Properties

Label 845.2.o.g.587.1
Level $845$
Weight $2$
Character 845.587
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(258,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.258");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 587.1
Root \(-1.51805i\) of defining polynomial
Character \(\chi\) \(=\) 845.587
Dual form 845.2.o.g.488.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.759023 - 1.31467i) q^{2} +(-0.653367 - 0.175069i) q^{3} +(-0.152233 + 0.263675i) q^{4} +(-0.600231 - 2.15400i) q^{5} +(0.265763 + 0.991842i) q^{6} +(2.24723 + 1.29744i) q^{7} -2.57390 q^{8} +(-2.20184 - 1.27123i) q^{9} +(-2.37621 + 2.42404i) q^{10} +(-1.29395 + 4.82908i) q^{11} +(0.145625 - 0.145625i) q^{12} -3.93915i q^{14} +(0.0150717 + 1.51244i) q^{15} +(2.25812 + 3.91117i) q^{16} +(0.0211881 + 0.0790751i) q^{17} +3.85958i q^{18} +(-2.71143 + 0.726525i) q^{19} +(0.659330 + 0.169644i) q^{20} +(-1.24113 - 1.24113i) q^{21} +(7.33077 - 1.96427i) q^{22} +(-1.05016 + 3.91925i) q^{23} +(1.68170 + 0.450611i) q^{24} +(-4.27945 + 2.58580i) q^{25} +(2.65095 + 2.65095i) q^{27} +(-0.684205 + 0.395026i) q^{28} +(-4.31701 + 2.49243i) q^{29} +(1.97691 - 1.16779i) q^{30} +(2.32124 - 2.32124i) q^{31} +(0.854024 - 1.47921i) q^{32} +(1.69085 - 2.92863i) q^{33} +(0.0878751 - 0.0878751i) q^{34} +(1.44583 - 5.61931i) q^{35} +(0.670383 - 0.387046i) q^{36} +(-0.494934 + 0.285750i) q^{37} +(3.01318 + 3.01318i) q^{38} +(1.54493 + 5.54419i) q^{40} +(-10.0563 - 2.69458i) q^{41} +(-0.689624 + 2.57371i) q^{42} +(0.132121 - 0.0354017i) q^{43} +(-1.07633 - 1.07633i) q^{44} +(-1.41662 + 5.50579i) q^{45} +(5.94960 - 1.59419i) q^{46} +2.30053i q^{47} +(-0.790653 - 2.95076i) q^{48} +(-0.133293 - 0.230870i) q^{49} +(6.64766 + 3.66337i) q^{50} -0.0553744i q^{51} +(6.70735 - 6.70735i) q^{53} +(1.47298 - 5.49724i) q^{54} +(11.1785 - 0.111396i) q^{55} +(-5.78416 - 3.33948i) q^{56} +1.89875 q^{57} +(6.55343 + 3.78362i) q^{58} +(-0.694109 - 2.59045i) q^{59} +(-0.401085 - 0.226268i) q^{60} +(-2.74237 + 4.74992i) q^{61} +(-4.81352 - 1.28978i) q^{62} +(-3.29870 - 5.71351i) q^{63} +6.43957 q^{64} -5.13357 q^{66} +(7.89339 + 13.6718i) q^{67} +(-0.0240756 - 0.00645104i) q^{68} +(1.37228 - 2.37686i) q^{69} +(-8.48494 + 2.36440i) q^{70} +(1.98951 + 7.42495i) q^{71} +(5.66731 + 3.27202i) q^{72} +6.61894 q^{73} +(0.751333 + 0.433783i) q^{74} +(3.24874 - 0.940275i) q^{75} +(0.221202 - 0.825536i) q^{76} +(-9.17326 + 9.17326i) q^{77} +5.71054i q^{79} +(7.06928 - 7.21159i) q^{80} +(2.54575 + 4.40937i) q^{81} +(4.09050 + 15.2660i) q^{82} +3.70736i q^{83} +(0.516194 - 0.138314i) q^{84} +(0.157610 - 0.0931025i) q^{85} +(-0.146824 - 0.146824i) q^{86} +(3.25694 - 0.872695i) q^{87} +(3.33050 - 12.4296i) q^{88} +(-17.2829 - 4.63094i) q^{89} +(8.31353 - 2.31664i) q^{90} +(-0.873538 - 0.873538i) q^{92} +(-1.92300 + 1.11024i) q^{93} +(3.02443 - 1.74616i) q^{94} +(3.19242 + 5.40434i) q^{95} +(-0.816956 + 0.816956i) q^{96} +(2.68493 - 4.65043i) q^{97} +(-0.202345 + 0.350471i) q^{98} +(8.98794 - 8.98794i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 2 q^{3} - 6 q^{4} + 6 q^{5} + 8 q^{6} + 6 q^{7} - 12 q^{8} - 12 q^{9} - 10 q^{10} + 16 q^{11} + 24 q^{12} - 12 q^{15} - 2 q^{16} - 10 q^{17} - 20 q^{19} - 14 q^{20} - 4 q^{21} + 16 q^{22}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.759023 1.31467i −0.536710 0.929610i −0.999078 0.0429217i \(-0.986333\pi\)
0.462368 0.886688i \(-0.347000\pi\)
\(3\) −0.653367 0.175069i −0.377222 0.101076i 0.0652261 0.997871i \(-0.479223\pi\)
−0.442448 + 0.896794i \(0.645890\pi\)
\(4\) −0.152233 + 0.263675i −0.0761163 + 0.131837i
\(5\) −0.600231 2.15400i −0.268431 0.963299i
\(6\) 0.265763 + 0.991842i 0.108497 + 0.404918i
\(7\) 2.24723 + 1.29744i 0.849375 + 0.490387i 0.860440 0.509552i \(-0.170189\pi\)
−0.0110652 + 0.999939i \(0.503522\pi\)
\(8\) −2.57390 −0.910011
\(9\) −2.20184 1.27123i −0.733946 0.423744i
\(10\) −2.37621 + 2.42404i −0.751422 + 0.766549i
\(11\) −1.29395 + 4.82908i −0.390140 + 1.45602i 0.439762 + 0.898114i \(0.355063\pi\)
−0.829902 + 0.557909i \(0.811604\pi\)
\(12\) 0.145625 0.145625i 0.0420383 0.0420383i
\(13\) 0 0
\(14\) 3.93915i 1.05278i
\(15\) 0.0150717 + 1.51244i 0.00389149 + 0.390509i
\(16\) 2.25812 + 3.91117i 0.564529 + 0.977793i
\(17\) 0.0211881 + 0.0790751i 0.00513887 + 0.0191785i 0.968448 0.249217i \(-0.0801732\pi\)
−0.963309 + 0.268396i \(0.913507\pi\)
\(18\) 3.85958i 0.909711i
\(19\) −2.71143 + 0.726525i −0.622045 + 0.166676i −0.556057 0.831144i \(-0.687686\pi\)
−0.0659876 + 0.997820i \(0.521020\pi\)
\(20\) 0.659330 + 0.169644i 0.147431 + 0.0379335i
\(21\) −1.24113 1.24113i −0.270836 0.270836i
\(22\) 7.33077 1.96427i 1.56293 0.418785i
\(23\) −1.05016 + 3.91925i −0.218973 + 0.817220i 0.765756 + 0.643131i \(0.222365\pi\)
−0.984730 + 0.174089i \(0.944302\pi\)
\(24\) 1.68170 + 0.450611i 0.343276 + 0.0919805i
\(25\) −4.27945 + 2.58580i −0.855889 + 0.517159i
\(26\) 0 0
\(27\) 2.65095 + 2.65095i 0.510175 + 0.510175i
\(28\) −0.684205 + 0.395026i −0.129303 + 0.0746528i
\(29\) −4.31701 + 2.49243i −0.801649 + 0.462833i −0.844048 0.536268i \(-0.819834\pi\)
0.0423981 + 0.999101i \(0.486500\pi\)
\(30\) 1.97691 1.16779i 0.360933 0.213208i
\(31\) 2.32124 2.32124i 0.416906 0.416906i −0.467230 0.884136i \(-0.654748\pi\)
0.884136 + 0.467230i \(0.154748\pi\)
\(32\) 0.854024 1.47921i 0.150972 0.261490i
\(33\) 1.69085 2.92863i 0.294339 0.509809i
\(34\) 0.0878751 0.0878751i 0.0150705 0.0150705i
\(35\) 1.44583 5.61931i 0.244390 0.949837i
\(36\) 0.670383 0.387046i 0.111730 0.0645076i
\(37\) −0.494934 + 0.285750i −0.0813667 + 0.0469771i −0.540131 0.841581i \(-0.681625\pi\)
0.458765 + 0.888558i \(0.348292\pi\)
\(38\) 3.01318 + 3.01318i 0.488802 + 0.488802i
\(39\) 0 0
\(40\) 1.54493 + 5.54419i 0.244276 + 0.876613i
\(41\) −10.0563 2.69458i −1.57053 0.420823i −0.634554 0.772879i \(-0.718816\pi\)
−0.935979 + 0.352056i \(0.885483\pi\)
\(42\) −0.689624 + 2.57371i −0.106411 + 0.397132i
\(43\) 0.132121 0.0354017i 0.0201483 0.00539871i −0.248731 0.968573i \(-0.580013\pi\)
0.268879 + 0.963174i \(0.413347\pi\)
\(44\) −1.07633 1.07633i −0.162262 0.162262i
