Properties

Label 585.2.dp.a.28.1
Level $585$
Weight $2$
Character 585.28
Analytic conductor $4.671$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(28,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 9, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.dp (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.1
Root \(1.51805i\) of defining polynomial
Character \(\chi\) \(=\) 585.28
Dual form 585.2.dp.a.397.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.31467 + 0.759023i) q^{2} +(0.152233 - 0.263675i) q^{4} +(2.15400 + 0.600231i) q^{5} +(-1.29744 + 2.24723i) q^{7} -2.57390i q^{8} +(-3.28738 + 0.845834i) q^{10} +(-1.29395 + 4.82908i) q^{11} +(-2.37567 - 2.71223i) q^{13} -3.93915i q^{14} +(2.25812 + 3.91117i) q^{16} +(-0.0790751 + 0.0211881i) q^{17} +(-2.71143 + 0.726525i) q^{19} +(0.486175 - 0.476581i) q^{20} +(-1.96427 - 7.33077i) q^{22} +(3.91925 + 1.05016i) q^{23} +(4.27945 + 2.58580i) q^{25} +(5.18186 + 1.76249i) q^{26} +(0.395026 + 0.684205i) q^{28} +(-4.31701 + 2.49243i) q^{29} +(-2.32124 + 2.32124i) q^{31} +(-1.47921 - 0.854024i) q^{32} +(0.0878751 - 0.0878751i) q^{34} +(-4.14355 + 4.06178i) q^{35} +(-0.285750 - 0.494934i) q^{37} +(3.01318 - 3.01318i) q^{38} +(1.54493 - 5.54419i) q^{40} +(-10.0563 - 2.69458i) q^{41} +(0.0354017 + 0.132121i) q^{43} +(1.07633 + 1.07633i) q^{44} +(-5.94960 + 1.59419i) q^{46} +2.30053 q^{47} +(0.133293 + 0.230870i) q^{49} +(-7.58873 - 0.151261i) q^{50} +(-1.07680 + 0.213514i) q^{52} +(-6.70735 - 6.70735i) q^{53} +(-5.68573 + 9.62518i) q^{55} +(5.78416 + 3.33948i) q^{56} +(3.78362 - 6.55343i) q^{58} +(0.694109 + 2.59045i) q^{59} +(-2.74237 + 4.74992i) q^{61} +(1.28978 - 4.81352i) q^{62} -6.43957 q^{64} +(-3.48923 - 7.26810i) q^{65} +(-13.6718 + 7.89339i) q^{67} +(-0.00645104 + 0.0240756i) q^{68} +(2.36440 - 8.48494i) q^{70} +(1.98951 + 7.42495i) q^{71} -6.61894i q^{73} +(0.751333 + 0.433783i) q^{74} +(-0.221202 + 0.825536i) q^{76} +(-9.17326 - 9.17326i) q^{77} -5.71054i q^{79} +(2.51638 + 9.78006i) q^{80} +(15.2660 - 4.09050i) q^{82} -3.70736 q^{83} +(-0.183046 - 0.00182408i) q^{85} +(-0.146824 - 0.146824i) q^{86} +(12.4296 + 3.33050i) q^{88} +(17.2829 + 4.63094i) q^{89} +(9.17731 - 1.81973i) q^{91} +(0.873538 - 0.873538i) q^{92} +(-3.02443 + 1.74616i) q^{94} +(-6.27651 - 0.0625465i) q^{95} +(4.65043 + 2.68493i) q^{97} +(-0.350471 - 0.202345i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} + 6 q^{4} - 2 q^{7} - 2 q^{10} + 16 q^{11} - 4 q^{13} - 2 q^{16} - 4 q^{17} - 20 q^{19} + 16 q^{22} + 10 q^{23} + 18 q^{25} + 24 q^{26} + 18 q^{28} - 48 q^{32} + 2 q^{34} - 40 q^{35} - 4 q^{37}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31467 + 0.759023i −0.929610 + 0.536710i −0.886688 0.462368i \(-0.847000\pi\)
−0.0429217 + 0.999078i \(0.513667\pi\)
\(3\) 0 0
\(4\) 0.152233 0.263675i 0.0761163 0.131837i
\(5\) 2.15400 + 0.600231i 0.963299 + 0.268431i
\(6\) 0 0
\(7\) −1.29744 + 2.24723i −0.490387 + 0.849375i −0.999939 0.0110652i \(-0.996478\pi\)
0.509552 + 0.860440i \(0.329811\pi\)
\(8\) 2.57390i 0.910011i
\(9\) 0 0
\(10\) −3.28738 + 0.845834i −1.03956 + 0.267476i
\(11\) −1.29395 + 4.82908i −0.390140 + 1.45602i 0.439762 + 0.898114i \(0.355063\pi\)
−0.829902 + 0.557909i \(0.811604\pi\)
\(12\) 0 0
\(13\) −2.37567 2.71223i −0.658892 0.752237i
\(14\) 3.93915i 1.05278i
\(15\) 0 0
\(16\) 2.25812 + 3.91117i 0.564529 + 0.977793i
\(17\) −0.0790751 + 0.0211881i −0.0191785 + 0.00513887i −0.268396 0.963309i \(-0.586493\pi\)
0.249217 + 0.968448i \(0.419827\pi\)
\(18\) 0 0
\(19\) −2.71143 + 0.726525i −0.622045 + 0.166676i −0.556057 0.831144i \(-0.687686\pi\)
−0.0659876 + 0.997820i \(0.521020\pi\)
\(20\) 0.486175 0.476581i 0.108712 0.106567i
\(21\) 0 0
\(22\) −1.96427 7.33077i −0.418785 1.56293i
\(23\) 3.91925 + 1.05016i 0.817220 + 0.218973i 0.643131 0.765756i \(-0.277635\pi\)
0.174089 + 0.984730i \(0.444302\pi\)
\(24\) 0 0
\(25\) 4.27945 + 2.58580i 0.855889 + 0.517159i
\(26\) 5.18186 + 1.76249i 1.01625 + 0.345653i
\(27\) 0 0
\(28\) 0.395026 + 0.684205i 0.0746528 + 0.129303i
\(29\) −4.31701 + 2.49243i −0.801649 + 0.462833i −0.844048 0.536268i \(-0.819834\pi\)
0.0423981 + 0.999101i \(0.486500\pi\)
\(30\) 0 0
\(31\) −2.32124 + 2.32124i −0.416906 + 0.416906i −0.884136 0.467230i \(-0.845252\pi\)
0.467230 + 0.884136i \(0.345252\pi\)
\(32\) −1.47921 0.854024i −0.261490 0.150972i
\(33\) 0 0
\(34\) 0.0878751 0.0878751i 0.0150705 0.0150705i
\(35\) −4.14355 + 4.06178i −0.700388 + 0.686566i
\(36\) 0 0
\(37\) −0.285750 0.494934i −0.0469771 0.0813667i 0.841581 0.540131i \(-0.181625\pi\)
−0.888558 + 0.458765i \(0.848292\pi\)
\(38\) 3.01318 3.01318i 0.488802 0.488802i
\(39\) 0 0
\(40\) 1.54493 5.54419i 0.244276 0.876613i
\(41\) −10.0563 2.69458i −1.57053 0.420823i −0.634554 0.772879i \(-0.718816\pi\)
−0.935979 + 0.352056i \(0.885483\pi\)
\(42\) 0 0
\(43\) 0.0354017 + 0.132121i 0.00539871 + 0.0201483i 0.968573 0.248731i \(-0.0800135\pi\)
−0.963174 + 0.268879i \(0.913347\pi\)
\(44\) 1.07633 + 1.07633i 0.162262 + 0.162262i
\(45\) 0 0
\(46\) −5.94960 + 1.59419i −0.877221 + 0.235051i
\(47\) 2.30053 0.335567 0.167784 0.985824i \(-0.446339\pi\)
0.167784 + 0.985824i \(0.446339\pi\)
\(48\) 0 0
\(49\) 0.133293 + 0.230870i 0.0190418 + 0.0329814i
\(50\) −7.58873 0.151261i −1.07321 0.0213915i
\(51\) 0 0
\(52\) −1.07680 + 0.213514i −0.149325 + 0.0296090i
\(53\) −6.70735 6.70735i −0.921326 0.921326i 0.0757974 0.997123i \(-0.475850\pi\)
−0.997123 + 0.0757974i \(0.975850\pi\)
\(54\) 0 0
\(55\) −5.68573 + 9.62518i −0.766664 + 1.29786i
\(56\) 5.78416 + 3.33948i 0.772941 + 0.446257i
\(57\) 0 0
\(58\) 3.78362 6.55343i 0.496814 0.860507i
\(59\) 0.694109 + 2.59045i 0.0903653 + 0.337248i 0.996276 0.0862207i \(-0.0274790\pi\)
−0.905911 + 0.423469i \(0.860812\pi\)
\(60\) 0 0
\(61\) −2.74237 + 4.74992i −0.351124 + 0.608165i −0.986447 0.164082i \(-0.947534\pi\)
0.635322 + 0.772247i \(0.280867\pi\)
\(62\) 1.28978 4.81352i 0.163802 0.611318i
\(63\) 0 0
\(64\) −6.43957 −0.804946
\(65\) −3.48923 7.26810i −0.432786 0.901497i
\(66\) 0 0
\(67\) −13.6718 + 7.89339i −1.67027 + 0.964331i −0.702786 + 0.711401i \(0.748061\pi\)
−0.967485 + 0.252930i \(0.918606\pi\)
\(68\) −0.00645104 + 0.0240756i −0.000782303 + 0.00291960i
\(69\) 0 0
\(70\) 2.36440 8.48494i 0.282600 1.01414i
\(71\) 1.98951 + 7.42495i 0.236111 + 0.881180i 0.977645 + 0.210264i \(0.0674322\pi\)
−0.741533 + 0.670916i \(0.765901\pi\)
\(72\) 0 0
\(73\) 6.61894i 0.774688i −0.921935 0.387344i \(-0.873393\pi\)
