Properties

Label 525.2.bf.f.443.7
Level $525$
Weight $2$
Character 525.443
Analytic conductor $4.192$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(32,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.bf (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 443.7
Character \(\chi\) \(=\) 525.443
Dual form 525.2.bf.f.32.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.298314 - 0.0799329i) q^{2} +(-1.15464 - 1.29105i) q^{3} +(-1.64945 + 0.952310i) q^{4} +(-0.447643 - 0.292843i) q^{6} +(-0.951942 - 2.46856i) q^{7} +(-0.852694 + 0.852694i) q^{8} +(-0.333606 + 2.98139i) q^{9} +O(q^{10})\) \(q+(0.298314 - 0.0799329i) q^{2} +(-1.15464 - 1.29105i) q^{3} +(-1.64945 + 0.952310i) q^{4} +(-0.447643 - 0.292843i) q^{6} +(-0.951942 - 2.46856i) q^{7} +(-0.852694 + 0.852694i) q^{8} +(-0.333606 + 2.98139i) q^{9} +(-0.660315 + 0.381233i) q^{11} +(3.13400 + 1.02994i) q^{12} +(2.27077 + 2.27077i) q^{13} +(-0.481297 - 0.660315i) q^{14} +(1.71841 - 2.97637i) q^{16} +(-1.25794 + 4.69471i) q^{17} +(0.138792 + 0.916057i) q^{18} +(1.41761 + 0.818455i) q^{19} +(-2.08788 + 4.07931i) q^{21} +(-0.166508 + 0.166508i) q^{22} +(1.98015 + 7.39003i) q^{23} +(2.08542 + 0.116312i) q^{24} +(0.858909 + 0.495891i) q^{26} +(4.23432 - 3.01174i) q^{27} +(3.92102 + 3.16523i) q^{28} -4.94251 q^{29} +(2.96413 + 5.13403i) q^{31} +(0.898930 - 3.35485i) q^{32} +(1.25462 + 0.412310i) q^{33} +1.50105i q^{34} +(-2.28894 - 5.23535i) q^{36} +(0.915280 + 3.41587i) q^{37} +(0.488313 + 0.130843i) q^{38} +(0.309745 - 5.55358i) q^{39} +4.35963i q^{41} +(-0.296773 + 1.38380i) q^{42} +(-2.69037 - 2.69037i) q^{43} +(0.726104 - 1.25765i) q^{44} +(1.18141 + 2.04627i) q^{46} +(4.14148 - 1.10971i) q^{47} +(-5.82678 + 1.21809i) q^{48} +(-5.18761 + 4.69986i) q^{49} +(7.51357 - 3.79665i) q^{51} +(-5.90798 - 1.58304i) q^{52} +(-6.71354 - 1.79889i) q^{53} +(1.02242 - 1.23690i) q^{54} +(2.91664 + 1.29321i) q^{56} +(-0.580162 - 2.77522i) q^{57} +(-1.47442 + 0.395069i) q^{58} +(3.84501 + 6.65975i) q^{59} +(-2.19699 + 3.80529i) q^{61} +(1.29462 + 1.29462i) q^{62} +(7.67733 - 2.01458i) q^{63} +5.80098i q^{64} +(0.407227 + 0.0227126i) q^{66} +(0.0471345 + 0.0126297i) q^{67} +(-2.39591 - 8.94164i) q^{68} +(7.25451 - 11.0893i) q^{69} -12.4172i q^{71} +(-2.25775 - 2.82668i) q^{72} +(-0.359168 + 1.34043i) q^{73} +(0.546081 + 0.945840i) q^{74} -3.11769 q^{76} +(1.56968 + 1.26712i) q^{77} +(-0.351513 - 1.68147i) q^{78} +(-3.66808 - 2.11777i) q^{79} +(-8.77741 - 1.98922i) q^{81} +(0.348478 + 1.30054i) q^{82} +(5.05351 - 5.05351i) q^{83} +(-0.440911 - 8.71692i) q^{84} +(-1.01762 - 0.587525i) q^{86} +(5.70683 + 6.38101i) q^{87} +(0.237971 - 0.888122i) q^{88} +(-0.453600 + 0.785658i) q^{89} +(3.44389 - 7.76716i) q^{91} +(-10.3038 - 10.3038i) q^{92} +(3.20576 - 9.75480i) q^{93} +(1.14676 - 0.662081i) q^{94} +(-5.36921 + 2.71309i) q^{96} +(-3.73061 + 3.73061i) q^{97} +(-1.17186 + 1.81669i) q^{98} +(-0.916321 - 2.09584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{3} - 24 q^{6} + 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 48 q + 2 q^{3} - 24 q^{6} + 12 q^{7} + 10 q^{12} + 16 q^{13} - 8 q^{16} - 14 q^{18} - 28 q^{21} + 8 q^{22} - 40 q^{27} + 60 q^{28} - 24 q^{31} + 4 q^{33} + 8 q^{36} - 4 q^{37} - 14 q^{42} - 16 q^{43} - 32 q^{46} - 44 q^{48} + 8 q^{51} - 36 q^{52} + 88 q^{57} - 56 q^{58} - 8 q^{61} - 44 q^{63} + 76 q^{66} - 12 q^{67} + 34 q^{72} - 52 q^{73} + 64 q^{76} + 120 q^{78} + 20 q^{81} - 104 q^{82} + 46 q^{87} + 72 q^{91} + 44 q^{93} + 12 q^{96} + 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.298314 0.0799329i 0.210940 0.0565211i −0.151802 0.988411i \(-0.548508\pi\)
0.362741 + 0.931890i \(0.381841\pi\)
\(3\) −1.15464 1.29105i −0.666633 0.745386i
\(4\) −1.64945 + 0.952310i −0.824725 + 0.476155i
\(5\) 0 0
\(6\) −0.447643 0.292843i −0.182749 0.119553i
\(7\) −0.951942 2.46856i −0.359800 0.933029i
\(8\) −0.852694 + 0.852694i −0.301473 + 0.301473i
\(9\) −0.333606 + 2.98139i −0.111202 + 0.993798i
\(10\) 0 0
\(11\) −0.660315 + 0.381233i −0.199092 + 0.114946i −0.596232 0.802812i \(-0.703336\pi\)
0.397140 + 0.917758i \(0.370003\pi\)
\(12\) 3.13400 + 1.02994i 0.904708 + 0.297318i
\(13\) 2.27077 + 2.27077i 0.629797 + 0.629797i 0.948017 0.318220i \(-0.103085\pi\)
−0.318220 + 0.948017i \(0.603085\pi\)
\(14\) −0.481297 0.660315i −0.128632 0.176477i
\(15\) 0 0
\(16\) 1.71841 2.97637i 0.429602 0.744092i
\(17\) −1.25794 + 4.69471i −0.305096 + 1.13864i 0.627766 + 0.778402i \(0.283970\pi\)
−0.932862 + 0.360233i \(0.882697\pi\)
\(18\) 0.138792 + 0.916057i 0.0327136 + 0.215917i
\(19\) 1.41761 + 0.818455i 0.325221 + 0.187767i 0.653717 0.756739i \(-0.273209\pi\)
−0.328496 + 0.944505i \(0.606542\pi\)
\(20\) 0 0
\(21\) −2.08788 + 4.07931i −0.455613 + 0.890178i
\(22\) −0.166508 + 0.166508i −0.0354996 + 0.0354996i
\(23\) 1.98015 + 7.39003i 0.412890 + 1.54093i 0.789024 + 0.614363i \(0.210587\pi\)
−0.376133 + 0.926566i \(0.622747\pi\)
\(24\) 2.08542 + 0.116312i 0.425685 + 0.0237422i
\(25\) 0 0
\(26\) 0.858909 + 0.495891i 0.168446 + 0.0972523i
\(27\) 4.23432 3.01174i 0.814894 0.579610i
\(28\) 3.92102 + 3.16523i 0.741003 + 0.598172i
\(29\) −4.94251 −0.917801 −0.458900 0.888488i \(-0.651757\pi\)
−0.458900 + 0.888488i \(0.651757\pi\)
\(30\) 0 0
\(31\) 2.96413 + 5.13403i 0.532374 + 0.922099i 0.999286 + 0.0377949i \(0.0120334\pi\)
−0.466911 + 0.884304i \(0.654633\pi\)
\(32\) 0.898930 3.35485i 0.158910 0.593060i
\(33\) 1.25462 + 0.412310i 0.218401 + 0.0717740i
\(34\) 1.50105i 0.257428i
\(35\) 0 0
\(36\) −2.28894 5.23535i −0.381491 0.872559i
\(37\) 0.915280 + 3.41587i 0.150471 + 0.561566i 0.999451 + 0.0331401i \(0.0105508\pi\)
−0.848980 + 0.528426i \(0.822783\pi\)
\(38\) 0.488313 + 0.130843i 0.0792148 + 0.0212255i
\(39\) 0.309745 5.55358i 0.0495990 0.889285i
\(40\) 0 0
\(41\) 4.35963i 0.680860i 0.940270 + 0.340430i \(0.110573\pi\)
−0.940270 + 0.340430i \(0.889427\pi\)
\(42\) −0.296773 + 1.38380i −0.0457930 + 0.213526i
\(43\) −2.69037 2.69037i −0.410277 0.410277i 0.471558 0.881835i \(-0.343692\pi\)
−0.881835 + 0.471558i \(0.843692\pi\)
\(44\) 0.726104 1.25765i 0.109464 0.189598i
\(45\) 0 0
\(46\) 1.18141 + 2.04627i 0.174190 + 0.301706i
\(47\) 4.14148 1.10971i 0.604097 0.161867i 0.0562089 0.998419i \(-0.482099\pi\)
0.547888 + 0.836552i \(0.315432\pi\)
\(48\) −5.82678 + 1.21809i −0.841023 + 0.175817i
\(49\) −5.18761 + 4.69986i −0.741088 + 0.671408i
\(50\) 0 0
\(51\) 7.51357 3.79665i 1.05211 0.531637i
\(52\) −5.90798 1.58304i −0.819290 0.219528i
\(53\) −6.71354 1.79889i −0.922176 0.247096i −0.233661 0.972318i \(-0.575071\pi\)
−0.688515 + 0.725222i \(0.741737\pi\)
\(54\) 1.02242 1.23690i 0.139133 0.168321i
\(55\) 0 0
\(56\) 2.91664 + 1.29321i 0.389753 + 0.172813i
\(57\) −0.580162 2.77522i −0.0768444 0.367587i
\(58\) −1.47442 + 0.395069i −0.193601 + 0.0518751i
\(59\) 3.84501 + 6.65975i 0.500577 + 0.867026i 1.00000 0.000666931i \(0.000212291\pi\)
−0.499422 + 0.866359i \(0.666454\pi\)
\(60\) 0 0
\(61\) −2.19699 + 3.80529i −0.281295 + 0.487218i −0.971704 0.236202i \(-0.924097\pi\)
0.690409 + 0.723420i \(0.257431\pi\)
\(62\) 1.29462 + 1.29462i 0.164417 + 0.164417i
\(63\) 7.67733 2.01458i 0.967253 0.253814i
\(64\) 5.80098i 0.725122i
\(65\) 0 0