\(45\) −1.41662 + 5.50579i −0.211178 + 0.820755i
\(46\) 5.94960 1.59419i 0.877221 0.235051i
\(47\) 2.30053i 0.335567i 0.985824 + 0.167784i \(0.0536610\pi\)
−0.985824 + 0.167784i \(0.946339\pi\)
\(48\) −0.790653 2.95076i −0.114121 0.425905i
\(49\) −0.133293 0.230870i −0.0190418 0.0329814i
\(50\) 6.64766 + 3.66337i 0.940121 + 0.518078i
\(51\) 0.0553744i 0.00775397i
\(52\) 0 0
\(53\) 6.70735 6.70735i 0.921326 0.921326i −0.0757974 0.997123i \(-0.524150\pi\)
0.997123 + 0.0757974i \(0.0241502\pi\)
\(54\) 1.47298 5.49724i 0.200447 0.748080i
\(55\) 11.1785 0.111396i 1.50731 0.0150206i
\(56\) −5.78416 3.33948i −0.772941 0.446257i
\(57\) 1.89875 0.251496
\(58\) 6.55343 + 3.78362i 0.860507 + 0.496814i
\(59\) −0.694109 2.59045i −0.0903653 0.337248i 0.905911 0.423469i \(-0.139188\pi\)
−0.996276 + 0.0862207i \(0.972521\pi\)
\(60\) −0.401085 0.226268i −0.0517799 0.0292111i
\(61\) −2.74237 + 4.74992i −0.351124 + 0.608165i −0.986447 0.164082i \(-0.947534\pi\)
0.635322 + 0.772247i \(0.280867\pi\)
\(62\) −4.81352 1.28978i −0.611318 0.163802i
\(63\) −3.29870 5.71351i −0.415597 0.719834i
\(64\) 6.43957 0.804946
\(65\) 0 0
\(66\) −5.13357 −0.631899
\(67\) 7.89339 + 13.6718i 0.964331 + 1.67027i 0.711401 + 0.702786i \(0.248061\pi\)
0.252930 + 0.967485i \(0.418606\pi\)
\(68\) −0.0240756 0.00645104i −0.00291960 0.000782303i
\(69\) 1.37228 2.37686i 0.165203 0.286140i
\(70\) −8.48494 + 2.36440i −1.01414 + 0.282600i
\(71\) 1.98951 + 7.42495i 0.236111 + 0.881180i 0.977645 + 0.210264i \(0.0674322\pi\)
−0.741533 + 0.670916i \(0.765901\pi\)
\(72\) 5.66731 + 3.27202i 0.667899 + 0.385612i
\(73\) 6.61894 0.774688 0.387344 0.921935i \(-0.373393\pi\)
0.387344 + 0.921935i \(0.373393\pi\)
\(74\) 0.751333 + 0.433783i 0.0873407 + 0.0504262i
\(75\) 3.24874 0.940275i 0.375132 0.108574i
\(76\) 0.221202 0.825536i 0.0253736 0.0946955i
\(77\) −9.17326 + 9.17326i −1.04539 + 1.04539i
\(78\) 0 0
\(79\) 5.71054i 0.642486i 0.946997 + 0.321243i \(0.104101\pi\)
−0.946997 + 0.321243i \(0.895899\pi\)
\(80\) 7.06928 7.21159i 0.790369 0.806280i
\(81\) 2.54575 + 4.40937i 0.282861 + 0.489930i
\(82\) 4.09050 + 15.2660i 0.451720 + 1.68584i
\(83\) 3.70736i 0.406936i 0.979082 + 0.203468i \(0.0652213\pi\)
−0.979082 + 0.203468i \(0.934779\pi\)
\(84\) 0.516194 0.138314i 0.0563213 0.0150913i
\(85\) 0.157610 0.0931025i 0.0170952 0.0100984i
\(86\) −0.146824 0.146824i −0.0158325 0.0158325i
\(87\) 3.25694 0.872695i 0.349181 0.0935627i
\(88\) 3.33050 12.4296i 0.355032 1.32500i
\(89\) −17.2829 4.63094i −1.83198 0.490878i −0.833851 0.551989i \(-0.813869\pi\)
−0.998131 + 0.0611111i \(0.980536\pi\)
\(90\) 8.31353 2.31664i 0.876323 0.244195i
\(91\) 0 0
\(92\) −0.873538 0.873538i −0.0910726 0.0910726i
\(93\) −1.92300 + 1.11024i −0.199405 + 0.115127i
\(94\) 3.02443 1.74616i 0.311946 0.180102i
\(95\) 3.19242 + 5.40434i 0.327535 + 0.554474i
\(96\) −0.816956 + 0.816956i −0.0833802 + 0.0833802i
\(97\) 2.68493 4.65043i 0.272613 0.472180i −0.696917 0.717152i \(-0.745445\pi\)
0.969530 + 0.244972i \(0.0787787\pi\)
\(98\) −0.202345 + 0.350471i −0.0204399 + 0.0354029i
\(99\) 8.98794 8.98794i 0.903322 0.903322i
\(100\) −0.0303375 1.52202i −0.00303375 0.152202i
\(101\) 2.17443 1.25541i 0.216363 0.124918i −0.387902 0.921701i \(-0.626800\pi\)
0.604265 + 0.796783i \(0.293467\pi\)
\(102\) −0.0727989 + 0.0420305i −0.00720817 + 0.00416164i
\(103\) −4.71738 4.71738i −0.464817 0.464817i 0.435414 0.900230i \(-0.356602\pi\)
−0.900230 + 0.435414i \(0.856602\pi\)
\(104\) 0 0
\(105\) −1.92843 + 3.41835i −0.188195 + 0.333597i
\(106\) −13.9090 3.72690i −1.35096 0.361988i
\(107\) 0.939155 3.50497i 0.0907915 0.338838i −0.905556 0.424226i \(-0.860546\pi\)
0.996348 + 0.0853876i \(0.0272129\pi\)
\(108\) −1.10255 + 0.295427i −0.106093 + 0.0284275i
\(109\) 1.58528 + 1.58528i 0.151843 + 0.151843i 0.778941 0.627098i \(-0.215757\pi\)
−0.627098 + 0.778941i \(0.715757\pi\)
\(110\) −8.63120 14.6115i −0.822953 1.39315i
\(111\) 0.373400 0.100052i 0.0354416 0.00949653i
\(112\) 11.7191i 1.10735i
\(113\) 1.48231 + 5.53206i 0.139444 + 0.520412i 0.999940 + 0.0109551i \(0.00348719\pi\)
−0.860496 + 0.509457i \(0.829846\pi\)
\(114\) −1.44120 2.49623i −0.134980 0.233793i
\(115\) 9.07241 0.0904081i 0.846006 0.00843060i
\(116\) 1.51772i 0.140916i
\(117\) 0 0
\(118\) −2.87873 + 2.87873i −0.265009 + 0.265009i
\(119\) −0.0549806 + 0.205190i −0.00504007 + 0.0188098i
\(120\) −0.0387930 3.89286i −0.00354130 0.355368i
\(121\) −12.1195 6.99717i −1.10177 0.636106i
\(122\) 8.32609 0.753809
\(123\) 6.09873 + 3.52110i 0.549904 + 0.317487i
\(124\) 0.258683 + 0.965419i 0.0232304 + 0.0866972i
\(125\) 8.13846 + 7.66586i 0.727926 + 0.685655i
\(126\) −5.00757 + 8.67337i −0.446110 + 0.772685i
\(127\) 0.786718 + 0.210801i 0.0698100 + 0.0187055i 0.293555 0.955942i \(-0.405162\pi\)
−0.223745 + 0.974648i \(0.571828\pi\)
\(128\) −6.59583 11.4243i −0.582994 1.00978i
\(129\) −0.0925213 −0.00814605
\(130\) 0 0
\(131\) −16.1062 −1.40721 −0.703604 0.710592i \(-0.748427\pi\)
−0.703604 + 0.710592i \(0.748427\pi\)
\(132\) 0.514804 + 0.891667i 0.0448079 + 0.0776096i
\(133\) −7.03584 1.88525i −0.610085 0.163472i
\(134\) 11.9825 20.7544i 1.03513 1.79290i
\(135\) 4.11897 7.30133i 0.354504 0.628398i
\(136\) −0.0545361 0.203531i −0.00467643 0.0174527i
\(137\) −16.6601 9.61871i −1.42337 0.821782i −0.426783 0.904354i \(-0.640353\pi\)
−0.996585 + 0.0825721i \(0.973687\pi\)
\(138\) −4.16637 −0.354665
\(139\) −13.7257 7.92451i −1.16419 0.672148i −0.211889 0.977294i \(-0.567962\pi\)
−0.952306 + 0.305146i \(0.901295\pi\)
\(140\) 1.26157 + 1.23667i 0.106622 + 0.104518i
\(141\) 0.402752 1.50309i 0.0339178 0.126583i
\(142\) 8.25125 8.25125i 0.692430 0.692430i
\(143\) 0 0
\(144\) 11.4823i 0.956862i
\(145\) 7.95990 + 7.80282i 0.661034 + 0.647989i
\(146\) −5.02393 8.70170i −0.415783 0.720158i
\(147\) 0.0466709 + 0.174178i 0.00384935 + 0.0143660i
\(148\) 0.174002i 0.0143029i
\(149\) −1.39120 + 0.372772i −0.113972 + 0.0305387i −0.315354 0.948974i \(-0.602123\pi\)
0.201382 + 0.979513i \(0.435457\pi\)
\(150\) −3.70202 3.55732i −0.302269 0.290454i
