Properties

Label 77.2.e.a.23.3
Level $77$
Weight $2$
Character 77.23
Analytic conductor $0.615$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [77,2,Mod(23,77)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(77, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("77.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 77.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.614848095564\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 23.3
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 77.23
Dual form 77.2.e.a.67.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 - 1.32683i) q^{2} +(-1.43969 - 2.49362i) q^{3} +(-0.173648 - 0.300767i) q^{4} +(-1.17365 + 2.03282i) q^{5} -4.41147 q^{6} +(2.05303 - 1.66885i) q^{7} +2.53209 q^{8} +(-2.64543 + 4.58202i) q^{9} +(1.79813 + 3.11446i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(-0.500000 + 0.866025i) q^{12} -0.184793 q^{13} +(-0.641559 - 4.00243i) q^{14} +6.75877 q^{15} +(2.28699 - 3.96118i) q^{16} +(1.96064 + 3.39592i) q^{17} +(4.05303 + 7.02006i) q^{18} +(-0.386659 + 0.669713i) q^{19} +0.815207 q^{20} +(-7.11721 - 2.71686i) q^{21} -1.53209 q^{22} +(-4.17752 + 7.23567i) q^{23} +(-3.64543 - 6.31407i) q^{24} +(-0.254900 - 0.441500i) q^{25} +(-0.141559 + 0.245188i) q^{26} +6.59627 q^{27} +(-0.858441 - 0.327693i) q^{28} -8.17024 q^{29} +(5.17752 - 8.96773i) q^{30} +(-1.32635 - 2.29731i) q^{31} +(-0.971782 - 1.68317i) q^{32} +(-1.43969 + 2.49362i) q^{33} +6.00774 q^{34} +(0.982926 + 6.13208i) q^{35} +1.83750 q^{36} +(3.41147 - 5.90885i) q^{37} +(0.592396 + 1.02606i) q^{38} +(0.266044 + 0.460802i) q^{39} +(-2.97178 + 5.14728i) q^{40} +0.426022 q^{41} +(-9.05690 + 7.36208i) q^{42} +1.18479 q^{43} +(-0.173648 + 0.300767i) q^{44} +(-6.20961 - 10.7554i) q^{45} +(6.40033 + 11.0857i) q^{46} +(3.84002 - 6.65111i) q^{47} -13.1702 q^{48} +(1.42989 - 6.85240i) q^{49} -0.781059 q^{50} +(5.64543 - 9.77817i) q^{51} +(0.0320889 + 0.0555796i) q^{52} +(-3.27719 - 5.67626i) q^{53} +(5.05303 - 8.75211i) q^{54} +2.34730 q^{55} +(5.19846 - 4.22567i) q^{56} +2.22668 q^{57} +(-6.25877 + 10.8405i) q^{58} +(-0.102196 - 0.177009i) q^{59} +(-1.17365 - 2.03282i) q^{60} +(-7.29086 + 12.6281i) q^{61} -4.06418 q^{62} +(2.21554 + 13.8219i) q^{63} +6.17024 q^{64} +(0.216881 - 0.375650i) q^{65} +(2.20574 + 3.82045i) q^{66} +(-1.87939 - 3.25519i) q^{67} +(0.680922 - 1.17939i) q^{68} +24.0574 q^{69} +(8.88919 + 3.39328i) q^{70} -9.96585 q^{71} +(-6.69846 + 11.6021i) q^{72} +(-0.0603074 - 0.104455i) q^{73} +(-5.22668 - 9.05288i) q^{74} +(-0.733956 + 1.27125i) q^{75} +0.268571 q^{76} +(-2.47178 - 0.943555i) q^{77} +0.815207 q^{78} +(-0.163848 + 0.283793i) q^{79} +(5.36824 + 9.29807i) q^{80} +(-1.56031 - 2.70253i) q^{81} +(0.326352 - 0.565258i) q^{82} +3.35504 q^{83} +(0.418748 + 2.61240i) q^{84} -9.20439 q^{85} +(0.907604 - 1.57202i) q^{86} +(11.7626 + 20.3735i) q^{87} +(-1.26604 - 2.19285i) q^{88} +(2.32635 - 4.02936i) q^{89} -19.0273 q^{90} +(-0.379385 + 0.308391i) q^{91} +2.90167 q^{92} +(-3.81908 + 6.61484i) q^{93} +(-5.88326 - 10.1901i) q^{94} +(-0.907604 - 1.57202i) q^{95} +(-2.79813 + 4.84651i) q^{96} +13.1206 q^{97} +(-7.99660 - 7.14647i) q^{98} +5.29086 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 6 q^{5} - 6 q^{6} + 6 q^{8} - 3 q^{10} - 3 q^{11} - 3 q^{12} + 6 q^{13} - 12 q^{14} + 18 q^{15} + 6 q^{16} + 3 q^{17} + 12 q^{18} - 9 q^{19} + 12 q^{20} - 12 q^{21} - 6 q^{24} - 3 q^{25}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/77\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 1.32683i 0.541675 0.938209i −0.457133 0.889398i \(-0.651124\pi\)
0.998808 0.0488106i \(-0.0155431\pi\)
\(3\) −1.43969 2.49362i −0.831207 1.43969i −0.897082 0.441865i \(-0.854317\pi\)
0.0658748 0.997828i \(-0.479016\pi\)
\(4\) −0.173648 0.300767i −0.0868241 0.150384i
\(5\) −1.17365 + 2.03282i −0.524871 + 0.909104i 0.474709 + 0.880143i \(0.342553\pi\)
−0.999581 + 0.0289612i \(0.990780\pi\)
\(6\) −4.41147 −1.80098
\(7\) 2.05303 1.66885i 0.775974 0.630765i
\(8\) 2.53209 0.895229
\(9\) −2.64543 + 4.58202i −0.881810 + 1.52734i
\(10\) 1.79813 + 3.11446i 0.568620 + 0.984878i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −0.184793 −0.0512522 −0.0256261 0.999672i \(-0.508158\pi\)
−0.0256261 + 0.999672i \(0.508158\pi\)
\(14\) −0.641559 4.00243i −0.171464 1.06970i
\(15\) 6.75877 1.74511
\(16\) 2.28699 3.96118i 0.571747 0.990295i
\(17\) 1.96064 + 3.39592i 0.475524 + 0.823632i 0.999607 0.0280351i \(-0.00892502\pi\)
−0.524083 + 0.851667i \(0.675592\pi\)
\(18\) 4.05303 + 7.02006i 0.955309 + 1.65464i
\(19\) −0.386659 + 0.669713i −0.0887057 + 0.153643i −0.906964 0.421208i \(-0.861606\pi\)
0.818259 + 0.574850i \(0.194940\pi\)
\(20\) 0.815207 0.182286
\(21\) −7.11721 2.71686i −1.55310 0.592867i
\(22\) −1.53209 −0.326642
\(23\) −4.17752 + 7.23567i −0.871073 + 1.50874i −0.0101847 + 0.999948i \(0.503242\pi\)
−0.860888 + 0.508794i \(0.830091\pi\)
\(24\) −3.64543 6.31407i −0.744120 1.28885i
\(25\) −0.254900 0.441500i −0.0509800 0.0883000i
\(26\) −0.141559 + 0.245188i −0.0277621 + 0.0480853i
\(27\) 6.59627 1.26945
\(28\) −0.858441 0.327693i −0.162230 0.0619282i
\(29\) −8.17024 −1.51718 −0.758588 0.651570i \(-0.774111\pi\)
−0.758588 + 0.651570i \(0.774111\pi\)
\(30\) 5.17752 8.96773i 0.945281 1.63728i
\(31\) −1.32635 2.29731i −0.238220 0.412609i 0.721984 0.691910i \(-0.243231\pi\)
−0.960204 + 0.279301i \(0.909897\pi\)
\(32\) −0.971782 1.68317i −0.171788 0.297546i
\(33\) −1.43969 + 2.49362i −0.250618 + 0.434084i
\(34\) 6.00774 1.03032
\(35\) 0.982926 + 6.13208i 0.166145 + 1.03651i
\(36\) 1.83750 0.306249
\(37\) 3.41147 5.90885i 0.560843 0.971408i −0.436580 0.899665i \(-0.643811\pi\)
0.997423 0.0717431i \(-0.0228562\pi\)
\(38\) 0.592396 + 1.02606i 0.0960994 + 0.166449i
\(39\) 0.266044 + 0.460802i 0.0426012 + 0.0737875i
\(40\) −2.97178 + 5.14728i −0.469880 + 0.813856i
\(41\) 0.426022 0.0665335 0.0332667 0.999447i \(-0.489409\pi\)
0.0332667 + 0.999447i \(0.489409\pi\)
\(42\) −9.05690 + 7.36208i −1.39751 + 1.13599i
\(43\) 1.18479 0.180679 0.0903396 0.995911i \(-0.471205\pi\)
0.0903396 + 0.995911i \(0.471205\pi\)
\(44\) −0.173648 + 0.300767i −0.0261784 + 0.0453424i
\(45\) −6.20961 10.7554i −0.925674 1.60331i
\(46\) 6.40033 + 11.0857i 0.943677 + 1.63450i
\(47\) 3.84002 6.65111i 0.560125 0.970165i −0.437360 0.899286i \(-0.644086\pi\)
0.997485 0.0708782i \(-0.0225802\pi\)
\(48\) −13.1702 −1.90096
\(49\) 1.42989 6.85240i 0.204270 0.978915i
\(50\) −0.781059 −0.110458
\(51\) 5.64543 9.77817i 0.790518 1.36922i
\(52\) 0.0320889 + 0.0555796i 0.00444993 + 0.00770750i
\(53\) −3.27719 5.67626i −0.450157 0.779694i 0.548239 0.836322i \(-0.315298\pi\)
−0.998395 + 0.0566279i \(0.981965\pi\)
\(54\) 5.05303 8.75211i 0.687631 1.19101i
\(55\) 2.34730 0.316509
\(56\) 5.19846 4.22567i 0.694674 0.564679i
\(57\) 2.22668 0.294931
\(58\) −6.25877 + 10.8405i −0.821817 + 1.42343i
\(59\) −0.102196 0.177009i −0.0133048 0.0230447i 0.859296 0.511478i \(-0.170902\pi\)
−0.872601 + 0.488433i \(0.837569\pi\)
\(60\) −1.17365 2.03282i −0.151517 0.262436i
\(61\) −7.29086 + 12.6281i −0.933499 + 1.61687i −0.156210 + 0.987724i \(0.549928\pi\)
−0.777289 + 0.629144i \(0.783406\pi\)
\(62\) −4.06418 −0.516151
\(63\) 2.21554 + 13.8219i 0.279131 + 1.74139i
\(64\) 6.17024 0.771281
\(65\) 0.216881 0.375650i 0.0269008 0.0465936i
\(66\) 2.20574 + 3.82045i 0.271507 + 0.470265i
\(67\) −1.87939 3.25519i −0.229603 0.397685i 0.728087 0.685485i \(-0.240410\pi\)
−0.957691 + 0.287800i \(0.907076\pi\)
