296587 0.912802i
\(623\) 5.56816 + 10.9786i 0.223084 + 0.439847i
\(624\) 1.96896 + 1.43053i 0.0788213 + 0.0572670i
\(625\) −18.2600 + 20.2798i −0.730399 + 0.811190i
\(626\) 16.8346 29.1583i 0.672844 1.16540i
\(627\) 0 0
\(628\) −1.60472 2.77946i −0.0640354 0.110913i
\(629\) −8.26764 25.4452i −0.329652 1.01457i
\(630\) 12.9389 + 48.6504i 0.515497 + 1.93828i
\(631\) 30.9331 22.4742i 1.23143 0.894683i 0.234429 0.972133i \(-0.424678\pi\)
0.996996 + 0.0774503i \(0.0246779\pi\)
\(632\) −0.811623 + 0.172516i −0.0322846 + 0.00686231i
\(633\) −8.17151 9.07538i −0.324788 0.360714i
\(634\) 0.482340 + 4.58916i 0.0191562 + 0.182259i
\(635\) −0.109338 + 1.04028i −0.00433893 + 0.0412822i
\(636\) 2.02541 + 6.23358i 0.0803129 + 0.247178i
\(637\) 0.264233 + 1.26627i 0.0104693 + 0.0501715i
\(638\) 0 0
\(639\) 26.3640 + 45.6637i 1.04294 + 1.80643i
\(640\) −30.6298 6.51056i −1.21075 0.257353i
\(641\) 35.2220 15.6819i 1.39119 0.619396i 0.431923 0.901910i \(-0.357835\pi\)
0.959263 + 0.282514i \(0.0911684\pi\)
\(642\) 41.7005 + 18.5662i 1.64579 + 0.732751i
\(643\) 5.95250 18.3199i 0.234744 0.722467i −0.762412 0.647092i \(-0.775985\pi\)
0.997155 0.0753745i \(-0.0240152\pi\)
\(644\) −6.44633 + 4.16927i −0.254021 + 0.164292i
\(645\) 6.47840 4.70683i 0.255087 0.185331i
\(646\) 0.485628 4.62045i 0.0191068 0.181789i
\(647\) −38.9150 8.27163i −1.52991 0.325191i −0.635377 0.772202i \(-0.719155\pi\)
−0.894529 + 0.447011i \(0.852489\pi\)
\(648\) 3.95084 6.84305i 0.155204 0.268820i
\(649\) 0 0
\(650\) 0.144334 0.00566124
\(651\) −19.9657 + 3.12419i −0.782518 + 0.122447i
\(652\) 2.47346 + 1.79708i 0.0968684 + 0.0703790i
\(653\) 4.35442 + 1.93871i 0.170402 + 0.0758678i 0.490165 0.871630i \(-0.336937\pi\)
−0.319763 + 0.947498i \(0.603603\pi\)
\(654\) −1.40405 1.55936i −0.0549029 0.0609758i
\(655\) 18.9836 + 21.0834i 0.741750 + 0.823797i
\(656\) 1.78015 + 0.792573i 0.0695031 + 0.0309448i
\(657\) 0.516279 + 0.375099i 0.0201420 + 0.0146340i
\(658\) −19.5465 24.2299i −0.762002 0.944582i
\(659\) 38.3550 1.49410 0.747050 0.664768i \(-0.231470\pi\)
0.747050 + 0.664768i \(0.231470\pi\)
\(660\) 0 0
\(661\) 5.18139 8.97443i 0.201533 0.349065i −0.747490 0.664273i \(-0.768741\pi\)
0.949022 + 0.315208i \(0.102074\pi\)
\(662\) −41.1651 8.74990i −1.59993 0.340075i
\(663\) −0.218095 + 2.07504i −0.00847011 + 0.0805877i
\(664\) −6.87280 + 4.99338i −0.266717 + 0.193781i
\(665\) 0.242424 + 4.79647i 0.00940080 + 0.185999i
\(666\) −17.0909 + 52.6003i −0.662258 + 2.03822i
\(667\) 62.3611 + 27.7649i 2.41463 + 1.07506i
\(668\) −2.65949 + 1.18408i −0.102899 + 0.0458134i
\(669\) 50.7952 + 10.7968i 1.96385 + 0.417430i
\(670\) −6.75877 11.7065i −0.261114 0.452263i
\(671\) 0 0
\(672\) 2.34343 14.6197i 0.0903996 0.563967i
\(673\) 7.91603 + 24.3630i 0.305140 + 0.939126i 0.979625 + 0.200836i \(0.0643660\pi\)
−0.674484 + 0.738289i \(0.735634\pi\)