\(66\) 0.407227 + 0.0227126i 0.0501261 + 0.00279573i
\(67\) 0.0471345 + 0.0126297i 0.00575840 + 0.00154296i 0.261697 0.965150i \(-0.415718\pi\)
−0.255939 + 0.966693i \(0.582385\pi\)
\(68\) −2.39591 8.94164i −0.290546 1.08433i
\(69\) 7.25451 11.0893i 0.873341 1.33500i
\(70\) 0 0
\(71\) 12.4172i 1.47365i −0.676082 0.736826i \(-0.736324\pi\)
0.676082 0.736826i \(-0.263676\pi\)
\(72\) −2.25775 2.82668i −0.266079 0.333127i
\(73\) −0.359168 + 1.34043i −0.0420374 + 0.156886i −0.983754 0.179521i \(-0.942545\pi\)
0.941717 + 0.336407i \(0.109212\pi\)
\(74\) 0.546081 + 0.945840i 0.0634806 + 0.109952i
\(75\) 0 0
\(76\) −3.11769 −0.357624
\(77\) 1.56968 + 1.26712i 0.178882 + 0.144401i
\(78\) −0.351513 1.68147i −0.0398010 0.190389i
\(79\) −3.66808 2.11777i −0.412692 0.238268i 0.279254 0.960217i \(-0.409913\pi\)
−0.691946 + 0.721950i \(0.743246\pi\)
\(80\) 0 0
\(81\) −8.77741 1.98922i −0.975268 0.221025i
\(82\) 0.348478 + 1.30054i 0.0384830 + 0.143620i
\(83\) 5.05351 5.05351i 0.554695 0.554695i −0.373097 0.927792i \(-0.621704\pi\)
0.927792 + 0.373097i \(0.121704\pi\)
\(84\) −0.440911 8.71692i −0.0481074 0.951094i
\(85\) 0 0
\(86\) −1.01762 0.587525i −0.109733 0.0633544i
\(87\) 5.70683 + 6.38101i 0.611836 + 0.684116i
\(88\) 0.237971 0.888122i 0.0253678 0.0946741i
\(89\) −0.453600 + 0.785658i −0.0480815 + 0.0832796i −0.889065 0.457782i \(-0.848644\pi\)
0.840983 + 0.541061i \(0.181977\pi\)
\(90\) 0 0
\(91\) 3.44389 7.76716i 0.361018 0.814220i
\(92\) −10.3038 10.3038i −1.07424 1.07424i
\(93\) 3.20576 9.75480i 0.332422 1.01153i
\(94\) 1.14676 0.662081i 0.118279 0.0682884i
\(95\) 0 0
\(96\) −5.36921 + 2.71309i −0.547993 + 0.276904i
\(97\) −3.73061 + 3.73061i −0.378786 + 0.378786i −0.870664 0.491878i \(-0.836311\pi\)
0.491878 + 0.870664i \(0.336311\pi\)
\(98\) −1.17186 + 1.81669i −0.118376 + 0.183514i
\(99\) −0.916321 2.09584i −0.0920937 0.210640i
\(100\) 0 0
\(101\) −16.4444 + 9.49420i −1.63628 + 0.944708i −0.654185 + 0.756335i \(0.726988\pi\)
−0.982098 + 0.188373i \(0.939679\pi\)
\(102\) 1.93792 1.73317i 0.191883 0.171610i
\(103\) −12.2009 + 3.26921i −1.20219 + 0.322125i −0.803692 0.595046i \(-0.797134\pi\)
−0.398494 + 0.917171i \(0.630467\pi\)
\(104\) −3.87254 −0.379733
\(105\) 0 0
\(106\) −2.14653 −0.208490
\(107\) −2.10635 + 0.564395i −0.203629 + 0.0545621i −0.359192 0.933264i \(-0.616948\pi\)
0.155563 + 0.987826i \(0.450281\pi\)
\(108\) −4.11618 + 9.00009i −0.396079 + 0.866034i
\(109\) 2.04357 1.17986i 0.195739 0.113010i −0.398928 0.916982i \(-0.630618\pi\)
0.594666 + 0.803973i \(0.297284\pi\)
\(110\) 0 0
\(111\) 3.35323 5.12578i 0.318275 0.486517i
\(112\) −8.98318 1.40867i −0.848831 0.133107i
\(113\) 11.9386 11.9386i 1.12309 1.12309i 0.131814 0.991274i \(-0.457920\pi\)
0.991274 0.131814i \(-0.0420801\pi\)
\(114\) −0.394902 0.781512i −0.0369859 0.0731953i
\(115\) 0 0
\(116\) 8.15242 4.70680i 0.756933 0.437015i
\(117\) −7.52759 + 6.01250i −0.695925 + 0.555856i
\(118\) 1.67935 + 1.67935i 0.154597 + 0.154597i
\(119\) 12.7867 1.36378i 1.17215 0.125017i
\(120\) 0 0
\(121\) −5.20932 + 9.02281i −0.473575 + 0.820256i
\(122\) −0.351223 + 1.31078i −0.0317983 + 0.118673i
\(123\) 5.62849 5.03381i 0.507504 0.453884i
\(124\) −9.77837 5.64555i −0.878124 0.506985i
\(125\) 0 0
\(126\) 2.12922 1.21465i 0.189686 0.108210i
\(127\) −4.46126 + 4.46126i −0.395873 + 0.395873i −0.876775 0.480901i \(-0.840309\pi\)
0.480901 + 0.876775i \(0.340309\pi\)
\(128\) 2.26155 + 8.44022i 0.199895 + 0.746017i
\(129\) −0.366982 + 6.57980i −0.0323109 + 0.579319i
\(130\) 0 0
\(131\) −1.86149 1.07473i −0.162639 0.0938999i 0.416471 0.909149i \(-0.363267\pi\)
−0.579111 + 0.815249i \(0.696600\pi\)
\(132\) −2.46207 + 0.514699i −0.214296 + 0.0447988i
\(133\) 0.670931 4.27857i 0.0581771 0.370999i
\(134\) 0.0150704 0.00130188
\(135\) 0 0
\(136\) −2.93051 5.07580i −0.251289 0.435246i
\(137\) −2.28207 + 8.51678i −0.194970 + 0.727638i 0.797305 + 0.603577i \(0.206258\pi\)
−0.992275 + 0.124061i \(0.960408\pi\)
\(138\) 1.27772 3.88797i 0.108767 0.330966i
\(139\) 10.3626i 0.878941i 0.898257 + 0.439471i \(0.144834\pi\)
−0.898257 + 0.439471i \(0.855166\pi\)
\(140\) 0 0
\(141\) −6.21461 4.06553i −0.523364 0.342380i
\(142\) −0.992544 3.70423i −0.0832925 0.310852i
\(143\) −2.36511 0.633730i −0.197780 0.0529951i
\(144\) 8.30046 + 6.11618i 0.691705 + 0.509682i
\(145\) 0 0
\(146\) 0.428578i 0.0354694i
\(147\) 12.0576 + 1.27081i 0.994492 + 0.104814i
\(148\) −4.76267 4.76267i −0.391489 0.391489i
\(149\) 8.72716 15.1159i 0.714957 1.23834i −0.248019 0.968755i \(-0.579780\pi\)
0.962976 0.269586i \(-0.0868870\pi\)
\(150\) 0 0
\(151\) 7.60786 + 13.1772i 0.619119 + 1.07235i 0.989647 + 0.143524i \(0.0458434\pi\)
−0.370528 + 0.928821i \(0.620823\pi\)
\(152\) −1.90668 + 0.510892i −0.154652 + 0.0414388i
\(153\) −13.5771 5.31661i −1.09765 0.429823i
\(154\) 0.569541 + 0.252530i 0.0458949 + 0.0203494i
\(155\) 0 0
\(156\) 4.77782 + 9.45533i 0.382532 + 0.757032i
\(157\) 8.82516 + 2.36469i 0.704324 + 0.188723i 0.593167 0.805080i \(-0.297878\pi\)
0.111158 + 0.993803i \(0.464544\pi\)
\(158\) −1.26352 0.338559i −0.100520 0.0269343i
\(159\) 5.42929 + 10.7446i 0.430570 + 0.852100i
\(160\) 0 0
\(161\) 16.3578 11.9230i 1.28917 0.939665i
\(162\) −2.77743 + 0.108192i −0.218215 + 0.00850040i
\(163\) 2.61508 0.700710i 0.204829 0.0548838i −0.154946 0.987923i \(-0.549520\pi\)
0.359775 + 0.933039i \(0.382854\pi\)
\(164\) −4.15172 7.19099i −0.324195 0.561522i
\(165\) 0 0
\(166\) 1.10359 1.91147i 0.0856551 0.148359i
\(167\) −3.85551 3.85551i −0.298348 0.298348i 0.542018 0.840367i \(-0.317660\pi\)
−0.840367 + 0.542018i \(0.817660\pi\)
\(168\) −1.69808 5.25872i −0.131010 0.405719i
\(169\) 2.68725i 0.206712i
\(170\) 0 0
\(171\) −2.91306 + 3.95340i −0.222767 + 0.302324i
\(172\) 6.99969 + 1.87556i 0.533721 + 0.143010i
\(173\) 0.342481 + 1.27815i 0.0260383 + 0.0971763i 0.977722 0.209903i \(-0.0673149\pi\)
−0.951684 + 0.307080i \(0.900648\pi\)
\(174\) 2.21248 + 1.44738i 0.167727 + 0.109726i
\(175\) 0 0
\(176\) 2.62045i 0.197524i
\(177\) 4.15845 12.6537i 0.312568 0.951111i
\(178\) −0.0725151 + 0.270630i −0.00543524 + 0.0202846i
\(179\) 0.120836 + 0.209294i 0.00903168 + 0.0156433i 0.870506 0.492158i \(-0.163792\pi\)
−0.861474 + 0.507801i \(0.830458\pi\)
\(180\) 0 0
\(181\) 18.6864 1.38895 0.694475 0.719517i \(-0.255637\pi\)
0.694475 + 0.719517i \(0.255637\pi\)
\(182\) 0.406508 2.59233i 0.0301324 0.192156i
\(183\) 7.44955 1.55734i 0.550686 0.115122i
\(184\) −7.98990 4.61297i −0.589023 0.340073i
\(185\) 0 0
\(186\) 0.176594 3.16624i 0.0129485 0.232160i
\(187\) −0.959140 3.57956i −0.0701393 0.261763i
\(188\) −5.77437 + 5.77437i −0.421140 + 0.421140i
\(189\) −11.4655 7.58568i −0.833992 0.551777i
\(190\) 0 0
\(191\) 12.3330 + 7.12049i 0.892388 + 0.515220i 0.874723 0.484624i \(-0.161043\pi\)
0.0176651 + 0.999844i \(0.494377\pi\)
\(192\) 7.48934 6.69805i 0.540496 0.483390i
\(193\) −1.76414 + 6.58385i −0.126985 + 0.473916i −0.999903 0.0139523i \(-0.995559\pi\)
0.872917 + 0.487868i \(0.162225\pi\)
\(194\) −0.814694 + 1.41109i −0.0584916 + 0.101310i
\(195\) 0 0
\(196\) 4.08099 12.6924i 0.291499 0.906599i
\(197\) 7.65626 + 7.65626i 0.545486 + 0.545486i 0.925132 0.379646i \(-0.123954\pi\)
−0.379646 + 0.925132i \(0.623954\pi\)