\(68\) 0.680922 1.17939i 0.0825739 0.143022i
\(69\) 24.0574 2.89617
\(70\) 8.88919 + 3.39328i 1.06246 + 0.405574i
\(71\) −9.96585 −1.18273 −0.591365 0.806404i \(-0.701411\pi\)
−0.591365 + 0.806404i \(0.701411\pi\)
\(72\) −6.69846 + 11.6021i −0.789421 + 1.36732i
\(73\) −0.0603074 0.104455i −0.00705844 0.0122256i 0.862475 0.506100i \(-0.168913\pi\)
−0.869533 + 0.493875i \(0.835580\pi\)
\(74\) −5.22668 9.05288i −0.607589 1.05238i
\(75\) −0.733956 + 1.27125i −0.0847499 + 0.146791i
\(76\) 0.268571 0.0308072
\(77\) −2.47178 0.943555i −0.281686 0.107528i
\(78\) 0.815207 0.0923041
\(79\) −0.163848 + 0.283793i −0.0184343 + 0.0319292i −0.875095 0.483950i \(-0.839201\pi\)
0.856661 + 0.515880i \(0.172535\pi\)
\(80\) 5.36824 + 9.29807i 0.600188 + 1.03956i
\(81\) −1.56031 2.70253i −0.173367 0.300281i
\(82\) 0.326352 0.565258i 0.0360395 0.0624223i
\(83\) 3.35504 0.368263 0.184132 0.982902i \(-0.441053\pi\)
0.184132 + 0.982902i \(0.441053\pi\)
\(84\) 0.418748 + 2.61240i 0.0456892 + 0.285037i
\(85\) −9.20439 −0.998357
\(86\) 0.907604 1.57202i 0.0978694 0.169515i
\(87\) 11.7626 + 20.3735i 1.26109 + 2.18427i
\(88\) −1.26604 2.19285i −0.134961 0.233759i
\(89\) 2.32635 4.02936i 0.246593 0.427111i −0.715985 0.698115i \(-0.754022\pi\)
0.962578 + 0.271004i \(0.0873557\pi\)
\(90\) −19.0273 −2.00566
\(91\) −0.379385 + 0.308391i −0.0397704 + 0.0323281i
\(92\) 2.90167 0.302520
\(93\) −3.81908 + 6.61484i −0.396020 + 0.685927i
\(94\) −5.88326 10.1901i −0.606811 1.05103i
\(95\) −0.907604 1.57202i −0.0931182 0.161285i
\(96\) −2.79813 + 4.84651i −0.285583 + 0.494645i
\(97\) 13.1206 1.33220 0.666098 0.745864i \(-0.267963\pi\)
0.666098 + 0.745864i \(0.267963\pi\)
\(98\) −7.99660 7.14647i −0.807778 0.721902i
\(99\) 5.29086 0.531751
\(100\) −0.0885259 + 0.153331i −0.00885259 + 0.0153331i
\(101\) 2.95084 + 5.11100i 0.293619 + 0.508563i 0.974663 0.223679i \(-0.0718069\pi\)
−0.681044 + 0.732243i \(0.738474\pi\)
\(102\) −8.64930 14.9810i −0.856408 1.48334i
\(103\) −0.460637 + 0.797847i −0.0453879 + 0.0786142i −0.887827 0.460178i \(-0.847786\pi\)
0.842439 + 0.538792i \(0.181119\pi\)
\(104\) −0.467911 −0.0458825
\(105\) 13.8760 11.2794i 1.35416 1.10075i
\(106\) −10.0419 −0.975354
\(107\) 5.17365 8.96102i 0.500155 0.866295i −0.499845 0.866115i \(-0.666610\pi\)
1.00000 0.000179505i \(-5.71381e-5\pi\)
\(108\) −1.14543 1.98394i −0.110219 0.190905i
\(109\) −0.237826 0.411927i −0.0227796 0.0394554i 0.854411 0.519598i \(-0.173918\pi\)
−0.877190 + 0.480143i \(0.840585\pi\)
\(110\) 1.79813 3.11446i 0.171445 0.296952i
\(111\) −19.6459 −1.86471
\(112\) −1.91534 11.9491i −0.180983 1.12908i
\(113\) −3.14290 −0.295659 −0.147830 0.989013i \(-0.547229\pi\)
−0.147830 + 0.989013i \(0.547229\pi\)
\(114\) 1.70574 2.95442i 0.159757 0.276707i
\(115\) −9.80587 16.9843i −0.914402 1.58379i
\(116\) 1.41875 + 2.45734i 0.131727 + 0.228159i
\(117\) 0.488856 0.846723i 0.0451947 0.0782796i
\(118\) −0.313148 −0.0288276
\(119\) 9.69253 + 3.69994i 0.888513 + 0.339173i
\(120\) 17.1138 1.56227
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 11.1702 + 19.3474i 1.01131 + 1.75163i
\(123\) −0.613341 1.06234i −0.0553031 0.0957877i
\(124\) −0.460637 + 0.797847i −0.0413664 + 0.0716488i
\(125\) −10.5398 −0.942711
\(126\) 20.0364 + 7.64852i 1.78499 + 0.681384i
\(127\) −0.445622 −0.0395426 −0.0197713 0.999805i \(-0.506294\pi\)
−0.0197713 + 0.999805i \(0.506294\pi\)
\(128\) 6.67024 11.5532i 0.589572 1.02117i
\(129\) −1.70574 2.95442i −0.150182 0.260122i
\(130\) −0.332282 0.575529i −0.0291430 0.0504772i
\(131\) 6.04323 10.4672i 0.528000 0.914522i −0.471467 0.881883i \(-0.656276\pi\)
0.999467 0.0326389i \(-0.0103911\pi\)
\(132\) 1.00000 0.0870388
\(133\) 0.323826 + 2.02022i 0.0280792 + 0.175175i
\(134\) −5.75877 −0.497482
\(135\) −7.74170 + 13.4090i −0.666299 + 1.15406i
\(136\) 4.96451 + 8.59878i 0.425703 + 0.737339i
\(137\) 8.17412 + 14.1580i 0.698362 + 1.20960i 0.969034 + 0.246927i \(0.0794206\pi\)
−0.270672 + 0.962672i \(0.587246\pi\)
\(138\) 18.4290 31.9200i 1.56878 2.71721i
\(139\) −20.7297 −1.75827 −0.879134 0.476575i \(-0.841878\pi\)
−0.879134 + 0.476575i \(0.841878\pi\)
\(140\) 1.67365 1.36046i 0.141449 0.114980i
\(141\) −22.1138 −1.86232
\(142\) −7.63429 + 13.2230i −0.640655 + 1.10965i
\(143\) 0.0923963 + 0.160035i 0.00772656 + 0.0133828i
\(144\) 12.1001 + 20.9581i 1.00834 + 1.74650i
\(145\) 9.58899 16.6086i 0.796322 1.37927i
\(146\) −0.184793 −0.0152935
\(147\) −19.1459 + 6.29974i −1.57913 + 0.519594i
\(148\) −2.36959 −0.194779
\(149\) 0.357097 0.618509i 0.0292545 0.0506703i −0.851027 0.525121i \(-0.824020\pi\)
0.880282 + 0.474451i \(0.157353\pi\)
\(150\) 1.12449 + 1.94767i 0.0918138 + 0.159026i
\(151\) 4.77244 + 8.26611i 0.388376 + 0.672687i 0.992231 0.124407i \(-0.0397029\pi\)
−0.603855 + 0.797094i \(0.706370\pi\)
\(152\) −0.979055 + 1.69577i −0.0794119 + 0.137545i
\(153\) −20.7469 −1.67729
\(154\) −3.14543 + 2.55682i −0.253466 + 0.206035i
\(155\) 6.22668 0.500139
\(156\) 0.0923963 0.160035i 0.00739762 0.0128131i
\(157\) −4.62061 8.00314i −0.368765 0.638720i 0.620608 0.784121i \(-0.286886\pi\)
−0.989373 + 0.145401i \(0.953553\pi\)
\(158\) 0.251030 + 0.434796i 0.0199709 + 0.0345905i
\(159\) −9.43629 + 16.3441i −0.748346 + 1.29617i
\(160\) 4.56212 0.360667
\(161\) 3.49866 + 21.8267i 0.275733 + 1.72019i
\(162\) −4.78106 −0.375635
\(163\) 4.40167 7.62392i 0.344766 0.597152i −0.640545 0.767920i \(-0.721292\pi\)
0.985311 + 0.170769i \(0.0546250\pi\)
\(164\) −0.0739780 0.128134i −0.00577671 0.0100056i
\(165\) −3.37939 5.85327i −0.263085 0.455676i
\(166\) 2.57011 4.45156i 0.199479 0.345508i
\(167\) 8.38238 0.648648 0.324324 0.945946i \(-0.394863\pi\)
0.324324 + 0.945946i \(0.394863\pi\)
\(168\) −18.0214 6.87933i −1.39038 0.530752i
\(169\) −12.9659 −0.997373
\(170\) −7.05097 + 12.2126i −0.540785 + 0.936667i
\(171\) −2.04576 3.54336i −0.156443 0.270967i
\(172\) −0.205737 0.356347i −0.0156873 0.0271712i
\(173\) −2.72281 + 4.71605i −0.207012 + 0.358554i −0.950772 0.309892i \(-0.899707\pi\)
0.743760 + 0.668446i \(0.233040\pi\)
\(174\) 36.0428 2.73240
\(175\) −1.26011 0.481025i −0.0952557 0.0363620i
\(176\) −4.57398 −0.344777
\(177\) −0.294263 + 0.509678i −0.0221182 + 0.0383098i
\(178\) −3.56418 6.17334i −0.267146 0.462711i
\(179\) 5.04576 + 8.73951i 0.377138 + 0.653222i 0.990645 0.136468i \(-0.0435750\pi\)
−0.613507 + 0.789689i \(0.710242\pi\)
\(180\) −2.15657 + 3.73530i −0.160742 + 0.278413i
\(181\) 19.8794 1.47762 0.738812 0.673912i \(-0.235387\pi\)
0.738812 + 0.673912i \(0.235387\pi\)
\(182\) 0.118555 + 0.739620i 0.00878791 + 0.0548243i
\(183\) 41.9864 3.10372
\(184\) −10.5778 + 18.3214i −0.779809 + 1.35067i
\(185\) 8.00774 + 13.8698i 0.588741 + 1.01973i
\(186\) 5.85117 + 10.1345i 0.429028 + 0.743099i
\(187\) 1.96064 3.39592i 0.143376 0.248334i
\(188\) −2.66725 −0.194529
\(189\) 13.5424 11.0082i 0.985061 0.800726i
\(190\) −2.78106 −0.201759
\(191\) 12.6925 21.9841i 0.918399 1.59071i 0.116553 0.993184i \(-0.462816\pi\)
0.801846 0.597530i \(-0.203851\pi\)
\(192\) −8.88326 15.3863i −0.641094 1.11041i
\(193\) 3.86571 + 6.69561i 0.278260 + 0.481961i 0.970952 0.239272i \(-0.0769089\pi\)
−0.692692 + 0.721233i \(0.743576\pi\)
\(194\) 10.0510 17.4088i 0.721618 1.24988i
\(195\) −1.24897 −0.0894406
\(196\) −2.30928 + 0.759842i −0.164948 + 0.0542744i
\(197\) −5.37464 −0.382927 −0.191464 0.981500i \(-0.561323\pi\)
−0.191464 + 0.981500i \(0.561323\pi\)
\(198\) 4.05303 7.02006i 0.288037 0.498894i
\(199\) −4.39053 7.60462i −0.311236 0.539077i 0.667394 0.744705i \(-0.267410\pi\)