\(674\) 2.76128 26.2718i 0.106360 1.01195i
\(675\) −0.351506 3.34436i −0.0135295 0.128724i
\(676\) −3.01309 3.34638i −0.115888 0.128707i
\(677\) 40.9232 8.69850i 1.57281 0.334311i 0.662766 0.748827i \(-0.269382\pi\)
0.910042 + 0.414516i \(0.136049\pi\)
\(678\) 11.2169 8.14955i 0.430782 0.312981i
\(679\) 8.92221 + 33.5477i 0.342403 + 1.28744i
\(680\) −7.20206 22.1656i −0.276186 0.850014i
\(681\) 26.2101 + 45.3972i 1.00437 + 1.73962i
\(682\) 0 0
\(683\) 23.0214 39.8743i 0.880890 1.52575i 0.0305366 0.999534i \(-0.490278\pi\)
0.850353 0.526212i \(-0.176388\pi\)
\(684\) −0.950814 + 1.05599i −0.0363553 + 0.0403766i
\(685\) 31.0453 + 22.5558i 1.18618 + 0.861811i
\(686\) 22.1506 17.7334i 0.845714 0.677064i
\(687\) 17.1204 52.6913i 0.653186 2.01030i
\(688\) −5.30079 + 1.12672i −0.202091 + 0.0429557i
\(689\) −0.126605 1.20456i −0.00482326 0.0458903i
\(690\) 79.0370 35.1895i 3.00889 1.33964i
\(691\) 5.35304 5.94516i 0.203639 0.226164i −0.632671 0.774421i \(-0.718041\pi\)
0.836310 + 0.548256i \(0.184708\pi\)
\(692\) −1.89124 −0.0718943
\(693\) 0 0
\(694\) 17.5134 0.664800
\(695\) 32.5590 36.1605i 1.23503 1.37164i
\(696\) −54.4182 + 24.2285i −2.06272 + 0.918380i
\(697\) 0.174620 + 1.66140i 0.00661420 + 0.0629299i
\(698\) 42.4419 9.02131i 1.60645 0.341462i
\(699\) −8.29720 + 25.5361i −0.313829 + 0.965866i
\(700\) −0.211888 0.417774i −0.00800862 0.0157904i
\(701\) −26.5474 19.2878i −1.00268 0.728491i −0.0400199 0.999199i \(-0.512742\pi\)
−0.962661 + 0.270708i \(0.912742\pi\)
\(702\) 1.24962 1.38784i 0.0471638 0.0523807i
\(703\) −2.63816 + 4.56942i −0.0994999 + 0.172339i
\(704\) 0 0
\(705\) 25.9538 + 44.9534i 0.977478 + 1.69304i
\(706\) 7.78154 + 23.9491i 0.292862 + 0.901337i
\(707\) −15.0748 4.06935i −0.566945 0.153044i
\(708\) −0.165357 + 0.120139i −0.00621451 + 0.00451510i
\(709\) −7.24023 + 1.53896i −0.271912 + 0.0577968i −0.341850 0.939755i \(-0.611053\pi\)
0.0699373 + 0.997551i \(0.477720\pi\)
\(710\) −23.9815 26.6342i −0.900011 0.999564i
\(711\) 0.181231 + 1.72430i 0.00679668 + 0.0646661i
\(712\) −1.23146 + 11.7165i −0.0461508 + 0.439095i
\(713\) 6.84888 + 21.0787i 0.256493 + 0.789403i
\(714\) 42.7584 16.3222i 1.60019 0.610842i
\(715\) 0 0
\(716\) 1.75237 + 3.03520i 0.0654893 + 0.113431i
\(717\) 31.5158 + 6.69889i 1.17698 + 0.250175i
\(718\) −34.7992 + 15.4936i −1.29869 + 0.578216i
\(719\) −12.9148 5.75005i −0.481641 0.214441i 0.151529 0.988453i \(-0.451580\pi\)
−0.633171 + 0.774012i \(0.718247\pi\)
\(720\) −17.5538 + 54.0250i −0.654191 + 2.01339i
\(721\) 2.16973 + 1.11062i 0.0808051 + 0.0413618i
\(722\) 22.8090 16.5717i 0.848863 0.616735i
\(723\) 6.08107 57.8575i 0.226158 2.15174i
\(724\) −6.75317 1.43543i −0.250980 0.0533473i
\(725\) −2.08260 + 3.60716i −0.0773457 + 0.133967i
\(726\) 0 0
\(727\) 15.2790 0.566667 0.283333 0.959021i \(-0.408560\pi\)
0.283333 + 0.959021i \(0.408560\pi\)
