Properties

Label 4925.2.a.n
Level 49254925
Weight 22
Character orbit 4925.a
Self dual yes
Analytic conductor 39.32639.326
Analytic rank 11
Dimension 2828
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4925=52197 4925 = 5^{2} \cdot 197
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 39.326322995539.3263229955
Analytic rank: 11
Dimension: 2828
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 28qq2+19q411q6+2q73q8+18q919q11+q12q1312q14+q16+2q17+2q1850q1919q21+11q222q2335q24+74q99+O(q100) 28 q - q^{2} + 19 q^{4} - 11 q^{6} + 2 q^{7} - 3 q^{8} + 18 q^{9} - 19 q^{11} + q^{12} - q^{13} - 12 q^{14} + q^{16} + 2 q^{17} + 2 q^{18} - 50 q^{19} - 19 q^{21} + 11 q^{22} - 2 q^{23} - 35 q^{24}+ \cdots - 74 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.75023 2.06570 5.56379 0 −5.68116 0.630554 −9.80124 1.26711 0
1.2 −2.45160 −1.43029 4.01035 0 3.50651 4.61474 −4.92858 −0.954260 0
1.3 −2.24251 1.42145 3.02883 0 −3.18760 0.594424 −2.30715 −0.979491 0
1.4 −2.22908 −0.227670 2.96881 0 0.507496 0.282717 −2.15955 −2.94817 0
1.5 −1.93680 −0.393513 1.75119 0 0.762155 −4.57378 0.481897 −2.84515 0
1.6 −1.67893 2.40308 0.818811 0 −4.03461 −1.19974 1.98314 2.77479 0
1.7 −1.46699 −1.46182 0.152046 0 2.14446 0.952154 2.71092 −0.863094 0
1.8 −1.31537 1.42411 −0.269802 0 −1.87323 −4.10116 2.98563 −0.971904 0
1.9 −1.24774 2.40328 −0.443146 0 −2.99867 4.60847 3.04841 2.77575 0
1.10 −1.19691 −2.90286 −0.567418 0 3.47444 −2.09583 3.07296 5.42657 0
1.11 −1.15422 −2.58397 −0.667769 0 2.98248 3.27068 3.07920 3.67692 0
1.12 −0.711428 1.93338 −1.49387 0 −1.37546 −0.770983 2.48564 0.737949 0
1.13 −0.181210 3.35828 −1.96716 0 −0.608552 −3.58186 0.718889 8.27801 0
1.14 −0.0152697 −2.23603 −1.99977 0 0.0341434 3.76831 0.0610751 1.99983 0
1.15 0.0703727 −1.38425 −1.99505 0 −0.0974136 1.59777 −0.281142 −1.08385 0
1.16 0.209850 −1.23000 −1.95596 0 −0.258115 −2.44423 −0.830157 −1.48710 0
1.17 0.704371 1.37202 −1.50386 0 0.966412 2.73903 −2.46802 −1.11756 0
1.18 0.748949 0.351571 −1.43908 0 0.263309 3.81748 −2.57569 −2.87640 0
1.19 0.767474 −2.69467 −1.41098 0 −2.06809 −1.73345 −2.61784 4.26127 0
1.20 1.14380 −1.11714 −0.691731 0 −1.27778 −0.126560 −3.07879 −1.75200 0
See all 28 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.28
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
197197 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4925.2.a.n 28
5.b even 2 1 4925.2.a.o yes 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4925.2.a.n 28 1.a even 1 1 trivial
4925.2.a.o yes 28 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4925))S_{2}^{\mathrm{new}}(\Gamma_0(4925)):

T228+T22737T22635T225+602T224+538T2235677T222++1 T_{2}^{28} + T_{2}^{27} - 37 T_{2}^{26} - 35 T_{2}^{25} + 602 T_{2}^{24} + 538 T_{2}^{23} - 5677 T_{2}^{22} + \cdots + 1 Copy content Toggle raw display
T32851T326+T325+1135T32446T32314530T322++400 T_{3}^{28} - 51 T_{3}^{26} + T_{3}^{25} + 1135 T_{3}^{24} - 46 T_{3}^{23} - 14530 T_{3}^{22} + \cdots + 400 Copy content Toggle raw display