Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [52,4,Mod(31,52)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(52, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("52.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 52.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.06809932030\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 | −2.82787 | − | 0.0560904i | 6.97823i | 7.99371 | + | 0.317233i | 3.73459 | − | 3.73459i | 0.391412 | − | 19.7335i | −18.7167 | + | 18.7167i | −22.5874 | − | 1.34546i | −21.6957 | −10.7704 | + | 10.3515i | ||||
31.2 | −2.81956 | − | 0.223782i | − | 1.00320i | 7.89984 | + | 1.26193i | −4.98300 | + | 4.98300i | −0.224497 | + | 2.82857i | 16.5820 | − | 16.5820i | −21.9917 | − | 5.32593i | 25.9936 | 15.1650 | − | 12.9348i | |||
31.3 | −2.50920 | − | 1.30534i | − | 9.31194i | 4.59218 | + | 6.55072i | 11.9568 | − | 11.9568i | −12.1552 | + | 23.3655i | −6.41108 | + | 6.41108i | −2.97178 | − | 22.4314i | −59.7122 | −45.6098 | + | 14.3944i | |||
31.4 | −2.25470 | + | 1.70773i | − | 8.10067i | 2.16733 | − | 7.70082i | −10.8445 | + | 10.8445i | 13.8337 | + | 18.2646i | −18.4065 | + | 18.4065i | 8.26423 | + | 21.0642i | −38.6209 | 5.93160 | − | 42.9704i | |||
31.5 | −1.84904 | − | 2.14034i | − | 1.29511i | −1.16213 | + | 7.91514i | −10.6631 | + | 10.6631i | −2.77198 | + | 2.39471i | −7.71781 | + | 7.71781i | 19.0899 | − | 12.1480i | 25.3227 | 42.5392 | + | 3.10621i | |||
31.6 | −1.70773 | + | 2.25470i | 8.10067i | −2.16733 | − | 7.70082i | −10.8445 | + | 10.8445i | −18.2646 | − | 13.8337i | 18.4065 | − | 18.4065i | 21.0642 | + | 8.26423i | −38.6209 | −5.93160 | − | 42.9704i | ||||
31.7 | −1.42308 | − | 2.44435i | 3.58200i | −3.94969 | + | 6.95701i | 10.6687 | − | 10.6687i | 8.75566 | − | 5.09747i | 6.84080 | − | 6.84080i | 22.6261 | − | 0.245959i | 14.1693 | −41.2606 | − | 10.8957i | ||||
31.8 | 0.0560904 | + | 2.82787i | − | 6.97823i | −7.99371 | + | 0.317233i | 3.73459 | − | 3.73459i | 19.7335 | − | 0.391412i | 18.7167 | − | 18.7167i | −1.34546 | − | 22.5874i | −21.6957 | 10.7704 | + | 10.3515i | |||
31.9 | 0.223782 | + | 2.81956i | 1.00320i | −7.89984 | + | 1.26193i | −4.98300 | + | 4.98300i | −2.82857 | + | 0.224497i | −16.5820 | + | 16.5820i | −5.32593 | − | 21.9917i | 25.9936 | −15.1650 | − | 12.9348i | ||||
31.10 | 0.289217 | − | 2.81360i | 7.82965i | −7.83271 | − | 1.62748i | −8.33093 | + | 8.33093i | 22.0295 | + | 2.26447i | −11.3199 | + | 11.3199i | −6.84443 | + | 21.5674i | −34.3035 | 21.0305 | + | 25.8494i | ||||
31.11 | 0.340566 | − | 2.80785i | − | 6.14077i | −7.76803 | − | 1.91251i | −1.41066 | + | 1.41066i | −17.2423 | − | 2.09133i | 3.71079 | − | 3.71079i | −8.01557 | + | 21.1601i | −10.7090 | 3.48049 | + | 4.44133i | |||