−0.978630 + 0.205628i \(0.934076\pi\)
\(200\) −0.645430 1.11792i −0.0456388 0.0790487i
\(201\) −5.41147 + 9.37295i −0.381696 + 0.661117i
\(202\) 9.04189 0.636185
\(203\) −16.7738 + 13.6349i −1.17729 + 0.956982i
\(204\) −3.92127 −0.274544
\(205\) −0.500000 + 0.866025i −0.0349215 + 0.0604858i
\(206\) 0.705737 + 1.22237i 0.0491710 + 0.0851667i
\(207\) −22.1027 38.2829i −1.53624 2.66085i
\(208\) −0.422618 + 0.731997i −0.0293033 + 0.0507548i
\(209\) 0.773318 0.0534916
\(210\) −4.33615 27.0515i −0.299223 1.86673i
\(211\) 4.24123 0.291978 0.145989 0.989286i \(-0.453364\pi\)
0.145989 + 0.989286i \(0.453364\pi\)
\(212\) −1.13816 + 1.97134i −0.0781689 + 0.135392i
\(213\) 14.3478 + 24.8511i 0.983093 + 1.70277i
\(214\) −7.92649 13.7291i −0.541844 0.938501i
\(215\) −1.39053 + 2.40847i −0.0948333 + 0.164256i
\(216\) 16.7023 1.13645
\(217\) −6.55690 2.50297i −0.445112 0.169913i
\(218\) −0.728741 −0.0493566
\(219\) −0.173648 + 0.300767i −0.0117341 + 0.0203240i
\(220\) −0.407604 0.705990i −0.0274806 0.0475979i
\(221\) −0.362311 0.627541i −0.0243717 0.0422130i
\(222\) −15.0496 + 26.0667i −1.01007 + 1.74948i
\(223\) −18.0351 −1.20772 −0.603859 0.797091i \(-0.706371\pi\)
−0.603859 + 0.797091i \(0.706371\pi\)
\(224\) −4.80406 1.83386i −0.320985 0.122530i
\(225\) 2.69728 0.179819
\(226\) −2.40760 + 4.17009i −0.160151 + 0.277390i
\(227\) −9.10266 15.7663i −0.604165 1.04644i −0.992183 0.124793i \(-0.960173\pi\)
0.388018 0.921652i \(-0.373160\pi\)
\(228\) −0.386659 0.669713i −0.0256071 0.0443529i
\(229\) −9.62061 + 16.6634i −0.635748 + 1.10115i 0.350608 + 0.936522i \(0.385975\pi\)
−0.986356 + 0.164626i \(0.947358\pi\)
\(230\) −30.0469 −1.98124
\(231\) 1.20574 + 7.52211i 0.0793317 + 0.494919i
\(232\) −20.6878 −1.35822
\(233\) −4.66250 + 8.07569i −0.305451 + 0.529056i −0.977362 0.211576i \(-0.932140\pi\)
0.671911 + 0.740632i \(0.265474\pi\)
\(234\) −0.748970 1.29725i −0.0489617 0.0848042i
\(235\) 9.01367 + 15.6121i 0.587987 + 1.01842i
\(236\) −0.0354925 + 0.0614747i −0.00231036 + 0.00400166i
\(237\) 0.943563 0.0612910
\(238\) 12.3341 10.0260i 0.799500 0.649889i
\(239\) 11.1898 0.723811 0.361905 0.932215i \(-0.382126\pi\)
0.361905 + 0.932215i \(0.382126\pi\)
\(240\) 15.4572 26.7727i 0.997760 1.72817i
\(241\) −10.1022 17.4975i −0.650740 1.12711i −0.982944 0.183907i \(-0.941126\pi\)
0.332204 0.943208i \(-0.392208\pi\)
\(242\) 0.766044 + 1.32683i 0.0492432 + 0.0852917i
\(243\) 5.40167 9.35597i 0.346518 0.600186i
\(244\) 5.06418 0.324201
\(245\) 12.2515 + 10.9490i 0.782719 + 0.699507i
\(246\) −1.87939 −0.119825
\(247\) 0.0714517 0.123758i 0.00454636 0.00787453i
\(248\) −3.35844 5.81699i −0.213261 0.369379i
\(249\) −4.83022 8.36619i −0.306103 0.530186i
\(250\) −8.07398 + 13.9845i −0.510643 + 0.884460i
\(251\) −5.89218 −0.371911 −0.185956 0.982558i \(-0.559538\pi\)
−0.185956 + 0.982558i \(0.559538\pi\)
\(252\) 3.77244 3.06650i 0.237641 0.193171i
\(253\) 8.35504 0.525277
\(254\) −0.341367 + 0.591264i −0.0214192 + 0.0370992i
\(255\) 13.2515 + 22.9523i 0.829841 + 1.43733i
\(256\) −4.04916 7.01336i −0.253073 0.438335i
\(257\) 1.36824 2.36986i 0.0853485 0.147828i −0.820191 0.572090i \(-0.806133\pi\)
0.905540 + 0.424262i \(0.139466\pi\)
\(258\) −5.22668 −0.325399
\(259\) −2.85710 17.8243i −0.177531 1.10755i
\(260\) −0.150644 −0.00934256
\(261\) 21.6138 37.4362i 1.33786 2.31724i
\(262\) −9.25877 16.0367i −0.572009 0.990748i
\(263\) −3.09879 5.36727i −0.191080 0.330960i 0.754529 0.656267i \(-0.227866\pi\)
−0.945608 + 0.325307i \(0.894532\pi\)
\(264\) −3.64543 + 6.31407i −0.224361 + 0.388604i
\(265\) 15.3851 0.945097
\(266\) 2.92855 + 1.11792i 0.179561 + 0.0685439i
\(267\) −13.3969 −0.819879
\(268\) −0.652704 + 1.13052i −0.0398702 + 0.0690572i
\(269\) 2.10472 + 3.64549i 0.128327 + 0.222269i 0.923029 0.384731i \(-0.125706\pi\)
−0.794701 + 0.607001i \(0.792373\pi\)
\(270\) 11.8610 + 20.5438i 0.721835 + 1.25026i
\(271\) −12.7909 + 22.1544i −0.776989 + 1.34579i 0.156680 + 0.987649i \(0.449921\pi\)
−0.933670 + 0.358136i \(0.883413\pi\)
\(272\) 17.9358 1.08752
\(273\) 1.31521 + 0.502055i 0.0796000 + 0.0303858i
\(274\) 25.0469 1.51314
\(275\) −0.254900 + 0.441500i −0.0153711 + 0.0266234i
\(276\) −4.17752 7.23567i −0.251457 0.435536i
\(277\) 7.67886 + 13.3002i 0.461378 + 0.799130i 0.999030 0.0440366i \(-0.0140218\pi\)
−0.537652 + 0.843167i \(0.680688\pi\)
\(278\) −15.8799 + 27.5047i −0.952410 + 1.64962i
\(279\) 14.0351 0.840258
\(280\) 2.48886 + 15.5270i 0.148738 + 0.927915i
\(281\) 19.2540 1.14860 0.574299 0.818645i \(-0.305275\pi\)
0.574299 + 0.818645i \(0.305275\pi\)
\(282\) −16.9402 + 29.3412i −1.00877 + 1.74724i
\(283\) 13.5326 + 23.4391i 0.804427 + 1.39331i 0.916677 + 0.399628i \(0.130861\pi\)
−0.112250 + 0.993680i \(0.535806\pi\)
\(284\) 1.73055 + 2.99740i 0.102689 + 0.177863i
\(285\) −2.61334 + 4.52644i −0.154801 + 0.268123i
\(286\) 0.283119 0.0167412
\(287\) 0.874638 0.710966i 0.0516282 0.0419670i
\(288\) 10.2831 0.605939
\(289\) 0.811804 1.40609i 0.0477532 0.0827109i
\(290\) −14.6912 25.4459i −0.862696 1.49423i
\(291\) −18.8897 32.7178i −1.10733 1.91795i
\(292\) −0.0209445 + 0.0362770i −0.00122569 + 0.00212295i
\(293\) 4.03508 0.235732 0.117866 0.993030i \(-0.462395\pi\)
0.117866 + 0.993030i \(0.462395\pi\)
\(294\) −6.30793 + 30.2292i −0.367886 + 1.76300i
\(295\) 0.479771 0.0279333
\(296\) 8.63816 14.9617i 0.502083 0.869633i
\(297\) −3.29813 5.71253i −0.191377 0.331475i
\(298\) −0.547104 0.947611i −0.0316929 0.0548936i
\(299\) 0.771974 1.33710i 0.0446444 0.0773264i
\(300\) 0.509800 0.0294333
\(301\) 2.43242 1.97724i 0.140202 0.113966i
\(302\) 14.6236 0.841494
\(303\) 8.49660 14.7165i 0.488117 0.845443i
\(304\) 1.76857 + 3.06325i 0.101434 + 0.175690i
\(305\) −17.1138 29.6420i −0.979934 1.69730i
\(306\) −15.8931 + 27.5276i −0.908546 + 1.57365i
\(307\) 2.92902 0.167168 0.0835839 0.996501i \(-0.473363\pi\)
0.0835839 + 0.996501i \(0.473363\pi\)
\(308\) 0.145430 + 0.907278i 0.00828663 + 0.0516970i
\(309\) 2.65270 0.150907
\(310\) 4.76991 8.26173i 0.270913 0.469235i
\(311\) −7.81180 13.5304i −0.442967 0.767241i 0.554941 0.831889i \(-0.312741\pi\)
−0.997908 + 0.0646486i \(0.979407\pi\)
\(312\) 0.673648 + 1.16679i 0.0381378 + 0.0660566i
\(313\) 10.9880 19.0317i 0.621077 1.07574i −0.368208 0.929743i \(-0.620029\pi\)
0.989285 0.145994i \(-0.0466380\pi\)
\(314\) −14.1584 −0.799004
\(315\) −30.6976 11.7182i −1.72961 0.660247i
\(316\) 0.113808 0.00640218
\(317\) 1.50593 2.60835i 0.0845814 0.146499i −0.820631 0.571458i \(-0.806378\pi\)
0.905213 + 0.424959i \(0.139711\pi\)
\(318\) 14.4572 + 25.0407i 0.810721 + 1.40421i
\(319\) 4.08512 + 7.07564i 0.228723 + 0.396160i
\(320\) −7.24170 + 12.5430i −0.404823 + 0.701174i
\(321\) −29.7939 −1.66293
\(322\) 31.6404 + 12.0781i 1.76325 + 0.673088i
\(323\) −3.03239 −0.168727
\(324\) −0.541889 + 0.938579i −0.0301049 + 0.0521433i
\(325\) 0.0471036 + 0.0815859i 0.00261284 + 0.00452557i
\(326\) −6.74376 11.6805i −0.373502 0.646925i
\(327\) −0.684793 + 1.18610i −0.0378691 + 0.0655912i
\(328\) 1.07873 0.0595627
\(329\) −3.21600 20.0634i −0.177304 1.10613i
\(330\) −10.3550 −0.570026
\(331\) −13.7344 + 23.7887i −0.754912 + 1.30755i 0.190506 + 0.981686i \(0.438987\pi\)
−0.945418 + 0.325860i \(0.894346\pi\)
\(332\) −0.582596 1.00909i −0.0319741 0.0553808i
\(333\) 18.0496 + 31.2629i 0.989114 + 1.71320i
\(334\) 6.42127 11.1220i 0.351356 0.608567i
\(335\) 8.82295 0.482049
\(336\) −27.0390 + 21.9791i −1.47510 + 1.19906i
\(337\) 17.2422 0.939240 0.469620 0.882869i \(-0.344391\pi\)
