Properties

Label 525.2.bf.f.368.7
Level $525$
Weight $2$
Character 525.368
Analytic conductor $4.192$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(32,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.bf (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 368.7
Character \(\chi\) \(=\) 525.368
Dual form 525.2.bf.f.107.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0799329 - 0.298314i) q^{2} +(-1.29105 - 1.15464i) q^{3} +(1.64945 + 0.952310i) q^{4} +(-0.447643 + 0.292843i) q^{6} +(2.46856 + 0.951942i) q^{7} +(0.852694 - 0.852694i) q^{8} +(0.333606 + 2.98139i) q^{9} +O(q^{10})\) \(q+(0.0799329 - 0.298314i) q^{2} +(-1.29105 - 1.15464i) q^{3} +(1.64945 + 0.952310i) q^{4} +(-0.447643 + 0.292843i) q^{6} +(2.46856 + 0.951942i) q^{7} +(0.852694 - 0.852694i) q^{8} +(0.333606 + 2.98139i) q^{9} +(-0.660315 - 0.381233i) q^{11} +(-1.02994 - 3.13400i) q^{12} +(2.27077 + 2.27077i) q^{13} +(0.481297 - 0.660315i) q^{14} +(1.71841 + 2.97637i) q^{16} +(-4.69471 + 1.25794i) q^{17} +(0.916057 + 0.138792i) q^{18} +(-1.41761 + 0.818455i) q^{19} +(-2.08788 - 4.07931i) q^{21} +(-0.166508 + 0.166508i) q^{22} +(7.39003 + 1.98015i) q^{23} +(-2.08542 + 0.116312i) q^{24} +(0.858909 - 0.495891i) q^{26} +(3.01174 - 4.23432i) q^{27} +(3.16523 + 3.92102i) q^{28} +4.94251 q^{29} +(2.96413 - 5.13403i) q^{31} +(3.35485 - 0.898930i) q^{32} +(0.412310 + 1.25462i) q^{33} +1.50105i q^{34} +(-2.28894 + 5.23535i) q^{36} +(-3.41587 - 0.915280i) q^{37} +(0.130843 + 0.488313i) q^{38} +(-0.309745 - 5.55358i) q^{39} -4.35963i q^{41} +(-1.38380 + 0.296773i) q^{42} +(-2.69037 - 2.69037i) q^{43} +(-0.726104 - 1.25765i) q^{44} +(1.18141 - 2.04627i) q^{46} +(1.10971 - 4.14148i) q^{47} +(1.21809 - 5.82678i) q^{48} +(5.18761 + 4.69986i) q^{49} +(7.51357 + 3.79665i) q^{51} +(1.58304 + 5.90798i) q^{52} +(-1.79889 - 6.71354i) q^{53} +(-1.02242 - 1.23690i) q^{54} +(2.91664 - 1.29321i) q^{56} +(2.77522 + 0.580162i) q^{57} +(0.395069 - 1.47442i) q^{58} +(-3.84501 + 6.65975i) q^{59} +(-2.19699 - 3.80529i) q^{61} +(-1.29462 - 1.29462i) q^{62} +(-2.01458 + 7.67733i) q^{63} +5.80098i q^{64} +(0.407227 - 0.0227126i) q^{66} +(-0.0126297 - 0.0471345i) q^{67} +(-8.94164 - 2.39591i) q^{68} +(-7.25451 - 11.0893i) q^{69} +12.4172i q^{71} +(2.82668 + 2.25775i) q^{72} +(1.34043 - 0.359168i) q^{73} +(-0.546081 + 0.945840i) q^{74} -3.11769 q^{76} +(-1.26712 - 1.56968i) q^{77} +(-1.68147 - 0.351513i) q^{78} +(3.66808 - 2.11777i) q^{79} +(-8.77741 + 1.98922i) q^{81} +(-1.30054 - 0.348478i) q^{82} +(-5.05351 + 5.05351i) q^{83} +(0.440911 - 8.71692i) q^{84} +(-1.01762 + 0.587525i) q^{86} +(-6.38101 - 5.70683i) q^{87} +(-0.888122 + 0.237971i) q^{88} +(0.453600 + 0.785658i) q^{89} +(3.44389 + 7.76716i) q^{91} +(10.3038 + 10.3038i) q^{92} +(-9.75480 + 3.20576i) q^{93} +(-1.14676 - 0.662081i) q^{94} +(-5.36921 - 2.71309i) q^{96} +(-3.73061 + 3.73061i) q^{97} +(1.81669 - 1.17186i) q^{98} +(0.916321 - 2.09584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{3} - 24 q^{6} + 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 48 q + 2 q^{3} - 24 q^{6} + 12 q^{7} + 10 q^{12} + 16 q^{13} - 8 q^{16} - 14 q^{18} - 28 q^{21} + 8 q^{22} - 40 q^{27} + 60 q^{28} - 24 q^{31} + 4 q^{33} + 8 q^{36} - 4 q^{37} - 14 q^{42} - 16 q^{43} - 32 q^{46} - 44 q^{48} + 8 q^{51} - 36 q^{52} + 88 q^{57} - 56 q^{58} - 8 q^{61} - 44 q^{63} + 76 q^{66} - 12 q^{67} + 34 q^{72} - 52 q^{73} + 64 q^{76} + 120 q^{78} + 20 q^{81} - 104 q^{82} + 46 q^{87} + 72 q^{91} + 44 q^{93} + 12 q^{96} + 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0799329 0.298314i 0.0565211 0.210940i −0.931890 0.362741i \(-0.881841\pi\)
0.988411 + 0.151802i \(0.0485075\pi\)
\(3\) −1.29105 1.15464i −0.745386 0.666633i
\(4\) 1.64945 + 0.952310i 0.824725 + 0.476155i
\(5\) 0 0
\(6\) −0.447643 + 0.292843i −0.182749 + 0.119553i
\(7\) 2.46856 + 0.951942i 0.933029 + 0.359800i
\(8\) 0.852694 0.852694i 0.301473 0.301473i
\(9\) 0.333606 + 2.98139i 0.111202 + 0.993798i
\(10\) 0 0
\(11\) −0.660315 0.381233i −0.199092 0.114946i 0.397140 0.917758i \(-0.370003\pi\)
−0.596232 + 0.802812i \(0.703336\pi\)
\(12\) −1.02994 3.13400i −0.297318 0.904708i
\(13\) 2.27077 + 2.27077i 0.629797 + 0.629797i 0.948017 0.318220i \(-0.103085\pi\)
−0.318220 + 0.948017i \(0.603085\pi\)
\(14\) 0.481297 0.660315i 0.128632 0.176477i
\(15\) 0 0
\(16\) 1.71841 + 2.97637i 0.429602 + 0.744092i
\(17\) −4.69471 + 1.25794i −1.13864 + 0.305096i −0.778402 0.627766i \(-0.783970\pi\)
−0.360233 + 0.932862i \(0.617303\pi\)
\(18\) 0.916057 + 0.138792i 0.215917 + 0.0327136i
\(19\) −1.41761 + 0.818455i −0.325221 + 0.187767i −0.653717 0.756739i \(-0.726791\pi\)
0.328496 + 0.944505i \(0.393458\pi\)
\(20\) 0 0
\(21\) −2.08788 4.07931i −0.455613 0.890178i
\(22\) −0.166508 + 0.166508i −0.0354996 + 0.0354996i
\(23\) 7.39003 + 1.98015i 1.54093 + 0.412890i 0.926566 0.376133i \(-0.122747\pi\)
0.614363 + 0.789024i \(0.289413\pi\)
\(24\) −2.08542 + 0.116312i −0.425685 + 0.0237422i
\(25\) 0 0
\(26\) 0.858909 0.495891i 0.168446 0.0972523i
\(27\) 3.01174 4.23432i 0.579610 0.814894i
\(28\) 3.16523 + 3.92102i 0.598172 + 0.741003i
\(29\) 4.94251 0.917801 0.458900 0.888488i \(-0.348243\pi\)
0.458900 + 0.888488i \(0.348243\pi\)
\(30\) 0 0
\(31\) 2.96413 5.13403i 0.532374 0.922099i −0.466911 0.884304i \(-0.654633\pi\)
0.999286 0.0377949i \(-0.0120334\pi\)
\(32\) 3.35485 0.898930i 0.593060 0.158910i
\(33\) 0.412310 + 1.25462i 0.0717740 + 0.218401i
\(34\) 1.50105i 0.257428i
\(35\) 0 0
\(36\) −2.28894 + 5.23535i −0.381491 + 0.872559i
\(37\) −3.41587 0.915280i −0.561566 0.150471i −0.0331401 0.999451i \(-0.510551\pi\)
−0.528426 + 0.848980i \(0.677217\pi\)
\(38\) 0.130843 + 0.488313i 0.0212255 + 0.0792148i
\(39\) −0.309745 5.55358i −0.0495990 0.889285i
\(40\) 0 0
\(41\) 4.35963i 0.680860i −0.940270 0.340430i \(-0.889427\pi\)
0.940270 0.340430i \(-0.110573\pi\)
\(42\) −1.38380 + 0.296773i −0.213526 + 0.0457930i
\(43\) −2.69037 2.69037i −0.410277 0.410277i 0.471558 0.881835i \(-0.343692\pi\)
−0.881835 + 0.471558i \(0.843692\pi\)
\(44\) −0.726104 1.25765i −0.109464 0.189598i
\(45\) 0 0
\(46\) 1.18141 2.04627i 0.174190 0.301706i
\(47\) 1.10971 4.14148i 0.161867 0.604097i −0.836552 0.547888i \(-0.815432\pi\)
0.998419 0.0562089i \(-0.0179013\pi\)
\(48\) 1.21809 5.82678i 0.175817 0.841023i
\(49\) 5.18761 + 4.69986i 0.741088 + 0.671408i
\(50\) 0 0
\(51\) 7.51357 + 3.79665i 1.05211 + 0.531637i
\(52\) 1.58304 + 5.90798i 0.219528 + 0.819290i
\(53\) −1.79889 6.71354i −0.247096 0.922176i −0.972318 0.233661i \(-0.924929\pi\)
0.725222 0.688515i \(-0.241737\pi\)
\(54\) −1.02242 1.23690i −0.139133 0.168321i
\(55\) 0 0
\(56\) 2.91664 1.29321i 0.389753 0.172813i
\(57\) 2.77522 + 0.580162i 0.367587 + 0.0768444i
\(58\) 0.395069 1.47442i 0.0518751 0.193601i
\(59\) −3.84501 + 6.65975i −0.500577 + 0.867026i 0.499422 + 0.866359i \(0.333546\pi\)
−1.00000 0.000666931i \(0.999788\pi\)
\(60\) 0 0
\(61\) −2.19699 3.80529i −0.281295 0.487218i 0.690409 0.723420i \(-0.257431\pi\)
−0.971704 + 0.236202i \(0.924097\pi\)
\(62\) −1.29462 1.29462i −0.164417 0.164417i
\(63\) −2.01458 + 7.67733i −0.253814 + 0.967253i
\(64\) 5.80098i 0.725122i
\(65\) 0 0
\(66\) 0.407227 0.0227126i 0.0501261 0.00279573i