0.921935 0.387344i \(-0.126607\pi\)
\(74\) 0.751333 + 0.433783i 0.0873407 + 0.0504262i
\(75\) 0 0
\(76\) −0.221202 + 0.825536i −0.0253736 + 0.0946955i
\(77\) −9.17326 9.17326i −1.04539 1.04539i
\(78\) 0 0
\(79\) 5.71054i 0.642486i −0.946997 0.321243i \(-0.895899\pi\)
0.946997 0.321243i \(-0.104101\pi\)
\(80\) 2.51638 + 9.78006i 0.281340 + 1.09344i
\(81\) 0 0
\(82\) 15.2660 4.09050i 1.68584 0.451720i
\(83\) −3.70736 −0.406936 −0.203468 0.979082i \(-0.565221\pi\)
−0.203468 + 0.979082i \(0.565221\pi\)
\(84\) 0 0
\(85\) −0.183046 0.00182408i −0.0198541 0.000197849i
\(86\) −0.146824 0.146824i −0.0158325 0.0158325i
\(87\) 0 0
\(88\) 12.4296 + 3.33050i 1.32500 + 0.355032i
\(89\) 17.2829 + 4.63094i 1.83198 + 0.490878i 0.998131 0.0611111i \(-0.0194644\pi\)
0.833851 + 0.551989i \(0.186131\pi\)
\(90\) 0 0
\(91\) 9.17731 1.81973i 0.962043 0.190759i
\(92\) 0.873538 0.873538i 0.0910726 0.0910726i
\(93\) 0 0
\(94\) −3.02443 + 1.74616i −0.311946 + 0.180102i
\(95\) −6.27651 0.0625465i −0.643956 0.00641713i
\(96\) 0 0
\(97\) 4.65043 + 2.68493i 0.472180 + 0.272613i 0.717152 0.696917i \(-0.245445\pi\)
−0.244972 + 0.969530i \(0.578779\pi\)
\(98\) −0.350471 0.202345i −0.0354029 0.0204399i
\(99\) 0 0
\(100\) 1.33328 0.734739i 0.133328 0.0734739i
\(101\) −2.17443 + 1.25541i −0.216363 + 0.124918i −0.604265 0.796783i \(-0.706533\pi\)
0.387902 + 0.921701i \(0.373200\pi\)
\(102\) 0 0
\(103\) 4.71738 4.71738i 0.464817 0.464817i −0.435414 0.900230i \(-0.643398\pi\)
0.900230 + 0.435414i \(0.143398\pi\)
\(104\) −6.98101 + 6.11474i −0.684545 + 0.599599i
\(105\) 0 0
\(106\) 13.9090 + 3.72690i 1.35096 + 0.361988i
\(107\) 3.50497 + 0.939155i 0.338838 + 0.0907915i 0.424226 0.905556i \(-0.360546\pi\)
−0.0853876 + 0.996348i \(0.527213\pi\)
\(108\) 0 0
\(109\) 1.58528 + 1.58528i 0.151843 + 0.151843i 0.778941 0.627098i \(-0.215757\pi\)
−0.627098 + 0.778941i \(0.715757\pi\)
\(110\) 0.169104 16.9695i 0.0161234 1.61798i
\(111\) 0 0
\(112\) −11.7191 −1.10735
\(113\) 5.53206 1.48231i 0.520412 0.139444i 0.0109551 0.999940i \(-0.496513\pi\)
0.509457 + 0.860496i \(0.329846\pi\)
\(114\) 0 0
\(115\) 7.81173 + 4.61450i 0.728448 + 0.430304i
\(116\) 1.51772i 0.140916i
\(117\) 0 0
\(118\) −2.87873 2.87873i −0.265009 0.265009i
\(119\) 0.0549806 0.205190i 0.00504007 0.0188098i
\(120\) 0 0
\(121\) −12.1195 6.99717i −1.10177 0.636106i
\(122\) 8.32609i 0.753809i
\(123\) 0 0
\(124\) 0.258683 + 0.965419i 0.0232304 + 0.0866972i
\(125\) 7.66586 + 8.13846i 0.685655 + 0.727926i
\(126\) 0 0
\(127\) 0.210801 0.786718i 0.0187055 0.0698100i −0.955942 0.293555i \(-0.905162\pi\)
0.974648 + 0.223745i \(0.0718283\pi\)
\(128\) 11.4243 6.59583i 1.00978 0.582994i
\(129\) 0 0
\(130\) 10.1038 + 6.90672i 0.886165 + 0.605759i
\(131\) 16.1062 1.40721 0.703604 0.710592i \(-0.251573\pi\)
0.703604 + 0.710592i \(0.251573\pi\)
\(132\) 0 0
\(133\) 1.88525 7.03584i 0.163472 0.610085i
\(134\) 11.9825 20.7544i 1.03513 1.79290i
\(135\) 0 0
\(136\) 0.0545361 + 0.203531i 0.00467643 + 0.0174527i
\(137\) −9.61871 + 16.6601i −0.821782 + 1.42337i 0.0825721 + 0.996585i \(0.473687\pi\)
−0.904354 + 0.426783i \(0.859647\pi\)
\(138\) 0 0
\(139\) 13.7257 + 7.92451i 1.16419 + 0.672148i 0.952306 0.305146i \(-0.0987052\pi\)
0.211889 + 0.977294i \(0.432038\pi\)
\(140\) 0.440205 + 1.71088i 0.0372041 + 0.144596i
\(141\) 0 0
\(142\) −8.25125 8.25125i −0.692430 0.692430i
\(143\) 16.1716 7.96282i 1.35234 0.665884i
\(144\) 0 0
\(145\) −10.7949 + 2.77749i −0.896467 + 0.230658i
\(146\) 5.02393 + 8.70170i 0.415783 + 0.720158i
\(147\) 0 0
\(148\) −0.174002 −0.0143029
\(149\) 1.39120 0.372772i 0.113972 0.0305387i −0.201382 0.979513i \(-0.564543\pi\)
0.315354 + 0.948974i \(0.397877\pi\)
\(150\) 0 0
\(151\) 13.9253 + 13.9253i 1.13322 + 1.13322i 0.989638 + 0.143585i \(0.0458631\pi\)
0.143585 + 0.989638i \(0.454137\pi\)
\(152\) 1.87000 + 6.97895i 0.151677 + 0.566068i
\(153\) 0 0
\(154\) 19.0225 + 5.09706i 1.53288 + 0.410733i
\(155\) −6.39322 + 3.60667i −0.513516 + 0.289695i
\(156\) 0 0
\(157\) 4.54644 4.54644i 0.362845 0.362845i −0.502014 0.864859i \(-0.667408\pi\)
0.864859 + 0.502014i \(0.167408\pi\)
\(158\) 4.33444 + 7.50746i 0.344829 + 0.597262i
\(159\) 0 0
\(160\) −2.67362 2.72744i −0.211368 0.215623i
\(161\) −7.44495 + 7.44495i −0.586744 + 0.586744i
\(162\) 0 0
\(163\) 11.3759 + 6.56789i 0.891031 + 0.514437i 0.874280 0.485423i \(-0.161334\pi\)
0.0167516 + 0.999860i \(0.494668\pi\)
\(164\) −2.24139 + 2.24139i −0.175023 + 0.175023i
\(165\) 0 0
\(166\) 4.87395 2.81398i 0.378292 0.218407i
\(167\) 1.64258 + 2.84503i 0.127107 + 0.220155i 0.922554 0.385867i \(-0.126098\pi\)
−0.795448 + 0.606022i \(0.792764\pi\)
\(168\) 0 0
\(169\) −1.71239 + 12.8867i −0.131722 + 0.991287i
\(170\) 0.242028 0.136538i 0.0185627 0.0104720i
\(171\) 0 0
\(172\) 0.0402263 + 0.0107786i 0.00306722 + 0.000821860i
\(173\) 1.09689 + 4.09367i 0.0833953 + 0.311236i 0.995005 0.0998202i \(-0.0318268\pi\)
−0.911610 + 0.411056i \(0.865160\pi\)
\(174\) 0 0
\(175\) −11.3632 + 6.26200i −0.858979 + 0.473363i
\(176\) −21.8093 + 5.84377i −1.64393 + 0.440491i
\(177\) 0 0
\(178\) −26.2362 + 7.02997i −1.96649 + 0.526919i
\(179\) 6.98083 + 12.0912i 0.521772 + 0.903735i 0.999679 + 0.0253252i \(0.00806213\pi\)
−0.477907 + 0.878410i \(0.658605\pi\)
\(180\) 0 0
\(181\) 8.64775i 0.642782i −0.946947 0.321391i \(-0.895850\pi\)
0.946947 0.321391i \(-0.104150\pi\)
\(182\) −10.6839 + 9.35812i −0.791942 + 0.693670i
\(183\) 0 0
\(184\) 2.70301 10.0878i 0.199268 0.743680i
\(185\) −0.318432 1.23761i −0.0234116 0.0909906i
\(186\) 0 0
\(187\) 0.409276i 0.0299292i
\(188\) 0.350216 0.606592i 0.0255421 0.0442402i
\(189\) 0 0
\(190\) 8.29899 4.68179i 0.602072 0.339653i
\(191\) 8.45647 14.6470i 0.611889 1.05982i −0.379033 0.925383i \(-0.623743\pi\)
0.990922 0.134439i \(-0.0429232\pi\)
\(192\) 0 0
\(193\) 7.40936 4.27780i 0.533338 0.307923i −0.209037 0.977908i \(-0.567033\pi\)
0.742375 + 0.669985i \(0.233700\pi\)
\(194\) −8.15169 −0.585257
\(195\) 0 0
\(196\) 0.0811660 0.00579757
\(197\) 6.63101 3.82842i 0.472440 0.272764i −0.244820 0.969568i \(-0.578729\pi\)
0.717261 + 0.696805i \(0.245396\pi\)
\(198\) 0 0
\(199\) 7.66380 13.2741i 0.543272 0.940975i −0.455441 0.890266i \(-0.650519\pi\)
0.998713 0.0507092i \(-0.0161482\pi\)
\(200\) 6.65558 11.0149i 0.470621 0.778869i
\(201\) 0 0
\(202\) 1.90576 3.30088i 0.134089 0.232249i
\(203\) 12.9351i 0.907868i
\(204\) 0 0
\(205\) −20.0440 11.8402i −1.39993 0.826959i
\(206\) −2.62118 + 9.78238i −0.182626 + 0.681570i
