Properties

Label 735.2.j.e.638.6
Level $735$
Weight $2$
Character 735.638
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(197,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 638.6
Character \(\chi\) \(=\) 735.638
Dual form 735.2.j.e.197.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.218381 - 0.218381i) q^{2} +(-0.354425 + 1.69540i) q^{3} -1.90462i q^{4} +(-2.16448 - 0.561256i) q^{5} +(0.447643 - 0.292843i) q^{6} +(-0.852694 + 0.852694i) q^{8} +(-2.74877 - 1.20179i) q^{9} +O(q^{10})\) \(q+(-0.218381 - 0.218381i) q^{2} +(-0.354425 + 1.69540i) q^{3} -1.90462i q^{4} +(-2.16448 - 0.561256i) q^{5} +(0.447643 - 0.292843i) q^{6} +(-0.852694 + 0.852694i) q^{8} +(-2.74877 - 1.20179i) q^{9} +(0.350114 + 0.595249i) q^{10} +0.762466i q^{11} +(3.22909 + 0.675045i) q^{12} +(2.27077 + 2.27077i) q^{13} +(1.71870 - 3.47074i) q^{15} -3.43682 q^{16} +(3.43677 + 3.43677i) q^{17} +(0.337831 + 0.862724i) q^{18} +1.63691i q^{19} +(-1.06898 + 4.12252i) q^{20} +(0.166508 - 0.166508i) q^{22} +(5.40988 - 5.40988i) q^{23} +(-1.14344 - 1.74787i) q^{24} +(4.36998 + 2.42966i) q^{25} -0.991783i q^{26} +(3.01174 - 4.23432i) q^{27} +4.94251 q^{29} +(-1.13328 + 0.382613i) q^{30} +5.92827 q^{31} +(2.45592 + 2.45592i) q^{32} +(-1.29269 - 0.270237i) q^{33} -1.50105i q^{34} +(-2.28894 + 5.23535i) q^{36} +(-2.50059 + 2.50059i) q^{37} +(0.357470 - 0.357470i) q^{38} +(-4.65467 + 3.04504i) q^{39} +(2.32422 - 1.36706i) q^{40} +4.35963i q^{41} +(2.69037 + 2.69037i) q^{43} +1.45221 q^{44} +(5.27515 + 4.14401i) q^{45} -2.36283 q^{46} +(3.03177 + 3.03177i) q^{47} +(1.21809 - 5.82678i) q^{48} +(-0.423730 - 1.48491i) q^{50} +(-7.04478 + 4.60862i) q^{51} +(4.32494 - 4.32494i) q^{52} +(4.91465 - 4.91465i) q^{53} +(-1.58240 + 0.266987i) q^{54} +(0.427939 - 1.65035i) q^{55} +(-2.77522 - 0.580162i) q^{57} +(-1.07935 - 1.07935i) q^{58} -7.69002 q^{59} +(-6.61045 - 3.27347i) q^{60} -4.39397 q^{61} +(-1.29462 - 1.29462i) q^{62} +5.80098i q^{64} +(-3.64056 - 6.18952i) q^{65} +(0.223283 + 0.341312i) q^{66} +(0.0345049 - 0.0345049i) q^{67} +(6.54574 - 6.54574i) q^{68} +(7.25451 + 11.0893i) q^{69} +12.4172i q^{71} +(3.36861 - 1.31910i) q^{72} +(-0.981264 - 0.981264i) q^{73} +1.09216 q^{74} +(-5.66808 + 6.54774i) q^{75} +3.11769 q^{76} +(1.68147 + 0.351513i) q^{78} +4.23554i q^{79} +(7.43893 + 1.92893i) q^{80} +(6.11142 + 6.60685i) q^{81} +(0.952060 - 0.952060i) q^{82} +(-5.05351 + 5.05351i) q^{83} +(-5.50993 - 9.36774i) q^{85} -1.17505i q^{86} +(-1.75175 + 8.37953i) q^{87} +(-0.650150 - 0.650150i) q^{88} +0.907199 q^{89} +(-0.247020 - 2.05696i) q^{90} +(-10.3038 - 10.3038i) q^{92} +(-2.10113 + 10.0508i) q^{93} -1.32416i q^{94} +(0.918726 - 3.54307i) q^{95} +(-5.03421 + 3.29333i) q^{96} +(-3.73061 + 3.73061i) q^{97} +(0.916321 - 2.09584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{3} + 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 2 q^{3} + 12 q^{6} - 8 q^{10} - 10 q^{12} + 8 q^{13} + 2 q^{15} + 8 q^{16} - 14 q^{18} - 4 q^{22} - 4 q^{25} - 20 q^{27} - 40 q^{30} - 24 q^{31} - 4 q^{33} + 4 q^{36} - 4 q^{37} - 16 q^{40} + 8 q^{43} + 40 q^{45} + 32 q^{46} - 22 q^{48} - 8 q^{51} + 36 q^{52} + 20 q^{55} - 44 q^{57} - 56 q^{58} + 50 q^{60} - 8 q^{61} + 76 q^{66} - 12 q^{67} + 34 q^{72} + 52 q^{73} + 6 q^{75} - 32 q^{76} - 60 q^{78} - 20 q^{81} + 104 q^{82} - 12 q^{85} - 46 q^{87} + 42 q^{90} + 44 q^{93} + 12 q^{96} + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.218381 0.218381i −0.154419 0.154419i 0.625670 0.780088i \(-0.284826\pi\)
−0.780088 + 0.625670i \(0.784826\pi\)
\(3\) −0.354425 + 1.69540i −0.204628 + 0.978840i
\(4\) 1.90462i 0.952310i
\(5\) −2.16448 0.561256i −0.967987 0.251001i
\(6\) 0.447643 0.292843i 0.182749 0.119553i
\(7\) 0 0
\(8\) −0.852694 + 0.852694i −0.301473 + 0.301473i
\(9\) −2.74877 1.20179i −0.916255 0.400595i
\(10\) 0.350114 + 0.595249i 0.110716 + 0.188234i
\(11\) 0.762466i 0.229892i 0.993372 + 0.114946i \(0.0366695\pi\)
−0.993372 + 0.114946i \(0.963330\pi\)
\(12\) 3.22909 + 0.675045i 0.932159 + 0.194869i
\(13\) 2.27077 + 2.27077i 0.629797 + 0.629797i 0.948017 0.318220i \(-0.103085\pi\)
−0.318220 + 0.948017i \(0.603085\pi\)
\(14\) 0 0
\(15\) 1.71870 3.47074i 0.443767 0.896142i
\(16\) −3.43682 −0.859204
\(17\) 3.43677 + 3.43677i 0.833539 + 0.833539i 0.987999 0.154460i \(-0.0493638\pi\)
−0.154460 + 0.987999i \(0.549364\pi\)
\(18\) 0.337831 + 0.862724i 0.0796275 + 0.203346i
\(19\) 1.63691i 0.375533i 0.982214 + 0.187767i \(0.0601248\pi\)
−0.982214 + 0.187767i \(0.939875\pi\)
\(20\) −1.06898 + 4.12252i −0.239031 + 0.921823i
\(21\) 0 0
\(22\) 0.166508 0.166508i 0.0354996 0.0354996i
\(23\) 5.40988 5.40988i 1.12804 1.12804i 0.137542 0.990496i \(-0.456080\pi\)
0.990496 0.137542i \(-0.0439201\pi\)
\(24\) −1.14344 1.74787i −0.233404 0.356783i
\(25\) 4.36998 + 2.42966i 0.873997 + 0.485932i
\(26\) 0.991783i 0.194505i
\(27\) 3.01174 4.23432i 0.579610 0.814894i
\(28\) 0 0
\(29\) 4.94251 0.917801 0.458900 0.888488i \(-0.348243\pi\)
0.458900 + 0.888488i \(0.348243\pi\)
\(30\) −1.13328 + 0.382613i −0.206907 + 0.0698552i
\(31\) 5.92827 1.06475 0.532374 0.846509i \(-0.321300\pi\)
0.532374 + 0.846509i \(0.321300\pi\)
\(32\) 2.45592 + 2.45592i 0.434150 + 0.434150i
\(33\) −1.29269 0.270237i −0.225028 0.0470423i
\(34\) 1.50105i 0.257428i
\(35\) 0 0
\(36\) −2.28894 + 5.23535i −0.381491 + 0.872559i
\(37\) −2.50059 + 2.50059i −0.411095 + 0.411095i −0.882120 0.471025i \(-0.843884\pi\)
0.471025 + 0.882120i \(0.343884\pi\)
\(38\) 0.357470 0.357470i 0.0579893 0.0579893i
\(39\) −4.65467 + 3.04504i −0.745344 + 0.487597i
\(40\) 2.32422 1.36706i 0.367492 0.216152i
\(41\) 4.35963i 0.680860i 0.940270 + 0.340430i \(0.110573\pi\)
−0.940270 + 0.340430i \(0.889427\pi\)
\(42\) 0 0
\(43\) 2.69037 + 2.69037i 0.410277 + 0.410277i 0.881835 0.471558i \(-0.156308\pi\)
−0.471558 + 0.881835i \(0.656308\pi\)
\(44\) 1.45221 0.218929
\(45\) 5.27515 + 4.14401i 0.786373 + 0.617752i
\(46\) −2.36283 −0.348380
\(47\) 3.03177 + 3.03177i 0.442230 + 0.442230i 0.892761 0.450531i \(-0.148765\pi\)
−0.450531 + 0.892761i \(0.648765\pi\)
\(48\) 1.21809 5.82678i 0.175817 0.841023i
\(49\) 0 0
\(50\) −0.423730 1.48491i −0.0599244 0.209998i
\(51\) −7.04478 + 4.60862i −0.986466 + 0.645336i
\(52\) 4.32494 4.32494i 0.599762 0.599762i
\(53\) 4.91465 4.91465i 0.675080 0.675080i −0.283803 0.958883i \(-0.591596\pi\)
0.958883 + 0.283803i \(0.0915961\pi\)
\(54\) −1.58240 + 0.266987i −0.215337 + 0.0363323i
\(55\) 0.427939 1.65035i 0.0577032 0.222533i
\(56\) 0 0
\(57\) −2.77522 0.580162i −0.367587 0.0768444i
\(58\) −1.07935 1.07935i −0.141725 0.141725i
\(59\) −7.69002 −1.00115 −0.500577 0.865692i \(-0.666879\pi\)
−0.500577 + 0.865692i \(0.666879\pi\)
\(60\) −6.61045 3.27347i −0.853405 0.422603i
\(61\) −4.39397 −0.562591 −0.281295 0.959621i \(-0.590764\pi\)
−0.281295 + 0.959621i \(0.590764\pi\)
\(62\) −1.29462 1.29462i −0.164417 0.164417i
\(63\) 0 0
\(64\) 5.80098i 0.725122i
\(65\) −3.64056 6.18952i −0.451555 0.767715i
\(66\) 0.223283 + 0.341312i 0.0274842 + 0.0420126i