\(67\) −0.0126297 0.0471345i −0.00154296 0.00575840i 0.965150 0.261697i \(-0.0842821\pi\)
−0.966693 + 0.255939i \(0.917615\pi\)
\(68\) −8.94164 2.39591i −1.08433 0.290546i
\(69\) −7.25451 11.0893i −0.873341 1.33500i
\(70\) 0 0
\(71\) 12.4172i 1.47365i 0.676082 + 0.736826i \(0.263676\pi\)
−0.676082 + 0.736826i \(0.736324\pi\)
\(72\) 2.82668 + 2.25775i 0.333127 + 0.266079i
\(73\) 1.34043 0.359168i 0.156886 0.0420374i −0.179521 0.983754i \(-0.557455\pi\)
0.336407 + 0.941717i \(0.390788\pi\)
\(74\) −0.546081 + 0.945840i −0.0634806 + 0.109952i
\(75\) 0 0
\(76\) −3.11769 −0.357624
\(77\) −1.26712 1.56968i −0.144401 0.178882i
\(78\) −1.68147 0.351513i −0.190389 0.0398010i
\(79\) 3.66808 2.11777i 0.412692 0.238268i −0.279254 0.960217i \(-0.590087\pi\)
0.691946 + 0.721950i \(0.256754\pi\)
\(80\) 0 0
\(81\) −8.77741 + 1.98922i −0.975268 + 0.221025i
\(82\) −1.30054 0.348478i −0.143620 0.0384830i
\(83\) −5.05351 + 5.05351i −0.554695 + 0.554695i −0.927792 0.373097i \(-0.878296\pi\)
0.373097 + 0.927792i \(0.378296\pi\)
\(84\) 0.440911 8.71692i 0.0481074 0.951094i
\(85\) 0 0
\(86\) −1.01762 + 0.587525i −0.109733 + 0.0633544i
\(87\) −6.38101 5.70683i −0.684116 0.611836i
\(88\) −0.888122 + 0.237971i −0.0946741 + 0.0253678i
\(89\) 0.453600 + 0.785658i 0.0480815 + 0.0832796i 0.889065 0.457782i \(-0.151356\pi\)
−0.840983 + 0.541061i \(0.818023\pi\)
\(90\) 0 0
\(91\) 3.44389 + 7.76716i 0.361018 + 0.814220i
\(92\) 10.3038 + 10.3038i 1.07424 + 1.07424i
\(93\) −9.75480 + 3.20576i −1.01153 + 0.332422i
\(94\) −1.14676 0.662081i −0.118279 0.0682884i
\(95\) 0 0
\(96\) −5.36921 2.71309i −0.547993 0.276904i
\(97\) −3.73061 + 3.73061i −0.378786 + 0.378786i −0.870664 0.491878i \(-0.836311\pi\)
0.491878 + 0.870664i \(0.336311\pi\)
\(98\) 1.81669 1.17186i 0.183514 0.118376i
\(99\) 0.916321 2.09584i 0.0920937 0.210640i
\(100\) 0 0
\(101\) −16.4444 9.49420i −1.63628 0.944708i −0.982098 0.188373i \(-0.939679\pi\)
−0.654185 0.756335i \(-0.726988\pi\)
\(102\) 1.73317 1.93792i 0.171610 0.191883i
\(103\) 3.26921 12.2009i 0.322125 1.20219i −0.595046 0.803692i \(-0.702866\pi\)
0.917171 0.398494i \(-0.130467\pi\)
\(104\) 3.87254 0.379733
\(105\) 0 0
\(106\) −2.14653 −0.208490
\(107\) −0.564395 + 2.10635i −0.0545621 + 0.203629i −0.987826 0.155563i \(-0.950281\pi\)
0.933264 + 0.359192i \(0.116948\pi\)
\(108\) 9.00009 4.11618i 0.866034 0.396079i
\(109\) −2.04357 1.17986i −0.195739 0.113010i 0.398928 0.916982i \(-0.369382\pi\)
−0.594666 + 0.803973i \(0.702716\pi\)
\(110\) 0 0
\(111\) 3.35323 + 5.12578i 0.318275 + 0.486517i
\(112\) 1.40867 + 8.98318i 0.133107 + 0.848831i
\(113\) −11.9386 + 11.9386i −1.12309 + 1.12309i −0.131814 + 0.991274i \(0.542080\pi\)
−0.991274 + 0.131814i \(0.957920\pi\)
\(114\) 0.394902 0.781512i 0.0369859 0.0731953i
\(115\) 0 0
\(116\) 8.15242 + 4.70680i 0.756933 + 0.437015i
\(117\) −6.01250 + 7.52759i −0.555856 + 0.695925i
\(118\) 1.67935 + 1.67935i 0.154597 + 0.154597i
\(119\) −12.7867 1.36378i −1.17215 0.125017i
\(120\) 0 0
\(121\) −5.20932 9.02281i −0.473575 0.820256i
\(122\) −1.31078 + 0.351223i −0.118673 + 0.0317983i
\(123\) −5.03381 + 5.62849i −0.453884 + 0.507504i
\(124\) 9.77837 5.64555i 0.878124 0.506985i
\(125\) 0 0
\(126\) 2.12922 + 1.21465i 0.189686 + 0.108210i
\(127\) −4.46126 + 4.46126i −0.395873 + 0.395873i −0.876775 0.480901i \(-0.840309\pi\)
0.480901 + 0.876775i \(0.340309\pi\)
\(128\) 8.44022 + 2.26155i 0.746017 + 0.199895i
\(129\) 0.366982 + 6.57980i 0.0323109 + 0.579319i
\(130\) 0 0
\(131\) −1.86149 + 1.07473i −0.162639 + 0.0938999i −0.579111 0.815249i \(-0.696600\pi\)
0.416471 + 0.909149i \(0.363267\pi\)
\(132\) −0.514699 + 2.46207i −0.0447988 + 0.214296i
\(133\) −4.27857 + 0.670931i −0.370999 + 0.0581771i
\(134\) −0.0150704 −0.00130188
\(135\) 0 0
\(136\) −2.93051 + 5.07580i −0.251289 + 0.435246i
\(137\) −8.51678 + 2.28207i −0.727638 + 0.194970i −0.603577 0.797305i \(-0.706258\pi\)
−0.124061 + 0.992275i \(0.539592\pi\)
\(138\) −3.88797 + 1.27772i −0.330966 + 0.108767i
\(139\) 10.3626i 0.878941i 0.898257 + 0.439471i \(0.144834\pi\)
−0.898257 + 0.439471i \(0.855166\pi\)
\(140\) 0 0
\(141\) −6.21461 + 4.06553i −0.523364 + 0.342380i
\(142\) 3.70423 + 0.992544i 0.310852 + 0.0832925i
\(143\) −0.633730 2.36511i −0.0529951 0.197780i
\(144\) −8.30046 + 6.11618i −0.691705 + 0.509682i
\(145\) 0 0
\(146\) 0.428578i 0.0354694i
\(147\) −1.27081 12.0576i −0.104814 0.994492i
\(148\) −4.76267 4.76267i −0.391489 0.391489i
\(149\) −8.72716 15.1159i −0.714957 1.23834i −0.962976 0.269586i \(-0.913113\pi\)
0.248019 0.968755i \(-0.420220\pi\)
\(150\) 0 0
\(151\) 7.60786 13.1772i 0.619119 1.07235i −0.370528 0.928821i \(-0.620823\pi\)
0.989647 0.143524i \(-0.0458434\pi\)
\(152\) −0.510892 + 1.90668i −0.0414388 + 0.154652i
\(153\) −5.31661 13.5771i −0.429823 1.09765i
\(154\) −0.569541 + 0.252530i −0.0458949 + 0.0203494i
\(155\) 0 0
\(156\) 4.77782 9.45533i 0.382532 0.757032i
\(157\) −2.36469 8.82516i −0.188723 0.704324i −0.993803 0.111158i \(-0.964544\pi\)
0.805080 0.593167i \(-0.202122\pi\)
\(158\) −0.338559 1.26352i −0.0269343 0.100520i
\(159\) −5.42929 + 10.7446i −0.430570 + 0.852100i
\(160\) 0 0
\(161\) 16.3578 + 11.9230i 1.28917 + 0.939665i
\(162\) −0.108192 + 2.77743i −0.00850040 + 0.218215i
\(163\) −0.700710 + 2.61508i −0.0548838 + 0.204829i −0.987923 0.154946i \(-0.950480\pi\)
0.933039 + 0.359775i \(0.117146\pi\)
\(164\) 4.15172 7.19099i 0.324195 0.561522i
\(165\) 0 0
\(166\) 1.10359 + 1.91147i 0.0856551 + 0.148359i
\(167\) 3.85551 + 3.85551i 0.298348 + 0.298348i 0.840367 0.542018i \(-0.182340\pi\)
−0.542018 + 0.840367i \(0.682340\pi\)
\(168\) −5.25872 1.69808i −0.405719 0.131010i
\(169\) 2.68725i 0.206712i
\(170\) 0 0
\(171\) −2.91306 3.95340i −0.222767 0.302324i
\(172\) −1.87556 6.99969i −0.143010 0.533721i
\(173\) 1.27815 + 0.342481i 0.0971763 + 0.0260383i 0.307080 0.951684i \(-0.400648\pi\)
−0.209903 + 0.977722i \(0.567315\pi\)
\(174\) −2.21248 + 1.44738i −0.167727 + 0.109726i
\(175\) 0 0
\(176\) 2.62045i 0.197524i
\(177\) 12.6537 4.15845i 0.951111 0.312568i
\(178\) 0.270630 0.0725151i 0.0202846 0.00543524i
\(179\) −0.120836 + 0.209294i −0.00903168 + 0.0156433i −0.870506 0.492158i \(-0.836208\pi\)
0.861474 + 0.507801i \(0.169542\pi\)
\(180\) 0 0
\(181\) 18.6864 1.38895 0.694475 0.719517i \(-0.255637\pi\)
0.694475 + 0.719517i \(0.255637\pi\)
\(182\) 2.59233 0.406508i 0.192156 0.0301324i
\(183\) −1.55734 + 7.44955i −0.115122 + 0.550686i
\(184\) 7.98990 4.61297i 0.589023 0.340073i
\(185\) 0 0
\(186\) 0.176594 + 3.16624i 0.0129485 + 0.232160i
\(187\) 3.57956 + 0.959140i 0.261763 + 0.0701393i
\(188\) 5.77437 5.77437i 0.421140 0.421140i
\(189\) 11.4655 7.58568i 0.833992 0.551777i
\(190\) 0 0
\(191\) 12.3330 7.12049i 0.892388 0.515220i 0.0176651 0.999844i \(-0.494377\pi\)
0.874723 + 0.484624i \(0.161043\pi\)
\(192\) 6.69805 7.48934i 0.483390 0.540496i
\(193\) 6.58385 1.76414i 0.473916 0.126985i −0.0139523 0.999903i \(-0.504441\pi\)
0.487868 + 0.872917i \(0.337775\pi\)
\(194\) 0.814694 + 1.41109i 0.0584916 + 0.101310i
\(195\) 0 0
\(196\) 4.08099 + 12.6924i 0.291499 + 0.906599i
\(197\) −7.65626 7.65626i −0.545486 0.545486i 0.379646 0.925132i \(-0.376046\pi\)
−0.925132 + 0.379646i \(0.876046\pi\)