31.12 | 1.30534 | + | 2.50920i | 9.31194i | −4.59218 | + | 6.55072i | 11.9568 | − | 11.9568i | −23.3655 | + | 12.1552i | 6.41108 | − | 6.41108i | −22.4314 | − | 2.97178i | −59.7122 | 45.6098 | + | 14.3944i | ||||
31.13 | 1.74069 | − | 2.22935i | 3.23176i | −1.93998 | − | 7.76122i | 4.87198 | − | 4.87198i | 7.20471 | + | 5.62550i | 22.0805 | − | 22.0805i | −20.6794 | − | 9.18500i | 16.5557 | −2.38072 | − | 19.3420i | ||||
31.14 | 2.14034 | + | 1.84904i | 1.29511i | 1.16213 | + | 7.91514i | −10.6631 | + | 10.6631i | −2.39471 | + | 2.77198i | 7.71781 | − | 7.71781i | −12.1480 | + | 19.0899i | 25.3227 | −42.5392 | + | 3.10621i | ||||
31.15 | 2.22935 | − | 1.74069i | − | 3.23176i | 1.93998 | − | 7.76122i | 4.87198 | − | 4.87198i | −5.62550 | − | 7.20471i | −22.0805 | + | 22.0805i | −9.18500 | − | 20.6794i | 16.5557 | 2.38072 | − | 19.3420i | |||
31.16 | 2.44435 | + | 1.42308i | − | 3.58200i | 3.94969 | + | 6.95701i | 10.6687 | − | 10.6687i | 5.09747 | − | 8.75566i | −6.84080 | + | 6.84080i | −0.245959 | + | 22.6261i | 14.1693 | 41.2606 | − | 10.8957i | |||
31.17 | 2.80785 | − | 0.340566i | 6.14077i | 7.76803 | − | 1.91251i | −1.41066 | + | 1.41066i | 2.09133 | + | 17.2423i | −3.71079 | + | 3.71079i | 21.1601 | − | 8.01557i | −10.7090 | −3.48049 | + | 4.44133i | ||||
31.18 | 2.81360 | − | 0.289217i | − | 7.82965i | 7.83271 | − | 1.62748i | −8.33093 | + | 8.33093i | −2.26447 | − | 22.0295i | 11.3199 | − | 11.3199i | 21.5674 | − | 6.84443i | −34.3035 | −21.0305 | + | 25.8494i | |||
47.1 | −2.82787 | + | 0.0560904i | − | 6.97823i | 7.99371 | − | 0.317233i | 3.73459 | + | 3.73459i | 0.391412 | + | 19.7335i | −18.7167 | − | 18.7167i | −22.5874 | + | 1.34546i | −21.6957 | −10.7704 | − | 10.3515i | |||
47.2 | −2.81956 | + | 0.223782i | 1.00320i | 7.89984 | − | 1.26193i | −4.98300 | − | 4.98300i | −0.224497 | − | 2.82857i | 16.5820 | + | 16.5820i | −21.9917 | + | 5.32593i | 25.9936 | 15.1650 | + | 12.9348i | ||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
52.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 52.4.f.b | ✓ | 36 |
4.b | odd | 2 | 1 | inner | 52.4.f.b | ✓ | 36 |
13.d | odd | 4 | 1 | inner | 52.4.f.b | ✓ | 36 |
52.f | even | 4 | 1 | inner | 52.4.f.b | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
52.4.f.b | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
52.4.f.b | ✓ | 36 | 4.b | odd | 2 | 1 | inner |
52.4.f.b | ✓ | 36 | 13.d | odd | 4 | 1 | inner |
52.4.f.b | ✓ | 36 | 52.f | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{18} + 326 T_{3}^{16} + 43311 T_{3}^{14} + 3016492 T_{3}^{12} + 117803647 T_{3}^{10} + \cdots + 144896061440 \)
acting on \(S_{4}^{\mathrm{new}}(52, [\chi])\).