\(151\) −13.9253 13.9253i −1.13322 1.13322i −0.989638 0.143585i \(-0.954137\pi\)
−0.143585 0.989638i \(-0.545863\pi\)
\(152\) 6.97895 1.87000i 0.566068 0.151677i
\(153\) 0.0538699 0.201045i 0.00435513 0.0162536i
\(154\) 19.0225 + 5.09706i 1.53288 + 0.410733i
\(155\) −6.39322 3.60667i −0.513516 0.289695i
\(156\) 0 0
\(157\) 4.54644 + 4.54644i 0.362845 + 0.362845i 0.864859 0.502014i \(-0.167408\pi\)
−0.502014 + 0.864859i \(0.667408\pi\)
\(158\) 7.50746 4.33444i 0.597262 0.344829i
\(159\) −5.55661 + 3.20811i −0.440668 + 0.254420i
\(160\) −3.69884 0.951700i −0.292419 0.0752385i
\(161\) −7.44495 + 7.44495i −0.586744 + 0.586744i
\(162\) 3.86457 6.69363i 0.303629 0.525901i
\(163\) −6.56789 + 11.3759i −0.514437 + 0.891031i 0.485423 + 0.874280i \(0.338666\pi\)
−0.999860 + 0.0167516i \(0.994668\pi\)
\(164\) 2.24139 2.24139i 0.175023 0.175023i
\(165\) −7.32318 1.88423i −0.570109 0.146687i
\(166\) 4.87395 2.81398i 0.378292 0.218407i
\(167\) −2.84503 + 1.64258i −0.220155 + 0.127107i −0.606022 0.795448i \(-0.707236\pi\)
0.385867 + 0.922554i \(0.373902\pi\)
\(168\) 3.19454 + 3.19454i 0.246464 + 0.246464i
\(169\) 0 0
\(170\) −0.242028 0.136538i −0.0185627 0.0104720i
\(171\) 6.89371 + 1.84716i 0.527175 + 0.141256i
\(172\) −0.0107786 + 0.0402263i −0.000821860 + 0.00306722i
\(173\) −4.09367 + 1.09689i −0.311236 + 0.0833953i −0.411056 0.911610i \(-0.634840\pi\)
0.0998202 + 0.995005i \(0.468173\pi\)
\(174\) −3.61940 3.61940i −0.274386 0.274386i
\(175\) −12.9718 + 0.258559i −0.980579 + 0.0195452i
\(176\) −21.8093 + 5.84377i −1.64393 + 0.440491i
\(177\) 1.81403i 0.136351i
\(178\) 7.02997 + 26.2362i 0.526919 + 1.96649i
\(179\) 6.98083 + 12.0912i 0.521772 + 0.903735i 0.999679 + 0.0253252i \(0.00806213\pi\)
−0.477907 + 0.878410i \(0.658605\pi\)
\(180\) −1.23608 1.21169i −0.0921321 0.0903139i
\(181\) 8.64775i 0.642782i −0.946947 0.321391i \(-0.895850\pi\)
0.946947 0.321391i \(-0.104150\pi\)
\(182\) 0 0
\(183\) 2.62334 2.62334i 0.193923 0.193923i
\(184\) 2.70301 10.0878i 0.199268 0.743680i
\(185\) 0.912582 + 0.894573i 0.0670944 + 0.0657703i
\(186\) 2.91920 + 1.68540i 0.214046 + 0.123579i
\(187\) −0.409276 −0.0299292
\(188\) −0.606592 0.350216i −0.0442402 0.0255421i
\(189\) 2.51785 + 9.39675i 0.183147 + 0.683513i
\(190\) 4.68179 8.29899i 0.339653 0.602072i
\(191\) −8.45647 + 14.6470i −0.611889 + 1.05982i 0.379033 + 0.925383i \(0.376257\pi\)
−0.990922 + 0.134439i \(0.957077\pi\)
\(192\) −4.20740 1.12737i −0.303643 0.0813609i
\(193\) 4.27780 + 7.40936i 0.307923 + 0.533338i 0.977908 0.209037i \(-0.0670329\pi\)
−0.669985 + 0.742375i \(0.733700\pi\)
\(194\) −8.15169 −0.585257
\(195\) 0 0
\(196\) 0.0811660 0.00579757
\(197\) 3.82842 + 6.63101i 0.272764 + 0.472440i 0.969568 0.244820i \(-0.0787290\pi\)
−0.696805 + 0.717261i \(0.745396\pi\)
\(198\) −18.6382 4.99409i −1.32456 0.354915i
\(199\) −7.66380 + 13.2741i −0.543272 + 0.940975i 0.455441 + 0.890266i \(0.349481\pi\)
−0.998713 + 0.0507092i \(0.983852\pi\)
\(200\) 11.0149 6.65558i 0.778869 0.470621i
\(201\) −2.76378 10.3146i −0.194942 0.727533i
\(202\) −3.30088 1.90576i −0.232249 0.134089i
\(203\) −12.9351 −0.907868
\(204\) 0.0146008 + 0.00842979i 0.00102226 + 0.000590203i
\(205\) 0.231976 + 23.2787i 0.0162019 + 1.62585i
\(206\) −2.62118 + 9.78238i −0.182626 + 0.681570i
\(207\) 7.29455 7.29455i 0.507006 0.507006i
\(208\) 0 0
\(209\) 14.0338i 0.970739i
\(210\) 5.95771 0.0593697i 0.411121 0.00409690i
\(211\) −9.91788 17.1783i −0.682775 1.18260i −0.974130 0.225986i \(-0.927440\pi\)
0.291355 0.956615i \(-0.405894\pi\)
\(212\) 0.747481 + 2.78964i 0.0513372 + 0.191593i
\(213\) 5.19952i 0.356265i
\(214\) −5.32071 + 1.42568i −0.363716 + 0.0974575i
\(215\) −0.155559 0.263340i −0.0106090 0.0179596i
\(216\) −6.82328 6.82328i −0.464265 0.464265i
\(217\) 8.22803 2.20469i 0.558555 0.149664i
\(218\) 0.880853 3.28739i 0.0596589 0.222650i
\(219\) −4.32460 1.15877i −0.292229 0.0783025i
\(220\) −1.67236 + 2.96445i −0.112751 + 0.199863i
\(221\) 0 0
\(222\) −0.414955 0.414955i −0.0278499 0.0278499i
\(223\) −16.4311 + 9.48653i −1.10031 + 0.635265i −0.936303 0.351194i \(-0.885776\pi\)
−0.164008 + 0.986459i \(0.552442\pi\)
\(224\) 3.83838 2.21609i 0.256463 0.148069i
\(225\) 12.7098 0.253336i 0.847319 0.0168890i
\(226\) 6.14771 6.14771i 0.408939 0.408939i
\(227\) 13.4794 23.3469i 0.894656 1.54959i 0.0604265 0.998173i \(-0.480754\pi\)
0.834230 0.551417i \(-0.185913\pi\)
\(228\) −0.289052 + 0.500652i −0.0191429 + 0.0331565i
\(229\) −11.1801 + 11.1801i −0.738799 + 0.738799i −0.972346 0.233547i \(-0.924967\pi\)
0.233547 + 0.972346i \(0.424967\pi\)
\(230\) −7.00503 11.8586i −0.461898 0.781931i
\(231\) 7.59946 4.38755i 0.500008 0.288680i
\(232\) 11.1116 6.41527i 0.729510 0.421183i
\(233\) −6.75797 6.75797i −0.442729 0.442729i 0.450199 0.892928i \(-0.351353\pi\)
−0.892928 + 0.450199i \(0.851353\pi\)
\(234\) 0 0
\(235\) 4.95535 1.38085i 0.323251 0.0900767i
\(236\) 0.788702 + 0.211332i 0.0513401 + 0.0137565i
\(237\) 0.999740 3.73108i 0.0649401 0.242360i
\(238\) 0.311489 0.0834631i 0.0201908 0.00541011i
\(239\) 1.98766 + 1.98766i 0.128571 + 0.128571i 0.768464 0.639893i \(-0.221021\pi\)
−0.639893 + 0.768464i \(0.721021\pi\)
\(240\) −5.88136 + 3.47420i −0.379640 + 0.224259i
\(241\) 2.65141 0.710443i 0.170792 0.0457637i −0.172409 0.985025i \(-0.555155\pi\)
0.343202 + 0.939262i \(0.388489\pi\)
\(242\) 21.2441i 1.36562i
\(243\) −3.80231 14.1904i −0.243918 0.910315i
\(244\) −0.834956 1.44619i −0.0534526 0.0925826i
\(245\) −0.417287 + 0.425688i −0.0266595 + 0.0271962i
\(246\) 10.6904i 0.681595i
\(247\) 0 0
\(248\) −5.97463 + 5.97463i −0.379389 + 0.379389i
\(249\) 0.649045 2.42227i 0.0411316 0.153505i
\(250\) 3.90077 16.5179i 0.246706 1.04469i
\(251\) −2.45414 1.41690i −0.154904 0.0894337i 0.420545 0.907272i \(-0.361839\pi\)
−0.575448 + 0.817838i \(0.695172\pi\)
\(252\) 2.00868 0.126535
\(253\) −17.5675 10.1426i −1.10446 0.637661i
\(254\) −0.320005 1.19428i −0.0200789 0.0749355i
\(255\) −0.119277 + 0.0332374i −0.00746939 + 0.00208141i
\(256\) −3.57321 + 6.18898i −0.223325 + 0.386811i
\(257\) −19.3784 5.19242i −1.20879 0.323894i −0.402502 0.915419i \(-0.631859\pi\)