\(198\) −0.440878 0.551974i −0.0313318 0.0392271i
\(199\) 14.1855 8.19000i 1.00558 0.580573i 0.0956874 0.995411i \(-0.469495\pi\)
0.909895 + 0.414838i \(0.136162\pi\)
\(200\) 0 0
\(201\) −0.0381180 0.0754356i −0.00268864 0.00532082i
\(202\) −4.14670 + 4.14670i −0.291761 + 0.291761i
\(203\) 4.70498 + 12.2009i 0.330225 + 0.856335i
\(204\) −8.77767 + 13.4176i −0.614560 + 0.939421i
\(205\) 0 0
\(206\) −3.37836 + 1.95050i −0.235382 + 0.135898i
\(207\) −22.6932 + 3.43826i −1.57729 + 0.238975i
\(208\) 10.6607 2.85654i 0.739189 0.198065i
\(209\) −1.24809 −0.0863321
\(210\) 0 0
\(211\) −25.5028 −1.75568 −0.877842 0.478950i \(-0.841018\pi\)
−0.877842 + 0.478950i \(0.841018\pi\)
\(212\) 12.7867 3.42620i 0.878197 0.235312i
\(213\) −16.0312 + 14.3374i −1.09844 + 0.982385i
\(214\) −0.583239 + 0.336733i −0.0398694 + 0.0230186i
\(215\) 0 0
\(216\) −1.04248 + 6.17867i −0.0709320 + 0.420405i
\(217\) 9.85200 12.2044i 0.668797 0.828492i
\(218\) 0.515316 0.515316i 0.0349016 0.0349016i
\(219\) 2.14527 1.08402i 0.144964 0.0732510i
\(220\) 0 0
\(221\) −13.5171 + 7.80410i −0.909258 + 0.524960i
\(222\) 0.590596 1.79712i 0.0396382 0.120615i
\(223\) 15.4546 + 15.4546i 1.03491 + 1.03491i 0.999368 + 0.0355465i \(0.0113172\pi\)
0.0355465 + 0.999368i \(0.488683\pi\)
\(224\) −9.13740 + 0.974557i −0.610518 + 0.0651154i
\(225\) 0 0
\(226\) 2.60716 4.51573i 0.173426 0.300382i
\(227\) 3.32527 12.4101i 0.220706 0.823686i −0.763374 0.645957i \(-0.776458\pi\)
0.984080 0.177728i \(-0.0568749\pi\)
\(228\) 3.59982 + 4.02509i 0.238404 + 0.266568i
\(229\) 13.2508 + 7.65038i 0.875641 + 0.505551i 0.869219 0.494428i \(-0.164622\pi\)
0.00642204 + 0.999979i \(0.497956\pi\)
\(230\) 0 0
\(231\) −0.176508 3.48960i −0.0116134 0.229599i
\(232\) 4.21445 4.21445i 0.276692 0.276692i
\(233\) −1.77586 6.62761i −0.116341 0.434189i 0.883043 0.469292i \(-0.155491\pi\)
−0.999384 + 0.0351029i \(0.988824\pi\)
\(234\) −1.76498 + 2.39531i −0.115381 + 0.156587i
\(235\) 0 0
\(236\) −12.6843 7.32328i −0.825677 0.476705i
\(237\) 1.50118 + 7.18093i 0.0975122 + 0.466452i
\(238\) 3.70543 1.42891i 0.240188 0.0926225i
\(239\) −18.7082 −1.21013 −0.605067 0.796174i \(-0.706854\pi\)
−0.605067 + 0.796174i \(0.706854\pi\)
\(240\) 0 0
\(241\) 0.986063 + 1.70791i 0.0635179 + 0.110016i 0.896036 0.443982i \(-0.146435\pi\)
−0.832518 + 0.553998i \(0.813101\pi\)
\(242\) −0.832793 + 3.10802i −0.0535339 + 0.199791i
\(243\) 7.56659 + 13.6289i 0.485397 + 0.874294i
\(244\) 8.36885i 0.535761i
\(245\) 0 0
\(246\) 1.27669 1.95156i 0.0813987 0.124427i
\(247\) 1.36053 + 5.07757i 0.0865685 + 0.323078i
\(248\) −6.90525 1.85026i −0.438484 0.117491i
\(249\) −12.3593 0.689328i −0.783240 0.0436844i
\(250\) 0 0
\(251\) 17.9016i 1.12994i 0.825112 + 0.564970i \(0.191112\pi\)
−0.825112 + 0.564970i \(0.808888\pi\)
\(252\) −10.7449 + 10.6342i −0.676863 + 0.669889i
\(253\) −4.12485 4.12485i −0.259327 0.259327i
\(254\) −0.974254 + 1.68746i −0.0611301 + 0.105881i
\(255\) 0 0
\(256\) −4.45168 7.71053i −0.278230 0.481908i
\(257\) −19.0468 + 5.10358i −1.18811 + 0.318353i −0.798138 0.602475i \(-0.794181\pi\)
−0.389971 + 0.920827i \(0.627515\pi\)
\(258\) 0.416467 + 1.99218i 0.0259281 + 0.124028i
\(259\) 7.56100 5.51114i 0.469818 0.342445i
\(260\) 0 0
\(261\) 1.64885 14.7356i 0.102061 0.912109i
\(262\) −0.641215 0.171813i −0.0396144 0.0106147i
\(263\) −5.35948 1.43607i −0.330480 0.0885517i 0.0897640 0.995963i \(-0.471389\pi\)
−0.420244 + 0.907411i \(0.638055\pi\)
\(264\) −1.42138 + 0.718230i −0.0874798 + 0.0442040i
\(265\) 0 0
\(266\) −0.141851 1.32999i −0.00869744 0.0815467i
\(267\) 1.53807 0.321534i 0.0941281 0.0196776i
\(268\) −0.0897733 + 0.0240547i −0.00548378 + 0.00146937i
\(269\) 5.02321 + 8.70045i 0.306270 + 0.530476i 0.977543 0.210734i \(-0.0675855\pi\)
−0.671273 + 0.741210i \(0.734252\pi\)
\(270\) 0 0
\(271\) 2.82028 4.88486i 0.171320 0.296734i −0.767562 0.640975i \(-0.778530\pi\)
0.938881 + 0.344241i \(0.111864\pi\)
\(272\) 11.8115 + 11.8115i 0.716180 + 0.716180i
\(273\) −14.0042 + 4.52206i −0.847575 + 0.273688i
\(274\) 2.72309i 0.164508i
\(275\) 0 0
\(276\) −1.40549 + 25.1998i −0.0846007 + 1.51685i
\(277\) 10.8617 + 2.91038i 0.652615 + 0.174868i 0.569911 0.821707i \(-0.306978\pi\)
0.0827040 + 0.996574i \(0.473644\pi\)
\(278\) 0.828310 + 3.09130i 0.0496787 + 0.185404i
\(279\) −16.2954 + 7.12451i −0.975581 + 0.426533i
\(280\) 0 0
\(281\) 1.92831i 0.115033i −0.998345 0.0575167i \(-0.981682\pi\)
0.998345 0.0575167i \(-0.0183183\pi\)
\(282\) −2.17887 0.716052i −0.129750 0.0426403i
\(283\) 6.82379 25.4667i 0.405632 1.51384i −0.397254 0.917709i \(-0.630037\pi\)
0.802887 0.596132i \(-0.203296\pi\)
\(284\) 11.8250 + 20.4816i 0.701687 + 1.21536i
\(285\) 0 0
\(286\) −0.756201 −0.0447151
\(287\) 10.7620 4.15012i 0.635263 0.244974i
\(288\) 9.70225 + 3.79926i 0.571710 + 0.223874i
\(289\) −5.73548 3.31138i −0.337381 0.194787i
\(290\) 0 0
\(291\) 9.12392 + 0.508877i 0.534853 + 0.0298309i
\(292\) −0.684078 2.55301i −0.0400326 0.149404i
\(293\) −7.83332 + 7.83332i −0.457627 + 0.457627i −0.897876 0.440249i \(-0.854890\pi\)
0.440249 + 0.897876i \(0.354890\pi\)
\(294\) 3.69852 0.584698i 0.215702 0.0341003i
\(295\) 0 0
\(296\) −3.69315 2.13224i −0.214660 0.123934i
\(297\) −1.64781 + 3.60296i −0.0956155 + 0.209065i
\(298\) 1.39517 5.20686i 0.0808203 0.301625i
\(299\) −12.2846 + 21.2775i −0.710435 + 1.23051i
\(300\) 0 0
\(301\) −4.08027 + 9.20242i −0.235183 + 0.530418i
\(302\) 3.32282 + 3.32282i 0.191207 + 0.191207i
\(303\) 31.2449 + 10.2681i 1.79497 + 0.589890i
\(304\) 4.87205 2.81288i 0.279431 0.161330i
\(305\) 0 0
\(306\) −4.47522 0.500759i −0.255831 0.0286265i
\(307\) 17.0769 17.0769i 0.974628 0.974628i −0.0250576 0.999686i \(-0.507977\pi\)
0.999686 + 0.0250576i \(0.00797691\pi\)
\(308\) −3.79579 0.595226i −0.216285 0.0339161i
\(309\) 18.3083 + 11.9771i 1.04152 + 0.681354i
\(310\) 0 0
\(311\) 20.4797 11.8240i 1.16130 0.670475i 0.209683 0.977769i \(-0.432757\pi\)
0.951615 + 0.307294i \(0.0994235\pi\)
\(312\) 4.47139 + 4.99963i 0.253143 + 0.283048i
\(313\) −11.9578 + 3.20409i −0.675895 + 0.181106i −0.580409 0.814325i \(-0.697107\pi\)
−0.0954864 + 0.995431i \(0.530441\pi\)
\(314\) 2.82168 0.159237
\(315\) 0 0
\(316\) 8.06709 0.453809
\(317\) 4.24276 1.13684i 0.238297 0.0638515i −0.137694 0.990475i \(-0.543969\pi\)
0.375991 + 0.926623i \(0.377302\pi\)
\(318\) 2.47848 + 2.77127i 0.138986 + 0.155405i
\(319\) 3.26361 1.88425i 0.182727 0.105498i
\(320\) 0 0
\(321\) 3.16074 + 2.06772i 0.176415 + 0.115409i
\(322\) 3.92671 4.86432i 0.218827 0.271078i
\(323\) −5.62568 + 5.62568i −0.313021 + 0.313021i
\(324\) 16.3723 5.07770i 0.909570 0.282094i
\(325\) 0 0
\(326\) 0.724106 0.418063i 0.0401045 0.0231543i
\(327\) −3.88284 1.27604i −0.214722 0.0705650i
\(328\) −3.71743 3.71743i −0.205261 0.205261i
\(329\) −6.68183 9.16713i −0.368381 0.505400i
\(330\) 0 0
\(331\) 3.10933 5.38552i 0.170904 0.296015i −0.767832 0.640651i \(-0.778664\pi\)
0.938736 + 0.344636i \(0.111998\pi\)
\(332\) −3.52300 + 13.1480i −0.193350 + 0.721591i
\(333\) −10.4894 + 1.58925i −0.574815 + 0.0870906i
\(334\) −1.45833 0.841970i −0.0797965 0.0460705i
\(335\) 0 0
\(336\) 8.55370 + 13.2242i 0.466642 + 0.721440i
\(337\) −15.0501 + 15.0501i −0.819833 + 0.819833i −0.986084 0.166250i \(-0.946834\pi\)