\(728\) −0.445801 + 1.15492i −0.0165225 + 0.0428043i
\(729\) 32.7400 + 23.7870i 1.21259 + 0.881000i
\(730\) −0.396262 0.176427i −0.0146663 0.00652987i
\(731\) −3.10871 3.45257i −0.114980 0.127698i
\(732\) −9.75707 10.8363i −0.360632 0.400522i
\(733\) −1.22866 0.547033i −0.0453815 0.0202051i 0.383920 0.923366i \(-0.374574\pi\)
−0.429302 + 0.903161i \(0.641240\pi\)
\(734\) −5.32805 3.87106i −0.196662 0.142883i
\(735\) −41.0606 + 23.5031i −1.51454 + 0.866924i
\(736\) −16.2385 −0.598561
\(737\) 0 0
\(738\) 1.72668 2.99070i 0.0635600 0.110089i
\(739\) −25.0930 5.33369i −0.923063 0.196203i −0.278219 0.960518i \(-0.589744\pi\)
−0.644843 + 0.764315i \(0.723077\pi\)
\(740\) 0.581400 5.53165i 0.0213727 0.203347i
\(741\) 0.332890 0.241858i 0.0122290 0.00888489i
\(742\) −22.3090 + 14.4287i −0.818988 + 0.529693i
\(743\) 1.87916 5.78346i 0.0689397 0.212175i −0.910651 0.413176i \(-0.864420\pi\)
0.979591 + 0.201001i \(0.0644195\pi\)
\(744\) −17.6684 7.86649i −0.647756 0.288399i
\(745\) 1.53149 0.681863i 0.0561094 0.0249815i
\(746\) −4.09072 0.869508i −0.149772 0.0318350i
\(747\) 8.87551 + 15.3728i 0.324738 + 0.562463i
\(748\) 0 0
\(749\) −4.33291 + 27.0313i −0.158321 + 0.987703i
\(750\) −14.3681 44.2205i −0.524649 1.61470i
\(751\) −2.17532 + 20.6968i −0.0793785 + 0.755236i 0.880354 + 0.474318i \(0.157305\pi\)
−0.959732 + 0.280917i \(0.909361\pi\)
\(752\) −3.67191 34.9359i −0.133901 1.27398i
\(753\) −11.3524 12.6081i −0.413703 0.459464i
\(754\) −2.26260 + 0.480931i −0.0823990 + 0.0175145i
\(755\) −18.1258 + 13.1691i −0.659664 + 0.479274i
\(756\) −5.85159 1.57960i −0.212820 0.0574496i
\(757\) −1.62358 4.99687i −0.0590101 0.181614i 0.917206 0.398412i \(-0.130439\pi\)
−0.976216 + 0.216798i \(0.930439\pi\)
\(758\) 12.6079 + 21.8375i 0.457939 + 0.793173i
\(759\) 0 0
\(760\) −2.29813 + 3.98048i −0.0833621 + 0.144387i
\(761\) 27.4219 30.4551i 0.994042 1.10400i −0.000535969 1.00000i \(-0.500171\pi\)
0.994578 0.103995i \(-0.0331627\pi\)
\(762\) −1.59041 1.15550i −0.0576144 0.0418593i
\(763\) 0.687367 1.05415i 0.0248844 0.0381629i
\(764\) −2.72434 + 8.38465i −0.0985631 + 0.303346i
\(765\) −47.6350 + 10.1251i −1.72225 + 0.366075i
\(766\) 1.25872 + 11.9759i 0.0454794 + 0.432708i
\(767\) 0.0345049 0.0153626i 0.00124590 0.000554710i
\(768\) 15.6029 17.3288i 0.563022 0.625299i
\(769\) −47.5580 −1.71499 −0.857493 0.514496i \(-0.827979\pi\)
−0.857493 + 0.514496i \(0.827979\pi\)
\(770\) 0 0
\(771\) −7.87939 −0.283769
\(772\) 1.79668 1.99542i 0.0646640 0.0718166i
\(773\) 18.7212 8.33521i 0.673354 0.299797i −0.0414303 0.999141i \(-0.513191\pi\)
0.714784 + 0.699345i \(0.246525\pi\)
\(774\) 1.00389 + 9.55140i 0.0360842 + 0.343318i
\(775\) −1.32280 + 0.281169i −0.0475163 + 0.0100999i
\(776\) −10.2663 + 31.5965i −0.368540 + 1.13425i
\(777\) −51.9018 2.81690i −1.86197 0.101056i
\(778\) −11.9526 8.68409i −0.428522 0.311340i