\(198\) −0.551974 0.440878i −0.0392271 0.0313318i
\(199\) −14.1855 8.19000i −1.00558 0.580573i −0.0956874 0.995411i \(-0.530505\pi\)
−0.909895 + 0.414838i \(0.863838\pi\)
\(200\) 0 0
\(201\) −0.0381180 + 0.0754356i −0.00268864 + 0.00532082i
\(202\) −4.14670 + 4.14670i −0.291761 + 0.291761i
\(203\) 12.2009 + 4.70498i 0.856335 + 0.330225i
\(204\) 8.77767 + 13.4176i 0.614560 + 0.939421i
\(205\) 0 0
\(206\) −3.37836 1.95050i −0.235382 0.135898i
\(207\) −3.43826 + 22.6932i −0.238975 + 1.57729i
\(208\) −2.85654 + 10.6607i −0.198065 + 0.739189i
\(209\) 1.24809 0.0863321
\(210\) 0 0
\(211\) −25.5028 −1.75568 −0.877842 0.478950i \(-0.841018\pi\)
−0.877842 + 0.478950i \(0.841018\pi\)
\(212\) 3.42620 12.7867i 0.235312 0.878197i
\(213\) 14.3374 16.0312i 0.982385 1.09844i
\(214\) 0.583239 + 0.336733i 0.0398694 + 0.0230186i
\(215\) 0 0
\(216\) −1.04248 6.17867i −0.0709320 0.420405i
\(217\) 12.2044 9.85200i 0.828492 0.668797i
\(218\) −0.515316 + 0.515316i −0.0349016 + 0.0349016i
\(219\) −2.14527 1.08402i −0.144964 0.0732510i
\(220\) 0 0
\(221\) −13.5171 7.80410i −0.909258 0.524960i
\(222\) 1.79712 0.590596i 0.120615 0.0396382i
\(223\) 15.4546 + 15.4546i 1.03491 + 1.03491i 0.999368 + 0.0355465i \(0.0113172\pi\)
0.0355465 + 0.999368i \(0.488683\pi\)
\(224\) 9.13740 + 0.974557i 0.610518 + 0.0651154i
\(225\) 0 0
\(226\) 2.60716 + 4.51573i 0.173426 + 0.300382i
\(227\) 12.4101 3.32527i 0.823686 0.220706i 0.177728 0.984080i \(-0.443125\pi\)
0.645957 + 0.763374i \(0.276458\pi\)
\(228\) 4.02509 + 3.59982i 0.266568 + 0.238404i
\(229\) −13.2508 + 7.65038i −0.875641 + 0.505551i −0.869219 0.494428i \(-0.835378\pi\)
−0.00642204 + 0.999979i \(0.502044\pi\)
\(230\) 0 0
\(231\) −0.176508 + 3.48960i −0.0116134 + 0.229599i
\(232\) 4.21445 4.21445i 0.276692 0.276692i
\(233\) −6.62761 1.77586i −0.434189 0.116341i 0.0351029 0.999384i \(-0.488824\pi\)
−0.469292 + 0.883043i \(0.655491\pi\)
\(234\) 1.76498 + 2.39531i 0.115381 + 0.156587i
\(235\) 0 0
\(236\) −12.6843 + 7.32328i −0.825677 + 0.476705i
\(237\) −7.18093 1.50118i −0.466452 0.0975122i
\(238\) −1.42891 + 3.70543i −0.0926225 + 0.240188i
\(239\) 18.7082 1.21013 0.605067 0.796174i \(-0.293146\pi\)
0.605067 + 0.796174i \(0.293146\pi\)
\(240\) 0 0
\(241\) 0.986063 1.70791i 0.0635179 0.110016i −0.832518 0.553998i \(-0.813101\pi\)
0.896036 + 0.443982i \(0.146435\pi\)
\(242\) −3.10802 + 0.832793i −0.199791 + 0.0535339i
\(243\) 13.6289 + 7.56659i 0.874294 + 0.485397i
\(244\) 8.36885i 0.535761i
\(245\) 0 0
\(246\) 1.27669 + 1.95156i 0.0813987 + 0.124427i
\(247\) −5.07757 1.36053i −0.323078 0.0865685i
\(248\) −1.85026 6.90525i −0.117491 0.438484i
\(249\) 12.3593 0.689328i 0.783240 0.0436844i
\(250\) 0 0
\(251\) 17.9016i 1.12994i −0.825112 0.564970i \(-0.808888\pi\)
0.825112 0.564970i \(-0.191112\pi\)
\(252\) −10.6342 + 10.7449i −0.669889 + 0.676863i
\(253\) −4.12485 4.12485i −0.259327 0.259327i
\(254\) 0.974254 + 1.68746i 0.0611301 + 0.105881i
\(255\) 0 0
\(256\) −4.45168 + 7.71053i −0.278230 + 0.481908i
\(257\) −5.10358 + 19.0468i −0.318353 + 1.18811i 0.602475 + 0.798138i \(0.294181\pi\)
−0.920827 + 0.389971i \(0.872485\pi\)
\(258\) 1.99218 + 0.416467i 0.124028 + 0.0259281i
\(259\) −7.56100 5.51114i −0.469818 0.342445i
\(260\) 0 0
\(261\) 1.64885 + 14.7356i 0.102061 + 0.912109i
\(262\) 0.171813 + 0.641215i 0.0106147 + 0.0396144i
\(263\) −1.43607 5.35948i −0.0885517 0.330480i 0.907411 0.420244i \(-0.138055\pi\)
−0.995963 + 0.0897640i \(0.971389\pi\)
\(264\) 1.42138 + 0.718230i 0.0874798 + 0.0442040i
\(265\) 0 0
\(266\) −0.141851 + 1.32999i −0.00869744 + 0.0815467i
\(267\) 0.321534 1.53807i 0.0196776 0.0941281i
\(268\) 0.0240547 0.0897733i 0.00146937 0.00548378i
\(269\) −5.02321 + 8.70045i −0.306270 + 0.530476i −0.977543 0.210734i \(-0.932414\pi\)
0.671273 + 0.741210i \(0.265748\pi\)
\(270\) 0 0
\(271\) 2.82028 + 4.88486i 0.171320 + 0.296734i 0.938881 0.344241i \(-0.111864\pi\)
−0.767562 + 0.640975i \(0.778530\pi\)
\(272\) −11.8115 11.8115i −0.716180 0.716180i
\(273\) 4.52206 14.0042i 0.273688 0.847575i
\(274\) 2.72309i 0.164508i
\(275\) 0 0
\(276\) −1.40549 25.1998i −0.0846007 1.51685i
\(277\) −2.91038 10.8617i −0.174868 0.652615i −0.996574 0.0827040i \(-0.973644\pi\)
0.821707 0.569911i \(-0.193022\pi\)
\(278\) 3.09130 + 0.828310i 0.185404 + 0.0496787i
\(279\) 16.2954 + 7.12451i 0.975581 + 0.426533i
\(280\) 0 0
\(281\) 1.92831i 0.115033i 0.998345 + 0.0575167i \(0.0183183\pi\)
−0.998345 + 0.0575167i \(0.981682\pi\)
\(282\) 0.716052 + 2.17887i 0.0426403 + 0.129750i
\(283\) −25.4667 + 6.82379i −1.51384 + 0.405632i −0.917709 0.397254i \(-0.869963\pi\)
−0.596132 + 0.802887i \(0.703296\pi\)
\(284\) −11.8250 + 20.4816i −0.701687 + 1.21536i
\(285\) 0 0
\(286\) −0.756201 −0.0447151
\(287\) 4.15012 10.7620i 0.244974 0.635263i
\(288\) 3.79926 + 9.70225i 0.223874 + 0.571710i
\(289\) 5.73548 3.31138i 0.337381 0.194787i
\(290\) 0 0
\(291\) 9.12392 0.508877i 0.534853 0.0298309i
\(292\) 2.55301 + 0.684078i 0.149404 + 0.0400326i
\(293\) 7.83332 7.83332i 0.457627 0.457627i −0.440249 0.897876i \(-0.645110\pi\)
0.897876 + 0.440249i \(0.145110\pi\)
\(294\) −3.69852 0.584698i −0.215702 0.0341003i
\(295\) 0 0
\(296\) −3.69315 + 2.13224i −0.214660 + 0.123934i
\(297\) −3.60296 + 1.64781i −0.209065 + 0.0956155i
\(298\) −5.20686 + 1.39517i −0.301625 + 0.0808203i
\(299\) 12.2846 + 21.2775i 0.710435 + 1.23051i
\(300\) 0 0
\(301\) −4.08027 9.20242i −0.235183 0.530418i
\(302\) −3.32282 3.32282i −0.191207 0.191207i
\(303\) 10.2681 + 31.2449i 0.589890 + 1.79497i
\(304\) −4.87205 2.81288i −0.279431 0.161330i
\(305\) 0 0
\(306\) −4.47522 + 0.500759i −0.255831 + 0.0286265i
\(307\) 17.0769 17.0769i 0.974628 0.974628i −0.0250576 0.999686i \(-0.507977\pi\)
0.999686 + 0.0250576i \(0.00797691\pi\)
\(308\) −0.595226 3.79579i −0.0339161 0.216285i
\(309\) −18.3083 + 11.9771i −1.04152 + 0.681354i
\(310\) 0 0
\(311\) 20.4797 + 11.8240i 1.16130 + 0.670475i 0.951615 0.307294i \(-0.0994235\pi\)
0.209683 + 0.977769i \(0.432757\pi\)
\(312\) −4.99963 4.47139i −0.283048 0.253143i
\(313\) 3.20409 11.9578i 0.181106 0.675895i −0.814325 0.580409i \(-0.802893\pi\)
0.995431 0.0954864i \(-0.0304406\pi\)
\(314\) −2.82168 −0.159237
\(315\) 0 0
\(316\) 8.06709 0.453809
\(317\) 1.13684 4.24276i 0.0638515 0.238297i −0.926623 0.375991i \(-0.877302\pi\)
0.990475 + 0.137694i \(0.0439691\pi\)
\(318\) 2.77127 + 2.47848i 0.155405 + 0.138986i
\(319\) −3.26361 1.88425i −0.182727 0.105498i
\(320\) 0 0
\(321\) 3.16074 2.06772i 0.176415 0.115409i
\(322\) 4.86432 3.92671i 0.271078 0.218827i
\(323\) 5.62568 5.62568i 0.313021 0.313021i
\(324\) −16.3723 5.07770i −0.909570 0.282094i
\(325\) 0 0
\(326\) 0.724106 + 0.418063i 0.0401045 + 0.0231543i
\(327\) 1.27604 + 3.88284i 0.0705650 + 0.214722i
\(328\) −3.71743 3.71743i −0.205261 0.205261i
\(329\) 6.68183 9.16713i 0.368381 0.505400i
\(330\) 0 0
\(331\) 3.10933 + 5.38552i 0.170904 + 0.296015i 0.938736 0.344636i \(-0.111998\pi\)
−0.767832 + 0.640651i \(0.778664\pi\)
\(332\) −13.1480 + 3.52300i −0.721591 + 0.193350i
\(333\) 1.58925 10.4894i 0.0870906 0.574815i
\(334\) 1.45833 0.841970i 0.0797965 0.0460705i
\(335\) 0 0
\(336\) 8.55370 13.2242i 0.466642 0.721440i
\(337\) −15.0501 + 15.0501i −0.819833 + 0.819833i −0.986084 0.166250i \(-0.946834\pi\)