0.469620 + 0.882869i \(0.344391\pi\)
\(338\) −9.93242 + 17.2035i −0.540252 + 0.935745i
\(339\) 4.52481 + 7.83721i 0.245754 + 0.425659i
\(340\) 1.59833 + 2.76838i 0.0866814 + 0.150137i
\(341\) −1.32635 + 2.29731i −0.0718260 + 0.124406i
\(342\) −6.26857 −0.338965
\(343\) −8.50000 16.4545i −0.458957 0.888459i
\(344\) 3.00000 0.161749
\(345\) −28.2349 + 48.9043i −1.52012 + 2.63292i
\(346\) 4.17159 + 7.22540i 0.224266 + 0.388440i
\(347\) 5.71554 + 9.89960i 0.306826 + 0.531438i 0.977666 0.210164i \(-0.0673997\pi\)
−0.670840 + 0.741602i \(0.734066\pi\)
\(348\) 4.08512 7.07564i 0.218986 0.379294i
\(349\) 28.3209 1.51598 0.757991 0.652265i \(-0.226181\pi\)
0.757991 + 0.652265i \(0.226181\pi\)
\(350\) −1.60354 + 1.30347i −0.0857129 + 0.0696734i
\(351\) −1.21894 −0.0650622
\(352\) −0.971782 + 1.68317i −0.0517961 + 0.0897135i
\(353\) −8.21806 14.2341i −0.437403 0.757605i 0.560085 0.828435i \(-0.310768\pi\)
−0.997488 + 0.0708303i \(0.977435\pi\)
\(354\) 0.450837 + 0.780873i 0.0239617 + 0.0415029i
\(355\) 11.6964 20.2588i 0.620781 1.07522i
\(356\) −1.61587 −0.0856408
\(357\) −4.72803 29.4963i −0.250234 1.56111i
\(358\) 15.4611 0.817145
\(359\) −12.4315 + 21.5321i −0.656112 + 1.13642i 0.325502 + 0.945541i \(0.394467\pi\)
−0.981614 + 0.190877i \(0.938867\pi\)
\(360\) −15.7233 27.2335i −0.828690 1.43533i
\(361\) 9.20099 + 15.9366i 0.484263 + 0.838767i
\(362\) 15.2285 26.3765i 0.800392 1.38632i
\(363\) 2.87939 0.151129
\(364\) 0.158633 + 0.0605553i 0.00831465 + 0.00317396i
\(365\) 0.283119 0.0148191
\(366\) 32.1634 55.7087i 1.68121 2.91194i
\(367\) −2.14930 3.72270i −0.112193 0.194323i 0.804461 0.594005i \(-0.202454\pi\)
−0.916654 + 0.399682i \(0.869121\pi\)
\(368\) 19.1079 + 33.0958i 0.996067 + 1.72524i
\(369\) −1.12701 + 1.95204i −0.0586699 + 0.101619i
\(370\) 24.5371 1.27563
\(371\) −16.2010 6.18442i −0.841113 0.321079i
\(372\) 2.65270 0.137536
\(373\) 1.36484 2.36397i 0.0706686 0.122402i −0.828526 0.559951i \(-0.810820\pi\)
0.899195 + 0.437549i \(0.144153\pi\)
\(374\) −3.00387 5.20286i −0.155326 0.269033i
\(375\) 15.1741 + 26.2823i 0.783588 + 1.35721i
\(376\) 9.72328 16.8412i 0.501440 0.868519i
\(377\) 1.50980 0.0777587
\(378\) −4.23190 26.4011i −0.217665 1.35793i
\(379\) −16.4584 −0.845412 −0.422706 0.906267i \(-0.638920\pi\)
−0.422706 + 0.906267i \(0.638920\pi\)
\(380\) −0.315207 + 0.545955i −0.0161698 + 0.0280069i
\(381\) 0.641559 + 1.11121i 0.0328681 + 0.0569292i
\(382\) −19.4461 33.6816i −0.994948 1.72330i
\(383\) 3.92989 6.80677i 0.200808 0.347810i −0.747981 0.663720i \(-0.768977\pi\)
0.948789 + 0.315910i \(0.102310\pi\)
\(384\) −38.4124 −1.96022
\(385\) 4.81908 3.91728i 0.245603 0.199643i
\(386\) 11.8452 0.602907
\(387\) −3.13429 + 5.42874i −0.159325 + 0.275958i
\(388\) −2.27837 3.94625i −0.115667 0.200341i
\(389\) −4.82160 8.35126i −0.244465 0.423426i 0.717516 0.696542i \(-0.245279\pi\)
−0.961981 + 0.273116i \(0.911946\pi\)
\(390\) −0.956767 + 1.65717i −0.0484478 + 0.0839140i
\(391\) −32.7624 −1.65687
\(392\) 3.62061 17.3509i 0.182869 0.876352i
\(393\) −34.8016 −1.75551
\(394\) −4.11721 + 7.13122i −0.207422 + 0.359266i
\(395\) −0.384600 0.666146i −0.0193513 0.0335175i
\(396\) −0.918748 1.59132i −0.0461688 0.0799668i
\(397\) 4.71688 8.16988i 0.236733 0.410034i −0.723042 0.690805i \(-0.757257\pi\)
0.959775 + 0.280770i \(0.0905898\pi\)
\(398\) −13.4534 −0.674356
\(399\) 4.57145 3.71599i 0.228859 0.186032i
\(400\) −2.33181 −0.116591
\(401\) 9.10994 15.7789i 0.454929 0.787959i −0.543756 0.839244i \(-0.682998\pi\)
0.998684 + 0.0512843i \(0.0163315\pi\)
\(402\) 8.29086 + 14.3602i 0.413510 + 0.716221i
\(403\) 0.245100 + 0.424525i 0.0122093 + 0.0211471i
\(404\) 1.02481 1.77503i 0.0509864 0.0883111i
\(405\) 7.32501 0.363983
\(406\) 5.24170 + 32.7009i 0.260141 + 1.62292i
\(407\) −6.82295 −0.338201
\(408\) 14.2947 24.7592i 0.707695 1.22576i
\(409\) −3.20574 5.55250i −0.158513 0.274553i 0.775819 0.630955i \(-0.217337\pi\)
−0.934333 + 0.356402i \(0.884003\pi\)
\(410\) 0.766044 + 1.32683i 0.0378322 + 0.0655274i
\(411\) 23.5364 40.7663i 1.16097 2.01085i
\(412\) 0.319955 0.0157631
\(413\) −0.505215 0.192856i −0.0248600 0.00948982i
\(414\) −67.7265 −3.32858
\(415\) −3.93763 + 6.82018i −0.193291 + 0.334790i
\(416\) 0.179578 + 0.311038i 0.00880453 + 0.0152499i
\(417\) 29.8444 + 51.6919i 1.46148 + 2.53137i
\(418\) 0.592396 1.02606i 0.0289750 0.0501863i
\(419\) 1.62092 0.0791871 0.0395935 0.999216i \(-0.487394\pi\)
0.0395935 + 0.999216i \(0.487394\pi\)
\(420\) −5.80200 2.21480i −0.283109 0.108071i
\(421\) 31.1489 1.51810 0.759052 0.651030i \(-0.225663\pi\)
0.759052 + 0.651030i \(0.225663\pi\)
\(422\) 3.24897 5.62738i 0.158157 0.273937i
\(423\) 20.3170 + 35.1901i 0.987847 + 1.71100i
\(424\) −8.29813 14.3728i −0.402993 0.698004i
\(425\) 0.999533 1.73124i 0.0484845 0.0839776i
\(426\) 43.9641 2.13007
\(427\) 6.10607 + 38.0933i 0.295493 + 1.84347i
\(428\) −3.59358 −0.173702
\(429\) 0.266044 0.460802i 0.0128447 0.0222478i
\(430\) 2.13041 + 3.68999i 0.102738 + 0.177947i
\(431\) −17.1040 29.6250i −0.823871 1.42699i −0.902779 0.430105i \(-0.858477\pi\)
0.0789080 0.996882i \(-0.474857\pi\)
\(432\) 15.0856 26.1290i 0.725806 1.25713i
\(433\) −20.4979 −0.985068 −0.492534 0.870293i \(-0.663929\pi\)
−0.492534 + 0.870293i \(0.663929\pi\)
\(434\) −8.34389 + 6.78250i −0.400520 + 0.325570i
\(435\) −55.2208 −2.64764
\(436\) −0.0825961 + 0.143061i −0.00395564 + 0.00685136i
\(437\) −3.23055 5.59548i −0.154538 0.267668i
\(438\) 0.266044 + 0.460802i 0.0127121 + 0.0220180i
\(439\) −15.6609 + 27.1255i −0.747455 + 1.29463i 0.201585 + 0.979471i \(0.435391\pi\)
−0.949039 + 0.315158i \(0.897942\pi\)
\(440\) 5.94356 0.283348
\(441\) 27.6152 + 24.6793i 1.31501 + 1.17521i
\(442\) −1.11019 −0.0528061
\(443\) 14.6989 25.4593i 0.698367 1.20961i −0.270665 0.962674i \(-0.587244\pi\)
0.969032 0.246934i \(-0.0794231\pi\)
\(444\) 3.41147 + 5.90885i 0.161901 + 0.280421i
\(445\) 5.46064 + 9.45810i 0.258859 + 0.448357i
\(446\) −13.8157 + 23.9294i −0.654191 + 1.13309i
\(447\) −2.05644 −0.0972661
\(448\) 12.6677 10.2972i 0.598493 0.486497i
\(449\) −6.90074 −0.325666 −0.162833 0.986654i \(-0.552063\pi\)
−0.162833 + 0.986654i \(0.552063\pi\)
\(450\) 2.06624 3.57883i 0.0974034 0.168708i
\(451\) −0.213011 0.368946i −0.0100303 0.0173730i
\(452\) 0.545759 + 0.945283i 0.0256704 + 0.0444624i
\(453\) 13.7417 23.8013i 0.645641 1.11828i
\(454\) −27.8922 −1.30904
\(455\) −0.181637 1.13316i −0.00851529 0.0531235i
\(456\) 5.63816 0.264031
\(457\) −6.18732 + 10.7168i −0.289431 + 0.501308i −0.973674 0.227945i \(-0.926799\pi\)
0.684243 + 0.729254i \(0.260133\pi\)
\(458\) 14.7396 + 25.5298i 0.688738 + 1.19293i
\(459\) 12.9329 + 22.4004i 0.603655 + 1.04556i
\(460\) −3.40554 + 5.89858i −0.158784 + 0.275023i
\(461\) 20.0942 0.935881 0.467940 0.883760i \(-0.344996\pi\)
0.467940 + 0.883760i \(0.344996\pi\)
\(462\) 10.9042 + 4.16247i 0.507309 + 0.193656i
\(463\) 8.69190 0.403947 0.201974 0.979391i \(-0.435265\pi\)
0.201974 + 0.979391i \(0.435265\pi\)
\(464\) −18.6853 + 32.3638i −0.867441 + 1.50245i
\(465\) −8.96451 15.5270i −0.415719 0.720047i
\(466\) 7.14337 + 12.3727i 0.330910 + 0.573153i
\(467\) −2.38460 + 4.13025i −0.110346 + 0.191125i −0.915910 0.401384i \(-0.868529\pi\)
0.805564 + 0.592509i \(0.201863\pi\)
\(468\) −0.339556 −0.0156960
\(469\) −9.29086 3.54661i −0.429012 0.163767i
\(470\) 27.6195 1.27399
\(471\) −13.3045 + 23.0441i −0.613040 + 1.06182i
\(472\) −0.258770 0.448204i −0.0119109 0.0206302i
\(473\) −0.592396 1.02606i −0.0272384 0.0471783i