−0.806287 + 0.591525i \(0.798526\pi\)
\(258\) 0.0702258 + 0.121635i 0.00437207 + 0.00757265i
\(259\) −1.48298 −0.0921478
\(260\) 0 0
\(261\) 12.6738 0.784490
\(262\) 12.2250 + 21.1743i 0.755264 + 1.30815i
\(263\) −9.10077 2.43854i −0.561177 0.150367i −0.0329302 0.999458i \(-0.510484\pi\)
−0.528247 + 0.849091i \(0.677151\pi\)
\(264\) −4.35207 + 7.53801i −0.267851 + 0.463932i
\(265\) −18.4736 10.4217i −1.13482 0.640199i
\(266\) 2.86189 + 10.6807i 0.175474 + 0.654878i
\(267\) 10.4813 + 6.05140i 0.641447 + 0.370340i
\(268\) −4.80653 −0.293605
\(269\) 2.78417 + 1.60744i 0.169754 + 0.0980075i 0.582470 0.812852i \(-0.302086\pi\)
−0.412716 + 0.910860i \(0.635420\pi\)
\(270\) −12.7252 + 0.126809i −0.774431 + 0.00771734i
\(271\) 3.93065 14.6694i 0.238770 0.891102i −0.737643 0.675191i \(-0.764061\pi\)
0.976413 0.215911i \(-0.0692721\pi\)
\(272\) −0.261431 + 0.261431i −0.0158516 + 0.0158516i
\(273\) 0 0
\(274\) 29.2033i 1.76424i
\(275\) −6.94964 24.0117i −0.419079 1.44796i
\(276\) 0.417811 + 0.723671i 0.0251493 + 0.0435598i
\(277\) 2.76028 + 10.3015i 0.165849 + 0.618956i 0.997930 + 0.0643031i \(0.0204824\pi\)
−0.832082 + 0.554653i \(0.812851\pi\)
\(278\) 24.0595i 1.44300i
\(279\) −8.06181 + 2.16016i −0.482648 + 0.129325i
\(280\) −3.72143 + 14.4635i −0.222398 + 0.864362i
\(281\) 12.7630 + 12.7630i 0.761379 + 0.761379i 0.976572 0.215193i \(-0.0690380\pi\)
−0.215193 + 0.976572i \(0.569038\pi\)
\(282\) −2.28176 + 0.611396i −0.135877 + 0.0364081i
\(283\) −1.49018 + 5.56143i −0.0885820 + 0.330592i −0.995968 0.0897050i \(-0.971408\pi\)
0.907386 + 0.420297i \(0.138074\pi\)
\(284\) −2.26064 0.605736i −0.134144 0.0359438i
\(285\) −1.13969 4.08991i −0.0675093 0.242266i
\(286\) 0 0
\(287\) −19.1028 19.1028i −1.12760 1.12760i
\(288\) −3.76084 + 2.17132i −0.221610 + 0.127946i
\(289\) 14.7166 8.49665i 0.865684 0.499803i
\(290\) 4.21636 16.3871i 0.247593 0.962286i
\(291\) −2.56839 + 2.56839i −0.150562 + 0.150562i
\(292\) −1.00762 + 1.74525i −0.0589664 + 0.102133i
\(293\) −1.59804 + 2.76788i −0.0933583 + 0.161701i −0.908922 0.416966i \(-0.863094\pi\)
0.815564 + 0.578667i \(0.196427\pi\)
\(294\) 0.193562 0.193562i 0.0112888 0.0112888i
\(295\) −5.16321 + 3.04998i −0.300614 + 0.177577i
\(296\) 1.27391 0.735493i 0.0740446 0.0427497i
\(297\) −16.2318 + 9.37145i −0.941867 + 0.543787i
\(298\) 1.54603 + 1.54603i 0.0895590 + 0.0895590i
\(299\) 0 0
\(300\) −0.246638 + 0.999751i −0.0142396 + 0.0577207i
\(301\) 0.342839 + 0.0918633i 0.0197609 + 0.00529491i
\(302\) −7.73749 + 28.8767i −0.445243 + 1.66167i
\(303\) −1.64048 + 0.439566i −0.0942432 + 0.0252524i
\(304\) −8.96429 8.96429i −0.514137 0.514137i
\(305\) 11.8774 + 3.05602i 0.680098 + 0.174987i
\(306\) −0.305196 + 0.0817771i −0.0174469 + 0.00467488i
\(307\) 24.2740i 1.38539i −0.721231 0.692695i \(-0.756423\pi\)
0.721231 0.692695i \(-0.243577\pi\)
\(308\) −1.02229 3.81522i −0.0582501 0.217393i
\(309\) 2.25631 + 3.90804i 0.128357 + 0.222321i
\(310\) 0.111037 + 11.1425i 0.00630648 + 0.632852i
\(311\) 16.9053i 0.958614i 0.877647 + 0.479307i \(0.159112\pi\)
−0.877647 + 0.479307i \(0.840888\pi\)
\(312\) 0 0
\(313\) −8.40997 + 8.40997i −0.475359 + 0.475359i −0.903644 0.428285i \(-0.859118\pi\)
0.428285 + 0.903644i \(0.359118\pi\)
\(314\) 2.52620 9.42790i 0.142562 0.532047i
\(315\) −10.3269 + 10.5348i −0.581856 + 0.593570i
\(316\) −1.50573 0.869331i −0.0847037 0.0489037i
\(317\) −11.9484 −0.671087 −0.335543 0.942025i \(-0.608920\pi\)
−0.335543 + 0.942025i \(0.608920\pi\)
\(318\) 8.43520 + 4.87006i 0.473022 + 0.273100i
\(319\) −6.45015 24.0723i −0.361139 1.34779i
\(320\) −3.86523 13.8708i −0.216073 0.775403i
\(321\) −1.22723 + 2.12562i −0.0684970 + 0.118640i
\(322\) 15.4385 + 4.13674i 0.860355 + 0.230531i
\(323\) −0.114900 0.199013i −0.00639321 0.0110734i
\(324\) −1.55018 −0.0861214
\(325\) 0 0
\(326\) 19.9407 1.10442
\(327\) −0.758238 1.31331i −0.0419307 0.0726260i
\(328\) 25.8840 + 6.93559i 1.42920 + 0.382954i
\(329\) −2.98480 + 5.16983i −0.164558 + 0.285022i
\(330\) 3.08133 + 11.0577i 0.169621 + 0.608707i
\(331\) 5.55136 + 20.7179i 0.305130 + 1.13876i 0.932833 + 0.360308i \(0.117329\pi\)
−0.627703 + 0.778453i \(0.716005\pi\)
\(332\) −0.977538 0.564382i −0.0536494 0.0309745i
\(333\) 1.45302 0.0796250
\(334\) 4.31889 + 2.49351i 0.236319 + 0.136439i
\(335\) 24.7111 25.2086i 1.35011 1.37729i
\(336\) 2.05165 7.65687i 0.111927 0.417716i
\(337\) −14.1264 + 14.1264i −0.769514 + 0.769514i −0.978021 0.208507i \(-0.933140\pi\)
0.208507 + 0.978021i \(0.433140\pi\)
\(338\) 0 0
\(339\) 3.87397i 0.210405i
\(340\) 0.000555369 0.0557310i 3.01191e−5 0.00302244i
\(341\) 8.20588 + 14.2130i 0.444373 + 0.769677i
\(342\) −2.80408 10.4650i −0.151627 0.565881i
\(343\) 18.8559i 1.01812i
\(344\) −0.340067 + 0.0911205i −0.0183352 + 0.00491289i
\(345\) −5.94344 1.52923i −0.319984 0.0823309i
\(346\) 4.54924 + 4.54924i 0.244569 + 0.244569i
\(347\) 23.7906 6.37467i 1.27715 0.342210i 0.444382 0.895837i \(-0.353423\pi\)
0.832765 + 0.553627i \(0.186757\pi\)
\(348\) −0.265705 + 0.991626i −0.0142433 + 0.0531567i
\(349\) 26.3190 + 7.05214i 1.40882 + 0.377493i 0.881504 0.472176i \(-0.156531\pi\)
0.527317 + 0.849669i \(0.323198\pi\)
\(350\) 10.1858 + 16.8574i 0.544456 + 0.901065i
\(351\) 0 0
\(352\) 6.03818 + 6.03818i 0.321836 + 0.321836i
\(353\) −7.62038 + 4.39963i −0.405592 + 0.234169i −0.688894 0.724862i \(-0.741903\pi\)
0.283302 + 0.959031i \(0.408570\pi\)
\(354\) 2.38485 1.37689i 0.126753 0.0731810i
\(355\) 14.7992 8.74209i 0.785460 0.463982i
\(356\) 3.85208 3.85208i 0.204160 0.204160i
\(357\) 0.0718451 0.124439i 0.00380244 0.00658603i
\(358\) 10.5972 18.3549i 0.560081 0.970089i
\(359\) 11.1256 11.1256i 0.587186 0.587186i −0.349683 0.936868i \(-0.613711\pi\)
0.936868 + 0.349683i \(0.113711\pi\)
\(360\) 3.64625 14.1714i 0.192174 0.746896i
\(361\) −9.63047 + 5.56015i −0.506867 + 0.292640i
\(362\) −11.3689 + 6.56385i −0.597537 + 0.344988i
\(363\) 6.69346 + 6.69346i 0.351316 + 0.351316i
\(364\) 0 0
\(365\) −3.97289 14.2572i −0.207951 0.746256i
\(366\) −5.43999 1.45764i −0.284353 0.0761921i
\(367\) 2.84144 10.6044i 0.148322 0.553545i −0.851263 0.524739i \(-0.824163\pi\)