\(67\) 0.0345049 0.0345049i 0.00421544 0.00421544i −0.704996 0.709211i \(-0.749051\pi\)
0.709211 + 0.704996i \(0.249051\pi\)
\(68\) 6.54574 6.54574i 0.793787 0.793787i
\(69\) 7.25451 + 11.0893i 0.873341 + 1.33500i
\(70\) 0 0
\(71\) 12.4172i 1.47365i 0.676082 + 0.736826i \(0.263676\pi\)
−0.676082 + 0.736826i \(0.736324\pi\)
\(72\) 3.36861 1.31910i 0.396995 0.155457i
\(73\) −0.981264 0.981264i −0.114848 0.114848i 0.647347 0.762195i \(-0.275878\pi\)
−0.762195 + 0.647347i \(0.775878\pi\)
\(74\) 1.09216 0.126961
\(75\) −5.66808 + 6.54774i −0.654493 + 0.756068i
\(76\) 3.11769 0.357624
\(77\) 0 0
\(78\) 1.68147 + 0.351513i 0.190389 + 0.0398010i
\(79\) 4.23554i 0.476535i 0.971200 + 0.238268i \(0.0765795\pi\)
−0.971200 + 0.238268i \(0.923420\pi\)
\(80\) 7.43893 + 1.92893i 0.831698 + 0.215661i
\(81\) 6.11142 + 6.60685i 0.679047 + 0.734095i
\(82\) 0.952060 0.952060i 0.105137 0.105137i
\(83\) −5.05351 + 5.05351i −0.554695 + 0.554695i −0.927792 0.373097i \(-0.878296\pi\)
0.373097 + 0.927792i \(0.378296\pi\)
\(84\) 0 0
\(85\) −5.50993 9.36774i −0.597635 1.01607i
\(86\) 1.17505i 0.126709i
\(87\) −1.75175 + 8.37953i −0.187807 + 0.898380i
\(88\) −0.650150 0.650150i −0.0693062 0.0693062i
\(89\) 0.907199 0.0961629 0.0480815 0.998843i \(-0.484689\pi\)
0.0480815 + 0.998843i \(0.484689\pi\)
\(90\) −0.247020 2.05696i −0.0260382 0.216823i
\(91\) 0 0
\(92\) −10.3038 10.3038i −1.07424 1.07424i
\(93\) −2.10113 + 10.0508i −0.217877 + 1.04222i
\(94\) 1.32416i 0.136577i
\(95\) 0.918726 3.54307i 0.0942593 0.363511i
\(96\) −5.03421 + 3.29333i −0.513802 + 0.336124i
\(97\) −3.73061 + 3.73061i −0.378786 + 0.378786i −0.870664 0.491878i \(-0.836311\pi\)
0.491878 + 0.870664i \(0.336311\pi\)
\(98\) 0 0
\(99\) 0.916321 2.09584i 0.0920937 0.210640i
\(100\) 4.62758 8.32316i 0.462758 0.832316i
\(101\) 18.9884i 1.88942i −0.327913 0.944708i \(-0.606345\pi\)
0.327913 0.944708i \(-0.393655\pi\)
\(102\) 2.54488 + 0.532010i 0.251981 + 0.0526768i
\(103\) 8.93165 + 8.93165i 0.880061 + 0.880061i 0.993540 0.113479i \(-0.0361995\pi\)
−0.113479 + 0.993540i \(0.536200\pi\)
\(104\) −3.87254 −0.379733
\(105\) 0 0
\(106\) −2.14653 −0.208490
\(107\) 1.54196 + 1.54196i 0.149066 + 0.149066i 0.777701 0.628634i \(-0.216386\pi\)
−0.628634 + 0.777701i \(0.716386\pi\)
\(108\) −8.06476 5.73622i −0.776032 0.551968i
\(109\) 2.35971i 0.226020i 0.993594 + 0.113010i \(0.0360491\pi\)
−0.993594 + 0.113010i \(0.963951\pi\)
\(110\) −0.453857 + 0.266950i −0.0432736 + 0.0254527i
\(111\) −3.35323 5.12578i −0.318275 0.486517i
\(112\) 0 0
\(113\) 11.9386 11.9386i 1.12309 1.12309i 0.131814 0.991274i \(-0.457920\pi\)
0.991274 0.131814i \(-0.0420801\pi\)
\(114\) 0.479358 + 0.732751i 0.0448960 + 0.0686284i
\(115\) −14.7459 + 8.67327i −1.37506 + 0.808787i
\(116\) 9.41360i 0.874031i
\(117\) −3.51283 8.97077i −0.324761 0.829348i
\(118\) 1.67935 + 1.67935i 0.154597 + 0.154597i
\(119\) 0 0
\(120\) 1.49396 + 4.42501i 0.136379 + 0.403946i
\(121\) 10.4186 0.947150
\(122\) 0.959560 + 0.959560i 0.0868744 + 0.0868744i
\(123\) −7.39132 1.54516i −0.666453 0.139323i
\(124\) 11.2911i 1.01397i
\(125\) −8.09510 7.71164i −0.724048 0.689750i
\(126\) 0 0
\(127\) 4.46126 4.46126i 0.395873 0.395873i −0.480901 0.876775i \(-0.659691\pi\)
0.876775 + 0.480901i \(0.159691\pi\)
\(128\) 6.17867 6.17867i 0.546122 0.546122i
\(129\) −5.51478 + 3.60772i −0.485550 + 0.317642i
\(130\) −0.556644 + 2.14670i −0.0488209 + 0.188278i
\(131\) 2.14947i 0.187800i 0.995582 + 0.0938999i \(0.0299334\pi\)
−0.995582 + 0.0938999i \(0.970067\pi\)
\(132\) −0.514699 + 2.46207i −0.0447988 + 0.214296i
\(133\) 0 0
\(134\) −0.0150704 −0.00130188
\(135\) −8.89540 + 7.47475i −0.765594 + 0.643324i
\(136\) −5.86102 −0.502579
\(137\) −6.23472 6.23472i −0.532668 0.532668i 0.388698 0.921365i \(-0.372925\pi\)
−0.921365 + 0.388698i \(0.872925\pi\)
\(138\) 0.837446 4.00594i 0.0712881 0.341008i
\(139\) 10.3626i 0.878941i −0.898257 0.439471i \(-0.855166\pi\)
0.898257 0.439471i \(-0.144834\pi\)
\(140\) 0 0
\(141\) −6.21461 + 4.06553i −0.523364 + 0.342380i
\(142\) 2.71168 2.71168i 0.227559 0.227559i
\(143\) −1.73138 + 1.73138i −0.144785 + 0.144785i
\(144\) 9.44700 + 4.13031i 0.787250 + 0.344193i
\(145\) −10.6980 2.77401i −0.888419 0.230369i
\(146\) 0.428578i 0.0354694i
\(147\) 0 0
\(148\) 4.76267 + 4.76267i 0.391489 + 0.391489i
\(149\) 17.4543 1.42991 0.714957 0.699169i \(-0.246446\pi\)
0.714957 + 0.699169i \(0.246446\pi\)
\(150\) 2.66770 0.192101i 0.217817 0.0156850i
\(151\) −15.2157 −1.23824 −0.619119 0.785297i \(-0.712510\pi\)
−0.619119 + 0.785297i \(0.712510\pi\)
\(152\) −1.39578 1.39578i −0.113213 0.113213i
\(153\) −5.31661 13.5771i −0.429823 1.09765i
\(154\) 0 0
\(155\) −12.8316 3.32727i −1.03066 0.267253i
\(156\) 5.79964 + 8.86538i 0.464343 + 0.709799i
\(157\) −6.46046 + 6.46046i −0.515601 + 0.515601i −0.916237 0.400636i \(-0.868789\pi\)
0.400636 + 0.916237i \(0.368789\pi\)
\(158\) 0.924960 0.924960i 0.0735859 0.0735859i
\(159\) 6.59043 + 10.0742i 0.522655 + 0.798935i
\(160\) −3.93740 6.69421i −0.311279 0.529223i
\(161\) 0 0
\(162\) 0.108192 2.77743i 0.00850040 0.218215i
\(163\) 1.91437 + 1.91437i 0.149945 + 0.149945i 0.778094 0.628148i \(-0.216187\pi\)
−0.628148 + 0.778094i \(0.716187\pi\)
\(164\) 8.30344 0.648390
\(165\) 2.64632 + 1.31045i 0.206016 + 0.102018i
\(166\) 2.20718 0.171310
\(167\) 3.85551 + 3.85551i 0.298348 + 0.298348i 0.840367 0.542018i \(-0.182340\pi\)
−0.542018 + 0.840367i \(0.682340\pi\)
\(168\) 0 0
\(169\) 2.68725i 0.206712i
\(170\) −0.842472 + 3.24900i −0.0646147 + 0.249187i
\(171\) 1.96722 4.49948i 0.150437 0.344084i
\(172\) 5.12413 5.12413i 0.390711 0.390711i
\(173\) −0.935674 + 0.935674i −0.0711380 + 0.0711380i −0.741781 0.670643i \(-0.766018\pi\)
0.670643 + 0.741781i \(0.266018\pi\)
\(174\) 2.21248 1.44738i 0.167727 0.109726i
\(175\) 0 0
\(176\) 2.62045i 0.197524i
\(177\) 2.72554 13.0377i 0.204864 0.979970i
\(178\) −0.198115 0.198115i −0.0148493 0.0148493i
\(179\) 0.241671 0.0180634 0.00903168 0.999959i \(-0.497125\pi\)
0.00903168 + 0.999959i \(0.497125\pi\)
\(180\) 7.89276 10.0472i 0.588291 0.748871i
\(181\) −18.6864 −1.38895 −0.694475 0.719517i \(-0.744363\pi\)
−0.694475 + 0.719517i \(0.744363\pi\)
\(182\) 0 0
\(183\) 1.55734 7.44955i 0.115122 0.550686i
\(184\) 9.22594i 0.680145i
\(185\) 6.81596 4.00902i 0.501119 0.294749i
\(186\) 2.65374 1.73605i 0.194582 0.127294i
\(187\) −2.62042 + 2.62042i −0.191624 + 0.191624i
\(188\) 5.77437 5.77437i 0.421140 0.421140i
\(189\) 0 0
\(190\) −0.974370 + 0.573106i −0.0706882 + 0.0415775i
\(191\) 14.2410i 1.03044i 0.857058 + 0.515220i \(0.172290\pi\)
−0.857058 + 0.515220i \(0.827710\pi\)
\(192\) −9.83498 2.05601i −0.709779 0.148380i
\(193\) 4.81971 + 4.81971i 0.346931 + 0.346931i 0.858965 0.512034i \(-0.171108\pi\)
−0.512034 + 0.858965i \(0.671108\pi\)
\(194\) 1.62939 0.116983
\(195\) 11.7840 3.97848i 0.843871 0.284905i
\(196\) 0 0
\(197\) 7.65626 + 7.65626i 0.545486 + 0.545486i 0.925132 0.379646i \(-0.123954\pi\)
−0.379646 + 0.925132i \(0.623954\pi\)
\(198\) −0.657798 + 0.257584i −0.0467477 + 0.0183057i