0.166250 + 0.986084i \(0.446834\pi\)
\(338\) −0.214800 0.801644i −0.0116836 0.0436037i
\(339\) −29.1981 1.62849i −1.58582 0.0884476i
\(340\) 0 0
\(341\) −3.91452 2.26005i −0.211983 0.122389i
\(342\) −0.552999 + 1.41220i −0.0299027 + 0.0763632i
\(343\) 16.5402 + 8.33197i 0.893087 + 0.449884i
\(344\) 4.58812 0.247375
\(345\) 0 0
\(346\) 0.204333 + 0.353916i 0.0109850 + 0.0190266i
\(347\) 4.98539 18.6057i 0.267630 0.998808i −0.692991 0.720946i \(-0.743708\pi\)
0.960621 0.277862i \(-0.0896258\pi\)
\(348\) −15.4898 5.09049i −0.830342 0.272879i
\(349\) 9.24369i 0.494803i 0.968913 + 0.247402i \(0.0795767\pi\)
−0.968913 + 0.247402i \(0.920423\pi\)
\(350\) 0 0
\(351\) 16.4541 + 2.77618i 0.878254 + 0.148182i
\(352\) 0.685404 + 2.55796i 0.0365321 + 0.136340i
\(353\) −11.4070 3.05649i −0.607132 0.162681i −0.0578609 0.998325i \(-0.518428\pi\)
−0.549271 + 0.835644i \(0.685095\pi\)
\(354\) 0.229073 4.10717i 0.0121751 0.218294i
\(355\) 0 0
\(356\) 1.72787i 0.0915769i
\(357\) −16.5247 14.9335i −0.874582 0.790367i
\(358\) 0.0527764 + 0.0527764i 0.00278932 + 0.00278932i
\(359\) −6.98129 + 12.0920i −0.368459 + 0.638189i −0.989325 0.145728i \(-0.953448\pi\)
0.620866 + 0.783917i \(0.286781\pi\)
\(360\) 0 0
\(361\) −8.16026 14.1340i −0.429487 0.743894i
\(362\) 5.57441 1.49366i 0.292985 0.0785050i
\(363\) 17.6638 3.69263i 0.927108 0.193813i
\(364\) 1.71622 + 16.0912i 0.0899544 + 0.843408i
\(365\) 0 0
\(366\) 2.09782 1.06004i 0.109655 0.0554091i
\(367\) −14.5688 3.90370i −0.760485 0.203771i −0.142321 0.989821i \(-0.545457\pi\)
−0.618164 + 0.786049i \(0.712123\pi\)
\(368\) 25.3982 + 6.80542i 1.32397 + 0.354757i
\(369\) −12.9978 1.45440i −0.676638 0.0757130i
\(370\) 0 0
\(371\) 1.95023 + 18.2852i 0.101251 + 0.949323i
\(372\) 4.00185 + 19.1429i 0.207486 + 0.992515i
\(373\) −33.6495 + 9.01635i −1.74230 + 0.466849i −0.982957 0.183837i \(-0.941148\pi\)
−0.759347 + 0.650686i \(0.774481\pi\)
\(374\) −0.572249 0.991165i −0.0295903 0.0512519i
\(375\) 0 0
\(376\) −2.58517 + 4.47765i −0.133320 + 0.230917i
\(377\) −11.2233 11.2233i −0.578028 0.578028i
\(378\) −4.02666 1.34644i −0.207109 0.0692535i
\(379\) 19.0602i 0.979056i −0.871988 0.489528i \(-0.837169\pi\)
0.871988 0.489528i \(-0.162831\pi\)
\(380\) 0 0
\(381\) 10.9109 + 0.608542i 0.558980 + 0.0311765i
\(382\) 4.24828 + 1.13832i 0.217361 + 0.0582417i
\(383\) 2.62860 + 9.81007i 0.134315 + 0.501271i 1.00000 0.000681261i \(0.000216852\pi\)
−0.865685 + 0.500590i \(0.833116\pi\)
\(384\) 8.28544 12.6652i 0.422815 0.646318i
\(385\) 0 0
\(386\) 2.10507i 0.107145i
\(387\) 8.91857 7.12352i 0.453356 0.362109i
\(388\) 2.60076 9.70615i 0.132033 0.492755i
\(389\) −18.6290 32.2664i −0.944528 1.63597i −0.756693 0.653770i \(-0.773186\pi\)
−0.187835 0.982201i \(-0.560147\pi\)
\(390\) 0 0
\(391\) −37.1850 −1.88053
\(392\) 0.415908 8.43099i 0.0210065 0.425829i
\(393\) 0.761825 + 3.64421i 0.0384290 + 0.183826i
\(394\) 2.89595 + 1.67198i 0.145896 + 0.0842331i
\(395\) 0 0
\(396\) 3.50731 + 2.58436i 0.176249 + 0.129869i
\(397\) 2.30077 + 8.58658i 0.115472 + 0.430948i 0.999322 0.0368231i \(-0.0117238\pi\)
−0.883850 + 0.467771i \(0.845057\pi\)
\(398\) 3.57708 3.57708i 0.179303 0.179303i
\(399\) −6.29852 + 4.07401i −0.315321 + 0.203956i
\(400\) 0 0
\(401\) 4.02832 + 2.32575i 0.201165 + 0.116142i 0.597199 0.802093i \(-0.296280\pi\)
−0.396034 + 0.918236i \(0.629614\pi\)
\(402\) −0.0174009 0.0194566i −0.000867878 0.000970407i
\(403\) −4.92733 + 18.3890i −0.245448 + 0.916023i
\(404\) 18.0828 31.3204i 0.899655 1.55825i
\(405\) 0 0
\(406\) 2.37881 + 3.26361i 0.118059 + 0.161970i
\(407\) −1.90662 1.90662i −0.0945074 0.0945074i
\(408\) −3.16940 + 9.64415i −0.156909 + 0.477457i
\(409\) 23.0006 13.2794i 1.13731 0.656626i 0.191546 0.981484i \(-0.438650\pi\)
0.945763 + 0.324858i \(0.105317\pi\)
\(410\) 0 0
\(411\) 13.6305 6.88758i 0.672345 0.339739i
\(412\) 17.0114 17.0114i 0.838091 0.838091i
\(413\) 12.7798 15.8313i 0.628853 0.779009i
\(414\) −6.49486 + 2.83961i −0.319205 + 0.139559i
\(415\) 0 0
\(416\) 9.65934 5.57682i 0.473588 0.273426i
\(417\) 13.3786 11.9650i 0.655151 0.585931i
\(418\) −0.372322 + 0.0997634i −0.0182109 + 0.00487959i
\(419\) 25.8278 1.26177 0.630885 0.775876i \(-0.282692\pi\)
0.630885 + 0.775876i \(0.282692\pi\)
\(420\) 0 0
\(421\) 0.432430 0.0210753 0.0105377 0.999944i \(-0.496646\pi\)
0.0105377 + 0.999944i \(0.496646\pi\)
\(422\) −7.60783 + 2.03851i −0.370343 + 0.0992332i
\(423\) 1.92685 + 12.7176i 0.0936866 + 0.618350i
\(424\) 7.25850 4.19070i 0.352504 0.203518i
\(425\) 0 0
\(426\) −3.63630 + 5.55847i −0.176179 + 0.269309i
\(427\) 11.4850 + 1.80099i 0.555799 + 0.0871558i
\(428\) 2.93684 2.93684i 0.141957 0.141957i
\(429\) 1.91268 + 3.78520i 0.0923451 + 0.182751i
\(430\) 0 0
\(431\) −14.1264 + 8.15586i −0.680443 + 0.392854i −0.800022 0.599971i \(-0.795179\pi\)
0.119579 + 0.992825i \(0.461846\pi\)
\(432\) −1.68777 17.7783i −0.0812029 0.855358i
\(433\) 0.514238 + 0.514238i 0.0247127 + 0.0247127i 0.719355 0.694642i \(-0.244437\pi\)
−0.694642 + 0.719355i \(0.744437\pi\)
\(434\) 1.96345 4.42825i 0.0942486 0.212563i
\(435\) 0 0
\(436\) −2.24718 + 3.89223i −0.107620 + 0.186404i
\(437\) −3.24133 + 12.0968i −0.155054 + 0.578669i
\(438\) 0.553315 0.494855i 0.0264384 0.0236451i
\(439\) −13.2487 7.64917i −0.632328 0.365075i 0.149325 0.988788i \(-0.452290\pi\)
−0.781653 + 0.623713i \(0.785623\pi\)
\(440\) 0 0
\(441\) −12.2815 17.0342i −0.584834 0.811153i
\(442\) −3.40853 + 3.40853i −0.162127 + 0.162127i
\(443\) −2.36181 8.81439i −0.112213 0.418784i 0.886850 0.462057i \(-0.152888\pi\)
−0.999063 + 0.0432723i \(0.986222\pi\)
\(444\) −0.649656 + 11.6480i −0.0308313 + 0.552791i
\(445\) 0 0
\(446\) 5.84564 + 3.37498i 0.276799 + 0.159810i
\(447\) −29.5921 + 6.18625i −1.39966 + 0.292600i
\(448\) 14.3201 5.52219i 0.676560 0.260899i
\(449\) 9.40891 0.444034 0.222017 0.975043i \(-0.428736\pi\)
0.222017 + 0.975043i \(0.428736\pi\)
\(450\) 0 0
\(451\) −1.66204 2.87873i −0.0782622 0.135554i
\(452\) −8.32286 + 31.0613i −0.391474 + 1.46100i
\(453\) 8.22804 25.0370i 0.386587 1.17634i
\(454\) 3.96789i 0.186222i
\(455\) 0 0
\(456\) 2.86111 + 1.87171i 0.133984 + 0.0876509i
\(457\) 8.93665 + 33.3520i 0.418039 + 1.56014i 0.778670 + 0.627434i \(0.215895\pi\)
−0.360631 + 0.932708i \(0.617439\pi\)
\(458\) 4.56443 + 1.22303i 0.213282 + 0.0571486i
\(459\) 8.81272 + 23.6675i 0.411343 + 1.10470i
\(460\) 0 0
\(461\) 36.9326i 1.72012i −0.510192 0.860061i \(-0.670426\pi\)
0.510192 0.860061i \(-0.329574\pi\)
\(462\) −0.331588 1.02689i −0.0154269 0.0477751i
\(463\) −26.3687 26.3687i −1.22546 1.22546i −0.965664 0.259794i \(-0.916345\pi\)
−0.259794 0.965664i \(-0.583655\pi\)
\(464\) −8.49325 + 14.7107i −0.394289 + 0.682929i
\(465\) 0 0
\(466\) −1.05953 1.83516i −0.0490817 0.0850120i
\(467\) 9.85183 2.63979i 0.455888 0.122155i −0.0235650 0.999722i \(-0.507502\pi\)
0.479453 + 0.877567i \(0.340835\pi\)
\(468\) 6.69060 17.0859i 0.309273 0.789797i
\(469\) −0.0136922 0.128377i −0.000632247 0.00592791i
\(470\) 0 0
\(471\) −7.13696 14.1241i −0.328854 0.650803i
\(472\) −8.95734 2.40011i −0.412295 0.110474i
\(473\) 2.80215 + 0.750833i 0.128843 + 0.0345233i
\(474\) 1.02182 + 2.02218i 0.0469336 + 0.0928817i