\(779\) 0.220446 0.244830i 0.00789828 0.00877193i
\(780\) −0.216881 + 0.375650i −0.00776560 + 0.0134504i
\(781\) 0 0
\(782\) −25.0974 43.4701i −0.897483 1.55449i
\(783\) 16.6539 + 51.2554i 0.595161 + 1.83172i
\(784\) 31.8547 3.22826i 1.13767 0.115295i
\(785\) −17.5491 + 12.7502i −0.626355 + 0.455073i
\(786\) −52.1540 + 11.0857i −1.86027 + 0.395413i
\(787\) 12.7942 + 14.2094i 0.456064 + 0.506510i 0.926692 0.375822i \(-0.122639\pi\)
−0.470628 + 0.882331i \(0.655973\pi\)
\(788\) −0.195112 1.85637i −0.00695058 0.0661303i
\(789\) 1.86534 17.7475i 0.0664077 0.631827i
\(790\) −0.364171 1.12080i −0.0129566 0.0398764i
\(791\) 6.45249 + 5.24503i 0.229424 + 0.186492i
\(792\) 0 0
\(793\) 1.34730 + 2.33359i 0.0478439 + 0.0828681i
\(794\) 14.1375 + 3.00502i 0.501722 + 0.106644i
\(795\) 40.4696 18.0182i 1.43531 0.639041i
\(796\) 2.78598 + 1.24040i 0.0987463 + 0.0439647i
\(797\) −16.2278 + 49.9441i −0.574819 + 1.76911i 0.0619750 + 0.998078i \(0.480260\pi\)
−0.636794 + 0.771034i \(0.719740\pi\)
\(798\) −8.03451 4.11263i −0.284419 0.145586i
\(799\) 24.3640 17.7015i 0.861936 0.626233i
\(800\) 0.103570 0.985401i 0.00366175 0.0348392i
\(801\) 24.0789 + 5.11812i 0.850785 + 0.180840i
\(802\) 13.9572 24.1746i 0.492847 0.853636i
\(803\) 0 0
\(804\) 3.75877 0.132562
\(805\) 32.5790 + 40.3851i 1.14826 + 1.42339i
\(806\) −0.607596 0.441444i −0.0214016 0.0155492i
\(807\) −11.0727 4.92990i −0.389779 0.173541i
\(808\) −9.99920 11.1052i −0.351770 0.390681i
\(809\) −27.2145 30.2248i −0.956812 1.06265i −0.997982 0.0634953i \(-0.979775\pi\)
0.0411701 0.999152i \(-0.486891\pi\)
\(810\) 10.2523 + 4.56463i 0.360230 + 0.160385i
\(811\) −16.6373 12.0877i −0.584214 0.424456i 0.256027 0.966670i \(-0.417586\pi\)
−0.840241 + 0.542213i \(0.817586\pi\)
\(812\) 4.71364 + 5.84306i 0.165416 + 0.205051i
\(813\) −73.6596 −2.58336
\(814\) 0 0
\(815\) 10.3320 17.8956i 0.361915 0.626856i
\(816\) 50.5156 + 10.7374i 1.76840 + 0.375885i
\(817\) −0.0957713 + 0.911203i −0.00335061 + 0.0318789i
\(818\) 7.94693 5.77378i 0.277858 0.201876i
\(819\) 2.30265 + 1.17866i 0.0804611 + 0.0411857i
\(820\) −0.107320 + 0.330298i −0.00374779 + 0.0115345i
\(821\) −5.81269 2.58797i −0.202864 0.0903209i 0.302790 0.953057i \(-0.402082\pi\)
−0.505654 + 0.862736i \(0.668749\pi\)
\(822\) −65.8847 + 29.3338i −2.29799 + 1.02313i
\(823\) 2.45404 + 0.521623i 0.0855425 + 0.0181826i 0.250484 0.968121i \(-0.419410\pi\)
−0.164942 + 0.986303i \(0.552744\pi\)
\(824\) 1.16637 + 2.02022i 0.0406326 + 0.0703777i
\(825\) 0 0
\(826\) −0.642903 0.522597i −0.0223695 0.0181835i
\(827\) 12.7514 + 39.2448i 0.443410 + 1.36468i 0.884218 + 0.467075i \(0.154692\pi\)
−0.440808 + 0.897602i \(0.645308\pi\)
\(828\) −1.60476 + 15.2682i −0.0557692 + 0.530608i
\(829\) 4.88962 + 46.5216i 0.169823 + 1.61576i 0.664913 + 0.746921i \(0.268469\pi\)
−0.495090 + 0.868842i \(0.664865\pi\)
\(830\) −8.07347 8.96649i −0.280234 0.311232i