\(199\) 16.3800i 1.16115i −0.814208 0.580573i \(-0.802828\pi\)
0.814208 0.580573i \(-0.197172\pi\)
\(200\) −5.79801 + 1.65450i −0.409981 + 0.116991i
\(201\) 0.0462702 + 0.0707289i 0.00326365 + 0.00498884i
\(202\) −4.14670 + 4.14670i −0.291761 + 0.291761i
\(203\) 0 0
\(204\) 8.77767 + 13.4176i 0.614560 + 0.939421i
\(205\) 2.44687 9.43636i 0.170897 0.659064i
\(206\) 3.90100i 0.271796i
\(207\) −21.3720 + 8.36897i −1.48546 + 0.581684i
\(208\) −7.80420 7.80420i −0.541124 0.541124i
\(209\) −1.24809 −0.0863321
\(210\) 0 0
\(211\) −25.5028 −1.75568 −0.877842 0.478950i \(-0.841018\pi\)
−0.877842 + 0.478950i \(0.841018\pi\)
\(212\) −9.36055 9.36055i −0.642885 0.642885i
\(213\) −21.0522 4.40097i −1.44247 0.301550i
\(214\) 0.673467i 0.0460372i
\(215\) −4.31327 7.33324i −0.294163 0.500123i
\(216\) 1.04248 + 6.17867i 0.0709320 + 0.420405i
\(217\) 0 0
\(218\) 0.515316 0.515316i 0.0349016 0.0349016i
\(219\) 2.01142 1.31585i 0.135919 0.0889170i
\(220\) −3.14328 0.815060i −0.211920 0.0549513i
\(221\) 15.6082i 1.04992i
\(222\) −0.387090 + 1.85165i −0.0259798 + 0.124275i
\(223\) 15.4546 + 15.4546i 1.03491 + 1.03491i 0.999368 + 0.0355465i \(0.0113172\pi\)
0.0355465 + 0.999368i \(0.488683\pi\)
\(224\) 0 0
\(225\) −9.09213 11.9303i −0.606142 0.795356i
\(226\) −5.21432 −0.346851
\(227\) −9.08481 9.08481i −0.602980 0.602980i 0.338122 0.941102i \(-0.390208\pi\)
−0.941102 + 0.338122i \(0.890208\pi\)
\(228\) −1.10499 + 5.28574i −0.0731797 + 0.350056i
\(229\) 15.3008i 1.01110i 0.862797 + 0.505551i \(0.168711\pi\)
−0.862797 + 0.505551i \(0.831289\pi\)
\(230\) 5.11430 + 1.32615i 0.337227 + 0.0874438i
\(231\) 0 0
\(232\) −4.21445 + 4.21445i −0.276692 + 0.276692i
\(233\) −4.85174 + 4.85174i −0.317848 + 0.317848i −0.847940 0.530092i \(-0.822157\pi\)
0.530092 + 0.847940i \(0.322157\pi\)
\(234\) −1.19191 + 2.72618i −0.0779176 + 0.178216i
\(235\) −4.86062 8.26382i −0.317072 0.539072i
\(236\) 14.6466i 0.953410i
\(237\) −7.18093 1.50118i −0.466452 0.0975122i
\(238\) 0 0
\(239\) 18.7082 1.21013 0.605067 0.796174i \(-0.293146\pi\)
0.605067 + 0.796174i \(0.293146\pi\)
\(240\) −5.90686 + 11.9283i −0.381286 + 0.769969i
\(241\) 1.97213 0.127036 0.0635179 0.997981i \(-0.479768\pi\)
0.0635179 + 0.997981i \(0.479768\pi\)
\(242\) −2.27523 2.27523i −0.146257 0.146257i
\(243\) −13.3673 + 8.01967i −0.857513 + 0.514462i
\(244\) 8.36885i 0.535761i
\(245\) 0 0
\(246\) 1.27669 + 1.95156i 0.0813987 + 0.124427i
\(247\) −3.71704 + 3.71704i −0.236510 + 0.236510i
\(248\) −5.05500 + 5.05500i −0.320993 + 0.320993i
\(249\) −6.77663 10.3588i −0.429452 0.656463i
\(250\) 0.0837410 + 3.45189i 0.00529625 + 0.218317i
\(251\) 17.9016i 1.12994i 0.825112 + 0.564970i \(0.191112\pi\)
−0.825112 + 0.564970i \(0.808888\pi\)
\(252\) 0 0
\(253\) 4.12485 + 4.12485i 0.259327 + 0.259327i
\(254\) −1.94851 −0.122260
\(255\) 17.8349 6.02137i 1.11687 0.377073i
\(256\) 8.90335 0.556460
\(257\) −13.9432 13.9432i −0.869756 0.869756i 0.122689 0.992445i \(-0.460848\pi\)
−0.992445 + 0.122689i \(0.960848\pi\)
\(258\) 1.99218 + 0.416467i 0.124028 + 0.0259281i
\(259\) 0 0
\(260\) −11.7887 + 6.93387i −0.731102 + 0.430021i
\(261\) −13.5858 5.93984i −0.840940 0.367667i
\(262\) 0.469402 0.469402i 0.0289998 0.0289998i
\(263\) 3.92341 3.92341i 0.241928 0.241928i −0.575719 0.817647i \(-0.695278\pi\)
0.817647 + 0.575719i \(0.195278\pi\)
\(264\) 1.33269 0.871835i 0.0820217 0.0536577i
\(265\) −13.3961 + 7.87931i −0.822914 + 0.484022i
\(266\) 0 0
\(267\) −0.321534 + 1.53807i −0.0196776 + 0.0941281i
\(268\) −0.0657186 0.0657186i −0.00401440 0.00401440i
\(269\) −10.0464 −0.612541 −0.306270 0.951945i \(-0.599081\pi\)
−0.306270 + 0.951945i \(0.599081\pi\)
\(270\) 3.57493 + 0.310242i 0.217563 + 0.0188807i
\(271\) 5.64055 0.342639 0.171320 0.985216i \(-0.445197\pi\)
0.171320 + 0.985216i \(0.445197\pi\)
\(272\) −11.8115 11.8115i −0.716180 0.716180i
\(273\) 0 0
\(274\) 2.72309i 0.164508i
\(275\) −1.85253 + 3.33196i −0.111712 + 0.200925i
\(276\) 21.1209 13.8171i 1.27133 0.831691i
\(277\) 7.95130 7.95130i 0.477747 0.477747i −0.426663 0.904411i \(-0.640311\pi\)
0.904411 + 0.426663i \(0.140311\pi\)
\(278\) −2.26299 + 2.26299i −0.135725 + 0.135725i
\(279\) −16.2954 7.12451i −0.975581 0.426533i
\(280\) 0 0
\(281\) 1.92831i 0.115033i 0.998345 + 0.0575167i \(0.0183183\pi\)
−0.998345 + 0.0575167i \(0.981682\pi\)
\(282\) 2.24498 + 0.469316i 0.133687 + 0.0279474i
\(283\) 18.6429 + 18.6429i 1.10821 + 1.10821i 0.993386 + 0.114822i \(0.0366298\pi\)
0.114822 + 0.993386i \(0.463370\pi\)
\(284\) 23.6501 1.40337
\(285\) 5.68130 + 2.81336i 0.336531 + 0.166649i
\(286\) 0.756201 0.0447151
\(287\) 0 0
\(288\) −3.79926 9.70225i −0.223874 0.571710i
\(289\) 6.62276i 0.389574i
\(290\) 1.73044 + 2.94203i 0.101615 + 0.172762i
\(291\) −5.00266 7.64711i −0.293261 0.448281i
\(292\) −1.86894 + 1.86894i −0.109371 + 0.109371i
\(293\) 7.83332 7.83332i 0.457627 0.457627i −0.440249 0.897876i \(-0.645110\pi\)
0.897876 + 0.440249i \(0.145110\pi\)
\(294\) 0 0
\(295\) 16.6449 + 4.31607i 0.969105 + 0.251291i
\(296\) 4.26448i 0.247868i
\(297\) 3.22852 + 2.29635i 0.187338 + 0.133248i
\(298\) −3.81169 3.81169i −0.220805 0.220805i
\(299\) 24.5691 1.42087
\(300\) 12.4710 + 10.7955i 0.720011 + 0.623280i
\(301\) 0 0
\(302\) 3.32282 + 3.32282i 0.191207 + 0.191207i
\(303\) 32.1929 + 6.72997i 1.84944 + 0.386627i
\(304\) 5.62576i 0.322659i
\(305\) 9.51069 + 2.46614i 0.544580 + 0.141211i
\(306\) −1.80394 + 4.12603i −0.103124 + 0.235869i
\(307\) 17.0769 17.0769i 0.974628 0.974628i −0.0250576 0.999686i \(-0.507977\pi\)
0.999686 + 0.0250576i \(0.00797691\pi\)
\(308\) 0 0
\(309\) −18.3083 + 11.9771i −1.04152 + 0.681354i
\(310\) 2.07557 + 3.52880i 0.117885 + 0.200422i
\(311\) 23.6479i 1.34095i 0.741932 + 0.670475i \(0.233910\pi\)
−0.741932 + 0.670475i \(0.766090\pi\)
\(312\) 1.37252 6.56550i 0.0777039 0.371698i
\(313\) 8.75372 + 8.75372i 0.494790 + 0.494790i 0.909812 0.415022i \(-0.136226\pi\)
−0.415022 + 0.909812i \(0.636226\pi\)
\(314\) 2.82168 0.159237
\(315\) 0 0
\(316\) 8.06709 0.453809
\(317\) −3.10591 3.10591i −0.174445 0.174445i 0.614484 0.788929i \(-0.289364\pi\)
−0.788929 + 0.614484i \(0.789364\pi\)
\(318\) 0.760785 3.63923i 0.0426627 0.204078i
\(319\) 3.76850i 0.210995i
\(320\) 3.25583 12.5561i 0.182007 0.701909i
\(321\) −3.16074 + 2.06772i −0.176415 + 0.115409i
\(322\) 0 0
\(323\) −5.62568 + 5.62568i −0.313021 + 0.313021i
\(324\) 12.5835 11.6399i 0.699086 0.646663i
\(325\) 4.40602 + 15.4404i 0.244402 + 0.856479i
\(326\) 0.836125i 0.0463087i
\(327\) −4.00066 0.836342i −0.221237 0.0462498i
\(328\) −3.71743 3.71743i −0.205261 0.205261i
\(329\) 0 0
\(330\) −0.291729 0.864084i −0.0160592 0.0475662i
\(331\) −6.21866 −0.341808 −0.170904 0.985288i \(-0.554669\pi\)
−0.170904 + 0.985288i \(0.554669\pi\)
\(332\) 9.62501 + 9.62501i 0.528241 + 0.528241i
\(333\) 9.87871 3.86836i 0.541350 0.211985i
\(334\) 1.68394i 0.0921411i
\(335\) −0.0940513 + 0.0553192i −0.00513857 + 0.00302241i
\(336\) 0 0
\(337\) 15.0501 15.0501i 0.819833 0.819833i −0.166250 0.986084i \(-0.553166\pi\)