\(207\) 0 0
\(208\) 5.24346 15.4162i 0.363569 1.06892i
\(209\) 14.0338i 0.970739i
\(210\) 0 0
\(211\) −9.91788 17.1783i −0.682775 1.18260i −0.974130 0.225986i \(-0.927440\pi\)
0.291355 0.956615i \(-0.405894\pi\)
\(212\) −2.78964 + 0.747481i −0.191593 + 0.0513372i
\(213\) 0 0
\(214\) −5.32071 + 1.42568i −0.363716 + 0.0974575i
\(215\) −0.00304773 + 0.305838i −0.000207854 + 0.0208580i
\(216\) 0 0
\(217\) −2.20469 8.22803i −0.149664 0.558555i
\(218\) −3.28739 0.880853i −0.222650 0.0596589i
\(219\) 0 0
\(220\) 1.67236 + 2.96445i 0.112751 + 0.199863i
\(221\) 0.245323 + 0.164134i 0.0165022 + 0.0110408i
\(222\) 0 0
\(223\) 9.48653 + 16.4311i 0.635265 + 1.10031i 0.986459 + 0.164008i \(0.0524424\pi\)
−0.351194 + 0.936303i \(0.614224\pi\)
\(224\) 3.83838 2.21609i 0.256463 0.148069i
\(225\) 0 0
\(226\) −6.14771 + 6.14771i −0.408939 + 0.408939i
\(227\) −23.3469 13.4794i −1.54959 0.894656i −0.998173 0.0604265i \(-0.980754\pi\)
−0.551417 0.834230i \(-0.685913\pi\)
\(228\) 0 0
\(229\) −11.1801 + 11.1801i −0.738799 + 0.738799i −0.972346 0.233547i \(-0.924967\pi\)
0.233547 + 0.972346i \(0.424967\pi\)
\(230\) −13.7723 0.137244i −0.908121 0.00904959i
\(231\) 0 0
\(232\) 6.41527 + 11.1116i 0.421183 + 0.729510i
\(233\) −6.75797 + 6.75797i −0.442729 + 0.442729i −0.892928 0.450199i \(-0.851353\pi\)
0.450199 + 0.892928i \(0.351353\pi\)
\(234\) 0 0
\(235\) 4.95535 + 1.38085i 0.323251 + 0.0900767i
\(236\) 0.788702 + 0.211332i 0.0513401 + 0.0137565i
\(237\) 0 0
\(238\) 0.0834631 + 0.311489i 0.00541011 + 0.0201908i
\(239\) −1.98766 1.98766i −0.128571 0.128571i 0.639893 0.768464i \(-0.278979\pi\)
−0.768464 + 0.639893i \(0.778979\pi\)
\(240\) 0 0
\(241\) −2.65141 + 0.710443i −0.170792 + 0.0457637i −0.343202 0.939262i \(-0.611511\pi\)
0.172409 + 0.985025i \(0.444845\pi\)
\(242\) 21.2441 1.36562
\(243\) 0 0
\(244\) 0.834956 + 1.44619i 0.0534526 + 0.0925826i
\(245\) 0.148538 + 0.577300i 0.00948972 + 0.0368824i
\(246\) 0 0
\(247\) 8.41197 + 5.62804i 0.535241 + 0.358104i
\(248\) 5.97463 + 5.97463i 0.379389 + 0.379389i
\(249\) 0 0
\(250\) −16.2553 4.88080i −1.02808 0.308689i
\(251\) 2.45414 + 1.41690i 0.154904 + 0.0894337i 0.575448 0.817838i \(-0.304828\pi\)
−0.420545 + 0.907272i \(0.638161\pi\)
\(252\) 0 0
\(253\) −10.1426 + 17.5675i −0.637661 + 1.10446i
\(254\) 0.320005 + 1.19428i 0.0200789 + 0.0749355i
\(255\) 0 0
\(256\) −3.57321 + 6.18898i −0.223325 + 0.386811i
\(257\) 5.19242 19.3784i 0.323894 1.20879i −0.591525 0.806287i \(-0.701474\pi\)
0.915419 0.402502i \(-0.131859\pi\)
\(258\) 0 0
\(259\) 1.48298 0.0921478
\(260\) −2.44759 0.186420i −0.151793 0.0115613i
\(261\) 0 0
\(262\) −21.1743 + 12.2250i −1.30815 + 0.755264i
\(263\) −2.43854 + 9.10077i −0.150367 + 0.561177i 0.849091 + 0.528247i \(0.177151\pi\)
−0.999458 + 0.0329302i \(0.989516\pi\)
\(264\) 0 0
\(265\) −10.4217 18.4736i −0.640199 1.13482i
\(266\) 2.86189 + 10.6807i 0.175474 + 0.654878i
\(267\) 0 0
\(268\) 4.80653i 0.293605i
\(269\) 2.78417 + 1.60744i 0.169754 + 0.0980075i 0.582470 0.812852i \(-0.302086\pi\)
−0.412716 + 0.910860i \(0.635420\pi\)
\(270\) 0 0
\(271\) −3.93065 + 14.6694i −0.238770 + 0.891102i 0.737643 + 0.675191i \(0.235939\pi\)
−0.976413 + 0.215911i \(0.930728\pi\)
\(272\) −0.261431 0.261431i −0.0158516 0.0158516i
\(273\) 0 0
\(274\) 29.2033i 1.76424i
\(275\) −18.0244 + 17.3199i −1.08691 + 1.04443i
\(276\) 0 0
\(277\) 10.3015 2.76028i 0.618956 0.165849i 0.0643031 0.997930i \(-0.479518\pi\)
0.554653 + 0.832082i \(0.312851\pi\)
\(278\) −24.0595 −1.44300
\(279\) 0 0
\(280\) 10.4546 + 10.6651i 0.624783 + 0.637361i
\(281\) 12.7630 + 12.7630i 0.761379 + 0.761379i 0.976572 0.215193i \(-0.0690380\pi\)
−0.215193 + 0.976572i \(0.569038\pi\)
\(282\) 0 0
\(283\) −5.56143 1.49018i −0.330592 0.0885820i 0.0897050 0.995968i \(-0.471408\pi\)
−0.420297 + 0.907386i \(0.638074\pi\)
\(284\) 2.26064 + 0.605736i 0.134144 + 0.0359438i
\(285\) 0 0
\(286\) −15.2163 + 22.7431i −0.899757 + 1.34483i
\(287\) 19.1028 19.1028i 1.12760 1.12760i
\(288\) 0 0
\(289\) −14.7166 + 8.49665i −0.865684 + 0.499803i
\(290\) 12.0835 11.8450i 0.709568 0.695565i
\(291\) 0 0
\(292\) −1.74525 1.00762i −0.102133 0.0589664i
\(293\) −2.76788 1.59804i −0.161701 0.0933583i 0.416966 0.908922i \(-0.363094\pi\)
−0.578667 + 0.815564i \(0.696427\pi\)
\(294\) 0 0
\(295\) −0.0597558 + 5.99646i −0.00347912 + 0.349127i
\(296\) −1.27391 + 0.735493i −0.0740446 + 0.0427497i
\(297\) 0 0
\(298\) −1.54603 + 1.54603i −0.0895590 + 0.0895590i
\(299\) −6.46257 13.1247i −0.373740 0.759023i
\(300\) 0 0
\(301\) −0.342839 0.0918633i −0.0197609 0.00529491i
\(302\) −28.8767 7.73749i −1.66167 0.445243i
\(303\) 0 0
\(304\) −8.96429 8.96429i −0.514137 0.514137i
\(305\) −8.75812 + 8.58529i −0.501488 + 0.491592i
\(306\) 0 0
\(307\) 24.2740 1.38539 0.692695 0.721231i \(-0.256423\pi\)
0.692695 + 0.721231i \(0.256423\pi\)
\(308\) −3.81522 + 1.02229i −0.217393 + 0.0582501i
\(309\) 0 0
\(310\) 5.66741 9.59417i 0.321887 0.544912i
\(311\) 16.9053i 0.958614i −0.877647 0.479307i \(-0.840888\pi\)
0.877647 0.479307i \(-0.159112\pi\)
\(312\) 0 0
\(313\) −8.40997 8.40997i −0.475359 0.475359i 0.428285 0.903644i \(-0.359118\pi\)
−0.903644 + 0.428285i \(0.859118\pi\)
\(314\) −2.52620 + 9.42790i −0.142562 + 0.532047i
\(315\) 0 0
\(316\) −1.50573 0.869331i −0.0847037 0.0489037i
\(317\) 11.9484i 0.671087i 0.942025 + 0.335543i \(0.108920\pi\)
−0.942025 + 0.335543i \(0.891080\pi\)
\(318\) 0 0
\(319\) −6.45015 24.0723i −0.361139 1.34779i
\(320\) −13.8708 3.86523i −0.775403 0.216073i
\(321\) 0 0
\(322\) 4.13674 15.4385i 0.230531 0.860355i
\(323\) 0.199013 0.114900i 0.0110734 0.00639321i
\(324\) 0 0
\(325\) −3.15328 17.7498i −0.174912 0.984584i
\(326\) −19.9407 −1.10442
\(327\) 0 0
\(328\) −6.93559 + 25.8840i −0.382954 + 1.42920i
\(329\) −2.98480 + 5.16983i −0.164558 + 0.285022i
\(330\) 0 0
\(331\) −5.55136 20.7179i −0.305130 1.13876i −0.932833 0.360308i \(-0.882671\pi\)
0.627703 0.778453i \(-0.283995\pi\)
\(332\) −0.564382 + 0.977538i −0.0309745 + 0.0536494i
\(333\) 0 0
\(334\) −4.31889 2.49351i −0.236319 0.136439i
\(335\) −34.1868 + 8.79617i −1.86783 + 0.480586i
\(336\) 0 0
\(337\) 14.1264 + 14.1264i 0.769514 + 0.769514i 0.978021 0.208507i \(-0.0668604\pi\)
−0.208507 + 0.978021i \(0.566860\pi\)
\(338\) −7.53011 18.2415i −0.409584 0.992206i
\(339\) 0 0
\(340\) −0.0283465 + 0.0479868i −0.00153730 + 0.00260245i
\(341\) −8.20588 14.2130i −0.444373 0.769677i
\(342\) 0 0
\(343\) −18.8559 −1.01812
