Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4925,2,Mod(1,4925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4925.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4925 = 5^{2} \cdot 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4925.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(39.3263229955\) |
Analytic rank: | \(1\) |
Dimension: | \(28\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.75023 | 2.06570 | 5.56379 | 0 | −5.68116 | 0.630554 | −9.80124 | 1.26711 | 0 | ||||||||||||||||||
1.2 | −2.45160 | −1.43029 | 4.01035 | 0 | 3.50651 | 4.61474 | −4.92858 | −0.954260 | 0 | ||||||||||||||||||
1.3 | −2.24251 | 1.42145 | 3.02883 | 0 | −3.18760 | 0.594424 | −2.30715 | −0.979491 | 0 | ||||||||||||||||||
1.4 | −2.22908 | −0.227670 | 2.96881 | 0 | 0.507496 | 0.282717 | −2.15955 | −2.94817 | 0 | ||||||||||||||||||
1.5 | −1.93680 | −0.393513 | 1.75119 | 0 | 0.762155 | −4.57378 | 0.481897 | −2.84515 | 0 | ||||||||||||||||||
1.6 | −1.67893 | 2.40308 | 0.818811 | 0 | −4.03461 | −1.19974 | 1.98314 | 2.77479 | 0 | ||||||||||||||||||
1.7 | −1.46699 | −1.46182 | 0.152046 | 0 | 2.14446 | 0.952154 | 2.71092 | −0.863094 | 0 | ||||||||||||||||||
1.8 | −1.31537 | 1.42411 | −0.269802 | 0 | −1.87323 | −4.10116 | 2.98563 | −0.971904 | 0 | ||||||||||||||||||
1.9 | −1.24774 | 2.40328 | −0.443146 | 0 | −2.99867 | 4.60847 | 3.04841 | 2.77575 | 0 | ||||||||||||||||||
1.10 | −1.19691 | −2.90286 | −0.567418 | 0 | 3.47444 | −2.09583 | 3.07296 | 5.42657 | 0 | ||||||||||||||||||
1.11 | −1.15422 | −2.58397 | −0.667769 | 0 | 2.98248 | 3.27068 | 3.07920 | 3.67692 | 0 | ||||||||||||||||||
1.12 | −0.711428 | 1.93338 | −1.49387 | 0 | −1.37546 | −0.770983 | 2.48564 | 0.737949 | 0 | ||||||||||||||||||
1.13 | −0.181210 | 3.35828 | −1.96716 | 0 | −0.608552 | −3.58186 | 0.718889 | 8.27801 | 0 | ||||||||||||||||||
1.14 | −0.0152697 | −2.23603 | −1.99977 | 0 | 0.0341434 | 3.76831 | 0.0610751 | 1.99983 | 0 | ||||||||||||||||||
1.15 | 0.0703727 | −1.38425 | −1.99505 | 0 | −0.0974136 | 1.59777 | −0.281142 | −1.08385 | 0 | ||||||||||||||||||
1.16 | 0.209850 | −1.23000 | −1.95596 | 0 | −0.258115 | −2.44423 | −0.830157 | −1.48710 | 0 | ||||||||||||||||||
1.17 | 0.704371 | 1.37202 | −1.50386 | 0 | 0.966412 | 2.73903 | −2.46802 | −1.11756 | 0 | ||||||||||||||||||
1.18 | 0.748949 | 0.351571 | −1.43908 | 0 | 0.263309 | 3.81748 | −2.57569 | −2.87640 | 0 | ||||||||||||||||||
1.19 | 0.767474 | −2.69467 | −1.41098 | 0 | −2.06809 | −1.73345 | −2.61784 | 4.26127 | 0 | ||||||||||||||||||
1.20 | 1.14380 | −1.11714 | −0.691731 | 0 | −1.27778 | −0.126560 | −3.07879 | −1.75200 | 0 | ||||||||||||||||||
See all 28 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \( -1 \) |
\(197\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4925.2.a.n | ✓ | 28 |
5.b | even | 2 | 1 | 4925.2.a.o | yes | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4925.2.a.n | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
4925.2.a.o | yes | 28 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4925))\):
\( T_{2}^{28} + T_{2}^{27} - 37 T_{2}^{26} - 35 T_{2}^{25} + 602 T_{2}^{24} + 538 T_{2}^{23} - 5677 T_{2}^{22} + \cdots + 1 \) |
\( T_{3}^{28} - 51 T_{3}^{26} + T_{3}^{25} + 1135 T_{3}^{24} - 46 T_{3}^{23} - 14530 T_{3}^{22} + \cdots + 400 \) |