0.986084 + 0.166250i \(0.0531659\pi\)
\(338\) −0.586844 + 0.586844i −0.0319201 + 0.0319201i
\(339\) 16.0094 + 24.4720i 0.869509 + 1.32914i
\(340\) −17.8420 + 10.4943i −0.967617 + 0.569134i
\(341\) 4.52010i 0.244777i
\(342\) −1.41220 + 0.552999i −0.0763632 + 0.0299027i
\(343\) 0 0
\(344\) −4.58812 −0.247375
\(345\) −9.47834 28.0743i −0.510297 1.51147i
\(346\) 0.408667 0.0219701
\(347\) 13.6203 + 13.6203i 0.731178 + 0.731178i 0.970853 0.239675i \(-0.0770409\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(348\) 15.9598 + 3.33642i 0.855536 + 0.178851i
\(349\) 9.24369i 0.494803i −0.968913 0.247402i \(-0.920423\pi\)
0.968913 0.247402i \(-0.0795767\pi\)
\(350\) 0 0
\(351\) 16.4541 2.77618i 0.878254 0.148182i
\(352\) −1.87256 + 1.87256i −0.0998076 + 0.0998076i
\(353\) −8.35049 + 8.35049i −0.444452 + 0.444452i −0.893505 0.449053i \(-0.851761\pi\)
0.449053 + 0.893505i \(0.351761\pi\)
\(354\) −3.44238 + 2.25197i −0.182960 + 0.119691i
\(355\) 6.96923 26.8769i 0.369889 1.42648i
\(356\) 1.72787i 0.0915769i
\(357\) 0 0
\(358\) −0.0527764 0.0527764i −0.00278932 0.00278932i
\(359\) −13.9626 −0.736917 −0.368459 0.929644i \(-0.620114\pi\)
−0.368459 + 0.929644i \(0.620114\pi\)
\(360\) −8.03166 + 0.964519i −0.423306 + 0.0508346i
\(361\) 16.3205 0.858975
\(362\) 4.08075 + 4.08075i 0.214480 + 0.214480i
\(363\) −3.69263 + 17.6638i −0.193813 + 0.927108i
\(364\) 0 0
\(365\) 1.57319 + 2.67467i 0.0823446 + 0.139999i
\(366\) −1.96693 + 1.28675i −0.102813 + 0.0672593i
\(367\) 10.6651 10.6651i 0.556714 0.556714i −0.371657 0.928370i \(-0.621210\pi\)
0.928370 + 0.371657i \(0.121210\pi\)
\(368\) −18.5928 + 18.5928i −0.969214 + 0.969214i
\(369\) 5.23934 11.9836i 0.272749 0.623842i
\(370\) −2.36397 0.612982i −0.122897 0.0318674i
\(371\) 0 0
\(372\) 19.1429 + 4.00185i 0.992515 + 0.207486i
\(373\) −24.6331 24.6331i −1.27545 1.27545i −0.943184 0.332271i \(-0.892185\pi\)
−0.332271 0.943184i \(-0.607815\pi\)
\(374\) 1.14450 0.0591806
\(375\) 15.9434 10.9912i 0.823315 0.567585i
\(376\) −5.17035 −0.266640
\(377\) 11.2233 + 11.2233i 0.578028 + 0.578028i
\(378\) 0 0
\(379\) 19.0602i 0.979056i −0.871988 0.489528i \(-0.837169\pi\)
0.871988 0.489528i \(-0.162831\pi\)
\(380\) −6.74820 1.74982i −0.346175 0.0897640i
\(381\) 5.98244 + 9.14481i 0.306490 + 0.468503i
\(382\) 3.10996 3.10996i 0.159119 0.159119i
\(383\) −7.18147 + 7.18147i −0.366956 + 0.366956i −0.866366 0.499410i \(-0.833550\pi\)
0.499410 + 0.866366i \(0.333550\pi\)
\(384\) 8.28544 + 12.6652i 0.422815 + 0.646318i
\(385\) 0 0
\(386\) 2.10507i 0.107145i
\(387\) −4.16194 10.6284i −0.211564 0.540274i
\(388\) 7.10540 + 7.10540i 0.360722 + 0.360722i
\(389\) −37.2580 −1.88906 −0.944528 0.328431i \(-0.893480\pi\)
−0.944528 + 0.328431i \(0.893480\pi\)
\(390\) −3.44222 1.70458i −0.174304 0.0863147i
\(391\) 37.1850 1.88053
\(392\) 0 0
\(393\) −3.64421 0.761825i −0.183826 0.0384290i
\(394\) 3.34396i 0.168466i
\(395\) 2.37722 9.16776i 0.119611 0.461280i
\(396\) −3.99178 1.74524i −0.200594 0.0877017i
\(397\) 6.28581 6.28581i 0.315476 0.315476i −0.531551 0.847027i \(-0.678390\pi\)
0.847027 + 0.531551i \(0.178390\pi\)
\(398\) −3.57708 + 3.57708i −0.179303 + 0.179303i
\(399\) 0 0
\(400\) −15.0188 8.35029i −0.750941 0.417514i
\(401\) 4.65150i 0.232285i 0.993233 + 0.116142i \(0.0370529\pi\)
−0.993233 + 0.116142i \(0.962947\pi\)
\(402\) 0.00534133 0.0255504i 0.000266401 0.00127434i
\(403\) 13.4617 + 13.4617i 0.670575 + 0.670575i
\(404\) −36.1657 −1.79931
\(405\) −9.51994 17.7305i −0.473050 0.881036i
\(406\) 0 0
\(407\) −1.90662 1.90662i −0.0945074 0.0945074i
\(408\) 2.07729 9.93678i 0.102841 0.491944i
\(409\) 26.5589i 1.31325i −0.754217 0.656626i \(-0.771983\pi\)
0.754217 0.656626i \(-0.228017\pi\)
\(410\) −2.59507 + 1.52637i −0.128161 + 0.0753820i
\(411\) 12.7801 8.36060i 0.630395 0.412398i
\(412\) 17.0114 17.0114i 0.838091 0.838091i
\(413\) 0 0
\(414\) 6.49486 + 2.83961i 0.319205 + 0.139559i
\(415\) 13.7746 8.10193i 0.676166 0.397708i
\(416\) 11.1536i 0.546852i
\(417\) 17.5687 + 3.67275i 0.860343 + 0.179856i
\(418\) 0.272559 + 0.272559i 0.0133313 + 0.0133313i
\(419\) 25.8278 1.26177 0.630885 0.775876i \(-0.282692\pi\)
0.630885 + 0.775876i \(0.282692\pi\)
\(420\) 0 0
\(421\) 0.432430 0.0210753 0.0105377 0.999944i \(-0.496646\pi\)
0.0105377 + 0.999944i \(0.496646\pi\)
\(422\) 5.56932 + 5.56932i 0.271110 + 0.271110i
\(423\) −4.69009 11.9772i −0.228040 0.582350i
\(424\) 8.38139i 0.407036i
\(425\) 6.66845 + 23.3688i 0.323467 + 1.13355i
\(426\) 3.63630 + 5.55847i 0.176179 + 0.269309i
\(427\) 0 0
\(428\) 2.93684 2.93684i 0.141957 0.141957i
\(429\) −2.32174 3.54903i −0.112095 0.171349i
\(430\) −0.659503 + 2.54338i −0.0318041 + 0.122652i
\(431\) 16.3117i 0.785708i 0.919601 + 0.392854i \(0.128512\pi\)
−0.919601 + 0.392854i \(0.871488\pi\)
\(432\) −10.3508 + 14.5526i −0.498003 + 0.700160i
\(433\) 0.514238 + 0.514238i 0.0247127 + 0.0247127i 0.719355 0.694642i \(-0.244437\pi\)
−0.694642 + 0.719355i \(0.744437\pi\)
\(434\) 0 0
\(435\) 8.49470 17.1542i 0.407290 0.822480i
\(436\) 4.49436 0.215241
\(437\) 8.85549 + 8.85549i 0.423615 + 0.423615i
\(438\) −0.726612 0.151899i −0.0347189 0.00725802i
\(439\) 15.2983i 0.730150i −0.930978 0.365075i \(-0.881043\pi\)
0.930978 0.365075i \(-0.118957\pi\)
\(440\) 1.04234 + 1.77214i 0.0496916 + 0.0844835i
\(441\) 0 0
\(442\) 3.40853 3.40853i 0.162127 0.162127i
\(443\) −6.45258 + 6.45258i −0.306572 + 0.306572i −0.843578 0.537007i \(-0.819555\pi\)
0.537007 + 0.843578i \(0.319555\pi\)
\(444\) −9.76265 + 6.38663i −0.463315 + 0.303096i
\(445\) −1.96362 0.509171i −0.0930845 0.0241370i
\(446\) 6.74996i 0.319620i
\(447\) −6.18625 + 29.5921i −0.292600 + 1.39966i
\(448\) 0 0
\(449\) −9.40891 −0.444034 −0.222017 0.975043i \(-0.571264\pi\)
−0.222017 + 0.975043i \(0.571264\pi\)
\(450\) −0.619811 + 4.59091i −0.0292182 + 0.216417i
\(451\) −3.32407 −0.156524
\(452\) −22.7385 22.7385i −1.06953 1.06953i
\(453\) 5.39284 25.7967i 0.253378 1.21204i
\(454\) 3.96789i 0.186222i
\(455\) 0 0
\(456\) 2.86111 1.87171i 0.133984 0.0876509i
\(457\) −24.4154 + 24.4154i −1.14210 + 1.14210i −0.154038 + 0.988065i \(0.549228\pi\)
−0.988065 + 0.154038i \(0.950772\pi\)
\(458\) 3.34139 3.34139i 0.156133 0.156133i
\(459\) 24.9030 4.20171i 1.16237 0.196119i
\(460\) 16.5193 + 28.0854i 0.770216 + 1.30949i
\(461\) 36.9326i 1.72012i −0.510192 0.860061i \(-0.670426\pi\)
0.510192 0.860061i \(-0.329574\pi\)
\(462\) 0 0
\(463\) 26.3687 + 26.3687i 1.22546 + 1.22546i 0.965664 + 0.259794i \(0.0836548\pi\)
0.259794 + 0.965664i \(0.416345\pi\)
\(464\) −16.9865 −0.788578
\(465\) 10.1889 20.5755i 0.472500 0.954166i
\(466\) 2.11906 0.0981633
\(467\) 7.21204 + 7.21204i 0.333733 + 0.333733i 0.854002 0.520269i \(-0.174168\pi\)
−0.520269 + 0.854002i \(0.674168\pi\)
\(468\) −17.0859 + 6.69060i −0.789797 + 0.309273i
\(469\) 0 0
\(470\) −0.743194 + 2.86613i −0.0342810 + 0.132205i
\(471\) −8.66332 13.2428i −0.399185 0.610197i
\(472\) 6.55723 6.55723i 0.301821 0.301821i
\(473\) −2.05131 + 2.05131i −0.0943195 + 0.0943195i
\(474\) 1.24035 + 1.89601i 0.0569711 + 0.0870865i