0.166250 + 0.986084i \(0.446834\pi\)
\(338\) −0.801644 0.214800i −0.0436037 0.0116836i
\(339\) 29.1981 1.62849i 1.58582 0.0884476i
\(340\) 0 0
\(341\) −3.91452 + 2.26005i −0.211983 + 0.122389i
\(342\) −1.41220 + 0.552999i −0.0763632 + 0.0299027i
\(343\) 8.33197 + 16.5402i 0.449884 + 0.893087i
\(344\) −4.58812 −0.247375
\(345\) 0 0
\(346\) 0.204333 0.353916i 0.0109850 0.0190266i
\(347\) 18.6057 4.98539i 0.998808 0.267630i 0.277862 0.960621i \(-0.410374\pi\)
0.720946 + 0.692991i \(0.243708\pi\)
\(348\) −5.09049 15.4898i −0.272879 0.830342i
\(349\) 9.24369i 0.494803i 0.968913 + 0.247402i \(0.0795767\pi\)
−0.968913 + 0.247402i \(0.920423\pi\)
\(350\) 0 0
\(351\) 16.4541 2.77618i 0.878254 0.148182i
\(352\) −2.55796 0.685404i −0.136340 0.0365321i
\(353\) −3.05649 11.4070i −0.162681 0.607132i −0.998325 0.0578609i \(-0.981572\pi\)
0.835644 0.549271i \(-0.185095\pi\)
\(354\) −0.229073 4.10717i −0.0121751 0.218294i
\(355\) 0 0
\(356\) 1.72787i 0.0915769i
\(357\) 14.9335 + 16.5247i 0.790367 + 0.874582i
\(358\) 0.0527764 + 0.0527764i 0.00278932 + 0.00278932i
\(359\) 6.98129 + 12.0920i 0.368459 + 0.638189i 0.989325 0.145728i \(-0.0465523\pi\)
−0.620866 + 0.783917i \(0.713219\pi\)
\(360\) 0 0
\(361\) −8.16026 + 14.1340i −0.429487 + 0.743894i
\(362\) 1.49366 5.57441i 0.0785050 0.292985i
\(363\) −3.69263 + 17.6638i −0.193813 + 0.927108i
\(364\) −1.71622 + 16.0912i −0.0899544 + 0.843408i
\(365\) 0 0
\(366\) 2.09782 + 1.06004i 0.109655 + 0.0554091i
\(367\) 3.90370 + 14.5688i 0.203771 + 0.760485i 0.989821 + 0.142321i \(0.0454565\pi\)
−0.786049 + 0.618164i \(0.787877\pi\)
\(368\) 6.80542 + 25.3982i 0.354757 + 1.32397i
\(369\) 12.9978 1.45440i 0.676638 0.0757130i
\(370\) 0 0
\(371\) 1.95023 18.2852i 0.101251 0.949323i
\(372\) −19.1429 4.00185i −0.992515 0.207486i
\(373\) 9.01635 33.6495i 0.466849 1.74230i −0.183837 0.982957i \(-0.558852\pi\)
0.650686 0.759347i \(-0.274481\pi\)
\(374\) 0.572249 0.991165i 0.0295903 0.0512519i
\(375\) 0 0
\(376\) −2.58517 4.47765i −0.133320 0.230917i
\(377\) 11.2233 + 11.2233i 0.578028 + 0.578028i
\(378\) −1.34644 4.02666i −0.0692535 0.207109i
\(379\) 19.0602i 0.979056i −0.871988 0.489528i \(-0.837169\pi\)
0.871988 0.489528i \(-0.162831\pi\)
\(380\) 0 0
\(381\) 10.9109 0.608542i 0.558980 0.0311765i
\(382\) −1.13832 4.24828i −0.0582417 0.217361i
\(383\) 9.81007 + 2.62860i 0.501271 + 0.134315i 0.500590 0.865685i \(-0.333116\pi\)
0.000681261 1.00000i \(0.499783\pi\)
\(384\) −8.28544 12.6652i −0.422815 0.646318i
\(385\) 0 0
\(386\) 2.10507i 0.107145i
\(387\) 7.12352 8.91857i 0.362109 0.453356i
\(388\) −9.70615 + 2.60076i −0.492755 + 0.132033i
\(389\) 18.6290 32.2664i 0.944528 1.63597i 0.187835 0.982201i \(-0.439853\pi\)
0.756693 0.653770i \(-0.226814\pi\)
\(390\) 0 0
\(391\) −37.1850 −1.88053
\(392\) 8.43099 0.415908i 0.425829 0.0210065i
\(393\) 3.64421 + 0.761825i 0.183826 + 0.0384290i
\(394\) −2.89595 + 1.67198i −0.145896 + 0.0842331i
\(395\) 0 0
\(396\) 3.50731 2.58436i 0.176249 0.129869i
\(397\) −8.58658 2.30077i −0.430948 0.115472i 0.0368231 0.999322i \(-0.488276\pi\)
−0.467771 + 0.883850i \(0.654943\pi\)
\(398\) −3.57708 + 3.57708i −0.179303 + 0.179303i
\(399\) 6.29852 + 4.07401i 0.315321 + 0.203956i
\(400\) 0 0
\(401\) 4.02832 2.32575i 0.201165 0.116142i −0.396034 0.918236i \(-0.629614\pi\)
0.597199 + 0.802093i \(0.296280\pi\)
\(402\) 0.0194566 + 0.0174009i 0.000970407 + 0.000867878i
\(403\) 18.3890 4.92733i 0.916023 0.245448i
\(404\) −18.0828 31.3204i −0.899655 1.55825i
\(405\) 0 0
\(406\) 2.37881 3.26361i 0.118059 0.161970i
\(407\) 1.90662 + 1.90662i 0.0945074 + 0.0945074i
\(408\) 9.64415 3.16940i 0.477457 0.156909i
\(409\) −23.0006 13.2794i −1.13731 0.656626i −0.191546 0.981484i \(-0.561350\pi\)
−0.945763 + 0.324858i \(0.894683\pi\)
\(410\) 0 0
\(411\) 13.6305 + 6.88758i 0.672345 + 0.339739i
\(412\) 17.0114 17.0114i 0.838091 0.838091i
\(413\) −15.8313 + 12.7798i −0.779009 + 0.628853i
\(414\) 6.49486 + 2.83961i 0.319205 + 0.139559i
\(415\) 0 0
\(416\) 9.65934 + 5.57682i 0.473588 + 0.273426i
\(417\) 11.9650 13.3786i 0.585931 0.655151i
\(418\) 0.0997634 0.372322i 0.00487959 0.0182109i
\(419\) −25.8278 −1.26177 −0.630885 0.775876i \(-0.717308\pi\)
−0.630885 + 0.775876i \(0.717308\pi\)
\(420\) 0 0
\(421\) 0.432430 0.0210753 0.0105377 0.999944i \(-0.496646\pi\)
0.0105377 + 0.999944i \(0.496646\pi\)
\(422\) −2.03851 + 7.60783i −0.0992332 + 0.370343i
\(423\) 12.7176 + 1.92685i 0.618350 + 0.0936866i
\(424\) −7.25850 4.19070i −0.352504 0.203518i
\(425\) 0 0
\(426\) −3.63630 5.55847i −0.176179 0.269309i
\(427\) −1.80099 11.4850i −0.0871558 0.555799i
\(428\) −2.93684 + 2.93684i −0.141957 + 0.141957i
\(429\) −1.91268 + 3.78520i −0.0923451 + 0.182751i
\(430\) 0 0
\(431\) −14.1264 8.15586i −0.680443 0.392854i 0.119579 0.992825i \(-0.461846\pi\)
−0.800022 + 0.599971i \(0.795179\pi\)
\(432\) 17.7783 + 1.68777i 0.855358 + 0.0812029i
\(433\) 0.514238 + 0.514238i 0.0247127 + 0.0247127i 0.719355 0.694642i \(-0.244437\pi\)
−0.694642 + 0.719355i \(0.744437\pi\)
\(434\) −1.96345 4.42825i −0.0942486 0.212563i
\(435\) 0 0
\(436\) −2.24718 3.89223i −0.107620 0.186404i
\(437\) −12.0968 + 3.24133i −0.578669 + 0.155054i
\(438\) −0.494855 + 0.553315i −0.0236451 + 0.0264384i
\(439\) 13.2487 7.64917i 0.632328 0.365075i −0.149325 0.988788i \(-0.547710\pi\)
0.781653 + 0.623713i \(0.214377\pi\)
\(440\) 0 0
\(441\) −12.2815 + 17.0342i −0.584834 + 0.811153i
\(442\) −3.40853 + 3.40853i −0.162127 + 0.162127i
\(443\) −8.81439 2.36181i −0.418784 0.112213i 0.0432723 0.999063i \(-0.486222\pi\)
−0.462057 + 0.886850i \(0.652888\pi\)
\(444\) 0.649656 + 11.6480i 0.0308313 + 0.552791i
\(445\) 0 0
\(446\) 5.84564 3.37498i 0.276799 0.159810i
\(447\) −6.18625 + 29.5921i −0.292600 + 1.39966i
\(448\) −5.52219 + 14.3201i −0.260899 + 0.676560i
\(449\) −9.40891 −0.444034 −0.222017 0.975043i \(-0.571264\pi\)
−0.222017 + 0.975043i \(0.571264\pi\)
\(450\) 0 0
\(451\) −1.66204 + 2.87873i −0.0782622 + 0.135554i
\(452\) −31.0613 + 8.32286i −1.46100 + 0.391474i
\(453\) −25.0370 + 8.22804i −1.17634 + 0.386587i
\(454\) 3.96789i 0.186222i
\(455\) 0 0
\(456\) 2.86111 1.87171i 0.133984 0.0876509i
\(457\) −33.3520 8.93665i −1.56014 0.418039i −0.627434 0.778670i \(-0.715895\pi\)
−0.932708 + 0.360631i \(0.882561\pi\)
\(458\) 1.22303 + 4.56443i 0.0571486 + 0.213282i
\(459\) −8.81272 + 23.6675i −0.411343 + 1.10470i
\(460\) 0 0
\(461\) 36.9326i 1.72012i 0.510192 + 0.860061i \(0.329574\pi\)
−0.510192 + 0.860061i \(0.670426\pi\)
\(462\) 1.02689 + 0.331588i 0.0477751 + 0.0154269i
\(463\) −26.3687 26.3687i −1.22546 1.22546i −0.965664 0.259794i \(-0.916345\pi\)
−0.259794 0.965664i \(-0.583655\pi\)
\(464\) 8.49325 + 14.7107i 0.394289 + 0.682929i
\(465\) 0 0
\(466\) −1.05953 + 1.83516i −0.0490817 + 0.0850120i
\(467\) 2.63979 9.85183i 0.122155 0.455888i −0.877567 0.479453i \(-0.840835\pi\)
0.999722 + 0.0235650i \(0.00750166\pi\)
\(468\) −17.0859 + 6.69060i −0.789797 + 0.309273i
\(469\) 0.0136922 0.128377i 0.000632247 0.00592791i
\(470\) 0 0
\(471\) −7.13696 + 14.1241i −0.328854 + 0.650803i
\(472\) 2.40011 + 8.95734i 0.110474 + 0.412295i
\(473\) 0.750833 + 2.80215i 0.0345233 + 0.128843i