\(475\) 0 0
\(476\) −19.7923 + 14.4264i −0.907177 + 0.661232i
\(477\) 7.60287 19.4156i 0.348112 0.888979i
\(478\) −5.58092 + 1.49540i −0.255265 + 0.0683981i
\(479\) 6.85350 + 11.8706i 0.313144 + 0.542382i 0.979041 0.203662i \(-0.0652843\pi\)
−0.665897 + 0.746044i \(0.731951\pi\)
\(480\) 0 0
\(481\) −5.67825 + 9.83503i −0.258906 + 0.448439i
\(482\) 0.430674 + 0.430674i 0.0196167 + 0.0196167i
\(483\) −34.2805 7.35185i −1.55982 0.334521i
\(484\) 19.8436i 0.901980i
\(485\) 0 0
\(486\) 3.34661 + 3.46087i 0.151805 + 0.156988i
\(487\) −22.0811 5.91662i −1.00059 0.268108i −0.278898 0.960321i \(-0.589969\pi\)
−0.721693 + 0.692213i \(0.756636\pi\)
\(488\) −1.37139 5.11811i −0.0620800 0.231686i
\(489\) −3.92413 2.56713i −0.177455 0.116090i
\(490\) 0 0
\(491\) 23.7476i 1.07172i −0.844308 0.535858i \(-0.819988\pi\)
0.844308 0.535858i \(-0.180012\pi\)
\(492\) −4.49016 + 13.6631i −0.202432 + 0.615980i
\(493\) 6.21740 23.2037i 0.280018 1.04504i
\(494\) 0.811730 + 1.40596i 0.0365215 + 0.0632570i
\(495\) 0 0
\(496\) 20.3744 0.914836
\(497\) −30.6527 + 11.8205i −1.37496 + 0.530220i
\(498\) −3.74205 + 0.782280i −0.167685 + 0.0350548i
\(499\) 2.80187 + 1.61766i 0.125429 + 0.0724165i 0.561402 0.827543i \(-0.310262\pi\)
−0.435973 + 0.899960i \(0.643596\pi\)
\(500\) 0 0
\(501\) −0.525914 + 9.42938i −0.0234961 + 0.421274i
\(502\) 1.43093 + 5.34029i 0.0638654 + 0.238349i
\(503\) 2.62851 2.62851i 0.117199 0.117199i −0.646075 0.763274i \(-0.723591\pi\)
0.763274 + 0.646075i \(0.223591\pi\)
\(504\) −4.82859 + 8.26424i −0.215083 + 0.368118i
\(505\) 0 0
\(506\) −1.56021 0.900788i −0.0693598 0.0400449i
\(507\) −3.46937 + 3.10281i −0.154080 + 0.137801i
\(508\) 3.11012 11.6071i 0.137989 0.514983i
\(509\) 6.91189 11.9717i 0.306364 0.530638i −0.671200 0.741276i \(-0.734221\pi\)
0.977564 + 0.210638i \(0.0675541\pi\)
\(510\) 0 0
\(511\) 3.65085 0.389385i 0.161504 0.0172254i
\(512\) −14.3017 14.3017i −0.632050 0.632050i
\(513\) 8.46757 0.803863i 0.373852 0.0354914i
\(514\) −5.27399 + 3.04494i −0.232626 + 0.134306i
\(515\) 0 0
\(516\) −5.66069 11.2025i −0.249198 0.493164i
\(517\) −2.31162 + 2.31162i −0.101665 + 0.101665i
\(518\) 1.81503 2.24842i 0.0797478 0.0987899i
\(519\) 1.25472 1.91797i 0.0550759 0.0841895i
\(520\) 0 0
\(521\) −9.49156 + 5.47996i −0.415833 + 0.240081i −0.693293 0.720656i \(-0.743841\pi\)
0.277460 + 0.960737i \(0.410507\pi\)
\(522\) −0.685982 4.52762i −0.0300246 0.198168i
\(523\) 13.2418 3.54814i 0.579026 0.155149i 0.0425929 0.999093i \(-0.486438\pi\)
0.536433 + 0.843943i \(0.319771\pi\)
\(524\) 4.09392 0.178844
\(525\) 0 0
\(526\) −1.71360 −0.0747163
\(527\) −27.8315 + 7.45743i −1.21236 + 0.324851i
\(528\) 3.38313 3.02569i 0.147232 0.131676i
\(529\) −30.7730 + 17.7668i −1.33796 + 0.772469i
\(530\) 0 0
\(531\) −21.1381 + 9.24175i −0.917313 + 0.401058i
\(532\) 2.96786 + 7.69622i 0.128673 + 0.333674i
\(533\) −9.89970 + 9.89970i −0.428804 + 0.428804i
\(534\) 0.433125 0.218860i 0.0187432 0.00947101i
\(535\) 0 0
\(536\) −0.0509605 + 0.0294221i −0.00220116 + 0.00127084i
\(537\) 0.130686 0.397664i 0.00563952 0.0171605i
\(538\) 2.19394 + 2.19394i 0.0945876 + 0.0945876i
\(539\) 1.63372 5.08108i 0.0703692 0.218857i
\(540\) 0 0
\(541\) −3.53276 + 6.11892i −0.151885 + 0.263073i −0.931920 0.362663i \(-0.881868\pi\)
0.780035 + 0.625735i \(0.215201\pi\)
\(542\) 0.450866 1.68265i 0.0193663 0.0722762i
\(543\) −21.5761 24.1250i −0.925919 1.03530i
\(544\) 14.6193 + 8.44044i 0.626796 + 0.361881i
\(545\) 0 0
\(546\) −3.81619 + 2.46839i −0.163318 + 0.105637i
\(547\) 19.7665 19.7665i 0.845154 0.845154i −0.144370 0.989524i \(-0.546115\pi\)
0.989524 + 0.144370i \(0.0461154\pi\)
\(548\) −4.34647 16.2212i −0.185672 0.692937i
\(549\) −10.6121 7.81955i −0.452915 0.333730i
\(550\) 0 0
\(551\) −7.00653 4.04522i −0.298488 0.172332i
\(552\) 3.26991 + 15.6417i 0.139176 + 0.665753i
\(553\) −1.73605 + 11.0709i −0.0738242 + 0.470782i
\(554\) 3.47282 0.147546
\(555\) 0 0
\(556\) −9.86837 17.0925i −0.418512 0.724884i
\(557\) 11.3316 42.2902i 0.480137 1.79189i −0.120891 0.992666i \(-0.538575\pi\)
0.601028 0.799228i \(-0.294758\pi\)
\(558\) −4.29166 + 3.42788i −0.181681 + 0.145114i
\(559\) 12.2184i 0.516783i
\(560\) 0 0
\(561\) −3.51392 + 5.37140i −0.148358 + 0.226781i
\(562\) −0.154136 0.575242i −0.00650182 0.0242651i
\(563\) 10.7151 + 2.87110i 0.451587 + 0.121002i 0.477442 0.878663i \(-0.341564\pi\)
−0.0258549 + 0.999666i \(0.508231\pi\)
\(564\) 14.1223 + 0.787658i 0.594657 + 0.0331664i
\(565\) 0 0
\(566\) 8.14252i 0.342256i
\(567\) 3.44507 + 23.5612i 0.144679 + 0.989479i
\(568\) 10.5881 + 10.5881i 0.444266 + 0.444266i
\(569\) −6.90318 + 11.9567i −0.289396 + 0.501249i −0.973666 0.227980i \(-0.926788\pi\)
0.684269 + 0.729229i \(0.260121\pi\)
\(570\) 0 0
\(571\) 6.56260 + 11.3668i 0.274636 + 0.475684i 0.970043 0.242932i \(-0.0781092\pi\)
−0.695407 + 0.718616i \(0.744776\pi\)
\(572\) 4.50464 1.20701i 0.188348 0.0504678i
\(573\) −5.04736 24.1442i −0.210857 1.00864i
\(574\) 2.87873 2.09828i 0.120156 0.0875804i
\(575\) 0 0
\(576\) −17.2950 1.93524i −0.720625 0.0806350i
\(577\) −14.7331 3.94772i −0.613347 0.164346i −0.0612453 0.998123i \(-0.519507\pi\)
−0.552101 + 0.833777i \(0.686174\pi\)
\(578\) −1.97566 0.529377i −0.0821767 0.0220192i
\(579\) 10.5370 5.32440i 0.437903 0.221275i
\(580\) 0 0
\(581\) −17.2856 7.66426i −0.717126 0.317967i
\(582\) 2.76247 0.577496i 0.114508 0.0239380i
\(583\) 5.11885 1.37159i 0.212001 0.0568055i
\(584\) −0.836718 1.44924i −0.0346236 0.0599699i
\(585\) 0 0
\(586\) −1.71065 + 2.96293i −0.0706662 + 0.122397i
\(587\) 5.54217 + 5.54217i 0.228750 + 0.228750i 0.812170 0.583421i \(-0.198286\pi\)
−0.583421 + 0.812170i \(0.698286\pi\)
\(588\) −21.0986 + 9.38642i −0.870090 + 0.387089i
\(589\) 9.70404i 0.399848i
\(590\) 0 0
\(591\) 1.04436 18.7248i 0.0429591 0.770237i
\(592\) 11.7397 + 3.14565i 0.482499 + 0.129285i
\(593\) −2.24492 8.37814i −0.0921877 0.344049i 0.904390 0.426706i \(-0.140326\pi\)
−0.996578 + 0.0826570i \(0.973659\pi\)
\(594\) −0.203568 + 1.20653i −0.00835252 + 0.0495043i
\(595\) 0 0
\(596\) 33.2438i 1.36172i
\(597\) −26.9528 8.85763i −1.10311 0.362519i
\(598\) −1.96388 + 7.32931i −0.0803091 + 0.299718i
\(599\) −7.93869 13.7502i −0.324366 0.561819i 0.657018 0.753875i \(-0.271818\pi\)
−0.981384 + 0.192056i \(0.938484\pi\)
\(600\) 0 0
\(601\) 41.5249 1.69384 0.846919 0.531722i \(-0.178455\pi\)
0.846919 + 0.531722i \(0.178455\pi\)
\(602\) −0.481625 + 3.07135i −0.0196296 + 0.125179i
\(603\) −0.0533783 + 0.136313i −0.00217373 + 0.00555110i
\(604\) −25.0976 14.4901i −1.02120 0.589593i
\(605\) 0 0
\(606\) 10.1415 + 0.565634i 0.411972 + 0.0229773i
\(607\) 3.95710 + 14.7681i 0.160614 + 0.599418i 0.998559 + 0.0536641i \(0.0170900\pi\)
−0.837945 + 0.545754i \(0.816243\pi\)
\(608\) 4.02013 4.02013i 0.163038 0.163038i
\(609\) 10.3194 20.1620i 0.418162 0.817006i
\(610\) 0 0
\(611\) 11.9242 + 6.88444i 0.482402 + 0.278515i
\(612\) 27.4578 4.16015i 1.10992 0.168164i
\(613\) −7.98165 + 29.7879i −0.322376 + 1.20312i 0.594548 + 0.804060i \(0.297331\pi\)
−0.916924 + 0.399063i \(0.869336\pi\)
\(614\) 3.72926 6.45927i 0.150501 0.260675i
\(615\) 0 0
\(616\) −2.41892 + 0.257992i −0.0974611 + 0.0103948i