\(475\) −3.97713 + 7.15327i −0.182483 + 0.328215i
\(476\) 0 0
\(477\) −19.4156 + 7.60287i −0.888979 + 0.348112i
\(478\) −4.08552 4.08552i −0.186867 0.186867i
\(479\) −13.7070 −0.626289 −0.313144 0.949706i \(-0.601382\pi\)
−0.313144 + 0.949706i \(0.601382\pi\)
\(480\) 12.7449 4.30288i 0.581721 0.196399i
\(481\) −11.3565 −0.517812
\(482\) −0.430674 0.430674i −0.0196167 0.0196167i
\(483\) 0 0
\(484\) 19.8436i 0.901980i
\(485\) 10.1687 5.98102i 0.461736 0.271584i
\(486\) 4.67051 + 1.16782i 0.211858 + 0.0529734i
\(487\) −16.1645 + 16.1645i −0.732484 + 0.732484i −0.971111 0.238627i \(-0.923303\pi\)
0.238627 + 0.971111i \(0.423303\pi\)
\(488\) 3.74672 3.74672i 0.169606 0.169606i
\(489\) −3.92413 + 2.56713i −0.177455 + 0.116090i
\(490\) 0 0
\(491\) 23.7476i 1.07172i 0.844308 + 0.535858i \(0.180012\pi\)
−0.844308 + 0.535858i \(0.819988\pi\)
\(492\) −2.94295 + 14.0777i −0.132678 + 0.634670i
\(493\) 16.9863 + 16.9863i 0.765023 + 0.765023i
\(494\) 1.62346 0.0730429
\(495\) −3.15966 + 4.02212i −0.142016 + 0.180781i
\(496\) −20.3744 −0.914836
\(497\) 0 0
\(498\) −0.782280 + 3.74205i −0.0350548 + 0.167685i
\(499\) 3.23532i 0.144833i −0.997374 0.0724165i \(-0.976929\pi\)
0.997374 0.0724165i \(-0.0230711\pi\)
\(500\) −14.6877 + 15.4181i −0.656856 + 0.689518i
\(501\) −7.90313 + 5.17015i −0.353086 + 0.230985i
\(502\) 3.90937 3.90937i 0.174484 0.174484i
\(503\) −2.62851 + 2.62851i −0.117199 + 0.117199i −0.763274 0.646075i \(-0.776409\pi\)
0.646075 + 0.763274i \(0.276409\pi\)
\(504\) 0 0
\(505\) −10.6573 + 41.1001i −0.474246 + 1.82893i
\(506\) 1.80158i 0.0800898i
\(507\) 4.55597 + 0.952430i 0.202338 + 0.0422989i
\(508\) −8.49701 8.49701i −0.376994 0.376994i
\(509\) −13.8238 −0.612728 −0.306364 0.951914i \(-0.599113\pi\)
−0.306364 + 0.951914i \(0.599113\pi\)
\(510\) −5.20976 2.57985i −0.230692 0.114238i
\(511\) 0 0
\(512\) −14.3017 14.3017i −0.632050 0.632050i
\(513\) 6.93120 + 4.92995i 0.306020 + 0.217663i
\(514\) 6.08987i 0.268613i
\(515\) −14.3195 24.3453i −0.630991 1.07278i
\(516\) 6.87133 + 10.5036i 0.302493 + 0.462394i
\(517\) −2.31162 + 2.31162i −0.101665 + 0.101665i
\(518\) 0 0
\(519\) −1.25472 1.91797i −0.0550759 0.0841895i
\(520\) 8.38204 + 2.17348i 0.367577 + 0.0953135i
\(521\) 10.9599i 0.480162i −0.970753 0.240081i \(-0.922826\pi\)
0.970753 0.240081i \(-0.0771741\pi\)
\(522\) 1.66973 + 4.26402i 0.0730822 + 0.186631i
\(523\) −9.69371 9.69371i −0.423876 0.423876i 0.462660 0.886536i \(-0.346895\pi\)
−0.886536 + 0.462660i \(0.846895\pi\)
\(524\) 4.09392 0.178844
\(525\) 0 0
\(526\) −1.71360 −0.0747163
\(527\) 20.3741 + 20.3741i 0.887509 + 0.887509i
\(528\) 4.44272 + 0.928755i 0.193345 + 0.0404189i
\(529\) 35.5336i 1.54494i
\(530\) 4.64614 + 1.20475i 0.201815 + 0.0523312i
\(531\) 21.1381 + 9.24175i 0.917313 + 0.401058i
\(532\) 0 0
\(533\) −9.89970 + 9.89970i −0.428804 + 0.428804i
\(534\) 0.406101 0.265667i 0.0175737 0.0114965i
\(535\) −2.47211 4.20297i −0.106878 0.181710i
\(536\) 0.0588442i 0.00254168i
\(537\) −0.0856544 + 0.409730i −0.00369626 + 0.0176811i
\(538\) 2.19394 + 2.19394i 0.0945876 + 0.0945876i
\(539\) 0 0
\(540\) 14.2366 + 16.9423i 0.612644 + 0.729083i
\(541\) 7.06552 0.303770 0.151885 0.988398i \(-0.451466\pi\)
0.151885 + 0.988398i \(0.451466\pi\)
\(542\) −1.23179 1.23179i −0.0529098 0.0529098i
\(543\) 6.62293 31.6809i 0.284217 1.35956i
\(544\) 16.8809i 0.723762i
\(545\) 1.32440 5.10756i 0.0567312 0.218784i
\(546\) 0 0
\(547\) −19.7665 + 19.7665i −0.845154 + 0.845154i −0.989524 0.144370i \(-0.953885\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(548\) −11.8748 + 11.8748i −0.507265 + 0.507265i
\(549\) 12.0780 + 5.28061i 0.515477 + 0.225371i
\(550\) 1.13219 0.323079i 0.0482769 0.0137762i
\(551\) 8.09045i 0.344665i
\(552\) −15.6417 3.26991i −0.665753 0.139176i
\(553\) 0 0
\(554\) −3.47282 −0.147546
\(555\) 4.38114 + 12.9767i 0.185969 + 0.550829i
\(556\) −19.7367 −0.837024
\(557\) 30.9586 + 30.9586i 1.31176 + 1.31176i 0.920119 + 0.391638i \(0.128092\pi\)
0.391638 + 0.920119i \(0.371908\pi\)
\(558\) 2.00275 + 5.11446i 0.0847832 + 0.216512i
\(559\) 12.2184i 0.516783i
\(560\) 0 0
\(561\) −3.51392 5.37140i −0.148358 0.226781i
\(562\) 0.421106 0.421106i 0.0177633 0.0177633i
\(563\) 7.84399 7.84399i 0.330585 0.330585i −0.522224 0.852808i \(-0.674897\pi\)
0.852808 + 0.522224i \(0.174897\pi\)
\(564\) 7.74329 + 11.8365i 0.326051 + 0.498405i
\(565\) −32.5415 + 19.1403i −1.36903 + 0.805238i
\(566\) 8.14252i 0.342256i
\(567\) 0 0
\(568\) −10.5881 10.5881i −0.444266 0.444266i
\(569\) −13.8064 −0.578793 −0.289396 0.957209i \(-0.593455\pi\)
−0.289396 + 0.957209i \(0.593455\pi\)
\(570\) −0.626302 1.85507i −0.0262329 0.0777003i
\(571\) −13.1252 −0.549272 −0.274636 0.961548i \(-0.588557\pi\)
−0.274636 + 0.961548i \(0.588557\pi\)
\(572\) 3.29762 + 3.29762i 0.137881 + 0.137881i
\(573\) −24.1442 5.04736i −1.00864 0.210857i
\(574\) 0 0
\(575\) 36.7852 10.4969i 1.53405 0.437752i
\(576\) 6.97153 15.9455i 0.290480 0.664397i
\(577\) 10.7854 10.7854i 0.449001 0.449001i −0.446021 0.895022i \(-0.647159\pi\)
0.895022 + 0.446021i \(0.147159\pi\)
\(578\) 1.44628 1.44628i 0.0601575 0.0601575i
\(579\) −9.87957 + 6.46312i −0.410581 + 0.268598i
\(580\) −5.28344 + 20.3756i −0.219383 + 0.846050i
\(581\) 0 0
\(582\) −0.577496 + 2.76247i −0.0239380 + 0.114508i
\(583\) 3.74726 + 3.74726i 0.155196 + 0.155196i
\(584\) 1.67344 0.0692473
\(585\) 2.56856 + 21.3887i 0.106197 + 0.884314i
\(586\) −3.42129 −0.141332
\(587\) −5.54217 5.54217i −0.228750 0.228750i 0.583421 0.812170i \(-0.301714\pi\)
−0.812170 + 0.583421i \(0.801714\pi\)
\(588\) 0 0
\(589\) 9.70404i 0.399848i
\(590\) −2.69238 4.57748i −0.110844 0.188452i
\(591\) −15.6940 + 10.2669i −0.645565 + 0.422322i
\(592\) 8.59407 8.59407i 0.353214 0.353214i
\(593\) 6.13323 6.13323i 0.251861 0.251861i −0.569872 0.821733i \(-0.693007\pi\)
0.821733 + 0.569872i \(0.193007\pi\)
\(594\) −0.203568 1.20653i −0.00835252 0.0495043i
\(595\) 0 0
\(596\) 33.2438i 1.36172i
\(597\) 27.7706 + 5.80548i 1.13658 + 0.237603i
\(598\) −5.36543 5.36543i −0.219409 0.219409i
\(599\) −15.8774 −0.648732 −0.324366 0.945932i \(-0.605151\pi\)
−0.324366 + 0.945932i \(0.605151\pi\)
\(600\) −0.750083 10.4164i −0.0306220 0.425246i
\(601\) −41.5249 −1.69384 −0.846919 0.531722i \(-0.821545\pi\)
−0.846919 + 0.531722i \(0.821545\pi\)
\(602\) 0 0
\(603\) −0.136313 + 0.0533783i −0.00555110 + 0.00217373i
\(604\) 28.9802i 1.17919i
\(605\) −22.5510 5.84753i −0.916828 0.237736i
\(606\) −5.56062 8.50001i −0.225885 0.345289i
\(607\) 10.8110 10.8110i 0.438805 0.438805i −0.452805 0.891610i \(-0.649577\pi\)
0.891610 + 0.452805i \(0.149577\pi\)
\(608\) −4.02013 + 4.02013i −0.163038 + 0.163038i
\(609\) 0 0
\(610\) −1.53839 2.61551i −0.0622877 0.105899i
\(611\) 13.7689i 0.557030i
\(612\) −25.8593 + 10.1261i −1.04530 + 0.409324i
\(613\) 21.8063 + 21.8063i 0.880747 + 0.880747i 0.993611 0.112863i \(-0.0360022\pi\)
−0.112863 + 0.993611i \(0.536002\pi\)
\(614\) −7.45852 −0.301001
\(615\) 15.1312 + 7.49291i 0.610148 + 0.302143i
\(616\) 0 0