\(344\) 0.340067 0.0911205i 0.0183352 0.00491289i
\(345\) 0 0
\(346\) −4.54924 4.54924i −0.244569 0.244569i
\(347\) 6.37467 + 23.7906i 0.342210 + 1.27715i 0.895837 + 0.444382i \(0.146577\pi\)
−0.553627 + 0.832765i \(0.686757\pi\)
\(348\) 0 0
\(349\) 26.3190 + 7.05214i 1.40882 + 0.377493i 0.881504 0.472176i \(-0.156531\pi\)
0.527317 + 0.849669i \(0.323198\pi\)
\(350\) 10.1858 16.8574i 0.544456 0.901065i
\(351\) 0 0
\(352\) 6.03818 6.03818i 0.321836 0.321836i
\(353\) −4.39963 7.62038i −0.234169 0.405592i 0.724862 0.688894i \(-0.241903\pi\)
−0.959031 + 0.283302i \(0.908570\pi\)
\(354\) 0 0
\(355\) −0.171277 + 17.1875i −0.00909042 + 0.912219i
\(356\) 3.85208 3.85208i 0.204160 0.204160i
\(357\) 0 0
\(358\) −18.3549 10.5972i −0.970089 0.560081i
\(359\) −11.1256 + 11.1256i −0.587186 + 0.587186i −0.936868 0.349683i \(-0.886289\pi\)
0.349683 + 0.936868i \(0.386289\pi\)
\(360\) 0 0
\(361\) −9.63047 + 5.56015i −0.506867 + 0.292640i
\(362\) 6.56385 + 11.3689i 0.344988 + 0.597537i
\(363\) 0 0
\(364\) 0.917270 2.69684i 0.0480780 0.141353i
\(365\) 3.97289 14.2572i 0.207951 0.746256i
\(366\) 0 0
\(367\) −10.6044 2.84144i −0.553545 0.148322i −0.0288057 0.999585i \(-0.509170\pi\)
−0.524739 + 0.851263i \(0.675837\pi\)
\(368\) 4.74276 + 17.7002i 0.247234 + 0.922689i
\(369\) 0 0
\(370\) 1.35800 + 1.38534i 0.0705993 + 0.0720205i
\(371\) 23.7754 6.37060i 1.23436 0.330745i
\(372\) 0 0
\(373\) −10.2193 + 2.73825i −0.529135 + 0.141781i −0.513489 0.858096i \(-0.671647\pi\)
−0.0156462 + 0.999878i \(0.504981\pi\)
\(374\) 0.310650 + 0.538062i 0.0160633 + 0.0278225i
\(375\) 0 0
\(376\) 5.92134i 0.305370i
\(377\) 17.0158 + 5.78755i 0.876361 + 0.298074i
\(378\) 0 0
\(379\) −2.53694 + 9.46800i −0.130314 + 0.486338i −0.999973 0.00731411i \(-0.997672\pi\)
0.869659 + 0.493652i \(0.164338\pi\)
\(380\) −0.971981 + 1.64543i −0.0498616 + 0.0844090i
\(381\) 0 0
\(382\) 25.6746i 1.31363i
\(383\) −13.0283 + 22.5658i −0.665718 + 1.15306i 0.313373 + 0.949630i \(0.398541\pi\)
−0.979090 + 0.203426i \(0.934792\pi\)
\(384\) 0 0
\(385\) −14.2531 25.2653i −0.726407 1.28764i
\(386\) −6.49390 + 11.2478i −0.330531 + 0.572496i
\(387\) 0 0
\(388\) 1.41589 0.817467i 0.0718812 0.0415006i
\(389\) 32.4888 1.64725 0.823623 0.567138i \(-0.191950\pi\)
0.823623 + 0.567138i \(0.191950\pi\)
\(390\) 0 0
\(391\) −0.332166 −0.0167983
\(392\) 0.594236 0.343082i 0.0300134 0.0173283i
\(393\) 0 0
\(394\) −5.81172 + 10.0662i −0.292790 + 0.507127i
\(395\) 3.42764 12.3005i 0.172463 0.618906i
\(396\) 0 0
\(397\) −12.0927 + 20.9451i −0.606914 + 1.05121i 0.384832 + 0.922987i \(0.374259\pi\)
−0.991746 + 0.128219i \(0.959074\pi\)
\(398\) 23.2680i 1.16632i
\(399\) 0 0
\(400\) −0.450006 + 22.5767i −0.0225003 + 1.12883i
\(401\) 8.49918 31.7194i 0.424429 1.58399i −0.340738 0.940158i \(-0.610677\pi\)
0.765167 0.643832i \(-0.222657\pi\)
\(402\) 0 0
\(403\) 11.8102 + 0.781237i 0.588309 + 0.0389162i
\(404\) 0.764454i 0.0380330i
\(405\) 0 0
\(406\) 9.81806 + 17.0054i 0.487262 + 0.843963i
\(407\) 2.75983 0.739493i 0.136799 0.0366553i
\(408\) 0 0
\(409\) 13.4843 3.61312i 0.666758 0.178657i 0.0904639 0.995900i \(-0.471165\pi\)
0.576294 + 0.817243i \(0.304498\pi\)
\(410\) 35.3381 + 0.352151i 1.74523 + 0.0173915i
\(411\) 0 0
\(412\) −0.525714 1.96199i −0.0259001 0.0966603i
\(413\) −6.72192 1.80113i −0.330764 0.0886279i
\(414\) 0 0
\(415\) −7.98567 2.22527i −0.392001 0.109234i
\(416\) 1.19781 + 6.04084i 0.0587275 + 0.296177i
\(417\) 0 0
\(418\) 10.6520 + 18.4498i 0.521006 + 0.902408i
\(419\) 1.92240 1.10990i 0.0939155 0.0542221i −0.452307 0.891862i \(-0.649399\pi\)
0.546222 + 0.837640i \(0.316065\pi\)
\(420\) 0 0
\(421\) 24.4795 24.4795i 1.19306 1.19306i 0.216853 0.976204i \(-0.430421\pi\)
0.976204 0.216853i \(-0.0695792\pi\)
\(422\) 26.0774 + 15.0558i 1.26943 + 0.732905i
\(423\) 0 0
\(424\) −17.2641 + 17.2641i −0.838417 + 0.838417i
\(425\) −0.393186 0.113799i −0.0190723 0.00552004i
\(426\) 0 0
\(427\) −7.11613 12.3255i −0.344374 0.596472i
\(428\) 0.781202 0.781202i 0.0377608 0.0377608i
\(429\) 0 0
\(430\) −0.228132 0.404389i −0.0110015 0.0195014i
\(431\) −1.59621 0.427704i −0.0768868 0.0206018i 0.220171 0.975461i \(-0.429339\pi\)
−0.297057 + 0.954860i \(0.596005\pi\)
\(432\) 0 0
\(433\) −3.83465 14.3111i −0.184281 0.687748i −0.994783 0.102012i \(-0.967472\pi\)
0.810502 0.585736i \(-0.199195\pi\)
\(434\) 9.14370 + 9.14370i 0.438912 + 0.438912i
\(435\) 0 0
\(436\) 0.659331 0.176667i 0.0315762 0.00846083i
\(437\) −11.3897 −0.544845
\(438\) 0 0
\(439\) 10.9363 + 18.9422i 0.521959 + 0.904060i 0.999674 + 0.0255448i \(0.00813206\pi\)
−0.477714 + 0.878515i \(0.658535\pi\)
\(440\) 24.7743 + 14.6345i 1.18107 + 0.697673i
\(441\) 0 0
\(442\) −0.447100 0.0295753i −0.0212664 0.00140675i
\(443\) 6.14972 + 6.14972i 0.292182 + 0.292182i 0.837942 0.545760i \(-0.183759\pi\)
−0.545760 + 0.837942i \(0.683759\pi\)
\(444\) 0 0
\(445\) 34.4477 + 20.3488i 1.63298 + 0.964624i
\(446\) −24.9432 14.4010i −1.18110 0.681907i
\(447\) 0 0
\(448\) 8.35496 14.4712i 0.394735 0.683701i
\(449\) −1.20994 4.51557i −0.0571008 0.213103i 0.931481 0.363791i \(-0.118518\pi\)
−0.988581 + 0.150688i \(0.951851\pi\)
\(450\) 0 0
\(451\) 26.0247 45.0761i 1.22546 2.12255i
\(452\) 0.451312 1.68432i 0.0212279 0.0792237i
\(453\) 0 0
\(454\) 40.9246 1.92069
\(455\) 20.8602 + 1.58881i 0.977941 + 0.0744845i
\(456\) 0 0
\(457\) 26.0120 15.0180i 1.21679 0.702514i 0.252560 0.967581i \(-0.418727\pi\)
0.964230 + 0.265067i \(0.0853941\pi\)
\(458\) 6.21213 23.1840i 0.290274 1.08332i
\(459\) 0 0
\(460\) 2.40593 1.35728i 0.112177 0.0632834i
\(461\) −0.680045 2.53796i −0.0316729 0.118205i 0.948280 0.317436i \(-0.102822\pi\)
−0.979952 + 0.199232i \(0.936155\pi\)
\(462\) 0 0
\(463\) 25.1475i 1.16870i 0.811500 + 0.584352i \(0.198651\pi\)
−0.811500 + 0.584352i \(0.801349\pi\)
\(464\) −19.4966 11.2564i −0.905109 0.522565i
\(465\) 0 0
\(466\) 3.75502 14.0139i 0.173948 0.649183i
\(467\) 14.9907 + 14.9907i 0.693688 + 0.693688i 0.963041 0.269354i \(-0.0868100\pi\)
−0.269354 + 0.963041i \(0.586810\pi\)
\(468\) 0 0
\(469\) 40.9648i 1.89158i
\(470\) −7.56273 + 1.94587i −0.348843 + 0.0897562i
\(471\) 0 0
\(472\) 6.66756 1.78657i 0.306899 0.0822335i
\(473\) −0.683832 −0.0314426
\(474\) 0 0
\(475\) −13.4821 3.90208i −0.618600 0.179040i
\(476\) −0.0457337 0.0457337i −0.00209620 0.00209620i
\(477\) 0 0
\(478\) 4.12178 + 1.10443i 0.188526 + 0.0505154i
\(479\) −2.21157 0.592587i −0.101049 0.0270760i 0.207940 0.978142i \(-0.433324\pi\)
−0.308989 + 0.951066i \(0.599991\pi\)