\(474\) 0.722811 1.25195i 0.0331998 0.0575038i
\(475\) 0.394238 0.0180889
\(476\) −0.570270 3.55769i −0.0261383 0.163066i
\(477\) 34.6783 1.58781
\(478\) 8.57192 14.8470i 0.392070 0.679086i
\(479\) 19.8071 + 34.3068i 0.905007 + 1.56752i 0.820907 + 0.571062i \(0.193468\pi\)
0.0841003 + 0.996457i \(0.473198\pi\)
\(480\) −6.56805 11.3762i −0.299789 0.519250i
\(481\) −0.630415 + 1.09191i −0.0287444 + 0.0497868i
\(482\) −30.9549 −1.40996
\(483\) 49.3906 40.1481i 2.24735 1.82680i
\(484\) 0.347296 0.0157862
\(485\) −15.3990 + 26.6718i −0.699232 + 1.21111i
\(486\) −8.27584 14.3342i −0.375400 0.650212i
\(487\) −2.57785 4.46496i −0.116813 0.202327i 0.801690 0.597740i \(-0.203935\pi\)
−0.918503 + 0.395414i \(0.870601\pi\)
\(488\) −18.4611 + 31.9756i −0.835695 + 1.44747i
\(489\) −25.3482 −1.14629
\(490\) 23.9127 7.86819i 1.08026 0.355449i
\(491\) 10.1925 0.459983 0.229991 0.973193i \(-0.426130\pi\)
0.229991 + 0.973193i \(0.426130\pi\)
\(492\) −0.213011 + 0.368946i −0.00960328 + 0.0166334i
\(493\) −16.0189 27.7455i −0.721454 1.24960i
\(494\) −0.109470 0.189608i −0.00492531 0.00853088i
\(495\) −6.20961 + 10.7554i −0.279101 + 0.483417i
\(496\) −12.1334 −0.544806
\(497\) −20.4602 + 16.6315i −0.917767 + 0.746024i
\(498\) −14.8007 −0.663233
\(499\) −2.94491 + 5.10073i −0.131832 + 0.228340i −0.924383 0.381466i \(-0.875419\pi\)
0.792551 + 0.609806i \(0.208753\pi\)
\(500\) 1.83022 + 3.17004i 0.0818500 + 0.141768i
\(501\) −12.0680 20.9025i −0.539161 0.933854i
\(502\) −4.51367 + 7.81791i −0.201455 + 0.348930i
\(503\) −12.8348 −0.572276 −0.286138 0.958188i \(-0.592372\pi\)
−0.286138 + 0.958188i \(0.592372\pi\)
\(504\) 5.60994 + 34.9982i 0.249886 + 1.55894i
\(505\) −13.8530 −0.616449
\(506\) 6.40033 11.0857i 0.284529 0.492819i
\(507\) 18.6668 + 32.3319i 0.829024 + 1.43591i
\(508\) 0.0773815 + 0.134029i 0.00343325 + 0.00594656i
\(509\) −16.1065 + 27.8973i −0.713910 + 1.23653i 0.249469 + 0.968383i \(0.419744\pi\)
−0.963379 + 0.268145i \(0.913589\pi\)
\(510\) 40.6049 1.79802
\(511\) −0.298133 0.113807i −0.0131886 0.00503451i
\(512\) 14.2736 0.630811
\(513\) −2.55051 + 4.41761i −0.112608 + 0.195042i
\(514\) −2.09627 3.63084i −0.0924624 0.160150i
\(515\) −1.08125 1.87278i −0.0476457 0.0825247i
\(516\) −0.592396 + 1.02606i −0.0260788 + 0.0451698i
\(517\) −7.68004 −0.337768
\(518\) −25.8384 9.86332i −1.13528 0.433370i
\(519\) 15.6800 0.688278
\(520\) 0.549163 0.951178i 0.0240824 0.0417119i
\(521\) −9.26399 16.0457i −0.405863 0.702975i 0.588559 0.808454i \(-0.299696\pi\)
−0.994421 + 0.105480i \(0.966362\pi\)
\(522\) −33.1143 57.3556i −1.44937 2.51039i
\(523\) 18.6211 32.2527i 0.814243 1.41031i −0.0956271 0.995417i \(-0.530486\pi\)
0.909870 0.414893i \(-0.136181\pi\)
\(524\) −4.19759 −0.183372
\(525\) 0.614685 + 3.83478i 0.0268271 + 0.167363i
\(526\) −9.49525 −0.414013
\(527\) 5.20099 9.00838i 0.226559 0.392411i
\(528\) 6.58512 + 11.4058i 0.286581 + 0.496372i
\(529\) −23.4033 40.5357i −1.01754 1.76242i
\(530\) 11.7856 20.4133i 0.511936 0.886699i
\(531\) 1.08141 0.0469294
\(532\) 0.551385 0.448204i 0.0239056 0.0194321i
\(533\) −0.0787257 −0.00340999
\(534\) −10.2626 + 17.7754i −0.444108 + 0.769217i
\(535\) 12.1441 + 21.0342i 0.525035 + 0.909387i
\(536\) −4.75877 8.24243i −0.205548 0.356019i
\(537\) 14.5287 25.1644i 0.626959 1.08592i
\(538\) 6.44924 0.278047
\(539\) −6.64930 + 2.18788i −0.286406 + 0.0942386i
\(540\) 5.37733 0.231403
\(541\) −18.0783 + 31.3126i −0.777247 + 1.34623i 0.156275 + 0.987714i \(0.450051\pi\)
−0.933523 + 0.358519i \(0.883282\pi\)
\(542\) 19.5967 + 33.9425i 0.841752 + 1.45796i
\(543\) −28.6202 49.5716i −1.22821 2.12732i
\(544\) 3.81062 6.60019i 0.163379 0.282981i
\(545\) 1.11650 0.0478254
\(546\) 1.67365 1.36046i 0.0716255 0.0582222i
\(547\) 12.7980 0.547202 0.273601 0.961843i \(-0.411785\pi\)
0.273601 + 0.961843i \(0.411785\pi\)
\(548\) 2.83884 4.91702i 0.121269 0.210045i
\(549\) −38.5749 66.8137i −1.64634 2.85154i
\(550\) 0.390530 + 0.676417i 0.0166522 + 0.0288425i
\(551\) 3.15910 5.47172i 0.134582 0.233103i
\(552\) 60.9154 2.59273
\(553\) 0.137222 + 0.856074i 0.00583528 + 0.0364040i
\(554\) 23.5294 0.999668
\(555\) 23.0574 39.9365i 0.978731 1.69521i
\(556\) 3.59967 + 6.23481i 0.152660 + 0.264415i
\(557\) 15.3293 + 26.5512i 0.649525 + 1.12501i 0.983236 + 0.182335i \(0.0583656\pi\)
−0.333711 + 0.942675i \(0.608301\pi\)
\(558\) 10.7515 18.6221i 0.455147 0.788338i
\(559\) −0.218941 −0.00926021
\(560\) 26.5382 + 10.1305i 1.12145 + 0.428090i
\(561\) −11.2909 −0.476700
\(562\) 14.7494 25.5468i 0.622167 1.07763i
\(563\) 7.25237 + 12.5615i 0.305651 + 0.529403i 0.977406 0.211370i \(-0.0677926\pi\)
−0.671755 + 0.740773i \(0.734459\pi\)
\(564\) 3.84002 + 6.65111i 0.161694 + 0.280062i
\(565\) 3.68866 6.38895i 0.155183 0.268785i
\(566\) 41.4662 1.74295
\(567\) −7.71348 2.94447i −0.323936 0.123656i
\(568\) −25.2344 −1.05881
\(569\) −9.50253 + 16.4589i −0.398367 + 0.689991i −0.993525 0.113618i \(-0.963756\pi\)
0.595158 + 0.803609i \(0.297089\pi\)
\(570\) 4.00387 + 6.93491i 0.167704 + 0.290471i
\(571\) 10.5005 + 18.1873i 0.439431 + 0.761117i 0.997646 0.0685799i \(-0.0218468\pi\)
−0.558215 + 0.829696i \(0.688513\pi\)
\(572\) 0.0320889 0.0555796i 0.00134170 0.00232390i
\(573\) −73.0934 −3.05352
\(574\) −0.273318 1.70513i −0.0114081 0.0711705i
\(575\) 4.25940 0.177629
\(576\) −16.3229 + 28.2722i −0.680123 + 1.17801i
\(577\) 2.59374 + 4.49249i 0.107979 + 0.187025i 0.914951 0.403564i \(-0.132229\pi\)
−0.806973 + 0.590589i \(0.798895\pi\)
\(578\) −1.24376 2.15425i −0.0517334 0.0896049i
\(579\) 11.1309 19.2793i 0.462584 0.801218i
\(580\) −6.66044 −0.276560
\(581\) 6.88800 5.59905i 0.285763 0.232288i
\(582\) −57.8813 −2.39926
\(583\) −3.27719 + 5.67626i −0.135727 + 0.235087i
\(584\) −0.152704 0.264490i −0.00631892 0.0109447i
\(585\) 1.14749 + 1.98751i 0.0474428 + 0.0821734i
\(586\) 3.09105 5.35386i 0.127690 0.221166i
\(587\) 8.33813 0.344151 0.172076 0.985084i \(-0.444953\pi\)
0.172076 + 0.985084i \(0.444953\pi\)
\(588\) 5.21941 + 4.66452i 0.215245 + 0.192362i
\(589\) 2.05138 0.0845258
\(590\) 0.367526 0.636573i 0.0151308 0.0262073i
\(591\) 7.73783 + 13.4023i 0.318292 + 0.551297i
\(592\) −15.6040 27.0269i −0.641321 1.11080i
\(593\) −3.05097 + 5.28444i −0.125288 + 0.217006i −0.921846 0.387557i \(-0.873319\pi\)
0.796557 + 0.604563i \(0.206652\pi\)
\(594\) −10.1061 −0.414657
\(595\) −18.8969 + 15.3607i −0.774698 + 0.629729i
\(596\) −0.248037 −0.0101600
\(597\) −12.6420 + 21.8966i −0.517404 + 0.896169i
\(598\) −1.18273 2.04855i −0.0483656 0.0837716i
\(599\) 6.92514 + 11.9947i 0.282954 + 0.490090i 0.972111 0.234522i \(-0.0753524\pi\)
−0.689157 + 0.724612i \(0.742019\pi\)
\(600\) −1.85844 + 3.21891i −0.0758705 + 0.131412i
\(601\) 31.2695 1.27551 0.637755 0.770239i \(-0.279863\pi\)
0.637755 + 0.770239i \(0.279863\pi\)
\(602\) −0.760115 4.74205i −0.0309800 0.193272i
\(603\) 19.8871 0.809866
\(604\) 1.65745 2.87079i 0.0674407 0.116811i
\(605\) −1.17365 2.03282i −0.0477156 0.0826458i
\(606\) −13.0175 22.5470i −0.528801 0.915911i
\(607\) −18.8981 + 32.7325i −0.767051 + 1.32857i 0.172105 + 0.985079i \(0.444943\pi\)
−0.939156 + 0.343492i \(0.888390\pi\)
\(608\) 1.50299 0.0609544
\(609\) 58.1494 + 22.1974i 2.35633 + 0.899484i
\(610\) −52.4397 −2.12322
\(611\) −0.709607 + 1.22908i −0.0287076 + 0.0497231i
\(612\) 3.60266 + 6.24000i 0.145629 + 0.252237i
\(613\) −10.5672 18.3029i −0.426804 0.739246i 0.569783 0.821795i \(-0.307027\pi\)
−0.996587 + 0.0825490i \(0.973694\pi\)
\(614\) 2.24376 3.88630i 0.0905506 0.156838i
\(615\) 2.87939 0.116108
