Properties

Label 5239.2.a.t
Level 52395239
Weight 22
Character orbit 5239.a
Self dual yes
Analytic conductor 41.83441.834
Analytic rank 11
Dimension 3636
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5239,2,Mod(1,5239)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5239, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5239.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5239=13231 5239 = 13^{2} \cdot 31
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5239.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 41.833625618941.8336256189
Analytic rank: 11
Dimension: 3636
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 36q+2q25q3+28q4+5q53q6+5q7+3q8+5q915q10q1113q1219q1410q15+4q1646q179q18+8q195q2016q21+47q99+O(q100) 36 q + 2 q^{2} - 5 q^{3} + 28 q^{4} + 5 q^{5} - 3 q^{6} + 5 q^{7} + 3 q^{8} + 5 q^{9} - 15 q^{10} - q^{11} - 13 q^{12} - 19 q^{14} - 10 q^{15} + 4 q^{16} - 46 q^{17} - 9 q^{18} + 8 q^{19} - 5 q^{20} - 16 q^{21}+ \cdots - 47 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.56895 −1.20237 4.59948 3.54314 3.08883 −2.49913 −6.67792 −1.55430 −9.10212
1.2 −2.54656 −2.14666 4.48499 −1.97365 5.46662 3.56450 −6.32819 1.60816 5.02604
1.3 −2.51712 −2.55317 4.33588 0.350569 6.42663 1.25323 −5.87968 3.51869 −0.882423
1.4 −2.18595 1.24527 2.77837 −1.95275 −2.72209 4.61231 −1.70147 −1.44930 4.26861
1.5 −2.10547 1.13587 2.43300 0.844720 −2.39153 −0.705223 −0.911672 −1.70981 −1.77853
1.6 −1.92927 1.67028 1.72208 2.56491 −3.22241 0.681322 0.536185 −0.210175 −4.94841
1.7 −1.88690 0.0658892 1.56038 −0.400631 −0.124326 −2.24315 0.829521 −2.99566 0.755948
1.8 −1.80595 −0.302872 1.26147 −1.76874 0.546973 −2.82549 1.33376 −2.90827 3.19426
1.9 −1.40921 2.45063 −0.0141145 3.50259 −3.45347 −4.31661 2.83832 3.00561 −4.93590
1.10 −1.33705 2.56782 −0.212302 −1.42532 −3.43329 2.10054 2.95795 3.59368 1.90573
1.11 −1.29188 −1.72668 −0.331049 2.63778 2.23067 2.01903 3.01143 −0.0185657 −3.40769
1.12 −0.911653 2.69491 −1.16889 −0.577106 −2.45682 3.79528 2.88893 4.26252 0.526121
1.13 −0.836363 −1.14473 −1.30050 2.65923 0.957409 −3.97709 2.76041 −1.68960 −2.22408
1.14 −0.709075 −2.87369 −1.49721 −2.11332 2.03766 −0.783955 2.47979 5.25811 1.49850
1.15 −0.643360 0.244979 −1.58609 1.48910 −0.157609 1.17289 2.30715 −2.93999 −0.958027
1.16 −0.552625 −1.71891 −1.69461 −0.0841389 0.949914 3.82547 2.04173 −0.0453470 0.0464973
1.17 −0.314789 1.77594 −1.90091 −0.987732 −0.559047 −0.624388 1.22796 0.153977 0.310927
1.18 −0.159901 −1.41029 −1.97443 2.72970 0.225506 −2.29044 0.635516 −1.01110 −0.436482
1.19 0.0200502 0.797351 −1.99960 −4.00544 0.0159871 2.30092 −0.0801929 −2.36423 −0.0803100
1.20 0.466152 2.51297 −1.78270 0.786932 1.17142 1.93750 −1.76331 3.31500 0.366830
See all 36 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.36
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1313 +1 +1
3131 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5239.2.a.t yes 36
13.b even 2 1 5239.2.a.s 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5239.2.a.s 36 13.b even 2 1
5239.2.a.t yes 36 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5239))S_{2}^{\mathrm{new}}(\Gamma_0(5239)):

T2362T23548T234+95T233+1043T2322041T231++169 T_{2}^{36} - 2 T_{2}^{35} - 48 T_{2}^{34} + 95 T_{2}^{33} + 1043 T_{2}^{32} - 2041 T_{2}^{31} + \cdots + 169 Copy content Toggle raw display
T5365T53580T534+415T533+2829T53215272T531++79939 T_{5}^{36} - 5 T_{5}^{35} - 80 T_{5}^{34} + 415 T_{5}^{33} + 2829 T_{5}^{32} - 15272 T_{5}^{31} + \cdots + 79939 Copy content Toggle raw display