\(480\) 0 0
\(481\) −0.663527 + 1.95082i −0.0302542 + 0.0889498i
\(482\) 2.94648 2.94648i 0.134208 0.134208i
\(483\) 0 0
\(484\) −3.68995 + 2.13039i −0.167725 + 0.0968361i
\(485\) 8.40546 + 8.57467i 0.381672 + 0.389356i
\(486\) 0 0
\(487\) −4.82067 2.78321i −0.218445 0.126119i 0.386785 0.922170i \(-0.373586\pi\)
−0.605230 + 0.796050i \(0.706919\pi\)
\(488\) 12.2258 + 7.05859i 0.553437 + 0.319527i
\(489\) 0 0
\(490\) −0.633462 0.646214i −0.0286169 0.0291930i
\(491\) −5.29139 + 3.05498i −0.238797 + 0.137869i −0.614624 0.788820i \(-0.710692\pi\)
0.375827 + 0.926690i \(0.377359\pi\)
\(492\) 0 0
\(493\) 0.288558 0.288558i 0.0129960 0.0129960i
\(494\) −15.3307 1.01412i −0.689763 0.0456273i
\(495\) 0 0
\(496\) −14.3204 3.83713i −0.643004 0.172292i
\(497\) −19.2669 5.16254i −0.864237 0.231572i
\(498\) 0 0
\(499\) −6.22738 6.22738i −0.278776 0.278776i 0.553844 0.832620i \(-0.313160\pi\)
−0.832620 + 0.553844i \(0.813160\pi\)
\(500\) 3.31290 0.782353i 0.148157 0.0349879i
\(501\) 0 0
\(502\) −4.30183 −0.192000
\(503\) 3.55090 0.951461i 0.158327 0.0424236i −0.178785 0.983888i \(-0.557217\pi\)
0.337112 + 0.941465i \(0.390550\pi\)
\(504\) 0 0
\(505\) −5.43725 + 1.39899i −0.241954 + 0.0622542i
\(506\) 30.7939i 1.36896i
\(507\) 0 0
\(508\) −0.175347 0.175347i −0.00777976 0.00777976i
\(509\) 2.90050 10.8248i 0.128563 0.479802i −0.871379 0.490610i \(-0.836774\pi\)
0.999942 + 0.0108085i \(0.00344051\pi\)
\(510\) 0 0
\(511\) 14.8743 + 8.58768i 0.658000 + 0.379897i
\(512\) 15.5347i 0.686544i
\(513\) 0 0
\(514\) 7.88233 + 29.4173i 0.347675 + 1.29754i
\(515\) 12.9927 7.32972i 0.572529 0.322986i
\(516\) 0 0
\(517\) −2.97677 + 11.1095i −0.130918 + 0.488593i
\(518\) −1.94962 + 1.12561i −0.0856615 + 0.0494567i
\(519\) 0 0
\(520\) −18.7074 + 8.98094i −0.820372 + 0.393840i
\(521\) −35.9604 −1.57545 −0.787726 0.616026i \(-0.788742\pi\)
−0.787726 + 0.616026i \(0.788742\pi\)
\(522\) 0 0
\(523\) −2.17209 + 8.10636i −0.0949790 + 0.354467i −0.997016 0.0771917i \(-0.975405\pi\)
0.902037 + 0.431658i \(0.142071\pi\)
\(524\) 2.45189 4.24681i 0.107112 0.185523i
\(525\) 0 0
\(526\) −3.70182 13.8154i −0.161407 0.602380i
\(527\) 0.134369 0.232734i 0.00585322 0.0101381i
\(528\) 0 0
\(529\) −5.66090 3.26832i −0.246126 0.142101i
\(530\) 27.7230 + 16.3763i 1.20421 + 0.711343i
\(531\) 0 0
\(532\) −1.56818 1.56818i −0.0679891 0.0679891i
\(533\) 16.5822 + 33.6765i 0.718253 + 1.45869i
\(534\) 0 0
\(535\) 6.98601 + 4.12673i 0.302031 + 0.178414i
\(536\) 20.3168 + 35.1897i 0.877552 + 1.51997i
\(537\) 0 0
\(538\) −4.88034 −0.210407
\(539\) −1.28736 + 0.344948i −0.0554506 + 0.0148580i
\(540\) 0 0
\(541\) 4.13066 + 4.13066i 0.177591 + 0.177591i 0.790305 0.612714i \(-0.209922\pi\)
−0.612714 + 0.790305i \(0.709922\pi\)
\(542\) −5.96691 22.2688i −0.256301 0.956528i
\(543\) 0 0
\(544\) 0.135064 + 0.0361903i 0.00579082 + 0.00155165i
\(545\) 2.46317 + 4.36624i 0.105511 + 0.187029i
\(546\) 0 0
\(547\) −7.90229 + 7.90229i −0.337877 + 0.337877i −0.855568 0.517691i \(-0.826792\pi\)
0.517691 + 0.855568i \(0.326792\pi\)
\(548\) 2.92856 + 5.07242i 0.125102 + 0.216683i
\(549\) 0 0
\(550\) 10.5499 36.4509i 0.449848 1.55427i
\(551\) 9.89447 9.89447i 0.421519 0.421519i
\(552\) 0 0
\(553\) 12.8329 + 7.40909i 0.545712 + 0.315067i
\(554\) −11.4479 + 11.4479i −0.486375 + 0.486375i
\(555\) 0 0
\(556\) 4.17898 2.41274i 0.177228 0.102323i
\(557\) −5.89341 10.2077i −0.249712 0.432513i 0.713734 0.700417i \(-0.247003\pi\)
−0.963446 + 0.267903i \(0.913669\pi\)
\(558\) 0 0
\(559\) 0.274240 0.409894i 0.0115991 0.0173367i
\(560\) −25.2429 7.03416i −1.06671 0.297247i
\(561\) 0 0
\(562\) −26.4666 7.09170i −1.11643 0.299145i
\(563\) −8.32255 31.0602i −0.350754 1.30903i −0.885745 0.464172i \(-0.846352\pi\)
0.534991 0.844858i \(-0.320315\pi\)
\(564\) 0 0
\(565\) 12.8058 + 0.127612i 0.538744 + 0.00536868i
\(566\) 8.44250 2.26216i 0.354865 0.0950858i
\(567\) 0 0
\(568\) 19.1111 5.12080i 0.801883 0.214864i
\(569\) −4.64237 8.04082i −0.194618 0.337089i 0.752157 0.658984i \(-0.229013\pi\)
−0.946775 + 0.321895i \(0.895680\pi\)
\(570\) 0 0
\(571\) 31.1596i 1.30399i 0.758223 + 0.651995i \(0.226068\pi\)
−0.758223 + 0.651995i \(0.773932\pi\)
\(572\) 0.362249 5.47623i 0.0151464 0.228973i
\(573\) 0 0
\(574\) −10.6144 + 39.6134i −0.443035 + 1.65343i
\(575\) 14.0567 + 14.6285i 0.586206 + 0.610050i
\(576\) 0 0
\(577\) 4.57285i 0.190370i −0.995460 0.0951852i \(-0.969656\pi\)
0.995460 0.0951852i \(-0.0303443\pi\)
\(578\) 12.8983 22.3405i 0.536499 0.929243i
\(579\) 0 0
\(580\) −0.910980 + 3.26916i −0.0378264 + 0.135745i
\(581\) 4.81009 8.33132i 0.199556 0.345641i
\(582\) 0 0
\(583\) 41.0693 23.7114i 1.70092 0.982025i
\(584\) −17.0365 −0.704975
\(585\) 0 0
\(586\) 4.85179 0.200425
\(587\) −6.22829 + 3.59590i −0.257069 + 0.148419i −0.622997 0.782224i \(-0.714085\pi\)
0.365928 + 0.930643i \(0.380752\pi\)
\(588\) 0 0
\(589\) 4.60743 7.98031i 0.189846 0.328823i
\(590\) −4.47289 7.92870i −0.184146 0.326420i
\(591\) 0 0
\(592\) 1.29052 2.23524i 0.0530399 0.0918677i
\(593\) 28.0561i 1.15212i −0.817406 0.576062i \(-0.804589\pi\)
0.817406 0.576062i \(-0.195411\pi\)
\(594\) 0 0
\(595\) 0.241590 0.408980i 0.00990422 0.0167665i
\(596\) 0.113496 0.423573i 0.00464898 0.0173502i
\(597\) 0 0
\(598\) 18.4581 + 12.3494i 0.754808 + 0.505005i
\(599\) 0.912959i 0.0373025i 0.999826 + 0.0186513i \(0.00593722\pi\)
−0.999826 + 0.0186513i \(0.994063\pi\)
\(600\) 0 0
\(601\) −6.22691 10.7853i −0.254001 0.439943i 0.710623 0.703573i \(-0.248413\pi\)
−0.964624 + 0.263631i \(0.915080\pi\)
\(602\) 0.520445 0.139453i 0.0212118 0.00568367i
\(603\) 0 0
\(604\) 5.79162 1.55186i 0.235658 0.0631443i
\(605\) −21.9054 22.3464i −0.890581 0.908509i
\(606\) 0 0
\(607\) −10.0350 37.4512i −0.407309 1.52010i −0.799757 0.600324i \(-0.795038\pi\)
0.392448 0.919774i \(-0.371628\pi\)
\(608\) 4.63125 + 1.24094i 0.187822 + 0.0503268i
\(609\) 0 0
\(610\) 4.99757 17.9344i 0.202346 0.726143i
\(611\) −5.46530 6.23957i −0.221102 0.252426i
\(612\) 0 0
\(613\) −12.3057 21.3140i −0.497021 0.860865i 0.502973 0.864302i \(-0.332239\pi\)
−0.999994 + 0.00343656i \(0.998906\pi\)
\(614\) −31.9122 + 18.4245i −1.28787 + 0.743553i
\(615\) 0 0
\(616\) −23.6110 + 23.6110i −0.951316 + 0.951316i
\(617\) 13.3501 + 7.70769i 0.537455 + 0.310300i 0.744047 0.668127i \(-0.232904\pi\)
−0.206592 + 0.978427i \(0.566237\pi\)
\(618\) 0 0
\(619\) −20.7915 + 20.7915i −0.835683 + 0.835683i −0.988287 0.152604i \(-0.951234\pi\)