\(616\) −6.25877 2.38917i −0.252173 0.0962622i
\(617\) 23.7743 0.957115 0.478558 0.878056i \(-0.341160\pi\)
0.478558 + 0.878056i \(0.341160\pi\)
\(618\) 2.03209 3.51968i 0.0817426 0.141582i
\(619\) −6.75103 11.6931i −0.271347 0.469986i 0.697860 0.716234i \(-0.254136\pi\)
−0.969207 + 0.246248i \(0.920802\pi\)
\(620\) −1.08125 1.87278i −0.0434241 0.0752128i
\(621\) −27.5560 + 47.7284i −1.10579 + 1.91528i
\(622\) −23.9368 −0.959776
\(623\) −1.94831 12.1547i −0.0780574 0.486969i
\(624\) 2.43376 0.0974285
\(625\) 13.6446 23.6331i 0.545782 0.945322i
\(626\) −16.8346 29.1583i −0.672844 1.16540i
\(627\) −1.11334 1.92836i −0.0444625 0.0770114i
\(628\) −1.60472 + 2.77946i −0.0640354 + 0.110913i
\(629\) 26.7547 1.06678
\(630\) −39.0638 + 31.7537i −1.55634 + 1.26510i
\(631\) −38.2354 −1.52213 −0.761063 0.648678i \(-0.775322\pi\)
−0.761063 + 0.648678i \(0.775322\pi\)
\(632\) −0.414878 + 0.718589i −0.0165029 + 0.0285839i
\(633\) −6.10607 10.5760i −0.242694 0.420359i
\(634\) −2.30722 3.99622i −0.0916313 0.158710i
\(635\) 0.523004 0.905869i 0.0207548 0.0359483i
\(636\) 6.55438 0.259898
\(637\) −0.264233 + 1.26627i −0.0104693 + 0.0501715i
\(638\) 12.5175 0.495574
\(639\) 26.3640 45.6637i 1.04294 1.80643i
\(640\) 15.6570 + 27.1188i 0.618899 + 1.07196i
\(641\) −19.2777 33.3899i −0.761422 1.31882i −0.942118 0.335282i \(-0.891168\pi\)
0.180696 0.983539i \(-0.442165\pi\)
\(642\) −22.8234 + 39.5313i −0.900768 + 1.56018i
\(643\) 19.2627 0.759647 0.379823 0.925059i \(-0.375985\pi\)
0.379823 + 0.925059i \(0.375985\pi\)
\(644\) 5.95723 4.84245i 0.234748 0.190819i
\(645\) 8.00774 0.315304
\(646\) −2.32295 + 4.02346i −0.0913952 + 0.158301i
\(647\) −19.8922 34.4543i −0.782042 1.35454i −0.930750 0.365656i \(-0.880845\pi\)
0.148708 0.988881i \(-0.452489\pi\)
\(648\) −3.95084 6.84305i −0.155204 0.268820i
\(649\) −0.102196 + 0.177009i −0.00401156 + 0.00694823i
\(650\) 0.144334 0.00566124
\(651\) 3.19846 + 19.9539i 0.125358 + 0.782057i
\(652\) −3.05737 −0.119736
\(653\) −2.38326 + 4.12792i −0.0932640 + 0.161538i −0.908883 0.417052i \(-0.863063\pi\)
0.815619 + 0.578590i \(0.196397\pi\)
\(654\) 1.04916 + 1.81720i 0.0410255 + 0.0710583i
\(655\) 14.1853 + 24.5696i 0.554264 + 0.960013i
\(656\) 0.974308 1.68755i 0.0380403 0.0658878i
\(657\) 0.638156 0.0248968
\(658\) −29.0842 11.1024i −1.13382 0.432815i
\(659\) −38.3550 −1.49410 −0.747050 0.664768i \(-0.768530\pi\)
−0.747050 + 0.664768i \(0.768530\pi\)
\(660\) −1.17365 + 2.03282i −0.0456842 + 0.0791273i
\(661\) 5.18139 + 8.97443i 0.201533 + 0.349065i 0.949022 0.315208i \(-0.102074\pi\)
−0.747490 + 0.664273i \(0.768741\pi\)
\(662\) 21.0424 + 36.4464i 0.817834 + 1.41653i
\(663\) −1.04323 + 1.80693i −0.0405158 + 0.0701755i
\(664\) 8.49525 0.329680
\(665\) −4.48680 1.71275i −0.173990 0.0664175i
\(666\) 55.3073 2.14311
\(667\) 34.1313 59.1172i 1.32157 2.28903i
\(668\) −1.45558 2.52115i −0.0563183 0.0975461i
\(669\) 25.9650 + 44.9727i 1.00386 + 1.73874i
\(670\) 6.75877 11.7065i 0.261114 0.452263i
\(671\) 14.5817 0.562921
\(672\) 2.34343 + 14.6197i 0.0903996 + 0.563967i
\(673\) −25.6168 −0.987455 −0.493728 0.869617i \(-0.664366\pi\)
−0.493728 + 0.869617i \(0.664366\pi\)
\(674\) 13.2083 22.8774i 0.508763 0.881204i
\(675\) −1.68139 2.91225i −0.0647167 0.112093i
\(676\) 2.25150 + 3.89971i 0.0865960 + 0.149989i
\(677\) −20.9187 + 36.2323i −0.803973 + 1.39252i 0.113010 + 0.993594i \(0.463951\pi\)
−0.916982 + 0.398928i \(0.869382\pi\)
\(678\) 13.8648 0.532476
\(679\) 26.9371 21.8963i 1.03375 0.840303i
\(680\) −23.3063 −0.893757
\(681\) −26.2101 + 45.3972i −1.00437 + 1.73962i
\(682\) 2.03209 + 3.51968i 0.0778127 + 0.134776i
\(683\) 23.0214 + 39.8743i 0.880890 + 1.52575i 0.850353 + 0.526212i \(0.176388\pi\)
0.0305366 + 0.999534i \(0.490278\pi\)
\(684\) −0.710485 + 1.23060i −0.0271661 + 0.0470530i
\(685\) −38.3741 −1.46620
\(686\) −28.3436 1.32683i −1.08217 0.0506585i
\(687\) 55.4029 2.11375
\(688\) 2.70961 4.69318i 0.103303 0.178926i
\(689\) 0.605600 + 1.04893i 0.0230715 + 0.0399611i
\(690\) 43.2584 + 74.9257i 1.64682 + 2.85237i
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 1.89124 0.0718943
\(693\) 10.8623 8.82964i 0.412625 0.335410i
\(694\) 17.5134 0.664800
\(695\) 24.3293 42.1397i 0.922865 1.59845i
\(696\) 29.7841 + 51.5875i 1.12896 + 1.95542i
\(697\) 0.835275 + 1.44674i 0.0316383 + 0.0547991i
\(698\) 21.6951 37.5769i 0.821170 1.42231i
\(699\) 26.8503 1.01557
\(700\) 0.0741401 + 0.462531i 0.00280223 + 0.0174820i
\(701\) −32.8144 −1.23938 −0.619691 0.784846i \(-0.712742\pi\)
−0.619691 + 0.784846i \(0.712742\pi\)
\(702\) −0.933763 + 1.61732i −0.0352426 + 0.0610420i
\(703\) 2.63816 + 4.56942i 0.0994999 + 0.172339i
\(704\) −3.08512 5.34359i −0.116275 0.201394i
\(705\) 25.9538 44.9534i 0.977478 1.69304i
\(706\) −25.1816 −0.947722
\(707\) 14.5876 + 5.56855i 0.548625 + 0.209427i
\(708\) 0.204393 0.00768156
\(709\) −3.70099 + 6.41030i −0.138994 + 0.240744i −0.927116 0.374775i \(-0.877720\pi\)
0.788122 + 0.615519i \(0.211053\pi\)
\(710\) −17.9199 31.0382i −0.672523 1.16484i
\(711\) −0.866897 1.50151i −0.0325112 0.0563110i
\(712\) 5.89053 10.2027i 0.220757 0.382362i
\(713\) 22.1634 0.830027
\(714\) −42.7584 16.3222i −1.60019 0.610842i
\(715\) −0.433763 −0.0162218
\(716\) 1.75237 3.03520i 0.0654893 0.113431i
\(717\) −16.1099 27.9032i −0.601637 1.04207i
\(718\) 19.0462 + 32.9890i 0.710799 + 1.23114i
\(719\) 7.06851 12.2430i 0.263611 0.456588i −0.703588 0.710608i \(-0.748420\pi\)
0.967199 + 0.254021i \(0.0817531\pi\)
\(720\) −56.8052 −2.11701
\(721\) 0.385782 + 2.40674i 0.0143673 + 0.0896317i
\(722\) 28.1935 1.04925
\(723\) −29.0881 + 50.3821i −1.08180 + 1.87373i
\(724\) −3.45202 5.97907i −0.128293 0.222210i
\(725\) 2.08260 + 3.60716i 0.0773457 + 0.133967i
\(726\) 2.20574 3.82045i 0.0818626 0.141790i
\(727\) 15.2790 0.566667 0.283333 0.959021i \(-0.408560\pi\)
0.283333 + 0.959021i \(0.408560\pi\)
\(728\) −0.960637 + 0.780873i −0.0356036 + 0.0289411i
\(729\) −40.4688 −1.49885
\(730\) 0.216881 0.375650i 0.00802714 0.0139034i
\(731\) 2.32295 + 4.02346i 0.0859173 + 0.148813i
\(732\) −7.29086 12.6281i −0.269478 0.466749i
\(733\) −0.672466 + 1.16475i −0.0248381 + 0.0430209i −0.878177 0.478335i \(-0.841240\pi\)
0.853339 + 0.521356i \(0.174574\pi\)
\(734\) −6.58584 −0.243088
\(735\) 9.66431 46.3138i 0.356474 1.70831i
\(736\) 16.2385 0.598561
\(737\) −1.87939 + 3.25519i −0.0692280 + 0.119906i
\(738\) 1.72668 + 2.99070i 0.0635600 + 0.110089i
\(739\) 12.8268 + 22.2167i 0.471842 + 0.817255i 0.999481 0.0322142i \(-0.0102559\pi\)
−0.527639 + 0.849469i \(0.676923\pi\)
\(740\) 2.78106 4.81694i 0.102234 0.177074i
\(741\) −0.411474 −0.0151159
\(742\) −20.6163 + 16.7584i −0.756849 + 0.615220i
\(743\) −6.08109 −0.223094 −0.111547 0.993759i \(-0.535580\pi\)
−0.111547 + 0.993759i \(0.535580\pi\)
\(744\) −9.67024 + 16.7494i −0.354528 + 0.614061i
\(745\) 0.838211 + 1.45182i 0.0307097 + 0.0531907i
\(746\) −2.09105 3.62181i −0.0765589 0.132604i
\(747\) −8.87551 + 15.3728i −0.324738 + 0.562463i
\(748\) −1.36184 −0.0497940
\(749\) −4.33291 27.0313i −0.158321 0.987703i
\(750\) 46.4962 1.69780
\(751\) −10.4054 + 18.0227i −0.379698 + 0.657656i −0.991018 0.133727i \(-0.957305\pi\)
0.611320 + 0.791383i \(0.290639\pi\)
\(752\) −17.5642 30.4220i −0.640500 1.10938i
\(753\) 8.48293 + 14.6929i 0.309135 + 0.535438i
\(754\) 1.15657 2.00324i 0.0421199 0.0729539i
\(755\) −22.4047 −0.815389
\(756\) −5.66250 2.16155i −0.205943 0.0786149i
\(757\) −5.25402 −0.190961 −0.0954804 0.995431i \(-0.530439\pi\)
