Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [546,2,Mod(97,546)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(546, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 6, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("546.97");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 546.bx (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.35983195036\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 | −0.258819 | − | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | −3.04339 | − | 3.04339i | −0.258819 | + | 0.965926i | −1.02848 | − | 2.43767i | 0.707107 | + | 0.707107i | 0.500000 | + | 0.866025i | −2.15200 | + | 3.72738i |
97.2 | −0.258819 | − | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | −0.201763 | − | 0.201763i | −0.258819 | + | 0.965926i | 1.99885 | − | 1.73338i | 0.707107 | + | 0.707107i | 0.500000 | + | 0.866025i | −0.142668 | + | 0.247108i |
97.3 | −0.258819 | − | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | 0.301627 | + | 0.301627i | −0.258819 | + | 0.965926i | 2.59084 | + | 0.536243i | 0.707107 | + | 0.707107i | 0.500000 | + | 0.866025i | 0.213282 | − | 0.369416i |
97.4 | −0.258819 | − | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | 0.413783 | + | 0.413783i | −0.258819 | + | 0.965926i | −2.23784 | + | 1.41140i | 0.707107 | + | 0.707107i | 0.500000 | + | 0.866025i | 0.292588 | − | 0.506778i |
97.5 | −0.258819 | − | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | 2.52974 | + | 2.52974i | −0.258819 | + | 0.965926i | −2.48229 | − | 0.915557i | 0.707107 | + | 0.707107i | 0.500000 | + | 0.866025i | 1.78880 | − | 3.09829i |
97.6 | 0.258819 | + | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | −2.63119 | − | 2.63119i | 0.258819 | − | 0.965926i | −1.51600 | + | 2.16835i | −0.707107 | − | 0.707107i | 0.500000 | + | 0.866025i | 1.86053 | − | 3.22253i |
97.7 | 0.258819 | + | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | −1.52143 | − | 1.52143i | 0.258819 | − | 0.965926i | 2.42509 | + | 1.05779i | −0.707107 | − | 0.707107i | 0.500000 | + | 0.866025i | 1.07582 | − | 1.86337i |
97.8 | 0.258819 | + | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | 0.0374438 | + | 0.0374438i | 0.258819 | − | 0.965926i | −2.54217 | − | 0.733067i | −0.707107 | − | 0.707107i | 0.500000 | + | 0.866025i | −0.0264768 | + | 0.0458592i |
97.9 | 0.258819 | + | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | 1.65224 | + | 1.65224i | 0.258819 | − | 0.965926i | 0.445675 | − | 2.60794i | −0.707107 | − | 0.707107i | 0.500000 | + | 0.866025i | −1.16831 | + | 2.02357i |
97.10 | 0.258819 | + | 0.965926i | −0.866025 | − | 0.500000i | −0.866025 | + | 0.500000i | 2.46294 | + | 2.46294i | 0.258819 | − | 0.965926i | −1.38574 | + | 2.25383i | −0.707107 | − | 0.707107i | 0.500000 | + | 0.866025i | −1.74156 | + | 3.01647i |
223.1 | −0.965926 | − | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | −1.77438 | − | 1.77438i | −0.965926 | + | 0.258819i | 0.546766 | − | 2.58864i | −0.707107 | − | 0.707107i | 0.500000 | − | 0.866025i | 1.25468 | + | 2.17316i |
223.2 | −0.965926 | − | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | −1.20611 | − | 1.20611i | −0.965926 | + | 0.258819i | 2.62215 | + | 0.352575i | −0.707107 | − | 0.707107i | 0.500000 | − | 0.866025i | 0.852845 | + | 1.47717i |
223.3 | −0.965926 | − | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | −0.781970 | − | 0.781970i | −0.965926 | + | 0.258819i | −1.20520 | + | 2.35531i | −0.707107 | − | 0.707107i | 0.500000 | − | 0.866025i | 0.552937 | + | 0.957714i |
223.4 | −0.965926 | − | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | 1.23174 | + | 1.23174i | −0.965926 | + | 0.258819i | −1.74064 | + | 1.99253i | −0.707107 | − | 0.707107i | 0.500000 | − | 0.866025i | −0.870974 | − | 1.50857i |
223.5 | −0.965926 | − | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | 2.53071 | + | 2.53071i | −0.965926 | + | 0.258819i | −1.06416 | − | 2.42231i | −0.707107 | − | 0.707107i | 0.500000 | − | 0.866025i | −1.78948 | − | 3.09948i |
223.6 | 0.965926 | + | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | −3.01404 | − | 3.01404i | 0.965926 | − | 0.258819i | 2.02342 | + | 1.70464i | 0.707107 | + | 0.707107i | 0.500000 | − | 0.866025i | −2.13125 | − | 3.69143i |
223.7 | 0.965926 | + | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | −1.73144 | − | 1.73144i | 0.965926 | − | 0.258819i | −1.20824 | − | 2.35375i | 0.707107 | + | 0.707107i | 0.500000 | − | 0.866025i | −1.22431 | − | 2.12057i |
223.8 | 0.965926 | + | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | 1.10131 | + | 1.10131i | 0.965926 | − | 0.258819i | −0.930231 | + | 2.47683i | 0.707107 | + | 0.707107i | 0.500000 | − | 0.866025i | 0.778741 | + | 1.34882i |
223.9 | 0.965926 | + | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | 1.14071 | + | 1.14071i | 0.965926 | − | 0.258819i | 2.56426 | − | 0.651604i | 0.707107 | + | 0.707107i | 0.500000 | − | 0.866025i | 0.806606 | + | 1.39708i |
223.10 | 0.965926 | + | 0.258819i | 0.866025 | − | 0.500000i | 0.866025 | + | 0.500000i | 2.50346 | + | 2.50346i | 0.965926 | − | 0.258819i | −1.87607 | − | 1.86558i | 0.707107 | + | 0.707107i | 0.500000 | − | 0.866025i | 1.77021 | + | 3.06610i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
91.bc | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 546.2.bx.a | ✓ | 40 |
7.b | odd | 2 | 1 | 546.2.bx.b | yes | 40 | |
13.f | odd | 12 | 1 | 546.2.bx.b | yes | 40 | |
91.bc | even | 12 | 1 | inner | 546.2.bx.a | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
546.2.bx.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
546.2.bx.a | ✓ | 40 | 91.bc | even | 12 | 1 | inner |
546.2.bx.b | yes | 40 | 7.b | odd | 2 | 1 | |
546.2.bx.b | yes | 40 | 13.f | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{40} - 24 T_{5}^{37} + 828 T_{5}^{36} - 424 T_{5}^{35} + 288 T_{5}^{34} - 12696 T_{5}^{33} + \cdots + 107495424 \) acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\).