\(831\) −43.2545 + 9.19402i −1.50048 + 0.318937i
\(832\) −0.922453 + 0.670202i −0.0319803 + 0.0232351i
\(833\) 16.0513 + 22.2665i 0.556145 + 0.771489i
\(834\) 28.2591 + 86.9726i 0.978533 + 3.01162i
\(835\) 9.83796 + 17.0399i 0.340457 + 0.589688i
\(836\) 0 0
\(837\) −8.74897 + 15.1537i −0.302409 + 0.523787i
\(838\) 1.66171 1.84552i 0.0574030 0.0637524i
\(839\) −13.3843 9.72429i −0.462079 0.335720i 0.332268 0.943185i \(-0.392186\pi\)
−0.794346 + 0.607465i \(0.792186\pi\)
\(840\) −45.2123 2.45384i −1.55997 0.0846655i
\(841\) 11.6663 35.9051i 0.402286 1.23811i
\(842\) −46.6800 + 9.92214i −1.60870 + 0.341940i
\(843\) 5.79503 + 55.1360i 0.199591 + 1.89899i
\(844\) −1.34562 + 0.599108i −0.0463181 + 0.0206222i
\(845\) −20.3648 + 22.6174i −0.700570 + 0.778062i
\(846\) −62.2550 −2.14037
\(847\) 0 0
\(848\) −29.9796 −1.02950
\(849\) 52.1459 57.9139i 1.78964 1.98760i
\(850\) 2.79796 1.24573i 0.0959692 0.0427282i
\(851\) 5.95875 + 56.6937i 0.204263 + 1.94344i
\(852\) 9.74807 2.07202i 0.333964 0.0709861i
\(853\) −4.08405 + 12.5694i −0.139835 + 0.430368i −0.996311 0.0858193i \(-0.972649\pi\)
0.856476 + 0.516187i \(0.172649\pi\)
\(854\) 32.2844 49.5116i 1.10475 1.69425i
\(855\) 7.76981 + 5.64509i 0.265722 + 0.193058i
\(856\) −17.5314 + 19.4706i −0.599211 + 0.665491i
\(857\) −25.3606 + 43.9258i −0.866300 + 1.50048i −0.000549663 1.00000i \(0.500175\pi\)
−0.865750 + 0.500476i \(0.833158\pi\)
\(858\) 0 0
\(859\) −27.5562 47.7287i −0.940205 1.62848i −0.765079 0.643937i \(-0.777300\pi\)
−0.175126 0.984546i \(-0.556033\pi\)
\(860\) −0.298465 0.918580i −0.0101776 0.0313233i
\(861\) 3.13334 + 0.845827i 0.106784 + 0.0288257i
\(862\) 42.4004 30.8057i 1.44416 1.04924i
\(863\) −10.2903 + 2.18728i −0.350287 + 0.0744558i −0.379695 0.925112i \(-0.623971\pi\)
0.0294080 + 0.999567i \(0.490638\pi\)
\(864\) −8.57843 9.52731i −0.291844 0.324126i
\(865\) 1.33613 + 12.7125i 0.0454299 + 0.432237i
\(866\) 3.28268 31.2326i 0.111550 1.06133i
\(867\) −1.44465 4.44618i −0.0490630 0.151000i
\(868\) −0.385782 + 2.40674i −0.0130943 + 0.0816901i
\(869\) 0 0
\(870\) −42.3016 73.2685i −1.43416 2.48404i
\(871\) −0.679414 0.144414i −0.0230211 0.00489328i
\(872\) 1.10027 0.489871i 0.0372598 0.0165891i
\(873\) 63.4177 + 28.2354i 2.14636 + 0.955623i
\(874\) −3.05895 + 9.41449i −0.103471 + 0.318450i
\(875\) 23.4152 15.1441i 0.791578 0.511965i
\(876\) 0.0975794 0.0708956i 0.00329690 0.00239534i
\(877\) −4.14493 + 39.4364i −0.139964 + 1.33167i 0.668757 + 0.743481i \(0.266827\pi\)
−0.808721 + 0.588192i \(0.799840\pi\)
\(878\) 46.9392 + 9.97723i 1.58412 + 0.336715i
\(879\) 5.80928 10.0620i 0.195942 0.339382i
\(880\) 0 0
\(881\) 25.0077 0.842532 0.421266 0.906937i \(-0.361586\pi\)
0.421266 + 0.906937i \(0.361586\pi\)
\(882\) 0.211151 56.7421i 0.00710983 1.91061i
\(883\) −41.2065 29.9383i −1.38671 1.00750i −0.996217 0.0868978i \(-0.972305\pi\)