−0.0954804 + 0.995431i \(0.530439\pi\)
\(758\) −12.6079 + 21.8375i −0.457939 + 0.793173i
\(759\) −12.0287 20.8343i −0.436614 0.756237i
\(760\) −2.29813 3.98048i −0.0833621 0.144387i
\(761\) 20.4907 35.4909i 0.742786 1.28654i −0.208436 0.978036i \(-0.566837\pi\)
0.951222 0.308507i \(-0.0998294\pi\)
\(762\) 1.96585 0.0712153
\(763\) −1.17571 0.448804i −0.0425635 0.0162478i
\(764\) −8.81614 −0.318957
\(765\) 24.3496 42.1747i 0.880361 1.52483i
\(766\) −6.02094 10.4286i −0.217546 0.376800i
\(767\) 0.0188851 + 0.0327100i 0.000681903 + 0.00118109i
\(768\) −11.6591 + 20.1942i −0.420712 + 0.728694i
\(769\) 47.5580 1.71499 0.857493 0.514496i \(-0.172021\pi\)
0.857493 + 0.514496i \(0.172021\pi\)
\(770\) −1.50593 9.39490i −0.0542699 0.338569i
\(771\) −7.87939 −0.283769
\(772\) 1.34255 2.32536i 0.0483194 0.0836916i
\(773\) −10.2464 17.7474i −0.368539 0.638328i 0.620798 0.783970i \(-0.286809\pi\)
−0.989337 + 0.145642i \(0.953475\pi\)
\(774\) 4.80200 + 8.31731i 0.172604 + 0.298960i
\(775\) −0.676174 + 1.17117i −0.0242889 + 0.0420696i
\(776\) 33.2226 1.19262
\(777\) −40.3337 + 32.7860i −1.44696 + 1.17619i
\(778\) −14.7743 −0.529683
\(779\) −0.164725 + 0.285313i −0.00590190 + 0.0102224i
\(780\) 0.216881 + 0.375650i 0.00776560 + 0.0134504i
\(781\) 4.98293 + 8.63068i 0.178303 + 0.308830i
\(782\) −25.0974 + 43.4701i −0.897483 + 1.55449i
\(783\) −53.8931 −1.92598
\(784\) −23.8735 21.3354i −0.852623 0.761980i
\(785\) 21.6919 0.774217
\(786\) −26.6596 + 46.1757i −0.950915 + 1.64703i
\(787\) 9.56031 + 16.5589i 0.340788 + 0.590262i 0.984579 0.174939i \(-0.0559728\pi\)
−0.643791 + 0.765201i \(0.722639\pi\)
\(788\) 0.933296 + 1.61652i 0.0332473 + 0.0575860i
\(789\) −8.92262 + 15.4544i −0.317654 + 0.550192i
\(790\) −1.17848 −0.0419285
\(791\) −6.45249 + 5.24503i −0.229424 + 0.186492i
\(792\) 13.3969 0.476039
\(793\) 1.34730 2.33359i 0.0478439 0.0828681i
\(794\) −7.22668 12.5170i −0.256465 0.444211i
\(795\) −22.1498 38.3645i −0.785571 1.36065i
\(796\) −1.52481 + 2.64106i −0.0540456 + 0.0936098i
\(797\) −52.5144 −1.86015 −0.930077 0.367365i \(-0.880260\pi\)
−0.930077 + 0.367365i \(0.880260\pi\)
\(798\) −1.42855 8.91215i −0.0505701 0.315487i
\(799\) 30.1156 1.06541
\(800\) −0.495414 + 0.858083i −0.0175155 + 0.0303378i
\(801\) 12.3084 + 21.3188i 0.434896 + 0.753262i
\(802\) −13.9572 24.1746i −0.492847 0.853636i
\(803\) −0.0603074 + 0.104455i −0.00212820 + 0.00368615i
\(804\) 3.75877 0.132562
\(805\) −48.4760 18.5048i −1.70855 0.652207i
\(806\) 0.751030 0.0264539
\(807\) 6.06031 10.4968i 0.213333 0.369503i
\(808\) 7.47178 + 12.9415i 0.262856 + 0.455281i
\(809\) −20.3357 35.2225i −0.714967 1.23836i −0.962972 0.269600i \(-0.913109\pi\)
0.248006 0.968759i \(-0.420225\pi\)
\(810\) 5.61128 9.71902i 0.197160 0.341492i
\(811\) −20.5648 −0.722128 −0.361064 0.932541i \(-0.617586\pi\)
−0.361064 + 0.932541i \(0.617586\pi\)
\(812\) 7.01367 + 2.67733i 0.246132 + 0.0939560i
\(813\) 73.6596 2.58336
\(814\) −5.22668 + 9.05288i −0.183195 + 0.317303i
\(815\) 10.3320 + 17.8956i 0.361915 + 0.626856i
\(816\) −25.8221 44.7251i −0.903953 1.56569i
\(817\) −0.458111 + 0.793471i −0.0160273 + 0.0277601i
\(818\) −9.82295 −0.343451
\(819\) −0.409415 2.55418i −0.0143061 0.0892501i
\(820\) 0.347296 0.0121281
\(821\) −3.18139 + 5.51033i −0.111031 + 0.192312i −0.916186 0.400753i \(-0.868749\pi\)
0.805155 + 0.593064i \(0.202082\pi\)
\(822\) −36.0599 62.4576i −1.25773 2.17846i
\(823\) 1.25443 + 2.17274i 0.0437268 + 0.0757370i 0.887060 0.461653i \(-0.152744\pi\)
−0.843334 + 0.537390i \(0.819410\pi\)
\(824\) −1.16637 + 2.02022i −0.0406326 + 0.0703777i
\(825\) 1.46791 0.0511061
\(826\) −0.642903 + 0.522597i −0.0223695 + 0.0181835i
\(827\) −41.2645 −1.43491 −0.717453 0.696607i \(-0.754692\pi\)
−0.717453 + 0.696607i \(0.754692\pi\)
\(828\) −7.67617 + 13.2955i −0.266766 + 0.462051i
\(829\) 23.3889 + 40.5108i 0.812331 + 1.40700i 0.911228 + 0.411902i \(0.135135\pi\)
−0.0988970 + 0.995098i \(0.531531\pi\)
\(830\) 6.03280 + 10.4491i 0.209402 + 0.362694i
\(831\) 22.1104 38.2963i 0.767001 1.32849i
\(832\) −1.14022 −0.0395298
\(833\) 26.0737 8.57927i 0.903401 0.297254i
\(834\) 91.4484 3.16660
\(835\) −9.83796 + 17.0399i −0.340457 + 0.589688i
\(836\) −0.134285 0.232589i −0.00464436 0.00804426i
\(837\) −8.74897 15.1537i −0.302409 0.523787i
\(838\) 1.24170 2.15068i 0.0428937 0.0742940i
\(839\) 16.5439 0.571161 0.285580 0.958355i \(-0.407814\pi\)
0.285580 + 0.958355i \(0.407814\pi\)
\(840\) 35.1352 28.5603i 1.21228 0.985425i
\(841\) 37.7529 1.30182
\(842\) 23.8614 41.3292i 0.822319 1.42430i
\(843\) −27.7199 48.0122i −0.954723 1.65363i
\(844\) −0.736482 1.27562i −0.0253507 0.0439088i
\(845\) 15.2173 26.3572i 0.523493 0.906716i
\(846\) 62.2550 2.14037
\(847\) 0.418748 + 2.61240i 0.0143884 + 0.0897632i
\(848\) −29.9796 −1.02950
\(849\) 38.9654 67.4901i 1.33729 2.31626i
\(850\) −1.53137 2.65242i −0.0525257 0.0909772i
\(851\) 28.5030 + 49.3686i 0.977070 + 1.69233i
\(852\) 4.98293 8.63068i 0.170712 0.295682i
\(853\) 13.2163 0.452516 0.226258 0.974067i \(-0.427351\pi\)
0.226258 + 0.974067i \(0.427351\pi\)
\(854\) 55.2208 + 21.0795i 1.88962 + 0.721325i
\(855\) 9.60401 0.328450
\(856\) 13.1001 22.6901i 0.447753 0.775532i
\(857\) 25.3606 + 43.9258i 0.866300 + 1.50048i 0.865750 + 0.500476i \(0.166842\pi\)
0.000549663 1.00000i \(0.499825\pi\)
\(858\) −0.407604 0.705990i −0.0139154 0.0241021i
\(859\) −27.5562 + 47.7287i −0.940205 + 1.62848i −0.175126 + 0.984546i \(0.556033\pi\)
−0.765079 + 0.643937i \(0.777300\pi\)
\(860\) 0.965852 0.0329353
\(861\) −3.03209 1.15744i −0.103333 0.0394455i
\(862\) −52.4097 −1.78508
\(863\) −5.26011 + 9.11079i −0.179056 + 0.310135i −0.941558 0.336852i \(-0.890638\pi\)
0.762501 + 0.646987i \(0.223971\pi\)
\(864\) −6.41013 11.1027i −0.218077 0.377721i
\(865\) −6.39124 11.0700i −0.217309 0.376390i
\(866\) −15.7023 + 27.1972i −0.533587 + 0.924200i
\(867\) −4.67499 −0.158771
\(868\) 0.385782 + 2.40674i 0.0130943 + 0.0816901i
\(869\) 0.327696 0.0111163
\(870\) −42.3016 + 73.2685i −1.43416 + 2.48404i
\(871\) 0.347296 + 0.601535i 0.0117677 + 0.0203822i
\(872\) −0.602196 1.04303i −0.0203929 0.0353216i
\(873\) −34.7097 + 60.1189i −1.17474 + 2.03472i
\(874\) −9.89899 −0.334838
\(875\) −21.6386 + 17.5894i −0.731519 + 0.594629i
\(876\) 0.120615 0.00407520
\(877\) 19.8268 34.3411i 0.669504 1.15962i −0.308539 0.951212i \(-0.599840\pi\)
0.978043 0.208403i \(-0.0668267\pi\)
\(878\) 23.9939 + 41.5587i 0.809755 + 1.40254i
\(879\) −5.80928 10.0620i −0.195942 0.339382i
\(880\) 5.36824 9.29807i 0.180963 0.313438i
\(881\) 25.0077 0.842532 0.421266 0.906937i \(-0.361586\pi\)
0.421266 + 0.906937i \(0.361586\pi\)
\(882\) 53.8997 17.7351i 1.81490 0.597171i
\(883\) 50.9341 1.71407 0.857034 0.515260i \(-0.172305\pi\)
0.857034 + 0.515260i \(0.172305\pi\)
\(884\) −0.125829 + 0.217943i −0.00423210 + 0.00733021i
\(885\) −0.690722 1.19637i −0.0232184 0.0402154i
\(886\) −22.5201 39.0059i −0.756576 1.31043i
\(887\) −16.0180 + 27.7440i −0.537832 + 0.931552i 0.461188 + 0.887302i \(0.347423\pi\)
−0.999020 + 0.0442502i \(0.985910\pi\)
\(888\) −49.7452 −1.66934
\(889\) −0.914878 + 0.743676i −0.0306840 + 0.0249421i
\(890\) 16.7324 0.560870
\(891\) −1.56031 + 2.70253i −0.0522723 + 0.0905382i
\(892\) 3.13176 + 5.42437i 0.104859 + 0.181621i
\(893\) 2.96956 + 5.14343i 0.0993725 + 0.172118i
\(894\) −1.57532 + 2.72854i −0.0526867 + 0.0912560i
\(895\) −23.6878 −0.791795
\(896\) −5.58630 34.8507i −0.186625 1.16428i
\(897\) −4.44562 −0.148435
\(898\) −5.28627 + 9.15609i −0.176405 + 0.305543i