\(617\) 13.2098 + 13.2098i 0.531808 + 0.531808i 0.921110 0.389302i \(-0.127284\pi\)
−0.389302 + 0.921110i \(0.627284\pi\)
\(618\) 6.61376 + 1.38261i 0.266044 + 0.0556168i
\(619\) 17.0312i 0.684542i −0.939601 0.342271i \(-0.888804\pi\)
0.939601 0.342271i \(-0.111196\pi\)
\(620\) −6.33719 + 24.4394i −0.254508 + 0.981510i
\(621\) −6.61399 39.2003i −0.265410 1.57305i
\(622\) 5.16425 5.16425i 0.207068 0.207068i
\(623\) 0 0
\(624\) 15.9973 10.4652i 0.640403 0.418945i
\(625\) 13.1935 + 21.2351i 0.527741 + 0.849406i
\(626\) 3.82329i 0.152809i
\(627\) 0.442354 2.11601i 0.0176659 0.0845053i
\(628\) 12.3047 + 12.3047i 0.491012 + 0.491012i
\(629\) −17.1879 −0.685327
\(630\) 0 0
\(631\) 6.51082 0.259191 0.129596 0.991567i \(-0.458632\pi\)
0.129596 + 0.991567i \(0.458632\pi\)
\(632\) −3.61162 3.61162i −0.143662 0.143662i
\(633\) 9.03883 43.2374i 0.359261 1.71853i
\(634\) 1.35654i 0.0538752i
\(635\) −12.1602 + 7.15242i −0.482565 + 0.283835i
\(636\) 19.1875 12.5523i 0.760834 0.497730i
\(637\) 0 0
\(638\) 0.822967 0.822967i 0.0325816 0.0325816i
\(639\) 14.9228 34.1320i 0.590338 1.35024i
\(640\) −16.8414 + 9.90581i −0.665716 + 0.391562i
\(641\) 42.3545i 1.67290i −0.548042 0.836451i \(-0.684626\pi\)
0.548042 0.836451i \(-0.315374\pi\)
\(642\) 1.14180 + 0.238694i 0.0450631 + 0.00942049i
\(643\) −11.2098 11.2098i −0.442072 0.442072i 0.450636 0.892708i \(-0.351197\pi\)
−0.892708 + 0.450636i \(0.851197\pi\)
\(644\) 0 0
\(645\) 13.9615 4.71364i 0.549734 0.185599i
\(646\) 2.45708 0.0966726
\(647\) −16.8086 16.8086i −0.660814 0.660814i 0.294758 0.955572i \(-0.404761\pi\)
−0.955572 + 0.294758i \(0.904761\pi\)
\(648\) −10.8448 0.422450i −0.426024 0.0165954i
\(649\) 5.86338i 0.230158i
\(650\) 2.40969 4.33408i 0.0945160 0.169996i
\(651\) 0 0
\(652\) 3.64616 3.64616i 0.142794 0.142794i
\(653\) −15.4100 + 15.4100i −0.603041 + 0.603041i −0.941118 0.338078i \(-0.890223\pi\)
0.338078 + 0.941118i \(0.390223\pi\)
\(654\) 0.691026 + 1.05631i 0.0270213 + 0.0413049i
\(655\) 1.20640 4.65249i 0.0471380 0.181788i
\(656\) 14.9833i 0.584998i
\(657\) 1.51800 + 3.87653i 0.0592227 + 0.151238i
\(658\) 0 0
\(659\) −42.6184 −1.66018 −0.830088 0.557632i \(-0.811710\pi\)
−0.830088 + 0.557632i \(0.811710\pi\)
\(660\) 2.49591 5.04024i 0.0971532 0.196191i
\(661\) −45.4934 −1.76949 −0.884744 0.466076i \(-0.845667\pi\)
−0.884744 + 0.466076i \(0.845667\pi\)
\(662\) 1.35804 + 1.35804i 0.0527816 + 0.0527816i
\(663\) −26.4621 5.53194i −1.02770 0.214843i
\(664\) 8.61819i 0.334451i
\(665\) 0 0
\(666\) −3.00210 1.31254i −0.116329 0.0508601i
\(667\) 26.7384 26.7384i 1.03531 1.03531i
\(668\) 7.34328 7.34328i 0.284120 0.284120i
\(669\) −31.6792 + 20.7242i −1.22479 + 0.801244i
\(670\) 0.0326196 + 0.00845835i 0.00126021 + 0.000326774i
\(671\) 3.35026i 0.129335i
\(672\) 0 0
\(673\) −32.1249 32.1249i −1.23832 1.23832i −0.960686 0.277636i \(-0.910449\pi\)
−0.277636 0.960686i \(-0.589551\pi\)
\(674\) −6.57332 −0.253195
\(675\) 23.4492 11.1864i 0.902560 0.430564i
\(676\) −5.11819 −0.196854
\(677\) 30.1078 + 30.1078i 1.15714 + 1.15714i 0.985088 + 0.172049i \(0.0550388\pi\)
0.172049 + 0.985088i \(0.444961\pi\)
\(678\) 1.84809 8.84036i 0.0709753 0.339512i
\(679\) 0 0
\(680\) 12.6861 + 3.28953i 0.486489 + 0.126148i
\(681\) 18.6223 12.1825i 0.713607 0.466834i
\(682\) 0.987103 0.987103i 0.0377981 0.0377981i
\(683\) −1.64841 + 1.64841i −0.0630747 + 0.0630747i −0.737940 0.674866i \(-0.764202\pi\)
0.674866 + 0.737940i \(0.264202\pi\)
\(684\) −8.56980 3.74680i −0.327675 0.143262i
\(685\) 9.99568 + 16.9942i 0.381915 + 0.649316i
\(686\) 0 0
\(687\) −25.9409 5.42298i −0.989708 0.206899i
\(688\) −9.24630 9.24630i −0.352512 0.352512i
\(689\) 22.3201 0.850326
\(690\) −4.06099 + 8.20077i −0.154599 + 0.312198i
\(691\) 16.5565 0.629838 0.314919 0.949119i \(-0.398023\pi\)
0.314919 + 0.949119i \(0.398023\pi\)
\(692\) 1.78210 + 1.78210i 0.0677454 + 0.0677454i
\(693\) 0 0
\(694\) 5.94884i 0.225815i
\(695\) −5.81605 + 22.4296i −0.220615 + 0.850804i
\(696\) −5.65147 8.63888i −0.214218 0.327456i
\(697\) −14.9831 + 14.9831i −0.567524 + 0.567524i
\(698\) −2.01864 + 2.01864i −0.0764068 + 0.0764068i
\(699\) −6.50607 9.94523i −0.246082 0.376163i
\(700\) 0 0
\(701\) 26.5973i 1.00457i −0.864703 0.502284i \(-0.832493\pi\)
0.864703 0.502284i \(-0.167507\pi\)
\(702\) −4.19952 2.98699i −0.158501 0.112737i
\(703\) −4.09324 4.09324i −0.154380 0.154380i
\(704\) −4.42305 −0.166700
\(705\) 15.7332 5.31180i 0.592547 0.200054i
\(706\) 3.64717 0.137263
\(707\) 0 0
\(708\) −24.8318 5.19111i −0.933235 0.195094i
\(709\) 15.9176i 0.597798i −0.954285 0.298899i \(-0.903381\pi\)
0.954285 0.298899i \(-0.0966194\pi\)
\(710\) −7.39134 + 4.34744i −0.277392 + 0.163157i
\(711\) 5.09021 11.6425i 0.190898 0.436628i
\(712\) −0.773563 + 0.773563i −0.0289905 + 0.0289905i
\(713\) 32.0712 32.0712i 1.20108 1.20108i
\(714\) 0 0
\(715\) 4.71930 2.77580i 0.176492 0.103809i
\(716\) 0.460292i 0.0172019i
\(717\) −6.63067 + 31.7179i −0.247627 + 1.18453i
\(718\) 3.04916 + 3.04916i 0.113794 + 0.113794i
\(719\) 21.3813 0.797388 0.398694 0.917084i \(-0.369464\pi\)
0.398694 + 0.917084i \(0.369464\pi\)
\(720\) −18.1297 14.2422i −0.675655 0.530775i
\(721\) 0 0
\(722\) −3.56409 3.56409i −0.132642 0.132642i
\(723\) −0.698971 + 3.34354i −0.0259950 + 0.124348i
\(724\) 35.5905i 1.32271i
\(725\) 21.5987 + 12.0086i 0.802155 + 0.445989i
\(726\) 4.66383 3.05103i 0.173091 0.113234i
\(727\) −7.43836 + 7.43836i −0.275873 + 0.275873i −0.831459 0.555586i \(-0.812494\pi\)
0.555586 + 0.831459i \(0.312494\pi\)
\(728\) 0 0
\(729\) −8.85885 25.5053i −0.328106 0.944641i
\(730\) 0.240542 0.927651i 0.00890287 0.0343339i
\(731\) 18.4923i 0.683964i
\(732\) −14.1886 2.96613i −0.524424 0.109631i
\(733\) −25.8200 25.8200i −0.953683 0.953683i 0.0452905 0.998974i \(-0.485579\pi\)
−0.998974 + 0.0452905i \(0.985579\pi\)
\(734\) −4.65810 −0.171934
\(735\) 0 0
\(736\) 26.5725 0.979475
\(737\) 0.0263088 + 0.0263088i 0.000969096 + 0.000969096i
\(738\) −3.76116 + 1.47282i −0.138450 + 0.0542152i
\(739\) 38.3589i 1.41105i −0.708683 0.705527i \(-0.750710\pi\)
0.708683 0.705527i \(-0.249290\pi\)
\(740\) −7.63566 12.9818i −0.280692 0.477221i
\(741\) −4.98446 7.61928i −0.183109 0.279901i
\(742\) 0 0
\(743\) −30.8182 + 30.8182i −1.13061 + 1.13061i −0.140534 + 0.990076i \(0.544882\pi\)
−0.990076 + 0.140534i \(0.955118\pi\)
\(744\) −6.77863 10.3619i −0.248516 0.379884i
\(745\) −37.7796 9.79634i −1.38414 0.358910i
\(746\) 10.7588i 0.393908i
\(747\) 19.9641 7.81768i 0.730450 0.286034i
\(748\) 4.99090 + 4.99090i 0.182485 + 0.182485i
\(749\) 0 0
\(750\) −5.88201 1.08146i −0.214781 0.0394894i
\(751\) 39.8711 1.45492 0.727459 0.686151i \(-0.240701\pi\)
0.727459 + 0.686151i \(0.240701\pi\)
\(752\) −10.4196 10.4196i −0.379965 0.379965i
\(753\) −30.3504 6.34478i −1.10603 0.231217i
\(754\) 4.90190i 0.178517i
\(755\) 32.9342 + 8.53991i 1.19860 + 0.310799i
\(756\) 0 0
\(757\) 0.798673 0.798673i 0.0290283 0.0290283i −0.692444 0.721472i \(-0.743466\pi\)
0.721472 + 0.692444i \(0.243466\pi\)