−0.390493 0.920606i \(-0.627695\pi\)
\(884\) 0.229902 + 0.102359i 0.00773243 + 0.00344270i
\(885\) 0.924367 + 1.02661i 0.0310723 + 0.0345092i
\(886\) −30.1377 33.4713i −1.01250 1.12449i
\(887\) −29.2664 13.0302i −0.982668 0.437512i −0.148434 0.988922i \(-0.547423\pi\)
−0.834234 + 0.551410i \(0.814090\pi\)
\(888\) −40.2447 29.2395i −1.35052 0.981212i
\(889\) 0.424565 1.09991i 0.0142395 0.0368898i
\(890\) −16.7324 −0.560870
\(891\) 0 0
\(892\) 3.13176 5.42437i 0.104859 0.181621i
\(893\) −5.80934 1.23481i −0.194402 0.0413214i
\(894\) −0.329332 + 3.13338i −0.0110145 + 0.104796i
\(895\) 19.1638 13.9233i 0.640576 0.465406i
\(896\) 31.4188 + 16.0824i 1.04963 + 0.537274i
\(897\) 1.37377 4.22804i 0.0458689 0.141170i
\(898\) −9.65850 4.30024i −0.322308 0.143501i
\(899\) 19.7995 8.81530i 0.660350 0.294007i
\(900\) −0.916286 0.194762i −0.0305429 0.00649208i
\(901\) −12.8508 22.2582i −0.428121 0.741527i
\(902\) 0 0
\(903\) −8.43242 + 3.21891i −0.280613 + 0.107119i
\(904\) 2.45919 + 7.56861i 0.0817915 + 0.251728i
\(905\) −4.87759 + 46.4072i −0.162137 + 1.54263i
\(906\) −4.40138 41.8763i −0.146226 1.39125i
\(907\) −11.0226 12.2418i −0.365998 0.406482i 0.531814 0.846861i \(-0.321511\pi\)
−0.897812 + 0.440379i \(0.854844\pi\)
\(908\) 6.18448 1.31455i 0.205239 0.0436249i
\(909\) −25.2615 + 18.3536i −0.837871 + 0.608749i
\(910\) −1.69751 0.458233i −0.0562718 0.0151903i
\(911\) −14.0287 43.1759i −0.464792 1.43048i −0.859244 0.511566i \(-0.829066\pi\)
0.394452 0.918916i \(-0.370934\pi\)
\(912\) −5.09240 8.82029i −0.168626 0.292069i
\(913\) 0 0
\(914\) 9.47952 16.4190i 0.313555 0.543093i
\(915\) −65.9458 + 73.2403i −2.18010 + 2.42125i
\(916\) −5.40618 3.92782i −0.178625 0.129779i
\(917\) −14.4646 28.5194i −0.477662 0.941793i
\(918\) 12.2459 37.6891i 0.404176 1.24393i
\(919\) −12.0516 + 2.56166i −0.397547 + 0.0845013i −0.402347 0.915487i \(-0.631805\pi\)
0.00479987 + 0.999988i \(0.498472\pi\)
\(920\) 5.19075 + 49.3867i 0.171134 + 1.62823i
\(921\) −7.70463 + 3.43032i −0.253876 + 0.113033i
\(922\) −20.5999 + 22.8785i −0.678423 + 0.753465i
\(923\) −1.84161 −0.0606175
\(924\) 0 0
\(925\) −3.47834 −0.114367
\(926\) 8.91066 9.89629i 0.292822 0.325212i
\(927\) 4.45292 1.98257i 0.146253 0.0651161i
\(928\) 1.65985 + 15.7924i 0.0544872 + 0.518411i
\(929\) −5.80348 + 1.23357i −0.190406 + 0.0404720i −0.302128 0.953268i \(-0.597697\pi\)
0.111722 + 0.993740i \(0.464364\pi\)
\(930\) 8.48834 26.1244i 0.278344 0.856654i
\(931\) 1.14517 5.29071i 0.0375314 0.173396i
\(932\) 2.62003 + 1.90357i 0.0858221 + 0.0623534i
\(933\) 30.1018 33.4314i 0.985488 1.09449i
\(934\) −3.65342 + 6.32791i −0.119544 + 0.207055i
\(935\) 0 0
\(936\) 1.23783 + 2.14398i 0.0404596 + 0.0700781i
\(937\) 13.9132 + 42.8205i 0.454525 + 1.39889i 0.871691 + 0.490055i \(0.163023\pi\)
−0.417166 + 0.908830i \(0.636977\pi\)
\(938\) 3.91605 + 14.7244i 0.127864 + 0.480769i