\(474\) −1.02182 + 2.02218i −0.0469336 + 0.0928817i
\(475\) 0 0
\(476\) −19.7923 14.4264i −0.907177 0.661232i
\(477\) 19.4156 7.60287i 0.888979 0.348112i
\(478\) 1.49540 5.58092i 0.0683981 0.255265i
\(479\) −6.85350 + 11.8706i −0.313144 + 0.542382i −0.979041 0.203662i \(-0.934716\pi\)
0.665897 + 0.746044i \(0.268049\pi\)
\(480\) 0 0
\(481\) −5.67825 9.83503i −0.258906 0.448439i
\(482\) −0.430674 0.430674i −0.0196167 0.0196167i
\(483\) −7.35185 34.2805i −0.334521 1.55982i
\(484\) 19.8436i 0.901980i
\(485\) 0 0
\(486\) 3.34661 3.46087i 0.151805 0.156988i
\(487\) 5.91662 + 22.0811i 0.268108 + 1.00059i 0.960321 + 0.278898i \(0.0899692\pi\)
−0.692213 + 0.721693i \(0.743364\pi\)
\(488\) −5.11811 1.37139i −0.231686 0.0620800i
\(489\) 3.92413 2.56713i 0.177455 0.116090i
\(490\) 0 0
\(491\) 23.7476i 1.07172i 0.844308 + 0.535858i \(0.180012\pi\)
−0.844308 + 0.535858i \(0.819988\pi\)
\(492\) −13.6631 + 4.49016i −0.615980 + 0.202432i
\(493\) −23.2037 + 6.21740i −1.04504 + 0.280018i
\(494\) −0.811730 + 1.40596i −0.0365215 + 0.0632570i
\(495\) 0 0
\(496\) 20.3744 0.914836
\(497\) −11.8205 + 30.6527i −0.530220 + 1.37496i
\(498\) 0.782280 3.74205i 0.0350548 0.167685i
\(499\) −2.80187 + 1.61766i −0.125429 + 0.0724165i −0.561402 0.827543i \(-0.689738\pi\)
0.435973 + 0.899960i \(0.356404\pi\)
\(500\) 0 0
\(501\) −0.525914 9.42938i −0.0234961 0.421274i
\(502\) −5.34029 1.43093i −0.238349 0.0638654i
\(503\) −2.62851 + 2.62851i −0.117199 + 0.117199i −0.763274 0.646075i \(-0.776409\pi\)
0.646075 + 0.763274i \(0.276409\pi\)
\(504\) 4.82859 + 8.26424i 0.215083 + 0.368118i
\(505\) 0 0
\(506\) −1.56021 + 0.900788i −0.0693598 + 0.0400449i
\(507\) −3.10281 + 3.46937i −0.137801 + 0.154080i
\(508\) −11.6071 + 3.11012i −0.514983 + 0.137989i
\(509\) −6.91189 11.9717i −0.306364 0.530638i 0.671200 0.741276i \(-0.265779\pi\)
−0.977564 + 0.210638i \(0.932446\pi\)
\(510\) 0 0
\(511\) 3.65085 + 0.389385i 0.161504 + 0.0172254i
\(512\) 14.3017 + 14.3017i 0.632050 + 0.632050i
\(513\) −0.803863 + 8.46757i −0.0354914 + 0.373852i
\(514\) 5.27399 + 3.04494i 0.232626 + 0.134306i
\(515\) 0 0
\(516\) −5.66069 + 11.2025i −0.249198 + 0.493164i
\(517\) −2.31162 + 2.31162i −0.101665 + 0.101665i
\(518\) −2.24842 + 1.81503i −0.0987899 + 0.0797478i
\(519\) −1.25472 1.91797i −0.0550759 0.0841895i
\(520\) 0 0
\(521\) −9.49156 5.47996i −0.415833 0.240081i 0.277460 0.960737i \(-0.410507\pi\)
−0.693293 + 0.720656i \(0.743841\pi\)
\(522\) 4.52762 + 0.685982i 0.198168 + 0.0300246i
\(523\) −3.54814 + 13.2418i −0.155149 + 0.579026i 0.843943 + 0.536433i \(0.180229\pi\)
−0.999093 + 0.0425929i \(0.986438\pi\)
\(524\) −4.09392 −0.178844
\(525\) 0 0
\(526\) −1.71360 −0.0747163
\(527\) −7.45743 + 27.8315i −0.324851 + 1.21236i
\(528\) −3.02569 + 3.38313i −0.131676 + 0.147232i
\(529\) 30.7730 + 17.7668i 1.33796 + 0.772469i
\(530\) 0 0
\(531\) −21.1381 9.24175i −0.917313 0.401058i
\(532\) −7.69622 2.96786i −0.333674 0.128673i
\(533\) 9.89970 9.89970i 0.428804 0.428804i
\(534\) −0.433125 0.218860i −0.0187432 0.00947101i
\(535\) 0 0
\(536\) −0.0509605 0.0294221i −0.00220116 0.00127084i
\(537\) 0.397664 0.130686i 0.0171605 0.00563952i
\(538\) 2.19394 + 2.19394i 0.0945876 + 0.0945876i
\(539\) −1.63372 5.08108i −0.0703692 0.218857i
\(540\) 0 0
\(541\) −3.53276 6.11892i −0.151885 0.263073i 0.780035 0.625735i \(-0.215201\pi\)
−0.931920 + 0.362663i \(0.881868\pi\)
\(542\) 1.68265 0.450866i 0.0722762 0.0193663i
\(543\) −24.1250 21.5761i −1.03530 0.925919i
\(544\) −14.6193 + 8.44044i −0.626796 + 0.361881i
\(545\) 0 0
\(546\) −3.81619 2.46839i −0.163318 0.105637i
\(547\) 19.7665 19.7665i 0.845154 0.845154i −0.144370 0.989524i \(-0.546115\pi\)
0.989524 + 0.144370i \(0.0461154\pi\)
\(548\) −16.2212 4.34647i −0.692937 0.185672i
\(549\) 10.6121 7.81955i 0.452915 0.333730i
\(550\) 0 0
\(551\) −7.00653 + 4.04522i −0.298488 + 0.172332i
\(552\) −15.6417 3.26991i −0.665753 0.139176i
\(553\) 11.0709 1.73605i 0.470782 0.0738242i
\(554\) −3.47282 −0.147546
\(555\) 0 0
\(556\) −9.86837 + 17.0925i −0.418512 + 0.724884i
\(557\) 42.2902 11.3316i 1.79189 0.480137i 0.799228 0.601028i \(-0.205242\pi\)
0.992666 + 0.120891i \(0.0385751\pi\)
\(558\) 3.42788 4.29166i 0.145114 0.181681i
\(559\) 12.2184i 0.516783i
\(560\) 0 0
\(561\) −3.51392 5.37140i −0.148358 0.226781i
\(562\) 0.575242 + 0.154136i 0.0242651 + 0.00650182i
\(563\) 2.87110 + 10.7151i 0.121002 + 0.451587i 0.999666 0.0258549i \(-0.00823079\pi\)
−0.878663 + 0.477442i \(0.841564\pi\)
\(564\) −14.1223 + 0.787658i −0.594657 + 0.0331664i
\(565\) 0 0
\(566\) 8.14252i 0.342256i
\(567\) −23.5612 3.44507i −0.989479 0.144679i
\(568\) 10.5881 + 10.5881i 0.444266 + 0.444266i
\(569\) 6.90318 + 11.9567i 0.289396 + 0.501249i 0.973666 0.227980i \(-0.0732121\pi\)
−0.684269 + 0.729229i \(0.739879\pi\)
\(570\) 0 0
\(571\) 6.56260 11.3668i 0.274636 0.475684i −0.695407 0.718616i \(-0.744776\pi\)
0.970043 + 0.242932i \(0.0781092\pi\)
\(572\) 1.20701 4.50464i 0.0504678 0.188348i
\(573\) −24.1442 5.04736i −1.00864 0.210857i
\(574\) −2.87873 2.09828i −0.120156 0.0875804i
\(575\) 0 0
\(576\) −17.2950 + 1.93524i −0.720625 + 0.0806350i
\(577\) 3.94772 + 14.7331i 0.164346 + 0.613347i 0.998123 + 0.0612453i \(0.0195072\pi\)
−0.833777 + 0.552101i \(0.813826\pi\)
\(578\) −0.529377 1.97566i −0.0220192 0.0821767i
\(579\) −10.5370 5.32440i −0.437903 0.221275i
\(580\) 0 0
\(581\) −17.2856 + 7.66426i −0.717126 + 0.317967i
\(582\) 0.577496 2.76247i 0.0239380 0.114508i
\(583\) −1.37159 + 5.11885i −0.0568055 + 0.212001i
\(584\) 0.836718 1.44924i 0.0346236 0.0599699i
\(585\) 0 0
\(586\) −1.71065 2.96293i −0.0706662 0.122397i
\(587\) −5.54217 5.54217i −0.228750 0.228750i 0.583421 0.812170i \(-0.301714\pi\)
−0.812170 + 0.583421i \(0.801714\pi\)
\(588\) 9.38642 21.0986i 0.387089 0.870090i
\(589\) 9.70404i 0.399848i
\(590\) 0 0
\(591\) 1.04436 + 18.7248i 0.0429591 + 0.770237i
\(592\) −3.14565 11.7397i −0.129285 0.482499i
\(593\) −8.37814 2.24492i −0.344049 0.0921877i 0.0826570 0.996578i \(-0.473659\pi\)
−0.426706 + 0.904390i \(0.640326\pi\)
\(594\) 0.203568 + 1.20653i 0.00835252 + 0.0495043i
\(595\) 0 0
\(596\) 33.2438i 1.36172i
\(597\) 8.85763 + 26.9528i 0.362519 + 1.10311i
\(598\) 7.32931 1.96388i 0.299718 0.0803091i
\(599\) 7.93869 13.7502i 0.324366 0.561819i −0.657018 0.753875i \(-0.728182\pi\)
0.981384 + 0.192056i \(0.0615157\pi\)
\(600\) 0 0
\(601\) 41.5249 1.69384 0.846919 0.531722i \(-0.178455\pi\)
0.846919 + 0.531722i \(0.178455\pi\)
\(602\) −3.07135 + 0.481625i −0.125179 + 0.0196296i
\(603\) 0.136313 0.0533783i 0.00555110 0.00217373i
\(604\) 25.0976 14.4901i 1.02120 0.589593i
\(605\) 0 0
\(606\) 10.1415 0.565634i 0.411972 0.0229773i
\(607\) −14.7681 3.95710i −0.599418 0.160614i −0.0536641 0.998559i \(-0.517090\pi\)
−0.545754 + 0.837945i \(0.683757\pi\)
\(608\) −4.02013 + 4.02013i −0.163038 + 0.163038i
\(609\) −10.3194 20.1620i −0.418162 0.817006i
\(610\) 0 0
\(611\) 11.9242 6.88444i 0.482402 0.278515i
\(612\) 4.16015 27.4578i 0.168164 1.10992i
\(613\) 29.7879 7.98165i 1.20312 0.322376i 0.399063 0.916924i \(-0.369336\pi\)
0.804060 + 0.594548i \(0.202669\pi\)
\(614\) −3.72926 6.45927i −0.150501 0.260675i
\(615\) 0 0
\(616\) −2.41892 0.257992i −0.0974611 0.0103948i