0.999585 0.0288057i \(-0.00917042\pi\)
\(368\) −17.7002 + 4.74276i −0.922689 + 0.247234i
\(369\) 18.7169 + 18.7169i 0.974365 + 0.974365i
\(370\) 0.483395 1.87874i 0.0251305 0.0976712i
\(371\) 23.7754 6.37060i 1.23436 0.330745i
\(372\) 0.676060i 0.0350521i
\(373\) 2.73825 + 10.2193i 0.141781 + 0.529135i 0.999878 + 0.0156462i \(0.00498054\pi\)
−0.858096 + 0.513489i \(0.828353\pi\)
\(374\) 0.310650 + 0.538062i 0.0160633 + 0.0278225i
\(375\) −3.97535 6.43341i −0.205286 0.332220i
\(376\) 5.92134i 0.305370i
\(377\) 0 0
\(378\) 10.4425 10.4425i 0.537104 0.537104i
\(379\) −2.53694 + 9.46800i −0.130314 + 0.486338i −0.999973 0.00731411i \(-0.997672\pi\)
0.869659 + 0.493652i \(0.164338\pi\)
\(380\) −1.91098 + 0.0190432i −0.0980311 + 0.000976897i
\(381\) −0.477111 0.275460i −0.0244431 0.0141123i
\(382\) 25.6746 1.31363
\(383\) 22.5658 + 13.0283i 1.15306 + 0.665718i 0.949630 0.313373i \(-0.101459\pi\)
0.203426 + 0.979090i \(0.434792\pi\)
\(384\) 2.30945 + 8.61899i 0.117854 + 0.439836i
\(385\) 25.2653 + 14.2531i 1.28764 + 0.726407i
\(386\) 6.49390 11.2478i 0.330531 0.572496i
\(387\) −0.335913 0.0900076i −0.0170754 0.00457534i
\(388\) 0.817467 + 1.41589i 0.0415006 + 0.0718812i
\(389\) 32.4888 1.64725 0.823623 0.567138i \(-0.191950\pi\)
0.823623 + 0.567138i \(0.191950\pi\)
\(390\) 0 0
\(391\) −0.332166 −0.0167983
\(392\) 0.343082 + 0.594236i 0.0173283 + 0.0300134i
\(393\) 10.5233 + 2.81971i 0.530830 + 0.142235i
\(394\) 5.81172 10.0662i 0.292790 0.507127i
\(395\) 12.3005 3.42764i 0.618906 0.172463i
\(396\) 1.00163 + 3.73815i 0.0503340 + 0.187849i
\(397\) 20.9451 + 12.0927i 1.05121 + 0.606914i 0.922987 0.384832i \(-0.125741\pi\)
0.128219 + 0.991746i \(0.459074\pi\)
\(398\) 23.2680 1.16632
\(399\) 4.26694 + 2.46352i 0.213614 + 0.123330i
\(400\) −19.7770 10.8986i −0.988849 0.544931i
\(401\) 8.49918 31.7194i 0.424429 1.58399i −0.340738 0.940158i \(-0.610677\pi\)
0.765167 0.643832i \(-0.222657\pi\)
\(402\) −11.4624 + 11.4624i −0.571695 + 0.571695i
\(403\) 0 0
\(404\) 0.764454i 0.0380330i
\(405\) 7.96975 8.13019i 0.396020 0.403992i
\(406\) 9.81806 + 17.0054i 0.487262 + 0.843963i
\(407\) −0.739493 2.75983i −0.0366553 0.136799i
\(408\) 0.142528i 0.00705620i
\(409\) 13.4843 3.61312i 0.666758 0.178657i 0.0904639 0.995900i \(-0.471165\pi\)
0.576294 + 0.817243i \(0.304498\pi\)
\(410\) 30.4277 17.9740i 1.50271 0.887675i
\(411\) 9.20122 + 9.20122i 0.453863 + 0.453863i
\(412\) 1.96199 0.525714i 0.0966603 0.0259001i
\(413\) 1.80113 6.72192i 0.0886279 0.330764i
\(414\) −15.1266 4.05317i −0.743434 0.199203i
\(415\) 7.98567 2.22527i 0.392001 0.109234i
\(416\) 0 0
\(417\) 7.58055 + 7.58055i 0.371221 + 0.371221i
\(418\) −18.4498 + 10.6520i −0.902408 + 0.521006i
\(419\) 1.92240 1.10990i 0.0939155 0.0542221i −0.452307 0.891862i \(-0.649399\pi\)
0.546222 + 0.837640i \(0.316065\pi\)
\(420\) −0.607763 1.02886i −0.0296558 0.0502033i
\(421\) −24.4795 + 24.4795i −1.19306 + 1.19306i −0.216853 + 0.976204i \(0.569579\pi\)
−0.976204 + 0.216853i \(0.930421\pi\)
\(422\) −15.0558 + 26.0774i −0.732905 + 1.26943i
\(423\) 2.92451 5.06540i 0.142194 0.246288i
\(424\) −17.2641 + 17.2641i −0.838417 + 0.838417i
\(425\) −0.295145 0.283609i −0.0143166 0.0137571i
\(426\) −6.83564 + 3.94656i −0.331188 + 0.191211i
\(427\) −12.3255 + 7.11613i −0.596472 + 0.344374i
\(428\) 0.781202 + 0.781202i 0.0377608 + 0.0377608i
\(429\) 0 0
\(430\) −0.228132 + 0.404389i −0.0110015 + 0.0195014i
\(431\) −1.59621 0.427704i −0.0768868 0.0206018i 0.220171 0.975461i \(-0.429339\pi\)
−0.297057 + 0.954860i \(0.596005\pi\)
\(432\) −4.38216 + 16.3545i −0.210837 + 0.786854i
\(433\) −14.3111 + 3.83465i −0.687748 + 0.184281i −0.585736 0.810502i \(-0.699195\pi\)
−0.102012 + 0.994783i \(0.532528\pi\)
\(434\) −9.14370 9.14370i −0.438912 0.438912i
\(435\) −3.83470 6.49164i −0.183860 0.311250i
\(436\) −0.659331 + 0.176667i −0.0315762 + 0.00846083i
\(437\) 11.3897i 0.544845i
\(438\) 1.75907 + 6.56494i 0.0840516 + 0.313685i
\(439\) −10.9363 18.9422i −0.521959 0.904060i −0.999674 0.0255448i \(-0.991868\pi\)
0.477714 0.878515i \(-0.341465\pi\)
\(440\) −28.7724 + 0.286722i −1.37167 + 0.0136689i
\(441\) 0.677783i 0.0322754i
\(442\) 0 0
\(443\) −6.14972 + 6.14972i −0.292182 + 0.292182i −0.837942 0.545760i \(-0.816241\pi\)
0.545760 + 0.837942i \(0.316241\pi\)
\(444\) −0.0304624 + 0.113687i −0.00144568 + 0.00539536i
\(445\) 0.398677 + 40.0070i 0.0188991 + 1.89651i
\(446\) 24.9432 + 14.4010i 1.18110 + 0.681907i
\(447\) 0.974228 0.0460794
\(448\) 14.4712 + 8.35496i 0.683701 + 0.394735i
\(449\) 1.20994 + 4.51557i 0.0571008 + 0.213103i 0.988581 0.150688i \(-0.0481489\pi\)
−0.931481 + 0.363791i \(0.881482\pi\)
\(450\) −9.98008 16.5168i −0.470465 0.778612i
\(451\) 26.0247 45.0761i 1.22546 2.12255i
\(452\) −1.68432 0.451312i −0.0792237 0.0212279i
\(453\) 6.66043 + 11.5362i 0.312934 + 0.542018i
\(454\) −40.9246 −1.92069
\(455\) 0 0
\(456\) −4.88720 −0.228864
\(457\) −15.0180 26.0120i −0.702514 1.21679i −0.967581 0.252560i \(-0.918727\pi\)
0.265067 0.964230i \(-0.414606\pi\)
\(458\) 23.1840 + 6.21213i 1.08332 + 0.290274i
\(459\) −0.153455 + 0.265792i −0.00716268 + 0.0124061i
\(460\) −1.35728 + 2.40593i −0.0632834 + 0.112177i
\(461\) −0.680045 2.53796i −0.0316729 0.118205i 0.948280 0.317436i \(-0.102822\pi\)
−0.979952 + 0.199232i \(0.936155\pi\)
\(462\) −11.5363 6.66050i −0.536719 0.309875i
\(463\) −25.1475 −1.16870 −0.584352 0.811500i \(-0.698651\pi\)
−0.584352 + 0.811500i \(0.698651\pi\)
\(464\) −19.4966 11.2564i −0.905109 0.522565i
\(465\) 3.54570 + 3.47573i 0.164428 + 0.161183i
\(466\) −3.75502 + 14.0139i −0.173948 + 0.649183i
\(467\) 14.9907 14.9907i 0.693688 0.693688i −0.269354 0.963041i \(-0.586810\pi\)
0.963041 + 0.269354i \(0.0868100\pi\)
\(468\) 0 0
\(469\) 40.9648i 1.89158i
\(470\) −5.57658 5.46654i −0.257229 0.252152i
\(471\) −2.17455 3.76643i −0.100198 0.173548i
\(472\) 1.78657 + 6.66756i 0.0822335 + 0.306899i
\(473\) 0.683832i 0.0314426i
\(474\) −5.66395 + 1.51765i −0.260154 + 0.0697081i
\(475\) 9.72477 10.1203i 0.446203 0.464353i
\(476\) −0.0457337 0.0457337i −0.00209620 0.00209620i