\(939\) 51.1924 37.1934i 1.67060 1.21376i
\(940\) 6.12402 1.30170i 0.199743 0.0424568i
\(941\) 4.05655 + 4.50526i 0.132240 + 0.146867i 0.805628 0.592422i \(-0.201828\pi\)
−0.673388 + 0.739289i \(0.735162\pi\)
\(942\) −4.26136 40.5441i −0.138843 1.32100i
\(943\) 0.372062 3.53993i 0.0121160 0.115276i
\(944\) −0.288896 0.889132i −0.00940278 0.0289388i
\(945\) −6.48364 + 40.4489i −0.210913 + 1.31580i
\(946\) 0 0
\(947\) 9.47131 + 16.4048i 0.307776 + 0.533084i 0.977876 0.209187i \(-0.0670818\pi\)
−0.670099 + 0.742272i \(0.733748\pi\)
\(948\) 0.320535 + 0.0681318i 0.0104105 + 0.00221282i
\(949\) −0.0203617 + 0.00906563i −0.000660970 + 0.000294283i
\(950\) −0.551788 0.245672i −0.0179024 0.00797065i
\(951\) −2.67989 + 8.24785i −0.0869014 + 0.267455i
\(952\) 1.32604 + 26.2362i 0.0429771 + 0.850321i
\(953\) −10.1103 + 7.34556i −0.327504 + 0.237946i −0.739371 0.673298i \(-0.764877\pi\)
0.411867 + 0.911244i \(0.364877\pi\)
\(954\) −5.55362 + 52.8392i −0.179805 + 1.71073i
\(955\) 58.2842 + 12.3887i 1.88603 + 0.400888i
\(956\) 1.94310 3.36554i 0.0628442 0.108849i
\(957\) 0 0
\(958\) 60.6923 1.96088
\(959\) −27.1576 33.6648i −0.876965 1.08709i
\(960\) −33.7387 24.5126i −1.08891 0.791140i
\(961\) −21.8914 9.74670i −0.706175 0.314410i
\(962\) −1.29256 1.43554i −0.0416739 0.0462835i
\(963\) 36.6323 + 40.6843i 1.18046 + 1.31103i
\(964\) −6.41027 2.85404i −0.206461 0.0919223i
\(965\) −14.6820 10.6671i −0.472630 0.343386i
\(966\) −96.3448 + 15.0758i −3.09984 + 0.485056i
\(967\) 18.5294 0.595865 0.297933 0.954587i \(-0.403703\pi\)
0.297933 + 0.954587i \(0.403703\pi\)
\(968\) 0 0
\(969\) 4.36571 7.56164i 0.140247 0.242915i
\(970\) −46.1541 9.81036i −1.48192 0.314992i
\(971\) −4.33520 + 41.2467i −0.139123 + 1.32367i 0.672765 + 0.739856i \(0.265107\pi\)
−0.811888 + 0.583813i \(0.801560\pi\)
\(972\) 3.03540 2.20535i 0.0973606 0.0707366i
\(973\) −46.0529 + 29.7854i −1.47639 + 0.954876i
\(974\) 2.44092 7.51238i 0.0782121 0.240712i
\(975\) 0.247807 + 0.110331i 0.00793619 + 0.00353342i
\(976\) 60.9302 27.1279i 1.95033 0.868343i
\(977\) 21.7462 + 4.62230i 0.695724 + 0.147881i 0.542181 0.840261i \(-0.317599\pi\)
0.153542 + 0.988142i \(0.450932\pi\)
\(978\) 19.4179 + 33.6327i 0.620915 + 1.07546i
\(979\) 0 0
\(980\) 1.16566 + 5.58613i 0.0372356 + 0.178442i
\(981\) −0.777674 2.39344i −0.0248292 0.0764165i
\(982\) 1.63230 15.5303i 0.0520889 0.495592i
\(983\) −3.70160 35.2184i −0.118063 1.12329i −0.879779 0.475382i \(-0.842310\pi\)
0.761716 0.647911i \(-0.224357\pi\)
\(984\) 2.07836 + 2.30826i 0.0662558 + 0.0735846i
\(985\) −12.3402 + 2.62299i −0.393191 + 0.0835753i
\(986\) −39.7104 + 28.8513i −1.26464 + 0.918812i
\(987\) −15.0377 56.5421i −0.478656 1.79976i
\(988\) −0.0153365 0.0472008i −0.000487918 0.00150166i
\(989\) 4.94949 + 8.57277i 0.157385 + 0.272598i
\(990\) 0 0