0.152604 + 0.988287i \(0.451234\pi\)
\(620\) −0.0222700 + 2.23478i −0.000894385 + 0.0897510i
\(621\) 0 0
\(622\) 12.8316 + 22.2249i 0.514498 + 0.891137i
\(623\) −32.8303 + 32.8303i −1.31532 + 1.31532i
\(624\) 0 0
\(625\) 11.6273 + 22.1315i 0.465093 + 0.885262i
\(626\) 17.4397 + 4.67294i 0.697029 + 0.186768i
\(627\) 0 0
\(628\) −0.506664 1.89090i −0.0202181 0.0754549i
\(629\) 0.0330825 + 0.0330825i 0.00131908 + 0.00131908i
\(630\) 0 0
\(631\) 12.1738 3.26195i 0.484631 0.129856i −0.00822739 0.999966i \(-0.502619\pi\)
0.492858 + 0.870110i \(0.335952\pi\)
\(632\) −14.6984 −0.584670
\(633\) 0 0
\(634\) −9.06908 15.7081i −0.360179 0.623849i
\(635\) 0.926277 1.56806i 0.0367582 0.0622267i
\(636\) 0 0
\(637\) 0.309512 0.909991i 0.0122633 0.0360551i
\(638\) 26.7512 + 26.7512i 1.05909 + 1.05909i
\(639\) 0 0
\(640\) 28.5670 7.35020i 1.12921 0.290542i
\(641\) 8.45341 + 4.88058i 0.333890 + 0.192771i 0.657567 0.753396i \(-0.271586\pi\)
−0.323677 + 0.946168i \(0.604919\pi\)
\(642\) 0 0
\(643\) −13.9057 + 24.0854i −0.548387 + 0.949834i 0.449999 + 0.893029i \(0.351424\pi\)
−0.998385 + 0.0568044i \(0.981909\pi\)
\(644\) 0.829680 + 3.09641i 0.0326940 + 0.122016i
\(645\) 0 0
\(646\) −0.174424 + 0.302111i −0.00686261 + 0.0118864i
\(647\) 4.76862 17.7967i 0.187474 0.699662i −0.806613 0.591079i \(-0.798702\pi\)
0.994087 0.108583i \(-0.0346313\pi\)
\(648\) 0 0
\(649\) −13.4076 −0.526296
\(650\) 17.6180 + 20.9417i 0.691037 + 0.821402i
\(651\) 0 0
\(652\) 3.46357 1.99970i 0.135644 0.0783141i
\(653\) −1.90911 + 7.12491i −0.0747094 + 0.278819i −0.993167 0.116700i \(-0.962769\pi\)
0.918458 + 0.395519i \(0.129435\pi\)
\(654\) 0 0
\(655\) 34.6929 + 9.66746i 1.35556 + 0.377739i
\(656\) −12.1694 45.4167i −0.475134 1.77322i
\(657\) 0 0
\(658\) 9.06214i 0.353279i
\(659\) 12.0786 + 6.97358i 0.470515 + 0.271652i 0.716455 0.697633i \(-0.245763\pi\)
−0.245940 + 0.969285i \(0.579097\pi\)
\(660\) 0 0
\(661\) 0.0586648 0.218940i 0.00228180 0.00851578i −0.964776 0.263074i \(-0.915264\pi\)
0.967057 + 0.254559i \(0.0819302\pi\)
\(662\) 23.0236 + 23.0236i 0.894837 + 0.894837i
\(663\) 0 0
\(664\) 9.54239i 0.370317i
\(665\) 8.28396 14.0236i 0.321238 0.543813i
\(666\) 0 0
\(667\) −19.5369 + 5.23490i −0.756472 + 0.202696i
\(668\) 1.00022 0.0386996
\(669\) 0 0
\(670\) 38.2678 37.5126i 1.47841 1.44924i
\(671\) −19.3893 19.3893i −0.748515 0.748515i
\(672\) 0 0
\(673\) −32.4730 8.70112i −1.25174 0.335404i −0.428734 0.903431i \(-0.641040\pi\)
−0.823010 + 0.568027i \(0.807707\pi\)
\(674\) −29.2938 7.84924i −1.12835 0.302341i
\(675\) 0 0
\(676\) 3.13722 + 2.41329i 0.120662 + 0.0928190i
\(677\) −25.1691 + 25.1691i −0.967326 + 0.967326i −0.999483 0.0321566i \(-0.989762\pi\)
0.0321566 + 0.999483i \(0.489762\pi\)
\(678\) 0 0
\(679\) −12.0673 + 6.96707i −0.463101 + 0.267372i
\(680\) −0.00469500 + 0.471141i −0.000180045 + 0.0180674i
\(681\) 0 0
\(682\) 21.5760 + 12.4569i 0.826187 + 0.477000i
\(683\) −26.6361 15.3784i −1.01920 0.588437i −0.105329 0.994437i \(-0.533590\pi\)
−0.913873 + 0.406001i \(0.866923\pi\)
\(684\) 0 0
\(685\) −30.7186 + 30.1124i −1.17370 + 1.15054i
\(686\) 24.7893 14.3121i 0.946459 0.546438i
\(687\) 0 0
\(688\) −0.436807 + 0.436807i −0.0166531 + 0.0166531i
\(689\) −2.25743 + 34.1263i −0.0860013 + 1.30011i
\(690\) 0 0
\(691\) −37.4215 10.0271i −1.42358 0.381447i −0.536828 0.843692i \(-0.680378\pi\)
−0.886753 + 0.462244i \(0.847044\pi\)
\(692\) 1.24638 + 0.333966i 0.0473802 + 0.0126955i
\(693\) 0 0
\(694\) −26.4382 26.4382i −1.00358 1.00358i
\(695\) 24.8085 + 25.3080i 0.941042 + 0.959986i
\(696\) 0 0
\(697\) 0.852297 0.0322831
\(698\) −39.9534 + 10.7055i −1.51226 + 0.405208i
\(699\) 0 0
\(700\) −0.0787222 + 3.94947i −0.00297542 + 0.149276i
\(701\) 19.8876i 0.751143i 0.926793 + 0.375571i \(0.122553\pi\)
−0.926793 + 0.375571i \(0.877447\pi\)
\(702\) 0 0
\(703\) 1.13437 + 1.13437i 0.0427838 + 0.0427838i
\(704\) 8.33247 31.0972i 0.314042 1.17202i
\(705\) 0 0
\(706\) 11.5681 + 6.67884i 0.435371 + 0.251361i
\(707\) 6.51526i 0.245032i
\(708\) 0 0
\(709\) −8.24828 30.7830i −0.309771 1.15608i −0.928760 0.370680i \(-0.879125\pi\)
0.618990 0.785399i \(-0.287542\pi\)
\(710\) −12.8206 22.7259i −0.481147 0.852887i
\(711\) 0 0
\(712\) 11.9196 44.4844i 0.446705 1.66712i
\(713\) −11.5352 + 6.65983i −0.431996 + 0.249413i
\(714\) 0 0
\(715\) 39.6131 7.44524i 1.48145 0.278436i
\(716\) 4.25084 0.158861
\(717\) 0 0
\(718\) 6.18186 23.0710i 0.230705 0.861002i
\(719\) −15.4818 + 26.8152i −0.577372 + 1.00004i 0.418407 + 0.908260i \(0.362589\pi\)
−0.995779 + 0.0917785i \(0.970745\pi\)
\(720\) 0 0
\(721\) 4.48053 + 16.7216i 0.166864 + 0.622744i
\(722\) 8.44057 14.6195i 0.314126 0.544081i
\(723\) 0 0
\(724\) −2.28019 1.31647i −0.0847427 0.0489262i
\(725\) −24.9193 0.496701i −0.925481 0.0184470i
\(726\) 0 0
\(727\) 16.2588 + 16.2588i 0.603007 + 0.603007i 0.941109 0.338103i \(-0.109785\pi\)
−0.338103 + 0.941109i \(0.609785\pi\)
\(728\) −4.68379 23.6215i −0.173593 0.875470i
\(729\) 0 0
\(730\) 5.59852 + 21.7590i 0.207211 + 0.805336i
\(731\) −0.00559879 0.00969739i −0.000207079 0.000358671i
\(732\) 0 0
\(733\) 31.2515 1.15430 0.577150 0.816638i \(-0.304165\pi\)
0.577150 + 0.816638i \(0.304165\pi\)
\(734\) 16.0980 4.31344i 0.594187 0.159212i
\(735\) 0 0
\(736\) −4.90054 4.90054i −0.180636 0.180636i
\(737\) −20.4273 76.2357i −0.752449 2.80818i
\(738\) 0 0
\(739\) −26.3668 7.06496i −0.969918 0.259889i −0.261125 0.965305i \(-0.584093\pi\)
−0.708793 + 0.705416i \(0.750760\pi\)
\(740\) −0.374801 0.104441i −0.0137780 0.00383934i
\(741\) 0 0
\(742\) −26.4213 + 26.4213i −0.969956 + 0.969956i
\(743\) 16.4830 + 28.5494i 0.604703 + 1.04738i 0.992098 + 0.125463i \(0.0400415\pi\)
−0.387395 + 0.921914i \(0.626625\pi\)
\(744\) 0 0
\(745\) 3.22041 + 0.0320919i 0.117987 + 0.00117576i
\(746\) 11.3566 11.3566i 0.415794 0.415794i
\(747\) 0 0
\(748\) −0.107916 0.0623052i −0.00394579 0.00227810i
\(749\) −6.65800 + 6.65800i −0.243278 + 0.243278i
\(750\) 0 0
\(751\) 26.8241 15.4869i 0.978826 0.565125i 0.0769103 0.997038i \(-0.475494\pi\)
0.901915 + 0.431913i \(0.142161\pi\)
\(752\) 5.19487 + 8.99777i 0.189437 + 0.328115i
\(753\) 0 0
\(754\) −26.7630 + 5.30672i −0.974653 + 0.193259i
\(755\) 21.6367 + 38.3535i 0.787440 + 1.39583i
\(756\) 0 0
\(757\) −49.3561 13.2249i −1.79388 0.480668i −0.800882 0.598822i \(-0.795636\pi\)
−0.992995 + 0.118154i \(0.962302\pi\)
\(758\) −3.85120 14.3729i −0.139882 0.522046i
\(759\) 0 0
\(760\) −0.160988 + 16.1551i −0.00583967 + 0.586007i
