Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [5239,2,Mod(1,5239)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5239, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5239.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 5239 = 13^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5239.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(41.8336256189\) |
Analytic rank: | \(1\) |
Dimension: | \(36\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.56895 | −1.20237 | 4.59948 | 3.54314 | 3.08883 | −2.49913 | −6.67792 | −1.55430 | −9.10212 | ||||||||||||||||||
1.2 | −2.54656 | −2.14666 | 4.48499 | −1.97365 | 5.46662 | 3.56450 | −6.32819 | 1.60816 | 5.02604 | ||||||||||||||||||
1.3 | −2.51712 | −2.55317 | 4.33588 | 0.350569 | 6.42663 | 1.25323 | −5.87968 | 3.51869 | −0.882423 | ||||||||||||||||||
1.4 | −2.18595 | 1.24527 | 2.77837 | −1.95275 | −2.72209 | 4.61231 | −1.70147 | −1.44930 | 4.26861 | ||||||||||||||||||
1.5 | −2.10547 | 1.13587 | 2.43300 | 0.844720 | −2.39153 | −0.705223 | −0.911672 | −1.70981 | −1.77853 | ||||||||||||||||||
1.6 | −1.92927 | 1.67028 | 1.72208 | 2.56491 | −3.22241 | 0.681322 | 0.536185 | −0.210175 | −4.94841 | ||||||||||||||||||
1.7 | −1.88690 | 0.0658892 | 1.56038 | −0.400631 | −0.124326 | −2.24315 | 0.829521 | −2.99566 | 0.755948 | ||||||||||||||||||
1.8 | −1.80595 | −0.302872 | 1.26147 | −1.76874 | 0.546973 | −2.82549 | 1.33376 | −2.90827 | 3.19426 | ||||||||||||||||||
1.9 | −1.40921 | 2.45063 | −0.0141145 | 3.50259 | −3.45347 | −4.31661 | 2.83832 | 3.00561 | −4.93590 | ||||||||||||||||||
1.10 | −1.33705 | 2.56782 | −0.212302 | −1.42532 | −3.43329 | 2.10054 | 2.95795 | 3.59368 | 1.90573 | ||||||||||||||||||
1.11 | −1.29188 | −1.72668 | −0.331049 | 2.63778 | 2.23067 | 2.01903 | 3.01143 | −0.0185657 | −3.40769 | ||||||||||||||||||
1.12 | −0.911653 | 2.69491 | −1.16889 | −0.577106 | −2.45682 | 3.79528 | 2.88893 | 4.26252 | 0.526121 | ||||||||||||||||||
1.13 | −0.836363 | −1.14473 | −1.30050 | 2.65923 | 0.957409 | −3.97709 | 2.76041 | −1.68960 | −2.22408 | ||||||||||||||||||
1.14 | −0.709075 | −2.87369 | −1.49721 | −2.11332 | 2.03766 | −0.783955 | 2.47979 | 5.25811 | 1.49850 | ||||||||||||||||||
1.15 | −0.643360 | 0.244979 | −1.58609 | 1.48910 | −0.157609 | 1.17289 | 2.30715 | −2.93999 | −0.958027 | ||||||||||||||||||
1.16 | −0.552625 | −1.71891 | −1.69461 | −0.0841389 | 0.949914 | 3.82547 | 2.04173 | −0.0453470 | 0.0464973 | ||||||||||||||||||
1.17 | −0.314789 | 1.77594 | −1.90091 | −0.987732 | −0.559047 | −0.624388 | 1.22796 | 0.153977 | 0.310927 | ||||||||||||||||||
1.18 | −0.159901 | −1.41029 | −1.97443 | 2.72970 | 0.225506 | −2.29044 | 0.635516 | −1.01110 | −0.436482 | ||||||||||||||||||
1.19 | 0.0200502 | 0.797351 | −1.99960 | −4.00544 | 0.0159871 | 2.30092 | −0.0801929 | −2.36423 | −0.0803100 | ||||||||||||||||||
1.20 | 0.466152 | 2.51297 | −1.78270 | 0.786932 | 1.17142 | 1.93750 | −1.76331 | 3.31500 | 0.366830 | ||||||||||||||||||
See all 36 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(13\) | \( +1 \) |
\(31\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 5239.2.a.t | yes | 36 |
13.b | even | 2 | 1 | 5239.2.a.s | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
5239.2.a.s | ✓ | 36 | 13.b | even | 2 | 1 | |
5239.2.a.t | yes | 36 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5239))\):
\( T_{2}^{36} - 2 T_{2}^{35} - 48 T_{2}^{34} + 95 T_{2}^{33} + 1043 T_{2}^{32} - 2041 T_{2}^{31} + \cdots + 169 \)
|
\( T_{5}^{36} - 5 T_{5}^{35} - 80 T_{5}^{34} + 415 T_{5}^{33} + 2829 T_{5}^{32} - 15272 T_{5}^{31} + \cdots + 79939 \)
|