\(991\) −22.7863 + 39.4670i −0.723830 + 1.25371i 0.235624 + 0.971844i \(0.424287\pi\)
−0.959454 + 0.281866i \(0.909047\pi\)
\(992\) −3.44983 + 3.83143i −0.109532 + 0.121648i
\(993\) −63.9879 46.4899i −2.03059 1.47531i
\(994\) 18.2728 + 36.0279i 0.579577 + 1.14274i
\(995\) 6.36938 19.6029i 0.201923 0.621455i
\(996\) 3.28172 0.697551i 0.103985 0.0221028i
\(997\) 2.38708 + 22.7116i 0.0755997 + 0.719283i 0.965017 + 0.262187i \(0.0844437\pi\)
−0.889417 + 0.457096i \(0.848890\pi\)
\(998\) 8.24358 3.67028i 0.260946 0.116181i
\(999\) −30.1149 + 33.4460i −0.952793 + 1.05818i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.2.n.f.753.3 24
7.2 even 3 inner 847.2.n.f.632.1 24
11.2 odd 10 847.2.n.g.130.3 24
11.3 even 5 847.2.e.c.606.1 6
11.4 even 5 inner 847.2.n.f.487.3 24
11.5 even 5 inner 847.2.n.f.81.1 24
11.6 odd 10 847.2.n.g.81.3 24
11.7 odd 10 847.2.n.g.487.1 24
11.8 odd 10 77.2.e.a.67.3 yes 6
11.9 even 5 inner 847.2.n.f.130.1 24
11.10 odd 2 847.2.n.g.753.1 24
33.8 even 10 693.2.i.h.298.1 6
44.19 even 10 1232.2.q.m.529.3 6
77.2 odd 30 847.2.n.g.9.1 24
77.3 odd 30 5929.2.a.u.1.3 3
77.9 even 15 inner 847.2.n.f.9.3 24
77.16 even 15 inner 847.2.n.f.807.3 24
77.19 even 30 539.2.e.m.177.3 6
77.25 even 15 5929.2.a.x.1.3 3
77.30 odd 30 77.2.e.a.23.3 6
77.37 even 15 inner 847.2.n.f.366.1 24
77.41 even 10 539.2.e.m.67.3 6
77.51 odd 30 847.2.n.g.366.3 24
77.52 even 30 539.2.a.g.1.1 3
77.58 even 15 847.2.e.c.485.1 6
77.65 odd 6 847.2.n.g.632.3 24
77.72 odd 30 847.2.n.g.807.1 24
77.74 odd 30 539.2.a.j.1.1 3
231.74 even 30 4851.2.a.bj.1.3 3
231.107 even 30 693.2.i.h.100.1 6
231.206 odd 30 4851.2.a.bk.1.3 3
308.107 even 30 1232.2.q.m.177.3 6
308.151 even 30 8624.2.a.ch.1.1 3
308.283 odd 30 8624.2.a.co.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.a.23.3 6 77.30 odd 30
77.2.e.a.67.3 yes 6 11.8 odd 10
539.2.a.g.1.1 3 77.52 even 30
539.2.a.j.1.1 3 77.74 odd 30
539.2.e.m.67.3 6 77.41 even 10
539.2.e.m.177.3 6 77.19 even 30
693.2.i.h.100.1 6 231.107 even 30
693.2.i.h.298.1 6 33.8 even 10
847.2.e.c.485.1 6 77.58 even 15
847.2.e.c.606.1 6 11.3 even 5
847.2.n.f.9.3 24 77.9 even 15 inner
847.2.n.f.81.1 24 11.5 even 5 inner
847.2.n.f.130.1 24 11.9 even 5 inner
847.2.n.f.366.1 24 77.37 even 15 inner
847.2.n.f.487.3 24 11.4 even 5 inner
847.2.n.f.632.1 24 7.2 even 3 inner
847.2.n.f.753.3 24 1.1 even 1 trivial
847.2.n.f.807.3 24 77.16 even 15 inner
847.2.n.g.9.1 24 77.2 odd 30
847.2.n.g.81.3 24 11.6 odd 10
847.2.n.g.130.3 24 11.2 odd 10
847.2.n.g.366.3 24 77.51 odd 30
847.2.n.g.487.1 24 11.7 odd 10
847.2.n.g.632.3 24 77.65 odd 6
847.2.n.g.753.1 24 11.10 odd 2
847.2.n.g.807.1 24 77.72 odd 30
1232.2.q.m.177.3 6 308.107 even 30
1232.2.q.m.529.3 6 44.19 even 10
4851.2.a.bj.1.3 3 231.74 even 30
4851.2.a.bk.1.3 3 231.206 odd 30
5929.2.a.u.1.3 3 77.3 odd 30
5929.2.a.x.1.3 3 77.25 even 15
8624.2.a.ch.1.1 3 308.151 even 30
8624.2.a.co.1.3 3 308.283 odd 30