\(899\) 10.8366 + 18.7696i 0.361421 + 0.626000i
\(900\) −0.468378 0.811254i −0.0156126 0.0270418i
\(901\) 12.8508 22.2582i 0.428121 0.741527i
\(902\) −0.652704 −0.0217327
\(903\) −8.43242 3.21891i −0.280613 0.107119i
\(904\) −7.95811 −0.264683
\(905\) −23.3314 + 40.4112i −0.775562 + 1.34331i
\(906\) −21.0535 36.4657i −0.699456 1.21149i
\(907\) 8.23648 + 14.2660i 0.273488 + 0.473695i 0.969753 0.244090i \(-0.0784893\pi\)
−0.696265 + 0.717785i \(0.745156\pi\)
\(908\) −3.16132 + 5.47557i −0.104912 + 0.181713i
\(909\) −31.2249 −1.03567
\(910\) −1.64266 0.627052i −0.0544535 0.0207866i
\(911\) −45.3979 −1.50410 −0.752049 0.659107i \(-0.770934\pi\)
−0.752049 + 0.659107i \(0.770934\pi\)
\(912\) 5.09240 8.82029i 0.168626 0.292069i
\(913\) −1.67752 2.90555i −0.0555178 0.0961596i
\(914\) 9.47952 + 16.4190i 0.313555 + 0.543093i
\(915\) −49.2772 + 85.3507i −1.62906 + 2.82161i
\(916\) 6.68241 0.220793
\(917\) −5.06118 31.5747i −0.167135 1.04269i
\(918\) 39.6287 1.30794
\(919\) 6.16044 10.6702i 0.203214 0.351978i −0.746348 0.665556i \(-0.768195\pi\)
0.949562 + 0.313578i \(0.101528\pi\)
\(920\) −24.8293 43.0057i −0.818599 1.41786i
\(921\) −4.21688 7.30385i −0.138951 0.240670i
\(922\) 15.3931 26.6616i 0.506943 0.878052i
\(923\) 1.84161 0.0606175
\(924\) 2.05303 1.66885i 0.0675398 0.0549011i
\(925\) −3.47834 −0.114367
\(926\) 6.65839 11.5327i 0.218808 0.378987i
\(927\) −2.43717 4.22130i −0.0800470 0.138646i
\(928\) 7.93969 + 13.7520i 0.260633 + 0.451430i
\(929\) −2.96657 + 5.13824i −0.0973299 + 0.168580i −0.910579 0.413336i \(-0.864364\pi\)
0.813249 + 0.581916i \(0.197697\pi\)
\(930\) −27.4688 −0.900739
\(931\) 4.03626 + 3.60716i 0.132283 + 0.118220i
\(932\) 3.23854 0.106082
\(933\) −22.4932 + 38.9594i −0.736394 + 1.27547i
\(934\) 3.65342 + 6.32791i 0.119544 + 0.207055i
\(935\) 4.60220 + 7.97124i 0.150508 + 0.260687i
\(936\) 1.23783 2.14398i 0.0404596 0.0700781i
\(937\) −45.0242 −1.47088 −0.735438 0.677593i \(-0.763023\pi\)
−0.735438 + 0.677593i \(0.763023\pi\)
\(938\) −11.8229 + 9.61051i −0.386033 + 0.313794i
\(939\) −63.2772 −2.06497
\(940\) 3.13041 5.42204i 0.102103 0.176847i
\(941\) 3.03121 + 5.25021i 0.0988147 + 0.171152i 0.911194 0.411977i \(-0.135162\pi\)
−0.812380 + 0.583129i \(0.801828\pi\)
\(942\) 20.3837 + 35.3056i 0.664138 + 1.15032i
\(943\) −1.77972 + 3.08256i −0.0579555 + 0.100382i
\(944\) −0.934889 −0.0304280
\(945\) 6.48364 + 40.4489i 0.210913 + 1.31580i
\(946\) −1.81521 −0.0590175
\(947\) 9.47131 16.4048i 0.307776 0.533084i −0.670099 0.742272i \(-0.733748\pi\)
0.977876 + 0.209187i \(0.0670818\pi\)
\(948\) −0.163848 0.283793i −0.00532154 0.00921717i
\(949\) 0.0111444 + 0.0193026i 0.000361761 + 0.000626588i
\(950\) 0.302004 0.523086i 0.00979829 0.0169711i
\(951\) −8.67230 −0.281219
\(952\) 24.5424 + 9.36857i 0.795422 + 0.303637i
\(953\) −12.4970 −0.404818 −0.202409 0.979301i \(-0.564877\pi\)
−0.202409 + 0.979301i \(0.564877\pi\)
\(954\) 26.5651 46.0121i 0.860077 1.48970i
\(955\) 29.7931 + 51.6032i 0.964083 + 1.66984i
\(956\) −1.94310 3.36554i −0.0628442 0.108849i
\(957\) 11.7626 20.3735i 0.380232 0.658581i
\(958\) 60.6923 1.96088
\(959\) 40.4093 + 15.4255i 1.30488 + 0.498114i
\(960\) 41.7033 1.34597
\(961\) 11.9816 20.7527i 0.386503 0.669442i
\(962\) 0.965852 + 1.67290i 0.0311403 + 0.0539366i
\(963\) 27.3730 + 47.4115i 0.882084 + 1.52781i
\(964\) −3.50846 + 6.07682i −0.113000 + 0.195721i
\(965\) −18.1480 −0.584203
\(966\) −15.4342 96.2880i −0.496588 3.09802i
\(967\) −18.5294 −0.595865 −0.297933 0.954587i \(-0.596297\pi\)
−0.297933 + 0.954587i \(0.596297\pi\)
\(968\) −1.26604 + 2.19285i −0.0406922 + 0.0704810i
\(969\) 4.36571 + 7.56164i 0.140247 + 0.242915i
\(970\) 23.5926 + 40.8636i 0.757513 + 1.31205i
\(971\) −20.7369 + 35.9174i −0.665480 + 1.15265i 0.313674 + 0.949531i \(0.398440\pi\)
−0.979155 + 0.203115i \(0.934893\pi\)
\(972\) −3.75196 −0.120344
\(973\) −42.5587 + 34.5947i −1.36437 + 1.10905i
\(974\) −7.89899 −0.253100
\(975\) 0.135630 0.234917i 0.00434362 0.00752337i
\(976\) 33.3482 + 57.7608i 1.06745 + 1.84888i
\(977\) 11.1160 + 19.2535i 0.355633 + 0.615975i 0.987226 0.159325i \(-0.0509319\pi\)
−0.631593 + 0.775300i \(0.717599\pi\)
\(978\) −19.4179 + 33.6327i −0.620915 + 1.07546i
\(979\) −4.65270 −0.148701
\(980\) 1.16566 5.58613i 0.0372356 0.178442i
\(981\) 2.51661 0.0803491
\(982\) 7.80793 13.5237i 0.249161 0.431560i
\(983\) −17.7062 30.6680i −0.564740 0.978159i −0.997074 0.0764450i \(-0.975643\pi\)
0.432334 0.901714i \(-0.357690\pi\)
\(984\) −1.55303 2.68993i −0.0495089 0.0857519i
\(985\) 6.30793 10.9257i 0.200987 0.348121i
\(986\) −49.0847 −1.56318
\(987\) −45.4004 + 36.9046i −1.44511 + 1.17469i
\(988\) −0.0496299 −0.00157894
\(989\) −4.94949 + 8.57277i −0.157385 + 0.272598i
\(990\) 9.51367 + 16.4782i 0.302364 + 0.523710i
\(991\) −22.7863 39.4670i −0.723830 1.25371i −0.959454 0.281866i \(-0.909047\pi\)
0.235624 0.971844i \(-0.424287\pi\)
\(992\) −2.57785 + 4.46496i −0.0818468 + 0.141763i
\(993\) 79.0934 2.50995
\(994\) 6.39368 + 39.8877i 0.202795 + 1.26516i
\(995\) 20.6117 0.653436
\(996\) −1.67752 + 2.90555i −0.0531542 + 0.0920658i
\(997\) −11.4183 19.7771i −0.361622 0.626348i 0.626606 0.779336i \(-0.284444\pi\)
−0.988228 + 0.152988i \(0.951110\pi\)
\(998\) 4.51186 + 7.81477i 0.142820 + 0.247372i
\(999\) 22.5030 38.9763i 0.711963 1.23316i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 77.2.e.a.23.3 6
3.2 odd 2 693.2.i.h.100.1 6
4.3 odd 2 1232.2.q.m.177.3 6
7.2 even 3 539.2.a.j.1.1 3
7.3 odd 6 539.2.e.m.67.3 6
7.4 even 3 inner 77.2.e.a.67.3 yes 6
7.5 odd 6 539.2.a.g.1.1 3
7.6 odd 2 539.2.e.m.177.3 6
11.2 odd 10 847.2.n.f.807.3 24
11.3 even 5 847.2.n.g.9.1 24
11.4 even 5 847.2.n.g.632.3 24
11.5 even 5 847.2.n.g.366.3 24
11.6 odd 10 847.2.n.f.366.1 24
11.7 odd 10 847.2.n.f.632.1 24
11.8 odd 10 847.2.n.f.9.3 24
11.9 even 5 847.2.n.g.807.1 24
11.10 odd 2 847.2.e.c.485.1 6
21.2 odd 6 4851.2.a.bj.1.3 3
21.5 even 6 4851.2.a.bk.1.3 3
21.11 odd 6 693.2.i.h.298.1 6
28.11 odd 6 1232.2.q.m.529.3 6
28.19 even 6 8624.2.a.co.1.3 3
28.23 odd 6 8624.2.a.ch.1.1 3
77.4 even 15 847.2.n.g.753.1 24
77.18 odd 30 847.2.n.f.753.3 24
77.25 even 15 847.2.n.g.130.3 24
77.32 odd 6 847.2.e.c.606.1 6
77.39 odd 30 847.2.n.f.487.3 24
77.46 odd 30 847.2.n.f.81.1 24
77.53 even 15 847.2.n.g.81.3 24
77.54 even 6 5929.2.a.u.1.3 3
77.60 even 15 847.2.n.g.487.1 24
77.65 odd 6 5929.2.a.x.1.3 3
77.74 odd 30 847.2.n.f.130.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.a.23.3 6 1.1 even 1 trivial
77.2.e.a.67.3 yes 6 7.4 even 3 inner
539.2.a.g.1.1 3 7.5 odd 6
539.2.a.j.1.1 3 7.2 even 3
539.2.e.m.67.3 6 7.3 odd 6
539.2.e.m.177.3 6 7.6 odd 2
693.2.i.h.100.1 6 3.2 odd 2
693.2.i.h.298.1 6 21.11 odd 6
847.2.e.c.485.1 6 11.10 odd 2
847.2.e.c.606.1 6 77.32 odd 6
847.2.n.f.9.3 24 11.8 odd 10
847.2.n.f.81.1 24 77.46 odd 30
847.2.n.f.130.1 24 77.74 odd 30
847.2.n.f.366.1 24 11.6 odd 10
847.2.n.f.487.3 24 77.39 odd 30
847.2.n.f.632.1 24 11.7 odd 10
847.2.n.f.753.3 24 77.18 odd 30
847.2.n.f.807.3 24 11.2 odd 10
847.2.n.g.9.1 24 11.3 even 5
847.2.n.g.81.3 24 77.53 even 15
847.2.n.g.130.3 24 77.25 even 15
847.2.n.g.366.3 24 11.5 even 5
847.2.n.g.487.1 24 77.60 even 15
847.2.n.g.632.3 24 11.4 even 5
847.2.n.g.753.1 24 77.4 even 15
847.2.n.g.807.1 24 11.9 even 5
1232.2.q.m.177.3 6 4.3 odd 2
1232.2.q.m.529.3 6 28.11 odd 6
4851.2.a.bj.1.3 3 21.2 odd 6
4851.2.a.bk.1.3 3 21.5 even 6
5929.2.a.u.1.3 3 77.54 even 6
5929.2.a.x.1.3 3 77.65 odd 6
8624.2.a.ch.1.1 3 28.23 odd 6
8624.2.a.co.1.3 3 28.19 even 6