\(617\) 13.2098 + 13.2098i 0.531808 + 0.531808i 0.921110 0.389302i \(-0.127284\pi\)
−0.389302 + 0.921110i \(0.627284\pi\)
\(618\) 6.41899 + 2.10950i 0.258210 + 0.0848566i
\(619\) 14.7495 8.51561i 0.592831 0.342271i −0.173385 0.984854i \(-0.555471\pi\)
0.766216 + 0.642583i \(0.222137\pi\)
\(620\) 0 0
\(621\) 30.6414 + 25.3280i 1.22960 + 1.01638i
\(622\) 5.16425 5.16425i 0.207068 0.207068i
\(623\) 2.37125 + 0.371840i 0.0950020 + 0.0148974i
\(624\) −15.9973 10.4652i −0.640403 0.418945i
\(625\) 0 0
\(626\) −3.31107 + 1.91165i −0.132337 + 0.0764047i
\(627\) 1.44110 + 1.61134i 0.0575518 + 0.0643508i
\(628\) −16.8086 + 4.50384i −0.670735 + 0.179723i
\(629\) −17.1879 −0.685327
\(630\) 0 0
\(631\) 6.51082 0.259191 0.129596 0.991567i \(-0.458632\pi\)
0.129596 + 0.991567i \(0.458632\pi\)
\(632\) 4.93356 1.32194i 0.196247 0.0525841i
\(633\) 29.4466 + 32.9253i 1.17040 + 1.30866i
\(634\) 1.17480 0.678272i 0.0466573 0.0269376i
\(635\) 0 0
\(636\) −19.1875 12.5523i −0.760834 0.497730i
\(637\) −22.4521 1.10758i −0.889586 0.0438840i
\(638\) 0.822967 0.822967i 0.0325816 0.0325816i
\(639\) 37.0206 + 4.14246i 1.46451 + 0.163873i
\(640\) 0 0
\(641\) 36.6801 21.1773i 1.44878 0.836451i 0.450367 0.892843i \(-0.351293\pi\)
0.998409 + 0.0563924i \(0.0179598\pi\)
\(642\) 1.10817 + 0.364183i 0.0437360 + 0.0143732i
\(643\) −11.2098 11.2098i −0.442072 0.442072i 0.450636 0.892708i \(-0.351197\pi\)
−0.892708 + 0.450636i \(0.851197\pi\)
\(644\) −15.6269 + 35.2441i −0.615787 + 1.38881i
\(645\) 0 0
\(646\) −1.22854 + 2.12790i −0.0483363 + 0.0837209i
\(647\) 6.15237 22.9610i 0.241875 0.902689i −0.733054 0.680171i \(-0.761906\pi\)
0.974929 0.222518i \(-0.0714276\pi\)
\(648\) 9.18064 5.78825i 0.360650 0.227384i
\(649\) −5.07783 2.93169i −0.199322 0.115079i
\(650\) 0 0
\(651\) −27.1320 + 1.37237i −1.06339 + 0.0537874i
\(652\) −3.64616 + 3.64616i −0.142794 + 0.142794i
\(653\) −5.64046 21.0505i −0.220728 0.823769i −0.984071 0.177775i \(-0.943110\pi\)
0.763343 0.645994i \(-0.223557\pi\)
\(654\) −1.26030 0.0702921i −0.0492817 0.00274864i
\(655\) 0 0
\(656\) 12.9759 + 7.49163i 0.506623 + 0.292499i
\(657\) −3.87653 1.51800i −0.151238 0.0592227i
\(658\) −2.72604 2.20058i −0.106272 0.0857876i
\(659\) 42.6184 1.66018 0.830088 0.557632i \(-0.188290\pi\)
0.830088 + 0.557632i \(0.188290\pi\)
\(660\) 0 0
\(661\) −22.7467 39.3985i −0.884744 1.53242i −0.846006 0.533173i \(-0.821000\pi\)
−0.0387381 0.999249i \(-0.512334\pi\)
\(662\) 0.497076 1.85511i 0.0193194 0.0721010i
\(663\) 25.6828 + 8.44027i 0.997439 + 0.327793i
\(664\) 8.61819i 0.334451i
\(665\) 0 0
\(666\) −3.00210 + 1.31254i −0.116329 + 0.0508601i
\(667\) −9.78693 36.5253i −0.378951 1.41427i
\(668\) 10.0311 + 2.68783i 0.388115 + 0.103995i
\(669\) 2.10809 37.7971i 0.0815035 1.46132i
\(670\) 0 0
\(671\) 3.35026i 0.129335i
\(672\) 11.8086 + 10.6715i 0.455527 + 0.411664i
\(673\) 32.1249 + 32.1249i 1.23832 + 1.23832i 0.960686 + 0.277636i \(0.0895508\pi\)
0.277636 + 0.960686i \(0.410449\pi\)
\(674\) −3.28666 + 5.69266i −0.126597 + 0.219273i
\(675\) 0 0
\(676\) 2.55910 + 4.43248i 0.0984268 + 0.170480i
\(677\) 41.1280 11.0202i 1.58068 0.423542i 0.641543 0.767087i \(-0.278295\pi\)
0.939136 + 0.343545i \(0.111628\pi\)
\(678\) −8.84036 + 1.84809i −0.339512 + 0.0709753i
\(679\) 12.7606 + 5.65793i 0.489706 + 0.217131i
\(680\) 0 0
\(681\) −19.8615 + 10.0361i −0.761094 + 0.384584i
\(682\) −1.34841 0.361305i −0.0516332 0.0138351i
\(683\) 2.25177 + 0.603360i 0.0861617 + 0.0230869i 0.301642 0.953421i \(-0.402465\pi\)
−0.215481 + 0.976508i \(0.569132\pi\)
\(684\) 1.04008 9.29507i 0.0397685 0.355406i
\(685\) 0 0
\(686\) 5.60017 + 1.16343i 0.213815 + 0.0444201i
\(687\) −5.42298 25.9409i −0.206899 0.989708i
\(688\) −12.6307 + 3.38438i −0.481540 + 0.129028i
\(689\) −11.1600 19.3297i −0.425163 0.736404i
\(690\) 0 0
\(691\) 8.27824 14.3383i 0.314919 0.545456i −0.664501 0.747287i \(-0.731356\pi\)
0.979420 + 0.201831i \(0.0646893\pi\)
\(692\) −1.78210 1.78210i −0.0677454 0.0677454i
\(693\) −4.30143 + 4.25711i −0.163398 + 0.161714i
\(694\) 5.94884i 0.225815i
\(695\) 0 0
\(696\) −10.3072 0.574875i −0.390694 0.0217906i
\(697\) −20.4672 5.48418i −0.775252 0.207728i
\(698\) 0.738875 + 2.75752i 0.0279668 + 0.104374i
\(699\) −6.50607 + 9.94523i −0.246082 + 0.376163i
\(700\) 0 0
\(701\) 26.5973i 1.00457i 0.864703 + 0.502284i \(0.167507\pi\)
−0.864703 + 0.502284i \(0.832493\pi\)
\(702\) 5.13039 0.487050i 0.193634 0.0183825i
\(703\) −1.49823 + 5.59148i −0.0565069 + 0.210886i
\(704\) −2.21152 3.83047i −0.0833500 0.144366i
\(705\) 0 0
\(706\) −3.64717 −0.137263
\(707\) 39.0912 + 31.5562i 1.47017 + 1.18679i
\(708\) 5.19111 + 24.8318i 0.195094 + 0.933235i
\(709\) 13.7850 + 7.95880i 0.517708 + 0.298899i 0.735997 0.676985i \(-0.236714\pi\)
−0.218288 + 0.975884i \(0.570047\pi\)
\(710\) 0 0
\(711\) 7.53760 10.2295i 0.282682 0.383636i
\(712\) −0.283144 1.05671i −0.0106113 0.0396018i
\(713\) −32.0712 + 32.0712i −1.20108 + 1.20108i
\(714\) −6.12324 3.13401i −0.229156 0.117287i
\(715\) 0 0
\(716\) −0.398625 0.230146i −0.0148973 0.00860096i
\(717\) 21.6013 + 24.1532i 0.806715 + 0.902018i
\(718\) −1.11607 + 4.16523i −0.0416514 + 0.155445i
\(719\) −10.6906 + 18.5167i −0.398694 + 0.690558i −0.993565 0.113263i \(-0.963870\pi\)
0.594871 + 0.803821i \(0.297203\pi\)
\(720\) 0 0
\(721\) 19.6848 + 27.0065i 0.733099 + 1.00577i
\(722\) −3.56409 3.56409i −0.132642 0.132642i
\(723\) 1.06644 3.24508i 0.0396615 0.120686i
\(724\) −30.8223 + 17.7952i −1.14550 + 0.661355i
\(725\) 0 0
\(726\) 4.97418 2.51348i 0.184609 0.0932840i
\(727\) −7.43836 + 7.43836i −0.275873 + 0.275873i −0.831459 0.555586i \(-0.812494\pi\)
0.555586 + 0.831459i \(0.312494\pi\)
\(728\) 3.68643 + 9.55960i 0.136628 + 0.354302i
\(729\) 8.85885 25.5053i 0.328106 0.944641i
\(730\) 0 0
\(731\) 16.0148 9.24617i 0.592330 0.341982i
\(732\) −10.8046 + 9.66302i −0.399349 + 0.357156i
\(733\) 35.2708 9.45077i 1.30276 0.349072i 0.460264 0.887782i \(-0.347755\pi\)
0.842491 + 0.538710i \(0.181088\pi\)
\(734\) −4.65810 −0.171934
\(735\) 0 0
\(736\) 26.5725 0.979475
\(737\) −0.0359385 + 0.00962968i −0.00132381 + 0.000354714i
\(738\) −3.99367 + 0.605083i −0.147009 + 0.0222734i
\(739\) −33.2198 + 19.1794i −1.22201 + 0.705527i −0.965346 0.260974i \(-0.915956\pi\)
−0.256663 + 0.966501i \(0.582623\pi\)
\(740\) 0 0
\(741\) 4.98446 7.61928i 0.183109 0.279901i
\(742\) 2.04337 + 5.29885i 0.0750146 + 0.194527i
\(743\) −30.8182 + 30.8182i −1.13061 + 1.13061i −0.140534 + 0.990076i \(0.544882\pi\)
−0.990076 + 0.140534i \(0.955118\pi\)
\(744\) 5.58432 + 11.0514i 0.204731 + 0.405164i
\(745\) 0 0
\(746\) −9.31740 + 5.37940i −0.341134 + 0.196954i
\(747\) 13.3806 + 16.7524i 0.489571 + 0.612938i
\(748\) 4.99090 + 4.99090i 0.182485 + 0.182485i
\(749\) 3.39837 + 4.66239i 0.124174 + 0.170360i
\(750\) 0 0
\(751\) −19.9356 + 34.5294i −0.727459 + 1.26000i 0.230495 + 0.973074i \(0.425966\pi\)
−0.957954 + 0.286923i \(0.907368\pi\)
\(752\) 3.81385 14.2335i 0.139077 0.519042i
\(753\) 23.1118 20.6699i 0.842242 0.753254i
\(754\) −4.24517 2.45095i −0.154600 0.0892583i
\(755\) 0 0
\(756\) 26.1357 + 1.59349i 0.950545 + 0.0579545i
\(757\) −0.798673 + 0.798673i −0.0290283 + 0.0290283i −0.721472 0.692444i \(-0.756534\pi\)
0.692444 + 0.721472i \(0.256534\pi\)