\(477\) −23.2951 + 6.24190i −1.06661 + 0.285797i
\(478\) 1.10443 4.12178i 0.0505154 0.188526i
\(479\) 2.21157 + 0.592587i 0.101049 + 0.0270760i 0.308989 0.951066i \(-0.400009\pi\)
−0.207940 + 0.978142i \(0.566676\pi\)
\(480\) 2.25009 + 1.26936i 0.102702 + 0.0579382i
\(481\) 0 0
\(482\) −2.94648 2.94648i −0.134208 0.134208i
\(483\) 6.16767 3.56090i 0.280639 0.162027i
\(484\) 3.68995 2.13039i 0.167725 0.0968361i
\(485\) −11.6286 2.99201i −0.528028 0.135860i
\(486\) −15.7696 + 15.7696i −0.715324 + 0.715324i
\(487\) −2.78321 + 4.82067i −0.126119 + 0.218445i −0.922170 0.386785i \(-0.873586\pi\)
0.796050 + 0.605230i \(0.206919\pi\)
\(488\) 7.05859 12.2258i 0.319527 0.553437i
\(489\) 6.28282 6.28282i 0.284119 0.284119i
\(490\) 0.876368 + 0.225487i 0.0395903 + 0.0101865i
\(491\) 5.29139 3.05498i 0.238797 0.137869i −0.375827 0.926690i \(-0.622641\pi\)
0.614624 + 0.788820i \(0.289308\pi\)
\(492\) −1.85685 + 1.07205i −0.0837133 + 0.0483319i
\(493\) −0.288558 0.288558i −0.0129960 0.0129960i
\(494\) 0 0
\(495\) −24.7549 13.9652i −1.11265 0.627689i
\(496\) 14.3204 + 3.83713i 0.643004 + 0.172292i
\(497\) −5.16254 + 19.2669i −0.231572 + 0.864237i
\(498\) −3.67712 + 0.985281i −0.164776 + 0.0441515i
\(499\) −6.22738 6.22738i −0.278776 0.278776i 0.553844 0.832620i \(-0.313160\pi\)
−0.832620 + 0.553844i \(0.813160\pi\)
\(500\) −3.26023 + 0.978912i −0.145802 + 0.0437783i
\(501\) 2.14642 0.575130i 0.0958948 0.0256949i
\(502\) 4.30183i 0.192000i
\(503\) 0.951461 + 3.55090i 0.0424236 + 0.158327i 0.983888 0.178785i \(-0.0572166\pi\)
−0.941465 + 0.337112i \(0.890550\pi\)
\(504\) 8.49051 + 14.7060i 0.378198 + 0.655057i
\(505\) −4.00930 3.93018i −0.178412 0.174891i
\(506\) 30.7939i 1.36896i
\(507\) 0 0
\(508\) −0.175347 + 0.175347i −0.00777976 + 0.00777976i
\(509\) −2.90050 + 10.8248i −0.128563 + 0.479802i −0.999942 0.0108085i \(-0.996559\pi\)
0.871379 + 0.490610i \(0.163226\pi\)
\(510\) 0.134230 + 0.131581i 0.00594380 + 0.00582650i
\(511\) 14.8743 + 8.58768i 0.658000 + 0.379897i
\(512\) −15.5347 −0.686544
\(513\) −9.11384 5.26188i −0.402386 0.232318i
\(514\) 7.88233 + 29.4173i 0.347675 + 1.29754i
\(515\) −7.32972 + 12.9927i −0.322986 + 0.572529i
\(516\) 0.0140848 0.0243955i 0.000620047 0.00107395i
\(517\) −11.1095 2.97677i −0.488593 0.130918i
\(518\) 1.12561 + 1.94962i 0.0494567 + 0.0856615i
\(519\) 2.86670 0.125834
\(520\) 0 0
\(521\) 35.9604 1.57545 0.787726 0.616026i \(-0.211258\pi\)
0.787726 + 0.616026i \(0.211258\pi\)
\(522\) −9.61972 16.6618i −0.421044 0.729269i
\(523\) 8.10636 + 2.17209i 0.354467 + 0.0949790i 0.431658 0.902037i \(-0.357929\pi\)
−0.0771917 + 0.997016i \(0.524595\pi\)
\(524\) 2.45189 4.24681i 0.107112 0.185523i
\(525\) 8.52064 + 2.10203i 0.371871 + 0.0917403i
\(526\) 3.70182 + 13.8154i 0.161407 + 0.602380i
\(527\) 0.232734 + 0.134369i 0.0101381 + 0.00585322i
\(528\) 15.2725 0.664651
\(529\) 5.66090 + 3.26832i 0.246126 + 0.142101i
\(530\) 0.320848 + 32.1969i 0.0139368 + 1.39855i
\(531\) −1.76475 + 6.58612i −0.0765835 + 0.285813i
\(532\) 1.56818 1.56818i 0.0679891 0.0679891i
\(533\) 0 0
\(534\) 18.3726i 0.795061i
\(535\) −8.11343 + 0.0808517i −0.350774 + 0.00349552i
\(536\) −20.3168 35.1897i −0.877552 1.51997i
\(537\) −2.44426 9.12209i −0.105477 0.393647i
\(538\) 4.88034i 0.210407i
\(539\) 1.28736 0.344948i 0.0554506 0.0148580i
\(540\) 1.29813 + 2.19757i 0.0558628 + 0.0945682i
\(541\) −4.13066 4.13066i −0.177591 0.177591i 0.612714 0.790305i \(-0.290078\pi\)
−0.790305 + 0.612714i \(0.790078\pi\)
\(542\) −22.2688 + 5.96691i −0.956528 + 0.256301i
\(543\) −1.51396 + 5.65016i −0.0649700 + 0.242471i
\(544\) 0.135064 + 0.0361903i 0.00579082 + 0.00155165i
\(545\) 2.46317 4.36624i 0.105511 0.187029i
\(546\) 0 0
\(547\) −7.90229 7.90229i −0.337877 0.337877i 0.517691 0.855568i \(-0.326792\pi\)
−0.855568 + 0.517691i \(0.826792\pi\)
\(548\) 5.07242 2.92856i 0.216683 0.125102i
\(549\) 12.0765 6.97237i 0.515413 0.297574i
\(550\) −26.2924 + 27.3619i −1.12111 + 1.16671i
\(551\) 9.89447 9.89447i 0.421519 0.421519i
\(552\) −3.53211 + 6.11780i −0.150337 + 0.260391i
\(553\) −7.40909 + 12.8329i −0.315067 + 0.545712i
\(554\) 11.4479 11.4479i 0.486375 0.486375i
\(555\) −0.439639 0.744250i −0.0186616 0.0315916i
\(556\) 4.17898 2.41274i 0.177228 0.102323i
\(557\) 10.2077 5.89341i 0.432513 0.249712i −0.267903 0.963446i \(-0.586331\pi\)
0.700417 + 0.713734i \(0.252997\pi\)
\(558\) 8.95899 + 8.95899i 0.379264 + 0.379264i
\(559\) 0 0
\(560\) 25.2429 7.03416i 1.06671 0.297247i
\(561\) 0.267408 + 0.0716517i 0.0112900 + 0.00302514i
\(562\) 7.09170 26.4666i 0.299145 1.11643i
\(563\) 31.0602 8.32255i 1.30903 0.350754i 0.464172 0.885745i \(-0.346352\pi\)
0.844858 + 0.534991i \(0.179685\pi\)
\(564\) 0.335015 + 0.335015i 0.0141067 + 0.0141067i
\(565\) 11.0263 6.51341i 0.463882 0.274021i
\(566\) 8.44250 2.26216i 0.354865 0.0950858i
\(567\) 13.2118i 0.554845i
\(568\) −5.12080 19.1111i −0.214864 0.801883i
\(569\) −4.64237 8.04082i −0.194618 0.337089i 0.752157 0.658984i \(-0.229013\pi\)
−0.946775 + 0.321895i \(0.895680\pi\)
\(570\) −4.51182 + 4.60265i −0.188979 + 0.192784i
\(571\) 31.1596i 1.30399i 0.758223 + 0.651995i \(0.226068\pi\)
−0.758223 + 0.651995i \(0.773932\pi\)
\(572\) 0 0
\(573\) 8.08942 8.08942i 0.337940 0.337940i
\(574\) −10.6144 + 39.6134i −0.443035 + 1.65343i
\(575\) −5.64028 19.4877i −0.235216 0.812694i
\(576\) −14.1789 8.18618i −0.590786 0.341091i
\(577\) −4.57285 −0.190370 −0.0951852 0.995460i \(-0.530344\pi\)
−0.0951852 + 0.995460i \(0.530344\pi\)
\(578\) −22.3405 12.8983i −0.929243 0.536499i
\(579\) −1.49782 5.58994i −0.0622473 0.232310i
\(580\) −3.26916 + 0.910980i −0.135745 + 0.0378264i
\(581\) −4.81009 + 8.33132i −0.199556 + 0.345641i
\(582\) 5.32605 + 1.42711i 0.220772 + 0.0591556i
\(583\) 23.7114 + 41.0693i 0.982025 + 1.70092i
\(584\) −17.0365 −0.704975
\(585\) 0 0
\(586\) 4.85179 0.200425
\(587\) −3.59590 6.22829i −0.148419 0.257069i 0.782224 0.622997i \(-0.214085\pi\)
−0.930643 + 0.365928i \(0.880752\pi\)
\(588\) −0.0530312 0.0142097i −0.00218697 0.000585997i
\(589\) −4.60743 + 7.98031i −0.189846 + 0.328823i