\(758\) −4.16238 + 4.16238i −0.151184 + 0.151184i
\(759\) −8.45522 + 5.53132i −0.306905 + 0.200774i
\(760\) 2.23776 + 3.80454i 0.0811721 + 0.138005i
\(761\) 43.1790i 1.56524i −0.622500 0.782619i \(-0.713883\pi\)
0.622500 0.782619i \(-0.286117\pi\)
\(762\) 0.690601 3.30350i 0.0250178 0.119673i
\(763\) 0 0
\(764\) 27.1236 0.981299
\(765\) 3.88748 + 32.3715i 0.140552 + 1.17039i
\(766\) 3.13659 0.113330
\(767\) −17.4622 17.4622i −0.630524 0.630524i
\(768\) −3.15557 + 15.0947i −0.113867 + 0.544685i
\(769\) 44.1875i 1.59344i −0.604348 0.796720i \(-0.706566\pi\)
0.604348 0.796720i \(-0.293434\pi\)
\(770\) 0 0
\(771\) 28.5812 18.6975i 1.02933 0.673376i
\(772\) 9.17972 9.17972i 0.330385 0.330385i
\(773\) 15.4692 15.4692i 0.556390 0.556390i −0.371888 0.928278i \(-0.621289\pi\)
0.928278 + 0.371888i \(0.121289\pi\)
\(774\) −1.41216 + 3.22993i −0.0507589 + 0.116098i
\(775\) 25.9064 + 14.4037i 0.930586 + 0.517395i
\(776\) 6.36214i 0.228388i
\(777\) 0 0
\(778\) 8.13643 + 8.13643i 0.291705 + 0.291705i
\(779\) −7.13633 −0.255686
\(780\) −7.57749 22.4441i −0.271318 0.803626i
\(781\) −9.46770 −0.338781
\(782\) −8.12049 8.12049i −0.290388 0.290388i
\(783\) 14.8856 20.9281i 0.531966 0.747911i
\(784\) 0 0
\(785\) 17.6095 10.3576i 0.628512 0.369679i
\(786\) 0.629457 + 0.962193i 0.0224520 + 0.0343203i
\(787\) −0.213202 + 0.213202i −0.00759982 + 0.00759982i −0.710896 0.703297i \(-0.751711\pi\)
0.703297 + 0.710896i \(0.251711\pi\)
\(788\) 14.5823 14.5823i 0.519472 0.519472i
\(789\) 5.26120 + 8.04231i 0.187304 + 0.286314i
\(790\) −2.52120 + 1.48292i −0.0897003 + 0.0527600i
\(791\) 0 0
\(792\) 1.00577 + 2.56845i 0.0357385 + 0.0912659i
\(793\) −9.97768 9.97768i −0.354318 0.354318i
\(794\) −2.74540 −0.0974306
\(795\) −8.61069 25.5043i −0.305390 0.904546i
\(796\) −31.1977 −1.10577
\(797\) 8.45240 + 8.45240i 0.299399 + 0.299399i 0.840779 0.541379i \(-0.182098\pi\)
−0.541379 + 0.840779i \(0.682098\pi\)
\(798\) 0 0
\(799\) 20.8390i 0.737231i
\(800\) 4.76529 + 16.6994i 0.168478 + 0.590413i
\(801\) −2.49368 1.09026i −0.0881098 0.0385224i
\(802\) 1.01580 1.01580i 0.0358691 0.0358691i
\(803\) 0.748181 0.748181i 0.0264027 0.0264027i
\(804\) 0.134712 0.0881271i 0.00475092 0.00310800i
\(805\) 0 0
\(806\) 5.87955i 0.207098i
\(807\) 3.56070 17.0327i 0.125343 0.599579i
\(808\) 16.1913 + 16.1913i 0.569608 + 0.569608i
\(809\) 37.1351 1.30560 0.652801 0.757530i \(-0.273594\pi\)
0.652801 + 0.757530i \(0.273594\pi\)
\(810\) −1.79303 + 5.95097i −0.0630006 + 0.209096i
\(811\) −23.5491 −0.826921 −0.413461 0.910522i \(-0.635680\pi\)
−0.413461 + 0.910522i \(0.635680\pi\)
\(812\) 0 0
\(813\) −1.99915 + 9.56300i −0.0701134 + 0.335389i
\(814\) 0.832736i 0.0291874i
\(815\) −3.06918 5.21809i −0.107509 0.182782i
\(816\) 24.2116 15.8390i 0.847576 0.554475i
\(817\) −4.40389 + 4.40389i −0.154073 + 0.154073i
\(818\) −5.79994 + 5.79994i −0.202790 + 0.202790i
\(819\) 0 0
\(820\) −17.9727 4.66036i −0.627633 0.162747i
\(821\) 40.9914i 1.43061i −0.698812 0.715306i \(-0.746287\pi\)
0.698812 0.715306i \(-0.253713\pi\)
\(822\) −4.61672 0.965130i −0.161027 0.0336628i
\(823\) −18.2198 18.2198i −0.635104 0.635104i 0.314240 0.949344i \(-0.398250\pi\)
−0.949344 + 0.314240i \(0.898250\pi\)
\(824\) −15.2319 −0.530629
\(825\) −4.99243 4.32172i −0.173814 0.150463i
\(826\) 0 0
\(827\) 19.5668 + 19.5668i 0.680404 + 0.680404i 0.960091 0.279687i \(-0.0902308\pi\)
−0.279687 + 0.960091i \(0.590231\pi\)
\(828\) 15.9397 + 40.7055i 0.553943 + 1.41462i
\(829\) 25.3202i 0.879406i 0.898143 + 0.439703i \(0.144916\pi\)
−0.898143 + 0.439703i \(0.855084\pi\)
\(830\) −4.77740 1.23879i −0.165826 0.0429991i
\(831\) 10.6625 + 16.2988i 0.369878 + 0.565398i
\(832\) −13.1727 + 13.1727i −0.456680 + 0.456680i
\(833\) 0 0
\(834\) −3.03461 4.63873i −0.105080 0.160626i
\(835\) −6.18127 10.5091i −0.213912 0.363683i
\(836\) 2.37713i 0.0822149i
\(837\) 17.8544 25.1022i 0.617138 0.867657i
\(838\) −5.64030 5.64030i −0.194841 0.194841i
\(839\) −50.7484 −1.75203 −0.876014 0.482286i \(-0.839807\pi\)
−0.876014 + 0.482286i \(0.839807\pi\)
\(840\) 0 0
\(841\) −4.57160 −0.157641
\(842\) −0.0944344 0.0944344i −0.00325442 0.00325442i
\(843\) −3.26926 0.683443i −0.112599 0.0235390i
\(844\) 48.5731i 1.67196i
\(845\) −1.50824 + 5.81651i −0.0518849 + 0.200094i
\(846\) −1.59136 + 3.63981i −0.0547120 + 0.125139i
\(847\) 0 0
\(848\) −16.8908 + 16.8908i −0.580031 + 0.580031i
\(849\) −38.2148 + 24.9997i −1.31153 + 0.857989i
\(850\) 3.64704 6.55956i 0.125092 0.224991i
\(851\) 27.0558i 0.927460i
\(852\) −8.38218 + 40.0963i −0.287169 + 1.37368i
\(853\) 18.8448 + 18.8448i 0.645233 + 0.645233i 0.951837 0.306604i \(-0.0991928\pi\)
−0.306604 + 0.951837i \(0.599193\pi\)
\(854\) 0 0
\(855\) −6.78337 + 8.63495i −0.231986 + 0.295309i
\(856\) −2.62963 −0.0898790
\(857\) 8.80014 + 8.80014i 0.300607 + 0.300607i 0.841251 0.540644i \(-0.181819\pi\)
−0.540644 + 0.841251i \(0.681819\pi\)
\(858\) −0.268017 + 1.28206i −0.00914994 + 0.0437689i
\(859\) 3.85330i 0.131473i −0.997837 0.0657364i \(-0.979060\pi\)
0.997837 0.0657364i \(-0.0209397\pi\)
\(860\) −13.9670 + 8.21515i −0.476272 + 0.280134i
\(861\) 0 0
\(862\) 3.56217 3.56217i 0.121328 0.121328i
\(863\) 35.2942 35.2942i 1.20143 1.20143i 0.227695 0.973732i \(-0.426881\pi\)
0.973732 0.227695i \(-0.0731190\pi\)
\(864\) 17.7957 3.00255i 0.605424 0.102149i
\(865\) 2.55040 1.50010i 0.0867164 0.0510049i
\(866\) 0.224599i 0.00763219i
\(867\) −11.2282 2.34727i −0.381331 0.0797176i
\(868\) 0 0
\(869\) −3.22945 −0.109552
\(870\) −5.60122 + 1.89107i −0.189899 + 0.0641131i
\(871\) 0.156705 0.00530974
\(872\) −2.01211 2.01211i −0.0681387 0.0681387i
\(873\) 14.7380 5.77118i 0.498805 0.195325i
\(874\) 3.86774i 0.130828i
\(875\) 0 0
\(876\) −2.50620 3.83099i −0.0846765 0.129437i
\(877\) −31.9696 + 31.9696i −1.07954 + 1.07954i −0.0829852 + 0.996551i \(0.526445\pi\)
−0.996551 + 0.0829852i \(0.973555\pi\)
\(878\) −3.34086 + 3.34086i −0.112749 + 0.112749i
\(879\) 10.5043 + 16.0569i 0.354301 + 0.541587i
\(880\) −1.47075 + 5.67193i −0.0495788 + 0.191201i
\(881\) 25.2055i 0.849195i 0.905382 + 0.424597i \(0.139584\pi\)
−0.905382 + 0.424597i \(0.860416\pi\)
\(882\) 0 0
\(883\) −14.2942 14.2942i −0.481039 0.481039i 0.424424 0.905463i \(-0.360476\pi\)
−0.905463 + 0.424424i \(0.860476\pi\)
\(884\) 29.7277 0.999850
\(885\) −13.2168 + 26.6901i −0.444279 + 0.897177i
\(886\) 2.81824 0.0946806
\(887\) −27.5143 27.5143i −0.923840 0.923840i 0.0734580 0.997298i \(-0.476597\pi\)
−0.997298 + 0.0734580i \(0.976597\pi\)
\(888\) 7.23000 + 1.51144i 0.242623 + 0.0507206i
\(889\) 0 0
\(890\) 0.317623 + 0.540010i 0.0106468 + 0.0181012i
\(891\) −5.03750 + 4.65975i −0.168763 + 0.156108i
\(892\) 29.4351 29.4351i 0.985559 0.985559i
\(893\) −4.96274 + 4.96274i −0.166072 + 0.166072i
\(894\) 7.81330 5.11138i 0.261316 0.170950i
\(895\) −0.523094 0.135639i −0.0174851 0.00453393i
\(896\) 0 0
\(897\) −8.70792 + 41.6545i −0.290749 + 1.39080i
\(898\) 2.05472 + 2.05472i 0.0685670 + 0.0685670i
\(899\) 29.3005 0.977227
\(900\) −22.7228 + 17.3171i −0.757426 + 0.577235i
\(901\) 33.7811 1.12541