\(758\) −1.52354 5.68591i −0.0553373 0.206522i
\(759\) −0.562653 + 10.0881i −0.0204230 + 0.366175i
\(760\) 0 0
\(761\) 37.3941 + 21.5895i 1.35554 + 0.782619i 0.989019 0.147791i \(-0.0472164\pi\)
0.366518 + 0.930411i \(0.380550\pi\)
\(762\) 3.30350 0.690601i 0.119673 0.0250178i
\(763\) −4.85791 3.92153i −0.175868 0.141969i
\(764\) −27.1236 −0.981299
\(765\) 0 0
\(766\) 1.56829 + 2.71637i 0.0566648 + 0.0981463i
\(767\) −6.39162 + 23.8538i −0.230788 + 0.861312i
\(768\) −4.81457 + 14.6502i −0.173731 + 0.528644i
\(769\) 44.1875i 1.59344i 0.604348 + 0.796720i \(0.293434\pi\)
−0.604348 + 0.796720i \(0.706566\pi\)
\(770\) 0 0
\(771\) 28.5812 + 18.6975i 1.02933 + 0.673376i
\(772\) −3.36001 12.5397i −0.120929 0.451315i
\(773\) 21.1314 + 5.66214i 0.760043 + 0.203653i 0.617968 0.786203i \(-0.287956\pi\)
0.142075 + 0.989856i \(0.454623\pi\)
\(774\) 2.09113 2.83793i 0.0751640 0.102007i
\(775\) 0 0
\(776\) 6.36214i 0.228388i
\(777\) −15.8454 3.39822i −0.568450 0.121911i
\(778\) −8.13643 8.13643i −0.291705 0.291705i
\(779\) −3.56817 + 6.18024i −0.127843 + 0.221430i
\(780\) 0 0
\(781\) 4.73385 + 8.19927i 0.169391 + 0.293393i
\(782\) −11.0928 + 2.97231i −0.396678 + 0.106289i
\(783\) −20.9281 + 14.8856i −0.747911 + 0.531966i
\(784\) 5.07407 + 23.5165i 0.181217 + 0.839876i
\(785\) 0 0
\(786\) 0.518555 + 1.02622i 0.0184962 + 0.0366041i
\(787\) 0.291239 + 0.0780372i 0.0103815 + 0.00278173i 0.264006 0.964521i \(-0.414956\pi\)
−0.253625 + 0.967303i \(0.581623\pi\)
\(788\) −19.9197 5.33748i −0.709612 0.190140i
\(789\) 4.33425 + 8.57748i 0.154303 + 0.305367i
\(790\) 0 0
\(791\) −40.8360 18.1063i −1.45196 0.643787i
\(792\) 2.56845 + 1.00577i 0.0912659 + 0.0357385i
\(793\) −13.6298 + 3.65209i −0.484007 + 0.129689i
\(794\) 1.37270 + 2.37759i 0.0487153 + 0.0843774i
\(795\) 0 0
\(796\) −15.5988 + 27.0180i −0.552886 + 0.957626i
\(797\) −8.45240 8.45240i −0.299399 0.299399i 0.541379 0.840779i \(-0.317902\pi\)
−0.840779 + 0.541379i \(0.817902\pi\)
\(798\) −1.55329 + 1.71879i −0.0549858 + 0.0608446i
\(799\) 20.8390i 0.737231i
\(800\) 0 0
\(801\) −2.19103 1.61446i −0.0774163 0.0570441i
\(802\) 1.38761 + 0.371808i 0.0489981 + 0.0131290i
\(803\) −0.273853 1.02203i −0.00966407 0.0360668i
\(804\) 0.134712 + 0.0881271i 0.00475092 + 0.00310800i
\(805\) 0 0
\(806\) 5.87955i 0.207098i
\(807\) 5.43269 16.5311i 0.191240 0.581922i
\(808\) 5.92642 22.1177i 0.208491 0.778098i
\(809\) 18.5676 + 32.1600i 0.652801 + 1.13068i 0.982440 + 0.186577i \(0.0597394\pi\)
−0.329640 + 0.944107i \(0.606927\pi\)
\(810\) 0 0
\(811\) 23.5491 0.826921 0.413461 0.910522i \(-0.364320\pi\)
0.413461 + 0.910522i \(0.364320\pi\)
\(812\) −19.3797 15.6442i −0.680093 0.549003i
\(813\) −9.56300 + 1.99915i −0.335389 + 0.0701134i
\(814\) −0.721171 0.416368i −0.0252770 0.0145937i
\(815\) 0 0
\(816\) 1.61116 28.8874i 0.0564019 1.01126i
\(817\) −1.61194 6.01583i −0.0563945 0.210467i
\(818\) 5.79994 5.79994i 0.202790 0.202790i
\(819\) 22.0081 + 12.8588i 0.769024 + 0.449322i
\(820\) 0 0
\(821\) −35.4996 20.4957i −1.23895 0.715306i −0.270067 0.962842i \(-0.587046\pi\)
−0.968879 + 0.247536i \(0.920379\pi\)
\(822\) 3.51563 3.14419i 0.122622 0.109666i
\(823\) 6.66893 24.8888i 0.232464 0.867568i −0.746812 0.665036i \(-0.768416\pi\)
0.979276 0.202532i \(-0.0649171\pi\)
\(824\) 7.61596 13.1912i 0.265315 0.459538i
\(825\) 0 0
\(826\) 2.54694 5.74423i 0.0886195 0.199867i
\(827\) 19.5668 + 19.5668i 0.680404 + 0.680404i 0.960091 0.279687i \(-0.0902308\pi\)
−0.279687 + 0.960091i \(0.590231\pi\)
\(828\) 34.1570 27.2822i 1.18704 0.948121i
\(829\) −21.9279 + 12.6601i −0.761588 + 0.439703i −0.829866 0.557963i \(-0.811583\pi\)
0.0682778 + 0.997666i \(0.478250\pi\)
\(830\) 0 0
\(831\) −8.78391 17.3834i −0.304710 0.603023i
\(832\) −13.1727 + 13.1727i −0.456680 + 0.456680i
\(833\) −15.5388 30.2665i −0.538386 1.04867i
\(834\) 3.03461 4.63873i 0.105080 0.160626i
\(835\) 0 0
\(836\) 2.05866 1.18857i 0.0712002 0.0411075i
\(837\) 28.0134 + 12.8119i 0.968286 + 0.442844i
\(838\) 7.70479 2.06449i 0.266157 0.0713167i
\(839\) −50.7484 −1.75203 −0.876014 0.482286i \(-0.839807\pi\)
−0.876014 + 0.482286i \(0.839807\pi\)
\(840\) 0 0
\(841\) −4.57160 −0.157641
\(842\) 0.129000 0.0345654i 0.00444563 0.00119120i
\(843\) −2.48954 + 2.22651i −0.0857444 + 0.0766851i
\(844\) 42.0656 24.2866i 1.44796 0.835978i
\(845\) 0 0
\(846\) 1.59136 + 3.63981i 0.0547120 + 0.125139i
\(847\) 27.2324 + 4.27036i 0.935715 + 0.146731i
\(848\) −16.8908 + 16.8908i −0.580031 + 0.580031i
\(849\) −40.7578 + 20.5951i −1.39880 + 0.706823i
\(850\) 0 0
\(851\) −23.4310 + 13.5279i −0.803204 + 0.463730i
\(852\) 12.7890 38.9155i 0.438143 1.33322i
\(853\) 18.8448 + 18.8448i 0.645233 + 0.645233i 0.951837 0.306604i \(-0.0991928\pi\)
−0.306604 + 0.951837i \(0.599193\pi\)
\(854\) 3.57009 0.380772i 0.122166 0.0130297i
\(855\) 0 0
\(856\) 1.31482 2.27733i 0.0449395 0.0778375i
\(857\) −3.22108 + 12.0212i −0.110030 + 0.410637i −0.998867 0.0475860i \(-0.984847\pi\)
0.888837 + 0.458223i \(0.151514\pi\)
\(858\) 0.873141 + 0.976291i 0.0298085 + 0.0333300i
\(859\) −3.33705 1.92665i −0.113859 0.0657364i 0.441989 0.897020i \(-0.354273\pi\)
−0.555848 + 0.831284i \(0.687606\pi\)
\(860\) 0 0
\(861\) −17.7843 9.10240i −0.606087 0.310209i
\(862\) −3.56217 + 3.56217i −0.121328 + 0.121328i
\(863\) 12.9186 + 48.2127i 0.439753 + 1.64118i 0.729429 + 0.684056i \(0.239786\pi\)
−0.289676 + 0.957125i \(0.593548\pi\)
\(864\) −6.29759 16.9128i −0.214248 0.575387i
\(865\) 0 0
\(866\) 0.194509 + 0.112300i 0.00660967 + 0.00381610i
\(867\) 2.34727 + 11.2282i 0.0797176 + 0.381331i
\(868\) −4.62795 + 29.5128i −0.157083 + 1.00173i
\(869\) 3.22945 0.109552
\(870\) 0 0
\(871\) 0.0783524 + 0.135710i 0.00265487 + 0.00459837i
\(872\) −0.736484 + 2.74860i −0.0249405 + 0.0930793i
\(873\) −9.87787 12.3670i −0.334315 0.418559i
\(874\) 3.86774i 0.130828i
\(875\) 0 0
\(876\) −2.50620 + 3.83099i −0.0846765 + 0.129437i
\(877\) 11.7017 + 43.6713i 0.395138 + 1.47467i 0.821546 + 0.570143i \(0.193112\pi\)
−0.426408 + 0.904531i \(0.640221\pi\)
\(878\) −4.56370 1.22284i −0.154018 0.0412689i
\(879\) 19.1579 + 1.06851i 0.646179 + 0.0360399i
\(880\) 0 0
\(881\) 25.2055i 0.849195i 0.905382 + 0.424597i \(0.139584\pi\)
−0.905382 + 0.424597i \(0.860416\pi\)
\(882\) −5.02534 4.09984i −0.169212 0.138049i
\(883\) 14.2942 + 14.2942i 0.481039 + 0.481039i 0.905463 0.424424i \(-0.139524\pi\)
−0.424424 + 0.905463i \(0.639524\pi\)
\(884\) 14.8638 25.7449i 0.499925 0.865895i
\(885\) 0 0
\(886\) −1.40912 2.44067i −0.0473403 0.0819958i
\(887\) −37.5853 + 10.0709i −1.26199 + 0.338149i −0.826957 0.562266i \(-0.809930\pi\)
−0.435033 + 0.900415i \(0.643263\pi\)
\(888\) 1.51144 + 7.23000i 0.0507206 + 0.242623i
\(889\) 15.2598 + 6.76605i 0.511796 + 0.226926i
\(890\) 0 0
\(891\) 6.55421 2.03273i 0.219574 0.0680989i
\(892\) −40.2091 10.7740i −1.34630 0.360740i
\(893\) 6.77923 + 1.81649i 0.226858 + 0.0607865i
\(894\) −8.33323 + 4.21082i −0.278705 + 0.140831i
\(895\) 0 0
\(896\) 18.6823 13.6174i 0.624133 0.454924i
\(897\) 41.6545 8.70792i 1.39080 0.290749i
\(898\) 2.80681 0.752081i 0.0936643 0.0250973i
\(899\) −14.6503 25.3750i −0.488613 0.846303i
\(900\) 0 0
\(901\) 16.8905 29.2553i 0.562705 0.974634i