\(590\) 7.92870 + 4.47289i 0.326420 + 0.184146i
\(591\) −1.34048 5.00272i −0.0551398 0.205785i
\(592\) −2.23524 1.29052i −0.0918677 0.0530399i
\(593\) −28.0561 −1.15212 −0.576062 0.817406i \(-0.695411\pi\)
−0.576062 + 0.817406i \(0.695411\pi\)
\(594\) 24.6407 + 14.2263i 1.01102 + 0.583712i
\(595\) 0.474982 0.00473328i 0.0194724 0.000194045i
\(596\) 0.113496 0.423573i 0.00464898 0.0173502i
\(597\) 7.33116 7.33116i 0.300044 0.300044i
\(598\) 0 0
\(599\) 0.912959i 0.0373025i 0.999826 + 0.0186513i \(0.00593722\pi\)
−0.999826 + 0.0186513i \(0.994063\pi\)
\(600\) −8.36194 + 2.42017i −0.341375 + 0.0988032i
\(601\) −6.22691 10.7853i −0.254001 0.439943i 0.710623 0.703573i \(-0.248413\pi\)
−0.964624 + 0.263631i \(0.915080\pi\)
\(602\) −0.139453 0.520445i −0.00568367 0.0212118i
\(603\) 40.1373i 1.63452i
\(604\) 5.79162 1.55186i 0.235658 0.0631443i
\(605\) −7.79745 + 30.3052i −0.317011 + 1.23208i
\(606\) 1.82305 + 1.82305i 0.0740562 + 0.0740562i
\(607\) 37.4512 10.0350i 1.52010 0.407309i 0.600324 0.799757i \(-0.295038\pi\)
0.919774 + 0.392448i \(0.128372\pi\)
\(608\) −1.24094 + 4.63125i −0.0503268 + 0.187822i
\(609\) 8.45138 + 2.26454i 0.342467 + 0.0917638i
\(610\) −4.99757 17.9344i −0.202346 0.726143i
\(611\) 0 0
\(612\) 0.0448098 + 0.0448098i 0.00181133 + 0.00181133i
\(613\) 21.3140 12.3057i 0.860865 0.497021i −0.00343656 0.999994i \(-0.501094\pi\)
0.864302 + 0.502973i \(0.167761\pi\)
\(614\) −31.9122 + 18.4245i −1.28787 + 0.743553i
\(615\) 3.92382 15.2501i 0.158224 0.614945i
\(616\) 23.6110 23.6110i 0.951316 0.951316i
\(617\) −7.70769 + 13.3501i −0.310300 + 0.537455i −0.978427 0.206592i \(-0.933763\pi\)
0.668127 + 0.744047i \(0.267096\pi\)
\(618\) 3.42518 5.93259i 0.137781 0.238644i
\(619\) −20.7915 + 20.7915i −0.835683 + 0.835683i −0.988287 0.152604i \(-0.951234\pi\)
0.152604 + 0.988287i \(0.451234\pi\)
\(620\) 1.92424 1.13668i 0.0772795 0.0456501i
\(621\) −13.1736 + 7.60581i −0.528640 + 0.305211i
\(622\) 22.2249 12.8316i 0.891137 0.514498i
\(623\) −32.8303 32.8303i −1.31532 1.31532i
\(624\) 0 0
\(625\) 11.6273 22.1315i 0.465093 0.885262i
\(626\) 17.4397 + 4.67294i 0.697029 + 0.186768i
\(627\) −2.45689 + 9.16923i −0.0981186 + 0.366184i
\(628\) −1.89090 + 0.506664i −0.0754549 + 0.0202181i
\(629\) −0.0330825 0.0330825i −0.00131908 0.00131908i
\(630\) 21.6882 + 5.58030i 0.864077 + 0.222324i
\(631\) −12.1738 + 3.26195i −0.484631 + 0.129856i −0.492858 0.870110i \(-0.664048\pi\)
0.00822739 + 0.999966i \(0.497381\pi\)
\(632\) 14.6984i 0.584670i
\(633\) 3.47263 + 12.9600i 0.138025 + 0.515115i
\(634\) 9.06908 + 15.7081i 0.360179 + 0.623849i
\(635\) −0.0181478 1.82112i −0.000720173 0.0722690i
\(636\) 1.95352i 0.0774620i
\(637\) 0 0
\(638\) −26.7512 + 26.7512i −1.05909 + 1.05909i
\(639\) 5.05825 18.8777i 0.200101 0.746789i
\(640\) −20.6490 + 21.0646i −0.816222 + 0.832653i
\(641\) −8.45341 4.88058i −0.333890 0.192771i 0.323677 0.946168i \(-0.395081\pi\)
−0.657567 + 0.753396i \(0.728414\pi\)
\(642\) 3.72597 0.147052
\(643\) −24.0854 13.9057i −0.949834 0.548387i −0.0568044 0.998385i \(-0.518091\pi\)
−0.893029 + 0.449999i \(0.851424\pi\)
\(644\) −0.829680 3.09641i −0.0326940 0.122016i
\(645\) 0.0555341 + 0.199291i 0.00218665 + 0.00784708i
\(646\) −0.174424 + 0.302111i −0.00686261 + 0.0118864i
\(647\) −17.7967 4.76862i −0.699662 0.187474i −0.108583 0.994087i \(-0.534631\pi\)
−0.591079 + 0.806613i \(0.701298\pi\)
\(648\) −6.55251 11.3493i −0.257407 0.445842i
\(649\) 13.4076 0.526296
\(650\) 0 0
\(651\) −5.76190 −0.225826
\(652\) −1.99970 3.46357i −0.0783141 0.135644i
\(653\) −7.12491 1.90911i −0.278819 0.0747094i 0.116700 0.993167i \(-0.462769\pi\)
−0.395519 + 0.918458i \(0.629435\pi\)
\(654\) −1.15104 + 1.99366i −0.0450093 + 0.0779583i
\(655\) 9.66746 + 34.6929i 0.377739 + 1.35556i
\(656\) −12.1694 45.4167i −0.475134 1.77322i
\(657\) −14.5738 8.41420i −0.568579 0.328269i
\(658\) 9.06214 0.353279
\(659\) 12.0786 + 6.97358i 0.470515 + 0.271652i 0.716455 0.697633i \(-0.245763\pi\)
−0.245940 + 0.969285i \(0.579097\pi\)
\(660\) 1.61165 1.64409i 0.0627334 0.0639963i
\(661\) −0.0586648 + 0.218940i −0.00228180 + 0.00851578i −0.967057 0.254559i \(-0.918070\pi\)
0.964776 + 0.263074i \(0.0847365\pi\)
\(662\) 23.0236 23.0236i 0.894837 0.894837i
\(663\) 0 0
\(664\) 9.54239i 0.370317i
\(665\) 0.162301 + 16.2868i 0.00629375 + 0.631575i
\(666\) −1.10288 1.91024i −0.0427356 0.0740202i
\(667\) −5.23490 19.5369i −0.202696 0.756472i
\(668\) 1.00022i 0.0386996i
\(669\) 12.3964 3.32160i 0.479271 0.128420i
\(670\) −51.8972 13.3530i −2.00496 0.515871i
\(671\) −19.3893 19.3893i −0.748515 0.748515i
\(672\) −2.89584 + 0.775939i −0.111710 + 0.0299325i
\(673\) −8.70112 + 32.4730i −0.335404 + 1.25174i 0.568027 + 0.823010i \(0.307707\pi\)
−0.903431 + 0.428734i \(0.858960\pi\)
\(674\) 29.2938 + 7.84924i 1.12835 + 0.302341i
\(675\) −18.1994 4.48978i −0.700495 0.172812i
\(676\) 0 0
\(677\) 25.1691 + 25.1691i 0.967326 + 0.967326i 0.999483 0.0321566i \(-0.0102375\pi\)
−0.0321566 + 0.999483i \(0.510238\pi\)
\(678\) −5.09298 + 2.94044i −0.195595 + 0.112927i
\(679\) 12.0673 6.96707i 0.463101 0.267372i
\(680\) −0.405673 + 0.239637i −0.0155568 + 0.00918964i
\(681\) −12.8943 + 12.8943i −0.494110 + 0.494110i
\(682\) 12.4569 21.5760i 0.477000 0.826187i
\(683\) −15.3784 + 26.6361i −0.588437 + 1.01920i 0.406001 + 0.913873i \(0.366923\pi\)
−0.994437 + 0.105329i \(0.966410\pi\)
\(684\) −1.53650 + 1.53650i −0.0587494 + 0.0587494i
\(685\) −10.7188 + 41.6593i −0.409545 + 1.59172i
\(686\) −24.7893 + 14.3121i −0.946459 + 0.546438i
\(687\) 9.26197 5.34740i 0.353366 0.204016i
\(688\) 0.436807 + 0.436807i 0.0166531 + 0.0166531i
\(689\) 0 0
\(690\) 2.50078 + 8.97436i 0.0952032 + 0.341648i
\(691\) 37.4215 + 10.0271i 1.42358 + 0.381447i 0.886753 0.462244i \(-0.152956\pi\)
0.536828 + 0.843692i \(0.319622\pi\)
\(692\) 0.333966 1.24638i 0.0126955 0.0473802i
\(693\) 31.8593 8.53668i 1.21024 0.324282i
\(694\) −26.4382 26.4382i −1.00358 1.00358i
\(695\) −8.83085 + 34.3216i −0.334973 + 1.30189i
\(696\) −8.38305 + 2.24623i −0.317759 + 0.0851432i
\(697\) 0.852297i 0.0322831i
\(698\) −10.7055 39.9534i −0.405208 1.51226i