\(617\) −13.2098 13.2098i −0.531808 0.531808i 0.389302 0.921110i \(-0.372716\pi\)
−0.921110 + 0.389302i \(0.872716\pi\)
\(618\) 2.10950 + 6.41899i 0.0848566 + 0.258210i
\(619\) −14.7495 8.51561i −0.592831 0.342271i 0.173385 0.984854i \(-0.444529\pi\)
−0.766216 + 0.642583i \(0.777863\pi\)
\(620\) 0 0
\(621\) 30.6414 25.3280i 1.22960 1.01638i
\(622\) 5.16425 5.16425i 0.207068 0.207068i
\(623\) 0.371840 + 2.37125i 0.0148974 + 0.0950020i
\(624\) 15.9973 10.4652i 0.640403 0.418945i
\(625\) 0 0
\(626\) −3.31107 1.91165i −0.132337 0.0764047i
\(627\) −1.61134 1.44110i −0.0643508 0.0575518i
\(628\) 4.50384 16.8086i 0.179723 0.670735i
\(629\) 17.1879 0.685327
\(630\) 0 0
\(631\) 6.51082 0.259191 0.129596 0.991567i \(-0.458632\pi\)
0.129596 + 0.991567i \(0.458632\pi\)
\(632\) 1.32194 4.93356i 0.0525841 0.196247i
\(633\) 32.9253 + 29.4466i 1.30866 + 1.17040i
\(634\) −1.17480 0.678272i −0.0466573 0.0269376i
\(635\) 0 0
\(636\) −19.1875 + 12.5523i −0.760834 + 0.497730i
\(637\) 1.10758 + 22.4521i 0.0438840 + 0.889586i
\(638\) −0.822967 + 0.822967i −0.0325816 + 0.0325816i
\(639\) −37.0206 + 4.14246i −1.46451 + 0.163873i
\(640\) 0 0
\(641\) 36.6801 + 21.1773i 1.44878 + 0.836451i 0.998409 0.0563924i \(-0.0179598\pi\)
0.450367 + 0.892843i \(0.351293\pi\)
\(642\) −0.364183 1.10817i −0.0143732 0.0437360i
\(643\) −11.2098 11.2098i −0.442072 0.442072i 0.450636 0.892708i \(-0.351197\pi\)
−0.892708 + 0.450636i \(0.851197\pi\)
\(644\) 15.6269 + 35.2441i 0.615787 + 1.38881i
\(645\) 0 0
\(646\) −1.22854 2.12790i −0.0483363 0.0837209i
\(647\) 22.9610 6.15237i 0.902689 0.241875i 0.222518 0.974929i \(-0.428572\pi\)
0.680171 + 0.733054i \(0.261906\pi\)
\(648\) −5.78825 + 9.18064i −0.227384 + 0.360650i
\(649\) 5.07783 2.93169i 0.199322 0.115079i
\(650\) 0 0
\(651\) −27.1320 1.37237i −1.06339 0.0537874i
\(652\) −3.64616 + 3.64616i −0.142794 + 0.142794i
\(653\) −21.0505 5.64046i −0.823769 0.220728i −0.177775 0.984071i \(-0.556890\pi\)
−0.645994 + 0.763343i \(0.723557\pi\)
\(654\) 1.26030 0.0702921i 0.0492817 0.00274864i
\(655\) 0 0
\(656\) 12.9759 7.49163i 0.506623 0.292499i
\(657\) 1.51800 + 3.87653i 0.0592227 + 0.151238i
\(658\) −2.20058 2.72604i −0.0857876 0.106272i
\(659\) −42.6184 −1.66018 −0.830088 0.557632i \(-0.811710\pi\)
−0.830088 + 0.557632i \(0.811710\pi\)
\(660\) 0 0
\(661\) −22.7467 + 39.3985i −0.884744 + 1.53242i −0.0387381 + 0.999249i \(0.512334\pi\)
−0.846006 + 0.533173i \(0.821000\pi\)
\(662\) 1.85511 0.497076i 0.0721010 0.0193194i
\(663\) 8.44027 + 25.6828i 0.327793 + 0.997439i
\(664\) 8.61819i 0.334451i
\(665\) 0 0
\(666\) −3.00210 1.31254i −0.116329 0.0508601i
\(667\) 36.5253 + 9.78693i 1.41427 + 0.378951i
\(668\) 2.68783 + 10.0311i 0.103995 + 0.388115i
\(669\) −2.10809 37.7971i −0.0815035 1.46132i
\(670\) 0 0
\(671\) 3.35026i 0.129335i
\(672\) −10.6715 11.8086i −0.411664 0.455527i
\(673\) 32.1249 + 32.1249i 1.23832 + 1.23832i 0.960686 + 0.277636i \(0.0895508\pi\)
0.277636 + 0.960686i \(0.410449\pi\)
\(674\) 3.28666 + 5.69266i 0.126597 + 0.219273i
\(675\) 0 0
\(676\) 2.55910 4.43248i 0.0984268 0.170480i
\(677\) 11.0202 41.1280i 0.423542 1.58068i −0.343545 0.939136i \(-0.611628\pi\)
0.767087 0.641543i \(-0.221705\pi\)
\(678\) 1.84809 8.84036i 0.0709753 0.339512i
\(679\) −12.7606 + 5.65793i −0.489706 + 0.217131i
\(680\) 0 0
\(681\) −19.8615 10.0361i −0.761094 0.384584i
\(682\) 0.361305 + 1.34841i 0.0138351 + 0.0516332i
\(683\) 0.603360 + 2.25177i 0.0230869 + 0.0861617i 0.976508 0.215481i \(-0.0691318\pi\)
−0.953421 + 0.301642i \(0.902465\pi\)
\(684\) −1.04008 9.29507i −0.0397685 0.355406i
\(685\) 0 0
\(686\) 5.60017 1.16343i 0.213815 0.0444201i
\(687\) 25.9409 + 5.42298i 0.989708 + 0.206899i
\(688\) 3.38438 12.6307i 0.129028 0.481540i
\(689\) 11.1600 19.3297i 0.425163 0.736404i
\(690\) 0 0
\(691\) 8.27824 + 14.3383i 0.314919 + 0.545456i 0.979420 0.201831i \(-0.0646893\pi\)
−0.664501 + 0.747287i \(0.731356\pi\)
\(692\) 1.78210 + 1.78210i 0.0677454 + 0.0677454i
\(693\) 4.25711 4.30143i 0.161714 0.163398i
\(694\) 5.94884i 0.225815i
\(695\) 0 0
\(696\) −10.3072 + 0.574875i −0.390694 + 0.0217906i
\(697\) 5.48418 + 20.4672i 0.207728 + 0.775252i
\(698\) 2.75752 + 0.738875i 0.104374 + 0.0279668i
\(699\) 6.50607 + 9.94523i 0.246082 + 0.376163i
\(700\) 0 0
\(701\) 26.5973i 1.00457i −0.864703 0.502284i \(-0.832493\pi\)
0.864703 0.502284i \(-0.167507\pi\)
\(702\) 0.487050 5.13039i 0.0183825 0.193634i
\(703\) 5.59148 1.49823i 0.210886 0.0565069i
\(704\) 2.21152 3.83047i 0.0833500 0.144366i
\(705\) 0 0
\(706\) −3.64717 −0.137263
\(707\) −31.5562 39.0912i −1.18679 1.47017i
\(708\) 24.8318 + 5.19111i 0.933235 + 0.195094i
\(709\) −13.7850 + 7.95880i −0.517708 + 0.298899i −0.735997 0.676985i \(-0.763286\pi\)
0.218288 + 0.975884i \(0.429953\pi\)
\(710\) 0 0
\(711\) 7.53760 + 10.2295i 0.282682 + 0.383636i
\(712\) 1.05671 + 0.283144i 0.0396018 + 0.0106113i
\(713\) 32.0712 32.0712i 1.20108 1.20108i
\(714\) 6.12324 3.13401i 0.229156 0.117287i
\(715\) 0 0
\(716\) −0.398625 + 0.230146i −0.0148973 + 0.00860096i
\(717\) −24.1532 21.6013i −0.902018 0.806715i
\(718\) 4.16523 1.11607i 0.155445 0.0416514i
\(719\) 10.6906 + 18.5167i 0.398694 + 0.690558i 0.993565 0.113263i \(-0.0361302\pi\)
−0.594871 + 0.803821i \(0.702797\pi\)
\(720\) 0 0
\(721\) 19.6848 27.0065i 0.733099 1.00577i
\(722\) 3.56409 + 3.56409i 0.132642 + 0.132642i
\(723\) −3.24508 + 1.06644i −0.120686 + 0.0396615i
\(724\) 30.8223 + 17.7952i 1.14550 + 0.661355i
\(725\) 0 0
\(726\) 4.97418 + 2.51348i 0.184609 + 0.0932840i
\(727\) −7.43836 + 7.43836i −0.275873 + 0.275873i −0.831459 0.555586i \(-0.812494\pi\)
0.555586 + 0.831459i \(0.312494\pi\)
\(728\) 9.55960 + 3.68643i 0.354302 + 0.136628i
\(729\) −8.85885 25.5053i −0.328106 0.944641i
\(730\) 0 0
\(731\) 16.0148 + 9.24617i 0.592330 + 0.341982i
\(732\) −9.66302 + 10.8046i −0.357156 + 0.399349i
\(733\) −9.45077 + 35.2708i −0.349072 + 1.30276i 0.538710 + 0.842491i \(0.318912\pi\)
−0.887782 + 0.460264i \(0.847755\pi\)
\(734\) 4.65810 0.171934
\(735\) 0 0
\(736\) 26.5725 0.979475
\(737\) −0.00962968 + 0.0359385i −0.000354714 + 0.00132381i
\(738\) 0.605083 3.99367i 0.0222734 0.147009i
\(739\) 33.2198 + 19.1794i 1.22201 + 0.705527i 0.965346 0.260974i \(-0.0840437\pi\)
0.256663 + 0.966501i \(0.417377\pi\)
\(740\) 0 0
\(741\) 4.98446 + 7.61928i 0.183109 + 0.279901i
\(742\) −5.29885 2.04337i −0.194527 0.0750146i
\(743\) 30.8182 30.8182i 1.13061 1.13061i 0.140534 0.990076i \(-0.455118\pi\)
0.990076 0.140534i \(-0.0448819\pi\)
\(744\) −5.58432 + 11.0514i −0.204731 + 0.405164i
\(745\) 0 0
\(746\) −9.31740 5.37940i −0.341134 0.196954i
\(747\) −16.7524 13.3806i −0.612938 0.489571i
\(748\) 4.99090 + 4.99090i 0.182485 + 0.182485i
\(749\) −3.39837 + 4.66239i −0.124174 + 0.170360i
\(750\) 0 0
\(751\) −19.9356 34.5294i −0.727459 1.26000i −0.957954 0.286923i \(-0.907368\pi\)
0.230495 0.973074i \(-0.425966\pi\)
\(752\) 14.2335 3.81385i 0.519042 0.139077i
\(753\) −20.6699 + 23.1118i −0.753254 + 0.842242i
\(754\) 4.24517 2.45095i 0.154600 0.0892583i
\(755\) 0 0
\(756\) 26.1357 1.59349i 0.950545 0.0579545i
\(757\) −0.798673 + 0.798673i −0.0290283 + 0.0290283i −0.721472 0.692444i \(-0.756534\pi\)
0.692444 + 0.721472i \(0.256534\pi\)