\(761\) −1.11809 + 0.299592i −0.0405308 + 0.0108602i −0.279027 0.960283i \(-0.590012\pi\)
0.238497 + 0.971143i \(0.423345\pi\)
\(762\) 0 0
\(763\) −5.61932 + 1.50569i −0.203433 + 0.0545097i
\(764\) −2.57470 4.45951i −0.0931494 0.161339i
\(765\) 0 0
\(766\) 39.5553i 1.42919i
\(767\) 5.37693 8.03664i 0.194150 0.290186i
\(768\) 0 0
\(769\) 7.82422 29.2004i 0.282148 1.05299i −0.668750 0.743488i \(-0.733170\pi\)
0.950898 0.309505i \(-0.100163\pi\)
\(770\) 37.9151 + 22.3970i 1.36636 + 0.807130i
\(771\) 0 0
\(772\) 2.60488i 0.0937517i
\(773\) 3.59641 6.22916i 0.129354 0.224047i −0.794073 0.607823i \(-0.792043\pi\)
0.923426 + 0.383776i \(0.125376\pi\)
\(774\) 0 0
\(775\) −15.9358 + 3.93136i −0.572432 + 0.141219i
\(776\) 6.91074 11.9698i 0.248081 0.429689i
\(777\) 0 0
\(778\) −42.7119 + 24.6597i −1.53130 + 0.884094i
\(779\) 29.2247 1.04708
\(780\) 0 0
\(781\) −38.4300 −1.37513
\(782\) 0.436687 0.252122i 0.0156159 0.00901585i
\(783\) 0 0
\(784\) −0.601981 + 1.04266i −0.0214993 + 0.0372379i
\(785\) 12.5219 7.06412i 0.446927 0.252129i
\(786\) 0 0
\(787\) −3.58943 + 6.21708i −0.127949 + 0.221615i −0.922882 0.385083i \(-0.874173\pi\)
0.794933 + 0.606698i \(0.207506\pi\)
\(788\) 2.33124i 0.0830470i
\(789\) 0 0
\(790\) 4.83017 + 18.7727i 0.171850 + 0.667904i
\(791\) −3.84642 + 14.3550i −0.136763 + 0.510407i
\(792\) 0 0
\(793\) 19.3979 3.84631i 0.688838 0.136586i
\(794\) 36.7145i 1.30295i
\(795\) 0 0
\(796\) −2.33336 4.04150i −0.0827037 0.143247i
\(797\) 38.0553 10.1969i 1.34799 0.361192i 0.488596 0.872510i \(-0.337509\pi\)
0.859391 + 0.511318i \(0.170843\pi\)
\(798\) 0 0
\(799\) −0.181915 + 0.0487439i −0.00643568 + 0.00172443i
\(800\) −4.12188 7.47969i −0.145730 0.264447i
\(801\) 0 0
\(802\) 12.9022 + 48.1515i 0.455591 + 1.70029i
\(803\) 31.9634 + 8.56456i 1.12796 + 0.302237i
\(804\) 0 0
\(805\) −20.5051 + 11.5677i −0.722711 + 0.407710i
\(806\) −16.1195 + 7.93716i −0.567784 + 0.279575i
\(807\) 0 0
\(808\) 3.23129 + 5.59676i 0.113676 + 0.196893i
\(809\) −24.2062 + 13.9754i −0.851043 + 0.491350i −0.861003 0.508600i \(-0.830163\pi\)
0.00995956 + 0.999950i \(0.496830\pi\)
\(810\) 0 0
\(811\) −23.2784 + 23.2784i −0.817415 + 0.817415i −0.985733 0.168317i \(-0.946167\pi\)
0.168317 + 0.985733i \(0.446167\pi\)
\(812\) −3.41066 1.96915i −0.119691 0.0691035i
\(813\) 0 0
\(814\) −3.06696 + 3.06696i −0.107497 + 0.107497i
\(815\) 20.5615 + 20.9754i 0.720238 + 0.734737i
\(816\) 0 0
\(817\) −0.191979 0.332517i −0.00671648 0.0116333i
\(818\) −14.9850 + 14.9850i −0.523937 + 0.523937i
\(819\) 0 0
\(820\) −6.17331 + 3.48261i −0.215582 + 0.121618i
\(821\) −18.8872 5.06082i −0.659169 0.176624i −0.0862981 0.996269i \(-0.527504\pi\)
−0.572871 + 0.819646i \(0.694170\pi\)
\(822\) 0 0
\(823\) −10.5653 39.4302i −0.368283 1.37445i −0.862915 0.505348i \(-0.831364\pi\)
0.494633 0.869102i \(-0.335303\pi\)
\(824\) −12.1421 12.1421i −0.422989 0.422989i
\(825\) 0 0
\(826\) 10.2042 2.73420i 0.355049 0.0951350i
\(827\) −31.8649 −1.10805 −0.554026 0.832499i \(-0.686909\pi\)
−0.554026 + 0.832499i \(0.686909\pi\)
\(828\) 0 0
\(829\) 27.6391 + 47.8724i 0.959946 + 1.66268i 0.722620 + 0.691246i \(0.242938\pi\)
0.237326 + 0.971430i \(0.423729\pi\)
\(830\) 12.1875 3.13582i 0.423035 0.108846i
\(831\) 0 0
\(832\) 15.2983 + 17.4656i 0.530373 + 0.605510i
\(833\) −0.0154318 0.0154318i −0.000534681 0.000534681i
\(834\) 0 0
\(835\) 1.83044 + 7.11413i 0.0633452 + 0.246195i
\(836\) −3.70036 2.13640i −0.127980 0.0738890i
\(837\) 0 0
\(838\) −1.68488 + 2.91830i −0.0582032 + 0.100811i
\(839\) −1.00953 3.76762i −0.0348528 0.130073i 0.946307 0.323268i \(-0.104782\pi\)
−0.981160 + 0.193195i \(0.938115\pi\)
\(840\) 0 0
\(841\) −2.07559 + 3.59503i −0.0715721 + 0.123966i
\(842\) −13.6019 + 50.7629i −0.468751 + 1.74940i
\(843\) 0 0
\(844\) −6.03930 −0.207881
\(845\) −11.4235 + 26.7302i −0.392980 + 0.919547i
\(846\) 0 0
\(847\) 31.4485 18.1568i 1.08058 0.623876i
\(848\) 11.0876 41.3796i 0.380751 1.42098i
\(849\) 0 0
\(850\) 0.603284 0.148830i 0.0206925 0.00510482i
\(851\) −0.600167 2.23986i −0.0205735 0.0767812i
\(852\) 0 0
\(853\) 53.5726i 1.83429i −0.398554 0.917145i \(-0.630488\pi\)
0.398554 0.917145i \(-0.369512\pi\)
\(854\) 18.7107 + 10.8026i 0.640266 + 0.369658i
\(855\) 0 0
\(856\) 2.41729 9.02145i 0.0826213 0.308347i
\(857\) 18.9164 + 18.9164i 0.646171 + 0.646171i 0.952066 0.305894i \(-0.0989554\pi\)
−0.305894 + 0.952066i \(0.598955\pi\)
\(858\) 0 0
\(859\) 18.1203i 0.618258i −0.951020 0.309129i \(-0.899963\pi\)
0.951020 0.309129i \(-0.100037\pi\)
\(860\) 0.0801778 + 0.0473622i 0.00273404 + 0.00161504i
\(861\) 0 0
\(862\) 2.42312 0.649274i 0.0825320 0.0221144i
\(863\) −21.4967 −0.731757 −0.365879 0.930663i \(-0.619232\pi\)
−0.365879 + 0.930663i \(0.619232\pi\)
\(864\) 0 0
\(865\) −0.0944315 + 9.47615i −0.00321077 + 0.322199i
\(866\) 15.9037 + 15.9037i 0.540431 + 0.540431i
\(867\) 0 0
\(868\) −2.50515 0.671252i −0.0850303 0.0227838i
\(869\) 27.5767 + 7.38915i 0.935475 + 0.250660i
\(870\) 0 0
\(871\) 53.8883 + 18.3289i 1.82593 + 0.621050i
\(872\) 4.08036 4.08036i 0.138179 0.138179i
\(873\) 0 0
\(874\) 14.9737 8.64508i 0.506493 0.292424i
\(875\) −28.2350 + 6.66780i −0.954518 + 0.225413i
\(876\) 0 0
\(877\) −18.4889 10.6745i −0.624324 0.360454i 0.154226 0.988036i \(-0.450711\pi\)
−0.778551 + 0.627582i \(0.784045\pi\)
\(878\) −28.7551 16.6018i −0.970437 0.560282i
\(879\) 0 0
\(880\) −50.4848 0.503090i −1.70184 0.0169591i
\(881\) −11.4703 + 6.62238i −0.386444 + 0.223114i −0.680618 0.732638i \(-0.738289\pi\)
0.294174 + 0.955752i \(0.404955\pi\)
\(882\) 0 0
\(883\) −32.5668 + 32.5668i −1.09596 + 1.09596i −0.101082 + 0.994878i \(0.532230\pi\)
−0.994878 + 0.101082i \(0.967770\pi\)
\(884\) 0.0806241 0.0396990i 0.00271168 0.00133522i
\(885\) 0 0
\(886\) −12.7526 3.41705i −0.428432 0.114798i
\(887\) 15.4358 + 4.13600i 0.518282 + 0.138873i 0.508472 0.861079i \(-0.330211\pi\)
0.00981024 + 0.999952i \(0.496877\pi\)
\(888\) 0 0
\(889\) 1.49444 + 1.49444i 0.0501219 + 0.0501219i
\(890\) −60.7325 0.605210i −2.03576 0.0202867i
\(891\) 0 0
\(892\) 5.77663 0.193416
\(893\) −6.23773 + 1.67139i −0.208738 + 0.0559311i
\(894\) 0 0
\(895\) 7.77924 + 30.2345i 0.260031 + 1.01063i
\(896\) 34.2308i 1.14357i
\(897\) 0 0
\(898\) 5.01810 + 5.01810i 0.167456 + 0.167456i
\(899\) 4.23529 15.8063i 0.141255 0.527170i
\(900\) 0 0
\(901\) 0.672500 + 0.388268i 0.0224042 + 0.0129351i
\(902\) 79.0135i 2.63086i
\(903\) 0 0
\(904\) −3.81532 14.2390i −0.126896 0.473581i