\(902\) −0.725914 0.725914i −0.0241703 0.0241703i
\(903\) 16.5920 5.35767i 0.552147 0.178292i
\(904\) 20.3599i 0.677161i
\(905\) 0 0
\(906\) 0.453252 8.12659i 0.0150583 0.269988i
\(907\) 2.32776 + 0.623721i 0.0772920 + 0.0207103i 0.297258 0.954797i \(-0.403928\pi\)
−0.219966 + 0.975508i \(0.570595\pi\)
\(908\) 6.33337 + 23.6365i 0.210180 + 0.784404i
\(909\) −22.8200 52.1946i −0.756891 1.73119i
\(910\) 0 0
\(911\) 19.3662i 0.641631i 0.947142 + 0.320815i \(0.103957\pi\)
−0.947142 + 0.320815i \(0.896043\pi\)
\(912\) −9.25703 3.04218i −0.306531 0.100737i
\(913\) −1.41034 + 5.26347i −0.0466755 + 0.174196i
\(914\) 5.33185 + 9.23503i 0.176362 + 0.305468i
\(915\) 0 0
\(916\) −29.1421 −0.962883
\(917\) −0.881015 + 5.61830i −0.0290937 + 0.185533i
\(918\) 4.52077 + 6.35591i 0.149208 + 0.209776i
\(919\) −29.5591 17.0659i −0.975063 0.562953i −0.0742872 0.997237i \(-0.523668\pi\)
−0.900776 + 0.434284i \(0.857002\pi\)
\(920\) 0 0
\(921\) −41.7647 2.32938i −1.37619 0.0767558i
\(922\) −2.95213 11.0175i −0.0972231 0.362842i
\(923\) 28.1966 28.1966i 0.928102 0.928102i
\(924\) 3.61432 + 5.58782i 0.118902 + 0.183826i
\(925\) 0 0
\(926\) −9.97388 5.75842i −0.327762 0.189233i
\(927\) −5.67652 37.4662i −0.186441 1.23055i
\(928\) −4.44297 + 16.5814i −0.145848 + 0.544311i
\(929\) −9.86232 + 17.0820i −0.323572 + 0.560443i −0.981222 0.192880i \(-0.938217\pi\)
0.657650 + 0.753323i \(0.271550\pi\)
\(930\) 0 0
\(931\) −11.2006 + 2.41672i −0.367085 + 0.0792047i
\(932\) 9.24073 + 9.24073i 0.302690 + 0.302690i
\(933\) −38.9120 12.7878i −1.27392 0.418655i
\(934\) 2.72793 1.57497i 0.0892606 0.0515346i
\(935\) 0 0
\(936\) 1.29190 11.5456i 0.0422271 0.377378i
\(937\) 17.3041 17.3041i 0.565300 0.565300i −0.365508 0.930808i \(-0.619105\pi\)
0.930808 + 0.365508i \(0.119105\pi\)
\(938\) −0.0143461 0.0372022i −0.000468418 0.00121470i
\(939\) 17.9436 + 11.7385i 0.585568 + 0.383072i
\(940\) 0 0
\(941\) 3.89269 2.24744i 0.126898 0.0732646i −0.435207 0.900330i \(-0.643325\pi\)
0.562105 + 0.827066i \(0.309992\pi\)
\(942\) −3.25803 3.64292i −0.106152 0.118693i
\(943\) −32.2178 + 8.63274i −1.04916 + 0.281121i
\(944\) 26.4292 0.860196
\(945\) 0 0
\(946\) 0.895935 0.0291294
\(947\) 14.4891 3.88234i 0.470832 0.126159i −0.0155984 0.999878i \(-0.504965\pi\)
0.486431 + 0.873719i \(0.338299\pi\)
\(948\) −9.31460 10.4150i −0.302524 0.338263i
\(949\) −3.85939 + 2.22822i −0.125281 + 0.0723311i
\(950\) 0 0
\(951\) −6.36658 4.16495i −0.206451 0.135058i
\(952\) −9.74025 + 12.0660i −0.315683 + 0.391062i
\(953\) 21.6181 21.6181i 0.700277 0.700277i −0.264193 0.964470i \(-0.585105\pi\)
0.964470 + 0.264193i \(0.0851054\pi\)
\(954\) 0.716096 6.39966i 0.0231845 0.207197i
\(955\) 0 0
\(956\) 30.8583 17.8160i 0.998028 0.576212i
\(957\) −6.20096 2.03785i −0.200448 0.0658743i
\(958\) 2.99334 + 2.99334i 0.0967106 + 0.0967106i
\(959\) 23.1966 2.47406i 0.749058 0.0798915i
\(960\) 0 0
\(961\) −2.07218 + 3.58912i −0.0668444 + 0.115778i
\(962\) −0.907759 + 3.38780i −0.0292673 + 0.109227i
\(963\) −0.979992 6.46814i −0.0315798 0.208433i
\(964\) −3.25292 1.87807i −0.104769 0.0604887i
\(965\) 0 0
\(966\) −10.8140 + 0.546985i −0.347935 + 0.0175989i
\(967\) −16.1911 + 16.1911i −0.520672 + 0.520672i −0.917774 0.397102i \(-0.870016\pi\)
0.397102 + 0.917774i \(0.370016\pi\)
\(968\) −3.25174 12.1357i −0.104515 0.390055i
\(969\) 13.7587 + 0.767375i 0.441992 + 0.0246517i
\(970\) 0 0
\(971\) 15.8437 + 9.14738i 0.508450 + 0.293553i 0.732196 0.681094i \(-0.238495\pi\)
−0.223747 + 0.974647i \(0.571829\pi\)
\(972\) −25.4596 15.2744i −0.816618 0.489928i
\(973\) 25.5807 9.86456i 0.820078 0.316243i
\(974\) −7.06004 −0.226218
\(975\) 0 0
\(976\) 7.55064 + 13.0781i 0.241690 + 0.418619i
\(977\) 3.85716 14.3951i 0.123401 0.460540i −0.876376 0.481627i \(-0.840046\pi\)
0.999778 + 0.0210868i \(0.00671265\pi\)
\(978\) −1.37582 0.452142i −0.0439939 0.0144579i
\(979\) 0.691709i 0.0221071i
\(980\) 0 0
\(981\) 2.83587 + 6.48630i 0.0905423 + 0.207092i
\(982\) −1.89822 7.08425i −0.0605746 0.226067i
\(983\) 11.3586 + 3.04352i 0.362283 + 0.0970733i 0.435368 0.900252i \(-0.356618\pi\)
−0.0730860 + 0.997326i \(0.523285\pi\)
\(984\) −0.507079 + 9.09168i −0.0161651 + 0.289832i
\(985\) 0 0
\(986\) 7.41895i 0.236267i
\(987\) −4.12008 + 19.2113i −0.131144 + 0.611502i
\(988\) −7.07955 7.07955i −0.225230 0.225230i
\(989\) 14.5546 25.2092i 0.462808 0.801607i
\(990\) 0 0
\(991\) −5.02003 8.69495i −0.159467 0.276204i 0.775210 0.631704i \(-0.217644\pi\)
−0.934676 + 0.355499i \(0.884311\pi\)
\(992\) 19.8885 5.32910i 0.631459 0.169199i
\(993\) −10.5431 + 2.20405i −0.334576 + 0.0699434i
\(994\) −8.19927 + 5.97636i −0.260065 + 0.189559i
\(995\) 0 0
\(996\) 21.0425 10.6329i 0.666757 0.336916i
\(997\) −13.5955 3.64290i −0.430574 0.115372i 0.0370216 0.999314i \(-0.488213\pi\)
−0.467596 + 0.883943i \(0.654880\pi\)
\(998\) 0.965142 + 0.258609i 0.0305510 + 0.00818612i
\(999\) 14.1633 + 11.7073i 0.448107 + 0.370402i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.bf.f.443.7 48
3.2 odd 2 inner 525.2.bf.f.443.6 48
5.2 odd 4 inner 525.2.bf.f.107.7 48
5.3 odd 4 105.2.x.a.2.6 48
5.4 even 2 105.2.x.a.23.6 yes 48
7.4 even 3 inner 525.2.bf.f.368.6 48
15.2 even 4 inner 525.2.bf.f.107.6 48
15.8 even 4 105.2.x.a.2.7 yes 48
15.14 odd 2 105.2.x.a.23.7 yes 48
21.11 odd 6 inner 525.2.bf.f.368.7 48
35.3 even 12 735.2.y.i.557.7 48
35.4 even 6 105.2.x.a.53.7 yes 48
35.9 even 6 735.2.j.g.638.7 24
35.13 even 4 735.2.y.i.422.6 48
35.18 odd 12 105.2.x.a.32.7 yes 48
35.19 odd 6 735.2.j.e.638.7 24
35.23 odd 12 735.2.j.g.197.6 24
35.24 odd 6 735.2.y.i.263.7 48
35.32 odd 12 inner 525.2.bf.f.32.6 48
35.33 even 12 735.2.j.e.197.6 24
35.34 odd 2 735.2.y.i.128.6 48
105.23 even 12 735.2.j.g.197.7 24
105.32 even 12 inner 525.2.bf.f.32.7 48
105.38 odd 12 735.2.y.i.557.6 48
105.44 odd 6 735.2.j.g.638.6 24
105.53 even 12 105.2.x.a.32.6 yes 48
105.59 even 6 735.2.y.i.263.6 48
105.68 odd 12 735.2.j.e.197.7 24
105.74 odd 6 105.2.x.a.53.6 yes 48
105.83 odd 4 735.2.y.i.422.7 48
105.89 even 6 735.2.j.e.638.6 24
105.104 even 2 735.2.y.i.128.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.x.a.2.6 48 5.3 odd 4
105.2.x.a.2.7 yes 48 15.8 even 4
105.2.x.a.23.6 yes 48 5.4 even 2
105.2.x.a.23.7 yes 48 15.14 odd 2
105.2.x.a.32.6 yes 48 105.53 even 12
105.2.x.a.32.7 yes 48 35.18 odd 12
105.2.x.a.53.6 yes 48 105.74 odd 6
105.2.x.a.53.7 yes 48 35.4 even 6
525.2.bf.f.32.6 48 35.32 odd 12 inner
525.2.bf.f.32.7 48 105.32 even 12 inner
525.2.bf.f.107.6 48 15.2 even 4 inner
525.2.bf.f.107.7 48 5.2 odd 4 inner
525.2.bf.f.368.6 48 7.4 even 3 inner
525.2.bf.f.368.7 48 21.11 odd 6 inner
525.2.bf.f.443.6 48 3.2 odd 2 inner
525.2.bf.f.443.7 48 1.1 even 1 trivial
735.2.j.e.197.6 24 35.33 even 12
735.2.j.e.197.7 24 105.68 odd 12
735.2.j.e.638.6 24 105.89 even 6
735.2.j.e.638.7 24 35.19 odd 6
735.2.j.g.197.6 24 35.23 odd 12
735.2.j.g.197.7 24 105.23 even 12
735.2.j.g.638.6 24 105.44 odd 6
735.2.j.g.638.7 24 35.9 even 6
735.2.y.i.128.6 48 35.34 odd 2
735.2.y.i.128.7 48 105.104 even 2
735.2.y.i.263.6 48 105.59 even 6
735.2.y.i.263.7 48 35.24 odd 6
735.2.y.i.422.6 48 35.13 even 4
735.2.y.i.422.7 48 105.83 odd 4
735.2.y.i.557.6 48 105.38 odd 12
735.2.y.i.557.7 48 35.3 even 12