\(758\) −5.68591 1.52354i −0.206522 0.0553373i
\(759\) 0.562653 + 10.0881i 0.0204230 + 0.366175i
\(760\) 0 0
\(761\) 37.3941 21.5895i 1.35554 0.782619i 0.366518 0.930411i \(-0.380550\pi\)
0.989019 + 0.147791i \(0.0472164\pi\)
\(762\) 0.690601 3.30350i 0.0250178 0.119673i
\(763\) −3.92153 4.85791i −0.141969 0.175868i
\(764\) 27.1236 0.981299
\(765\) 0 0
\(766\) 1.56829 2.71637i 0.0566648 0.0981463i
\(767\) −23.8538 + 6.39162i −0.861312 + 0.230788i
\(768\) 14.6502 4.81457i 0.528644 0.173731i
\(769\) 44.1875i 1.59344i 0.604348 + 0.796720i \(0.293434\pi\)
−0.604348 + 0.796720i \(0.706566\pi\)
\(770\) 0 0
\(771\) 28.5812 18.6975i 1.02933 0.673376i
\(772\) 12.5397 + 3.36001i 0.451315 + 0.120929i
\(773\) 5.66214 + 21.1314i 0.203653 + 0.760043i 0.989856 + 0.142075i \(0.0453773\pi\)
−0.786203 + 0.617968i \(0.787956\pi\)
\(774\) −2.09113 2.83793i −0.0751640 0.102007i
\(775\) 0 0
\(776\) 6.36214i 0.228388i
\(777\) 3.39822 + 15.8454i 0.121911 + 0.568450i
\(778\) −8.13643 8.13643i −0.291705 0.291705i
\(779\) 3.56817 + 6.18024i 0.127843 + 0.221430i
\(780\) 0 0
\(781\) 4.73385 8.19927i 0.169391 0.293393i
\(782\) −2.97231 + 11.0928i −0.106289 + 0.396678i
\(783\) 14.8856 20.9281i 0.531966 0.747911i
\(784\) −5.07407 + 23.5165i −0.181217 + 0.839876i
\(785\) 0 0
\(786\) 0.518555 1.02622i 0.0184962 0.0366041i
\(787\) −0.0780372 0.291239i −0.00278173 0.0103815i 0.964521 0.264006i \(-0.0850439\pi\)
−0.967303 + 0.253625i \(0.918377\pi\)
\(788\) −5.33748 19.9197i −0.190140 0.709612i
\(789\) −4.33425 + 8.57748i −0.154303 + 0.305367i
\(790\) 0 0
\(791\) −40.8360 + 18.1063i −1.45196 + 0.643787i
\(792\) −1.00577 2.56845i −0.0357385 0.0912659i
\(793\) 3.65209 13.6298i 0.129689 0.484007i
\(794\) −1.37270 + 2.37759i −0.0487153 + 0.0843774i
\(795\) 0 0
\(796\) −15.5988 27.0180i −0.552886 0.957626i
\(797\) 8.45240 + 8.45240i 0.299399 + 0.299399i 0.840779 0.541379i \(-0.182098\pi\)
−0.541379 + 0.840779i \(0.682098\pi\)
\(798\) 1.71879 1.55329i 0.0608446 0.0549858i
\(799\) 20.8390i 0.737231i
\(800\) 0 0
\(801\) −2.19103 + 1.61446i −0.0774163 + 0.0570441i
\(802\) −0.371808 1.38761i −0.0131290 0.0489981i
\(803\) −1.02203 0.273853i −0.0360668 0.00966407i
\(804\) −0.134712 + 0.0881271i −0.00475092 + 0.00310800i
\(805\) 0 0
\(806\) 5.87955i 0.207098i
\(807\) 16.5311 5.43269i 0.581922 0.191240i
\(808\) −22.1177 + 5.92642i −0.778098 + 0.208491i
\(809\) −18.5676 + 32.1600i −0.652801 + 1.13068i 0.329640 + 0.944107i \(0.393073\pi\)
−0.982440 + 0.186577i \(0.940261\pi\)
\(810\) 0 0
\(811\) 23.5491 0.826921 0.413461 0.910522i \(-0.364320\pi\)
0.413461 + 0.910522i \(0.364320\pi\)
\(812\) 15.6442 + 19.3797i 0.549003 + 0.680093i
\(813\) 1.99915 9.56300i 0.0701134 0.335389i
\(814\) 0.721171 0.416368i 0.0252770 0.0145937i
\(815\) 0 0
\(816\) 1.61116 + 28.8874i 0.0564019 + 1.01126i
\(817\) 6.01583 + 1.61194i 0.210467 + 0.0563945i
\(818\) −5.79994 + 5.79994i −0.202790 + 0.202790i
\(819\) −22.0081 + 12.8588i −0.769024 + 0.449322i
\(820\) 0 0
\(821\) −35.4996 + 20.4957i −1.23895 + 0.715306i −0.968879 0.247536i \(-0.920379\pi\)
−0.270067 + 0.962842i \(0.587046\pi\)
\(822\) 3.14419 3.51563i 0.109666 0.122622i
\(823\) −24.8888 + 6.66893i −0.867568 + 0.232464i −0.665036 0.746812i \(-0.731584\pi\)
−0.202532 + 0.979276i \(0.564917\pi\)
\(824\) −7.61596 13.1912i −0.265315 0.459538i
\(825\) 0 0
\(826\) 2.54694 + 5.74423i 0.0886195 + 0.199867i
\(827\) −19.5668 19.5668i −0.680404 0.680404i 0.279687 0.960091i \(-0.409769\pi\)
−0.960091 + 0.279687i \(0.909769\pi\)
\(828\) −27.2822 + 34.1570i −0.948121 + 1.18704i
\(829\) 21.9279 + 12.6601i 0.761588 + 0.439703i 0.829866 0.557963i \(-0.188417\pi\)
−0.0682778 + 0.997666i \(0.521750\pi\)
\(830\) 0 0
\(831\) −8.78391 + 17.3834i −0.304710 + 0.603023i
\(832\) −13.1727 + 13.1727i −0.456680 + 0.456680i
\(833\) −30.2665 15.5388i −1.04867 0.538386i
\(834\) −3.03461 4.63873i −0.105080 0.160626i
\(835\) 0 0
\(836\) 2.05866 + 1.18857i 0.0712002 + 0.0411075i
\(837\) −12.8119 28.0134i −0.442844 0.968286i
\(838\) −2.06449 + 7.70479i −0.0713167 + 0.266157i
\(839\) 50.7484 1.75203 0.876014 0.482286i \(-0.160193\pi\)
0.876014 + 0.482286i \(0.160193\pi\)
\(840\) 0 0
\(841\) −4.57160 −0.157641
\(842\) 0.0345654 0.129000i 0.00119120 0.00444563i
\(843\) 2.22651 2.48954i 0.0766851 0.0857444i
\(844\) −42.0656 24.2866i −1.44796 0.835978i
\(845\) 0 0
\(846\) 1.59136 3.63981i 0.0547120 0.125139i
\(847\) −4.27036 27.2324i −0.146731 0.935715i
\(848\) 16.8908 16.8908i 0.580031 0.580031i
\(849\) 40.7578 + 20.5951i 1.39880 + 0.706823i
\(850\) 0 0
\(851\) −23.4310 13.5279i −0.803204 0.463730i
\(852\) 38.9155 12.7890i 1.33322 0.438143i
\(853\) 18.8448 + 18.8448i 0.645233 + 0.645233i 0.951837 0.306604i \(-0.0991928\pi\)
−0.306604 + 0.951837i \(0.599193\pi\)
\(854\) −3.57009 0.380772i −0.122166 0.0130297i
\(855\) 0 0
\(856\) 1.31482 + 2.27733i 0.0449395 + 0.0778375i
\(857\) −12.0212 + 3.22108i −0.410637 + 0.110030i −0.458223 0.888837i \(-0.651514\pi\)
0.0475860 + 0.998867i \(0.484847\pi\)
\(858\) 0.976291 + 0.873141i 0.0333300 + 0.0298085i
\(859\) 3.33705 1.92665i 0.113859 0.0657364i −0.441989 0.897020i \(-0.645727\pi\)
0.555848 + 0.831284i \(0.312394\pi\)
\(860\) 0 0
\(861\) −17.7843 + 9.10240i −0.606087 + 0.310209i
\(862\) −3.56217 + 3.56217i −0.121328 + 0.121328i
\(863\) 48.2127 + 12.9186i 1.64118 + 0.439753i 0.957125 0.289676i \(-0.0935477\pi\)
0.684056 + 0.729429i \(0.260214\pi\)
\(864\) 6.29759 16.9128i 0.214248 0.575387i
\(865\) 0 0
\(866\) 0.194509 0.112300i 0.00660967 0.00381610i
\(867\) −11.2282 2.34727i −0.381331 0.0797176i
\(868\) 29.5128 4.62795i 1.00173 0.157083i
\(869\) −3.22945 −0.109552
\(870\) 0 0
\(871\) 0.0783524 0.135710i 0.00265487 0.00459837i
\(872\) −2.74860 + 0.736484i −0.0930793 + 0.0249405i
\(873\) −12.3670 9.87787i −0.418559 0.334315i
\(874\) 3.86774i 0.130828i
\(875\) 0 0
\(876\) −2.50620 3.83099i −0.0846765 0.129437i
\(877\) −43.6713 11.7017i −1.47467 0.395138i −0.570143 0.821546i \(-0.693112\pi\)
−0.904531 + 0.426408i \(0.859779\pi\)
\(878\) −1.22284 4.56370i −0.0412689 0.154018i
\(879\) −19.1579 + 1.06851i −0.646179 + 0.0360399i
\(880\) 0 0
\(881\) 25.2055i 0.849195i −0.905382 0.424597i \(-0.860416\pi\)
0.905382 0.424597i \(-0.139584\pi\)
\(882\) 4.09984 + 5.02534i 0.138049 + 0.169212i
\(883\) 14.2942 + 14.2942i 0.481039 + 0.481039i 0.905463 0.424424i \(-0.139524\pi\)
−0.424424 + 0.905463i \(0.639524\pi\)
\(884\) −14.8638 25.7449i −0.499925 0.865895i
\(885\) 0 0
\(886\) −1.40912 + 2.44067i −0.0473403 + 0.0819958i
\(887\) −10.0709 + 37.5853i −0.338149 + 1.26199i 0.562266 + 0.826957i \(0.309930\pi\)
−0.900415 + 0.435033i \(0.856737\pi\)
\(888\) 7.23000 + 1.51144i 0.242623 + 0.0507206i
\(889\) −15.2598 + 6.76605i −0.511796 + 0.226926i
\(890\) 0 0
\(891\) 6.55421 + 2.03273i 0.219574 + 0.0680989i
\(892\) 10.7740 + 40.2091i 0.360740 + 1.34630i
\(893\) 1.81649 + 6.77923i 0.0607865 + 0.226858i
\(894\) 8.33323 + 4.21082i 0.278705 + 0.140831i
\(895\) 0 0
\(896\) 18.6823 + 13.6174i 0.624133 + 0.454924i
\(897\) 8.70792 41.6545i 0.290749 1.39080i
\(898\) −0.752081 + 2.80681i −0.0250973 + 0.0936643i
\(899\) 14.6503 25.3750i 0.488613 0.846303i
\(900\) 0 0
\(901\) 16.8905 + 29.2553i 0.562705 + 0.974634i
\(902\) 0.725914 + 0.725914i 0.0241703 + 0.0241703i