\(905\) 5.19065 18.6273i 0.172543 0.619192i
\(906\) 0 0
\(907\) 1.35973 5.07458i 0.0451491 0.168499i −0.939670 0.342082i \(-0.888868\pi\)
0.984819 + 0.173583i \(0.0555346\pi\)
\(908\) −7.10833 + 4.10399i −0.235898 + 0.136196i
\(909\) 0 0
\(910\) −28.6301 + 13.7446i −0.949080 + 0.455630i
\(911\) −9.49722 −0.314657 −0.157328 0.987546i \(-0.550288\pi\)
−0.157328 + 0.987546i \(0.550288\pi\)
\(912\) 0 0
\(913\) 4.79714 17.9032i 0.158762 0.592508i
\(914\) −22.7981 + 39.4874i −0.754093 + 1.30613i
\(915\) 0 0
\(916\) 1.24593 + 4.64987i 0.0411666 + 0.153636i
\(917\) −20.8969 + 36.1945i −0.690076 + 1.19525i
\(918\) 0 0
\(919\) 45.6207 + 26.3391i 1.50489 + 0.868847i 0.999984 + 0.00567026i \(0.00180491\pi\)
0.504903 + 0.863176i \(0.331528\pi\)
\(920\) 11.8773 20.1066i 0.391582 0.662896i
\(921\) 0 0
\(922\) 2.82041 + 2.82041i 0.0928851 + 0.0928851i
\(923\) 15.4118 23.0352i 0.507284 0.758214i
\(924\) 0 0
\(925\) 0.0569454 2.85694i 0.00187235 0.0939355i
\(926\) −19.0876 33.0606i −0.627256 1.08644i
\(927\) 0 0
\(928\) 8.51438 0.279498
\(929\) 8.04841 2.15657i 0.264060 0.0707546i −0.124360 0.992237i \(-0.539688\pi\)
0.388420 + 0.921483i \(0.373021\pi\)
\(930\) 0 0
\(931\) −0.529147 0.529147i −0.0173421 0.0173421i
\(932\) 0.753121 + 2.81069i 0.0246693 + 0.0920671i
\(933\) 0 0
\(934\) −31.0861 8.32950i −1.01717 0.272549i
\(935\) 0.245660 0.881582i 0.00803395 0.0288308i
\(936\) 0 0
\(937\) 16.3814 16.3814i 0.535156 0.535156i −0.386947 0.922102i \(-0.626470\pi\)
0.922102 + 0.386947i \(0.126470\pi\)
\(938\) 31.0933 + 53.8551i 1.01523 + 1.75843i
\(939\) 0 0
\(940\) 1.11846 1.09639i 0.0364802 0.0357603i
\(941\) 24.2325 24.2325i 0.789956 0.789956i −0.191530 0.981487i \(-0.561345\pi\)
0.981487 + 0.191530i \(0.0613451\pi\)
\(942\) 0 0
\(943\) −36.5835 21.1215i −1.19132 0.687810i
\(944\) −8.56432 + 8.56432i −0.278745 + 0.278745i
\(945\) 0 0
\(946\) 0.899011 0.519044i 0.0292294 0.0168756i
\(947\) −16.7208 28.9613i −0.543353 0.941114i −0.998709 0.0508048i \(-0.983821\pi\)
0.455356 0.890309i \(-0.349512\pi\)
\(948\) 0 0
\(949\) −17.9521 + 15.7244i −0.582749 + 0.510436i
\(950\) 20.6862 5.10327i 0.671149 0.165572i
\(951\) 0 0
\(952\) −0.528140 0.141515i −0.0171171 0.00458652i
\(953\) −3.88895 14.5138i −0.125975 0.470147i 0.873897 0.486111i \(-0.161585\pi\)
−0.999873 + 0.0159642i \(0.994918\pi\)
\(954\) 0 0
\(955\) 27.0068 26.4739i 0.873921 0.856675i
\(956\) −0.826681 + 0.221508i −0.0267368 + 0.00716409i
\(957\) 0 0
\(958\) 3.35726 0.899575i 0.108468 0.0290640i
\(959\) −24.9594 43.2310i −0.805982 1.39600i
\(960\) 0 0
\(961\) 20.2237i 0.652378i
\(962\) −0.608402 3.06831i −0.0196157 0.0989264i
\(963\) 0 0
\(964\) −0.216305 + 0.807262i −0.00696672 + 0.0260002i
\(965\) 18.5274 4.76706i 0.596420 0.153457i
\(966\) 0 0
\(967\) 7.49252i 0.240943i −0.992717 0.120472i \(-0.961559\pi\)
0.992717 0.120472i \(-0.0384407\pi\)
\(968\) −18.0100 + 31.1943i −0.578864 + 1.00262i
\(969\) 0 0
\(970\) −17.5588 4.89290i −0.563778 0.157101i
\(971\) 13.9303 24.1280i 0.447045 0.774304i −0.551147 0.834408i \(-0.685810\pi\)
0.998192 + 0.0601036i \(0.0191431\pi\)
\(972\) 0 0
\(973\) −35.6165 + 20.5632i −1.14181 + 0.659225i
\(974\) 8.45010 0.270759
\(975\) 0 0
\(976\) −24.7704 −0.792880
\(977\) 33.6679 19.4382i 1.07713 0.621883i 0.147011 0.989135i \(-0.453035\pi\)
0.930122 + 0.367252i \(0.119701\pi\)
\(978\) 0 0
\(979\) −44.7263 + 77.4683i −1.42946 + 2.47590i
\(980\) 0.174832 + 0.0487183i 0.00558479 + 0.00155625i
\(981\) 0 0
\(982\) 4.63761 8.03257i 0.147992 0.256330i
\(983\) 0.207440i 0.00661630i −0.999995 0.00330815i \(-0.998947\pi\)
0.999995 0.00330815i \(-0.00105302\pi\)
\(984\) 0 0
\(985\) 16.5812 4.26628i 0.528319 0.135935i
\(986\) −0.160336 + 0.598381i −0.00510613 + 0.0190563i
\(987\) 0 0
\(988\) 2.76455 1.36125i 0.0879519 0.0433072i
\(989\) 0.554993i 0.0176477i
\(990\) 0 0
\(991\) 12.7480 + 22.0803i 0.404955 + 0.701402i 0.994316 0.106467i \(-0.0339539\pi\)
−0.589361 + 0.807869i \(0.700621\pi\)
\(992\) 5.41599 1.45121i 0.171958 0.0460760i
\(993\) 0 0
\(994\) 29.2480 7.83698i 0.927691 0.248574i
\(995\) 24.4753 23.9924i 0.775921 0.760609i
\(996\) 0 0
\(997\) −8.96942 33.4743i −0.284064 1.06014i −0.949520 0.313706i \(-0.898429\pi\)
0.665456 0.746437i \(-0.268237\pi\)
\(998\) 12.9137 + 3.46020i 0.408774 + 0.109531i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.dp.a.28.1 20
3.2 odd 2 65.2.t.a.28.5 yes 20
5.2 odd 4 585.2.cf.a.262.1 20
13.7 odd 12 585.2.cf.a.163.1 20
15.2 even 4 65.2.o.a.2.5 20
15.8 even 4 325.2.s.b.132.1 20
15.14 odd 2 325.2.x.b.93.1 20
39.2 even 12 845.2.k.d.268.9 20
39.5 even 4 845.2.o.f.258.1 20
39.8 even 4 845.2.o.e.258.5 20
39.11 even 12 845.2.k.e.268.2 20
39.17 odd 6 845.2.t.e.188.5 20
39.20 even 12 65.2.o.a.33.5 yes 20
39.23 odd 6 845.2.f.d.408.2 20
39.29 odd 6 845.2.f.e.408.9 20
39.32 even 12 845.2.o.g.488.1 20
39.35 odd 6 845.2.t.f.188.1 20
39.38 odd 2 845.2.t.g.418.1 20
65.7 even 12 inner 585.2.dp.a.397.1 20
195.2 odd 12 845.2.f.d.437.9 20
195.17 even 12 845.2.o.f.357.1 20
195.32 odd 12 845.2.t.g.657.1 20
195.47 odd 4 845.2.t.f.427.1 20
195.59 even 12 325.2.s.b.293.1 20
195.62 even 12 845.2.k.d.577.9 20
195.77 even 4 845.2.o.g.587.1 20
195.98 odd 12 325.2.x.b.7.1 20
195.107 even 12 845.2.k.e.577.2 20
195.122 odd 4 845.2.t.e.427.5 20
195.137 odd 12 65.2.t.a.7.5 yes 20
195.152 even 12 845.2.o.e.357.5 20
195.167 odd 12 845.2.f.e.437.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.5 20 15.2 even 4
65.2.o.a.33.5 yes 20 39.20 even 12
65.2.t.a.7.5 yes 20 195.137 odd 12
65.2.t.a.28.5 yes 20 3.2 odd 2
325.2.s.b.132.1 20 15.8 even 4
325.2.s.b.293.1 20 195.59 even 12
325.2.x.b.7.1 20 195.98 odd 12
325.2.x.b.93.1 20 15.14 odd 2
585.2.cf.a.163.1 20 13.7 odd 12
585.2.cf.a.262.1 20 5.2 odd 4
585.2.dp.a.28.1 20 1.1 even 1 trivial
585.2.dp.a.397.1 20 65.7 even 12 inner
845.2.f.d.408.2 20 39.23 odd 6
845.2.f.d.437.9 20 195.2 odd 12
845.2.f.e.408.9 20 39.29 odd 6
845.2.f.e.437.2 20 195.167 odd 12
845.2.k.d.268.9 20 39.2 even 12
845.2.k.d.577.9 20 195.62 even 12
845.2.k.e.268.2 20 39.11 even 12
845.2.k.e.577.2 20 195.107 even 12
845.2.o.e.258.5 20 39.8 even 4
845.2.o.e.357.5 20 195.152 even 12
845.2.o.f.258.1 20 39.5 even 4
845.2.o.f.357.1 20 195.17 even 12
845.2.o.g.488.1 20 39.32 even 12
845.2.o.g.587.1 20 195.77 even 4
845.2.t.e.188.5 20 39.17 odd 6
845.2.t.e.427.5 20 195.122 odd 4
845.2.t.f.188.1 20 39.35 odd 6
845.2.t.f.427.1 20 195.47 odd 4
845.2.t.g.418.1 20 39.38 odd 2
845.2.t.g.657.1 20 195.32 odd 12