\(902\) 0.725914 + 0.725914i 0.0241703 + 0.0241703i
\(903\) 0 0
\(904\) 20.3599i 0.677161i
\(905\) 40.4464 + 10.4879i 1.34448 + 0.348628i
\(906\) −6.81120 + 4.45582i −0.226287 + 0.148035i
\(907\) 1.70404 1.70404i 0.0565816 0.0565816i −0.678250 0.734831i \(-0.737261\pi\)
0.734831 + 0.678250i \(0.237261\pi\)
\(908\) −17.3031 + 17.3031i −0.574224 + 0.574224i
\(909\) −22.8200 + 52.1946i −0.756891 + 1.73119i
\(910\) 0 0
\(911\) 19.3662i 0.641631i −0.947142 0.320815i \(-0.896043\pi\)
0.947142 0.320815i \(-0.103957\pi\)
\(912\) 9.53792 + 1.99391i 0.315832 + 0.0660250i
\(913\) −3.85313 3.85313i −0.127520 0.127520i
\(914\) 10.6637 0.352724
\(915\) −7.55193 + 15.2504i −0.249659 + 0.504161i
\(916\) 29.1421 0.962883
\(917\) 0 0
\(918\) −6.35591 4.52077i −0.209776 0.149208i
\(919\) 34.1319i 1.12591i 0.826489 + 0.562953i \(0.190335\pi\)
−0.826489 + 0.562953i \(0.809665\pi\)
\(920\) 5.17811 19.9694i 0.170717 0.658372i
\(921\) 22.8997 + 35.0046i 0.754569 + 1.15344i
\(922\) −8.06536 + 8.06536i −0.265619 + 0.265619i
\(923\) −28.1966 + 28.1966i −0.928102 + 0.928102i
\(924\) 0 0
\(925\) −17.0031 + 4.85196i −0.559059 + 0.159531i
\(926\) 11.5168i 0.378467i
\(927\) −13.8171 35.2849i −0.453812 1.15891i
\(928\) 12.1384 + 12.1384i 0.398463 + 0.398463i
\(929\) 19.7246 0.647144 0.323572 0.946204i \(-0.395116\pi\)
0.323572 + 0.946204i \(0.395116\pi\)
\(930\) −6.71836 + 2.26823i −0.220304 + 0.0743782i
\(931\) 0 0
\(932\) 9.24073 + 9.24073i 0.302690 + 0.302690i
\(933\) −40.0927 8.38142i −1.31258 0.274395i
\(934\) 3.14994i 0.103069i
\(935\) 7.14258 4.20113i 0.233587 0.137392i
\(936\) 10.6447 + 4.65396i 0.347933 + 0.152119i
\(937\) 17.3041 17.3041i 0.565300 0.565300i −0.365508 0.930808i \(-0.619105\pi\)
0.930808 + 0.365508i \(0.119105\pi\)
\(938\) 0 0
\(939\) −17.9436 + 11.7385i −0.585568 + 0.383072i
\(940\) −15.7394 + 9.25764i −0.513364 + 0.301951i
\(941\) 4.49489i 0.146529i 0.997313 + 0.0732646i \(0.0233418\pi\)
−0.997313 + 0.0732646i \(0.976658\pi\)
\(942\) −1.00008 + 4.78388i −0.0325842 + 0.155867i
\(943\) 23.5851 + 23.5851i 0.768036 + 0.768036i
\(944\) 26.4292 0.860196
\(945\) 0 0
\(946\) 0.895935 0.0291294
\(947\) −10.6067 10.6067i −0.344673 0.344673i 0.513448 0.858121i \(-0.328368\pi\)
−0.858121 + 0.513448i \(0.828368\pi\)
\(948\) −2.85918 + 13.6769i −0.0928619 + 0.444207i
\(949\) 4.45644i 0.144662i
\(950\) 2.43067 0.693608i 0.0788613 0.0225036i
\(951\) 6.36658 4.16495i 0.206451 0.135058i
\(952\) 0 0
\(953\) 21.6181 21.6181i 0.700277 0.700277i −0.264193 0.964470i \(-0.585105\pi\)
0.964470 + 0.264193i \(0.0851054\pi\)
\(954\) 5.90031 + 2.57967i 0.191030 + 0.0835199i
\(955\) 7.99283 30.8244i 0.258642 0.997453i
\(956\) 35.6321i 1.15242i
\(957\) −6.38911 1.33565i −0.206531 0.0431754i
\(958\) 2.99334 + 2.99334i 0.0967106 + 0.0967106i
\(959\) 0 0
\(960\) 20.1337 + 9.97015i 0.649813 + 0.321785i
\(961\) 4.14435 0.133689
\(962\) 2.48004 + 2.48004i 0.0799598 + 0.0799598i
\(963\) −2.38537 6.09157i −0.0768676 0.196298i
\(964\) 3.75615i 0.120977i
\(965\) −7.72710 13.1373i −0.248744 0.422904i
\(966\) 0 0
\(967\) 16.1911 16.1911i 0.520672 0.520672i −0.397102 0.917774i \(-0.629984\pi\)
0.917774 + 0.397102i \(0.129984\pi\)
\(968\) −8.88392 + 8.88392i −0.285540 + 0.285540i
\(969\) −7.54390 11.5317i −0.242345 0.370451i
\(970\) −3.52678 0.914504i −0.113238 0.0293629i
\(971\) 18.2948i 0.587107i −0.955943 0.293553i \(-0.905162\pi\)
0.955943 0.293553i \(-0.0948379\pi\)
\(972\) 15.2744 + 25.4596i 0.489928 + 0.816618i
\(973\) 0 0
\(974\) 7.06004 0.226218
\(975\) −27.7393 + 1.99751i −0.888367 + 0.0639714i
\(976\) 15.1013 0.483380
\(977\) 10.5379 + 10.5379i 0.337139 + 0.337139i 0.855289 0.518151i \(-0.173379\pi\)
−0.518151 + 0.855289i \(0.673379\pi\)
\(978\) 1.41757 + 0.296344i 0.0453288 + 0.00947603i
\(979\) 0.691709i 0.0221071i
\(980\) 0 0
\(981\) 2.83587 6.48630i 0.0905423 0.207092i
\(982\) 5.18603 5.18603i 0.165493 0.165493i
\(983\) 8.31506 8.31506i 0.265209 0.265209i −0.561957 0.827166i \(-0.689951\pi\)
0.827166 + 0.561957i \(0.189951\pi\)
\(984\) 7.62009 4.98499i 0.242920 0.158916i
\(985\) −12.2747 20.8690i −0.391106 0.664941i
\(986\) 7.41895i 0.236267i
\(987\) 0 0
\(988\) 7.07955 + 7.07955i 0.225230 + 0.225230i
\(989\) 29.1091 0.925616
\(990\) 1.56836 0.188344i 0.0498459 0.00598598i
\(991\) 10.0401 0.318933 0.159467 0.987203i \(-0.449023\pi\)
0.159467 + 0.987203i \(0.449023\pi\)
\(992\) 14.5594 + 14.5594i 0.462260 + 0.462260i
\(993\) 2.20405 10.5431i 0.0699434 0.334576i
\(994\) 0 0
\(995\) −9.19337 + 35.4542i −0.291449 + 1.12397i
\(996\) −19.7296 + 12.9069i −0.625156 + 0.408971i
\(997\) 9.95260 9.95260i 0.315202 0.315202i −0.531719 0.846921i \(-0.678454\pi\)
0.846921 + 0.531719i \(0.178454\pi\)
\(998\) −0.706533 + 0.706533i −0.0223649 + 0.0223649i
\(999\) 3.05716 + 18.1194i 0.0967243 + 0.573273i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.j.e.638.6 24
3.2 odd 2 inner 735.2.j.e.638.7 24
5.2 odd 4 inner 735.2.j.e.197.7 24
7.2 even 3 735.2.y.i.263.6 48
7.3 odd 6 105.2.x.a.23.7 yes 48
7.4 even 3 735.2.y.i.128.7 48
7.5 odd 6 105.2.x.a.53.6 yes 48
7.6 odd 2 735.2.j.g.638.6 24
15.2 even 4 inner 735.2.j.e.197.6 24
21.2 odd 6 735.2.y.i.263.7 48
21.5 even 6 105.2.x.a.53.7 yes 48
21.11 odd 6 735.2.y.i.128.6 48
21.17 even 6 105.2.x.a.23.6 yes 48
21.20 even 2 735.2.j.g.638.7 24
35.2 odd 12 735.2.y.i.557.6 48
35.3 even 12 525.2.bf.f.107.6 48
35.12 even 12 105.2.x.a.32.6 yes 48
35.17 even 12 105.2.x.a.2.7 yes 48
35.19 odd 6 525.2.bf.f.368.7 48
35.24 odd 6 525.2.bf.f.443.6 48
35.27 even 4 735.2.j.g.197.7 24
35.32 odd 12 735.2.y.i.422.7 48
35.33 even 12 525.2.bf.f.32.7 48
105.2 even 12 735.2.y.i.557.7 48
105.17 odd 12 105.2.x.a.2.6 48
105.32 even 12 735.2.y.i.422.6 48
105.38 odd 12 525.2.bf.f.107.7 48
105.47 odd 12 105.2.x.a.32.7 yes 48
105.59 even 6 525.2.bf.f.443.7 48
105.62 odd 4 735.2.j.g.197.6 24
105.68 odd 12 525.2.bf.f.32.6 48
105.89 even 6 525.2.bf.f.368.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.x.a.2.6 48 105.17 odd 12
105.2.x.a.2.7 yes 48 35.17 even 12
105.2.x.a.23.6 yes 48 21.17 even 6
105.2.x.a.23.7 yes 48 7.3 odd 6
105.2.x.a.32.6 yes 48 35.12 even 12
105.2.x.a.32.7 yes 48 105.47 odd 12
105.2.x.a.53.6 yes 48 7.5 odd 6
105.2.x.a.53.7 yes 48 21.5 even 6
525.2.bf.f.32.6 48 105.68 odd 12
525.2.bf.f.32.7 48 35.33 even 12
525.2.bf.f.107.6 48 35.3 even 12
525.2.bf.f.107.7 48 105.38 odd 12
525.2.bf.f.368.6 48 105.89 even 6
525.2.bf.f.368.7 48 35.19 odd 6
525.2.bf.f.443.6 48 35.24 odd 6
525.2.bf.f.443.7 48 105.59 even 6
735.2.j.e.197.6 24 15.2 even 4 inner
735.2.j.e.197.7 24 5.2 odd 4 inner
735.2.j.e.638.6 24 1.1 even 1 trivial
735.2.j.e.638.7 24 3.2 odd 2 inner
735.2.j.g.197.6 24 105.62 odd 4
735.2.j.g.197.7 24 35.27 even 4
735.2.j.g.638.6 24 7.6 odd 2
735.2.j.g.638.7 24 21.20 even 2
735.2.y.i.128.6 48 21.11 odd 6
735.2.y.i.128.7 48 7.4 even 3
735.2.y.i.263.6 48 7.2 even 3
735.2.y.i.263.7 48 21.2 odd 6
735.2.y.i.422.6 48 105.32 even 12
735.2.y.i.422.7 48 35.32 odd 12
735.2.y.i.557.6 48 35.2 odd 12
735.2.y.i.557.7 48 105.2 even 12