\(903\) −5.35767 + 16.5920i −0.178292 + 0.552147i
\(904\) 20.3599i 0.677161i
\(905\) 0 0
\(906\) 0.453252 + 8.12659i 0.0150583 + 0.269988i
\(907\) −0.623721 2.32776i −0.0207103 0.0772920i 0.954797 0.297258i \(-0.0960721\pi\)
−0.975508 + 0.219966i \(0.929405\pi\)
\(908\) 23.6365 + 6.33337i 0.784404 + 0.210180i
\(909\) 22.8200 52.1946i 0.756891 1.73119i
\(910\) 0 0
\(911\) 19.3662i 0.641631i −0.947142 0.320815i \(-0.896043\pi\)
0.947142 0.320815i \(-0.103957\pi\)
\(912\) 3.04218 + 9.25703i 0.100737 + 0.306531i
\(913\) 5.26347 1.41034i 0.174196 0.0466755i
\(914\) −5.33185 + 9.23503i −0.176362 + 0.305468i
\(915\) 0 0
\(916\) −29.1421 −0.962883
\(917\) −5.61830 + 0.881015i −0.185533 + 0.0290937i
\(918\) 6.35591 + 4.52077i 0.209776 + 0.149208i
\(919\) 29.5591 17.0659i 0.975063 0.562953i 0.0742872 0.997237i \(-0.476332\pi\)
0.900776 + 0.434284i \(0.142998\pi\)
\(920\) 0 0
\(921\) −41.7647 + 2.32938i −1.37619 + 0.0767558i
\(922\) 11.0175 + 2.95213i 0.362842 + 0.0972231i
\(923\) −28.1966 + 28.1966i −0.928102 + 0.928102i
\(924\) −3.61432 + 5.58782i −0.118902 + 0.183826i
\(925\) 0 0
\(926\) −9.97388 + 5.75842i −0.327762 + 0.189233i
\(927\) 37.4662 + 5.67652i 1.23055 + 0.186441i
\(928\) 16.5814 4.44297i 0.544311 0.145848i
\(929\) 9.86232 + 17.0820i 0.323572 + 0.560443i 0.981222 0.192880i \(-0.0617828\pi\)
−0.657650 + 0.753323i \(0.728450\pi\)
\(930\) 0 0
\(931\) −11.2006 2.41672i −0.367085 0.0792047i
\(932\) −9.24073 9.24073i −0.302690 0.302690i
\(933\) −12.7878 38.9120i −0.418655 1.27392i
\(934\) −2.72793 1.57497i −0.0892606 0.0515346i
\(935\) 0 0
\(936\) 1.29190 + 11.5456i 0.0422271 + 0.377378i
\(937\) 17.3041 17.3041i 0.565300 0.565300i −0.365508 0.930808i \(-0.619105\pi\)
0.930808 + 0.365508i \(0.119105\pi\)
\(938\) −0.0372022 0.0143461i −0.00121470 0.000468418i
\(939\) −17.9436 + 11.7385i −0.585568 + 0.383072i
\(940\) 0 0
\(941\) 3.89269 + 2.24744i 0.126898 + 0.0732646i 0.562105 0.827066i \(-0.309992\pi\)
−0.435207 + 0.900330i \(0.643325\pi\)
\(942\) 3.64292 + 3.25803i 0.118693 + 0.106152i
\(943\) 8.63274 32.2178i 0.281121 1.04916i
\(944\) −26.4292 −0.860196
\(945\) 0 0
\(946\) 0.895935 0.0291294
\(947\) 3.88234 14.4891i 0.126159 0.470832i −0.873719 0.486431i \(-0.838299\pi\)
0.999878 + 0.0155984i \(0.00496534\pi\)
\(948\) −10.4150 9.31460i −0.338263 0.302524i
\(949\) 3.85939 + 2.22822i 0.125281 + 0.0723311i
\(950\) 0 0
\(951\) −6.36658 + 4.16495i −0.206451 + 0.135058i
\(952\) −12.0660 + 9.74025i −0.391062 + 0.315683i
\(953\) −21.6181 + 21.6181i −0.700277 + 0.700277i −0.964470 0.264193i \(-0.914895\pi\)
0.264193 + 0.964470i \(0.414895\pi\)
\(954\) −0.716096 6.39966i −0.0231845 0.207197i
\(955\) 0 0
\(956\) 30.8583 + 17.8160i 0.998028 + 0.576212i
\(957\) 2.03785 + 6.20096i 0.0658743 + 0.200448i
\(958\) 2.99334 + 2.99334i 0.0967106 + 0.0967106i
\(959\) −23.1966 2.47406i −0.749058 0.0798915i
\(960\) 0 0
\(961\) −2.07218 3.58912i −0.0668444 0.115778i
\(962\) −3.38780 + 0.907759i −0.109227 + 0.0292673i
\(963\) −6.46814 0.979992i −0.208433 0.0315798i
\(964\) 3.25292 1.87807i 0.104769 0.0604887i
\(965\) 0 0
\(966\) −10.8140 0.546985i −0.347935 0.0175989i
\(967\) −16.1911 + 16.1911i −0.520672 + 0.520672i −0.917774 0.397102i \(-0.870016\pi\)
0.397102 + 0.917774i \(0.370016\pi\)
\(968\) −12.1357 3.25174i −0.390055 0.104515i
\(969\) −13.7587 + 0.767375i −0.441992 + 0.0246517i
\(970\) 0 0
\(971\) 15.8437 9.14738i 0.508450 0.293553i −0.223747 0.974647i \(-0.571829\pi\)
0.732196 + 0.681094i \(0.238495\pi\)
\(972\) 15.2744 + 25.4596i 0.489928 + 0.816618i
\(973\) −9.86456 + 25.5807i −0.316243 + 0.820078i
\(974\) 7.06004 0.226218
\(975\) 0 0
\(976\) 7.55064 13.0781i 0.241690 0.418619i
\(977\) 14.3951 3.85716i 0.460540 0.123401i −0.0210868 0.999778i \(-0.506713\pi\)
0.481627 + 0.876376i \(0.340046\pi\)
\(978\) −0.452142 1.37582i −0.0144579 0.0439939i
\(979\) 0.691709i 0.0221071i
\(980\) 0 0
\(981\) 2.83587 6.48630i 0.0905423 0.207092i
\(982\) 7.08425 + 1.89822i 0.226067 + 0.0605746i
\(983\) 3.04352 + 11.3586i 0.0970733 + 0.362283i 0.997326 0.0730860i \(-0.0232848\pi\)
−0.900252 + 0.435368i \(0.856618\pi\)
\(984\) 0.507079 + 9.09168i 0.0161651 + 0.289832i
\(985\) 0 0
\(986\) 7.41895i 0.236267i
\(987\) −19.2113 + 4.12008i −0.611502 + 0.131144i
\(988\) −7.07955 7.07955i −0.225230 0.225230i
\(989\) −14.5546 25.2092i −0.462808 0.801607i
\(990\) 0 0
\(991\) −5.02003 + 8.69495i −0.159467 + 0.276204i −0.934676 0.355499i \(-0.884311\pi\)
0.775210 + 0.631704i \(0.217644\pi\)
\(992\) 5.32910 19.8885i 0.169199 0.631459i
\(993\) 2.20405 10.5431i 0.0699434 0.334576i
\(994\) 8.19927 + 5.97636i 0.260065 + 0.189559i
\(995\) 0 0
\(996\) 21.0425 + 10.6329i 0.666757 + 0.336916i
\(997\) 3.64290 + 13.5955i 0.115372 + 0.430574i 0.999314 0.0370216i \(-0.0117870\pi\)
−0.883943 + 0.467596i \(0.845120\pi\)
\(998\) 0.258609 + 0.965142i 0.00818612 + 0.0305510i
\(999\) −14.1633 + 11.7073i −0.448107 + 0.370402i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.bf.f.368.7 48
3.2 odd 2 inner 525.2.bf.f.368.6 48
5.2 odd 4 inner 525.2.bf.f.32.7 48
5.3 odd 4 105.2.x.a.32.6 yes 48
5.4 even 2 105.2.x.a.53.6 yes 48
7.2 even 3 inner 525.2.bf.f.443.6 48
15.2 even 4 inner 525.2.bf.f.32.6 48
15.8 even 4 105.2.x.a.32.7 yes 48
15.14 odd 2 105.2.x.a.53.7 yes 48
21.2 odd 6 inner 525.2.bf.f.443.7 48
35.2 odd 12 inner 525.2.bf.f.107.6 48
35.3 even 12 735.2.j.e.197.7 24
35.4 even 6 735.2.j.g.638.6 24
35.9 even 6 105.2.x.a.23.7 yes 48
35.13 even 4 735.2.y.i.557.6 48
35.18 odd 12 735.2.j.g.197.7 24
35.19 odd 6 735.2.y.i.128.7 48
35.23 odd 12 105.2.x.a.2.7 yes 48
35.24 odd 6 735.2.j.e.638.6 24
35.33 even 12 735.2.y.i.422.7 48
35.34 odd 2 735.2.y.i.263.6 48
105.2 even 12 inner 525.2.bf.f.107.7 48
105.23 even 12 105.2.x.a.2.6 48
105.38 odd 12 735.2.j.e.197.6 24
105.44 odd 6 105.2.x.a.23.6 yes 48
105.53 even 12 735.2.j.g.197.6 24
105.59 even 6 735.2.j.e.638.7 24
105.68 odd 12 735.2.y.i.422.6 48
105.74 odd 6 735.2.j.g.638.7 24
105.83 odd 4 735.2.y.i.557.7 48
105.89 even 6 735.2.y.i.128.6 48
105.104 even 2 735.2.y.i.263.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.x.a.2.6 48 105.23 even 12
105.2.x.a.2.7 yes 48 35.23 odd 12
105.2.x.a.23.6 yes 48 105.44 odd 6
105.2.x.a.23.7 yes 48 35.9 even 6
105.2.x.a.32.6 yes 48 5.3 odd 4
105.2.x.a.32.7 yes 48 15.8 even 4
105.2.x.a.53.6 yes 48 5.4 even 2
105.2.x.a.53.7 yes 48 15.14 odd 2
525.2.bf.f.32.6 48 15.2 even 4 inner
525.2.bf.f.32.7 48 5.2 odd 4 inner
525.2.bf.f.107.6 48 35.2 odd 12 inner
525.2.bf.f.107.7 48 105.2 even 12 inner
525.2.bf.f.368.6 48 3.2 odd 2 inner
525.2.bf.f.368.7 48 1.1 even 1 trivial
525.2.bf.f.443.6 48 7.2 even 3 inner
525.2.bf.f.443.7 48 21.2 odd 6 inner
735.2.j.e.197.6 24 105.38 odd 12
735.2.j.e.197.7 24 35.3 even 12
735.2.j.e.638.6 24 35.24 odd 6
735.2.j.e.638.7 24 105.59 even 6
735.2.j.g.197.6 24 105.53 even 12
735.2.j.g.197.7 24 35.18 odd 12
735.2.j.g.638.6 24 35.4 even 6
735.2.j.g.638.7 24 105.74 odd 6
735.2.y.i.128.6 48 105.89 even 6
735.2.y.i.128.7 48 35.19 odd 6
735.2.y.i.263.6 48 35.34 odd 2
735.2.y.i.263.7 48 105.104 even 2
735.2.y.i.422.6 48 105.68 odd 12
735.2.y.i.422.7 48 35.33 even 12
735.2.y.i.557.6 48 35.13 even 4
735.2.y.i.557.7 48 105.83 odd 4