\(699\) 3.23232 + 5.59854i 0.122258 + 0.211756i
\(700\) 1.90656 3.45970i 0.0720612 0.130765i
\(701\) 19.8876i 0.751143i −0.926793 0.375571i \(-0.877447\pi\)
0.926793 0.375571i \(-0.122553\pi\)
\(702\) 0 0
\(703\) 1.13437 1.13437i 0.0427838 0.0427838i
\(704\) −8.33247 + 31.0972i −0.314042 + 1.17202i
\(705\) −3.47941 + 0.0346729i −0.131042 + 0.00130586i
\(706\) 11.5681 + 6.67884i 0.435371 + 0.251361i
\(707\) 6.51526 0.245032
\(708\) −0.478314 0.276155i −0.0179761 0.0103785i
\(709\) −8.24828 30.7830i −0.309771 1.15608i −0.928760 0.370680i \(-0.879125\pi\)
0.618990 0.785399i \(-0.287542\pi\)
\(710\) −22.7259 12.8206i −0.852887 0.481147i
\(711\) 7.25942 12.5737i 0.272250 0.471550i
\(712\) 44.4844 + 11.9196i 1.66712 + 0.446705i
\(713\) 6.65983 + 11.5352i 0.249413 + 0.431996i
\(714\) −0.218128 −0.00816325
\(715\) 0 0
\(716\) −4.25084 −0.158861
\(717\) −0.950692 1.64665i −0.0355042 0.0614951i
\(718\) −23.0710 6.18186i −0.861002 0.230705i
\(719\) −15.4818 + 26.8152i −0.577372 + 1.00004i 0.418407 + 0.908260i \(0.362589\pi\)
−0.995779 + 0.0917785i \(0.970745\pi\)
\(720\) −24.7330 + 6.89206i −0.921744 + 0.256852i
\(721\) −4.48053 16.7216i −0.166864 0.622744i
\(722\) 14.6195 + 8.44057i 0.544081 + 0.314126i
\(723\) −1.85672 −0.0690522
\(724\) 2.28019 + 1.31647i 0.0847427 + 0.0489262i
\(725\) 12.0295 21.8291i 0.446765 0.810714i
\(726\) 3.71918 13.8802i 0.138032 0.515141i
\(727\) −16.2588 + 16.2588i −0.603007 + 0.603007i −0.941109 0.338103i \(-0.890215\pi\)
0.338103 + 0.941109i \(0.390215\pi\)
\(728\) 0 0
\(729\) 5.33729i 0.197678i
\(730\) −15.7280 + 16.0446i −0.582118 + 0.593836i
\(731\) 0.00559879 + 0.00969739i 0.000207079 + 0.000358671i
\(732\) 0.292350 + 1.09107i 0.0108056 + 0.0403269i
\(733\) 31.2515i 1.15430i 0.816638 + 0.577150i \(0.195835\pi\)
−0.816638 + 0.577150i \(0.804165\pi\)
\(734\) −16.0980 + 4.31344i −0.594187 + 0.159212i
\(735\) 0.347167 0.205076i 0.0128054 0.00756435i
\(736\) 4.90054 + 4.90054i 0.180636 + 0.180636i
\(737\) −76.2357 + 20.4273i −2.80818 + 0.752449i
\(738\) 10.3999 38.8131i 0.382827 1.42873i
\(739\) −26.3668 7.06496i −0.969918 0.259889i −0.261125 0.965305i \(-0.584093\pi\)
−0.708793 + 0.705416i \(0.750760\pi\)
\(740\) −0.374801 + 0.104441i −0.0137780 + 0.00383934i
\(741\) 0 0
\(742\) −26.4213 26.4213i −0.969956 0.969956i
\(743\) 28.5494 16.4830i 1.04738 0.604703i 0.125463 0.992098i \(-0.459958\pi\)
0.921914 + 0.387395i \(0.126625\pi\)
\(744\) 4.94960 2.85765i 0.181461 0.104767i
\(745\) 1.63800 + 2.77291i 0.0600115 + 0.101591i
\(746\) 11.3566 11.3566i 0.415794 0.415794i
\(747\) 4.71292 8.16301i 0.172437 0.298669i
\(748\) 0.0623052 0.107916i 0.00227810 0.00394579i
\(749\) 6.65800 6.65800i 0.243278 0.243278i
\(750\) −5.44041 + 10.1094i −0.198656 + 0.369142i
\(751\) 26.8241 15.4869i 0.978826 0.565125i 0.0769103 0.997038i \(-0.475494\pi\)
0.901915 + 0.431913i \(0.142161\pi\)
\(752\) −8.99777 + 5.19487i −0.328115 + 0.189437i
\(753\) 1.35540 + 1.35540i 0.0493934 + 0.0493934i
\(754\) 0 0
\(755\) −21.6367 + 38.3535i −0.787440 + 1.39583i
\(756\) −2.86098 0.766598i −0.104053 0.0278809i
\(757\) 13.2249 49.3561i 0.480668 1.79388i −0.118154 0.992995i \(-0.537698\pi\)
0.598822 0.800882i \(-0.295636\pi\)
\(758\) 14.3729 3.85120i 0.522046 0.139882i
\(759\) 9.70238 + 9.70238i 0.352174 + 0.352174i
\(760\) −8.21697 13.9102i −0.298061 0.504577i
\(761\) −1.11809 + 0.299592i −0.0405308 + 0.0108602i −0.279027 0.960283i \(-0.590012\pi\)
0.238497 + 0.971143i \(0.423345\pi\)
\(762\) 0.836323i 0.0302968i
\(763\) 1.50569 + 5.61932i 0.0545097 + 0.203433i
\(764\) −2.57470 4.45951i −0.0931494 0.161339i
\(765\) −0.465386 + 0.00463766i −0.0168261 + 0.000167675i
\(766\) 39.5553i 1.42919i
\(767\) 0 0
\(768\) 3.41812 3.41812i 0.123341 0.123341i
\(769\) 7.82422 29.2004i 0.282148 1.05299i −0.668750 0.743488i \(-0.733170\pi\)
0.950898 0.309505i \(-0.100163\pi\)
\(770\) −0.438805 44.0339i −0.0158134 1.58687i
\(771\) 11.7522 + 6.78511i 0.423243 + 0.244360i
\(772\) −2.60488 −0.0937517
\(773\) −6.22916 3.59641i −0.224047 0.129354i 0.383776 0.923426i \(-0.374624\pi\)
−0.607823 + 0.794073i \(0.707957\pi\)
\(774\) 0.136636 + 0.509931i 0.00491127 + 0.0183291i
\(775\) −3.93136 + 15.9358i −0.141219 + 0.572432i
\(776\) −6.91074 + 11.9698i −0.248081 + 0.429689i
\(777\) 0.968929 + 0.259624i 0.0347601 + 0.00931395i
\(778\) −24.6597 42.7119i −0.884094 1.53130i
\(779\) 29.2247 1.04708
\(780\) 0 0
\(781\) −38.4300 −1.37513
\(782\) 0.252122 + 0.436687i 0.00901585 + 0.0156159i
\(783\) −18.0515 4.83688i −0.645107 0.172856i
\(784\) 0.601981 1.04266i 0.0214993 0.0372379i
\(785\) 7.06412 12.5219i 0.252129 0.446927i
\(786\) −4.28044 15.9748i −0.152678 0.569804i
\(787\) 6.21708 + 3.58943i 0.221615 + 0.127949i 0.606698 0.794933i \(-0.292494\pi\)
−0.385083 + 0.922882i \(0.625827\pi\)
\(788\) −2.33124 −0.0830470
\(789\) 5.51923 + 3.18653i 0.196490 + 0.113443i
\(790\) −13.8426 13.5694i −0.492497 0.482778i
\(791\) −3.84642 + 14.3550i −0.136763 + 0.510407i
\(792\) −23.1341 + 23.1341i −0.822034 + 0.822034i
\(793\) 0 0
\(794\) 36.7145i 1.30295i
\(795\) 10.2455 + 10.0433i 0.363372 + 0.356201i
\(796\) −2.33336 4.04150i −0.0827037 0.143247i
\(797\) −10.1969 38.0553i −0.361192 1.34799i −0.872510 0.488596i \(-0.837509\pi\)
0.511318 0.859391i \(-0.329157\pi\)
\(798\) 7.47947i 0.264770i
\(799\) −0.181915 + 0.0487439i −0.00643568 + 0.00172443i
\(800\) 0.170193 + 8.53854i 0.00601723 + 0.301883i
\(801\) 32.1671 + 32.1671i 1.13657 + 1.13657i
\(802\) −48.1515 + 12.9022i −1.70029 + 0.455591i
\(803\) −8.56456 + 31.9634i −0.302237 + 1.12796i
\(804\) 3.14043 + 0.841474i 0.110754 + 0.0296765i
\(805\) 20.5051 + 11.5677i 0.722711 + 0.407710i
\(806\) 0 0
\(807\) −1.53767 1.53767i −0.0541286 0.0541286i
\(808\) −5.59676 + 3.23129i −0.196893 + 0.113676i
\(809\) −24.2062 + 13.9754i −0.851043 + 0.491350i −0.861003 0.508600i \(-0.830163\pi\)
0.00995956 + 0.999950i \(0.496830\pi\)
\(810\) −16.7377 4.30656i −0.588103 0.151317i
\(811\) 23.2784 23.2784i 0.817415 0.817415i −0.168317 0.985733i \(-0.553833\pi\)
0.985733 + 0.168317i \(0.0538334\pi\)
\(812\) 1.96915 3.41066i 0.0691035 0.119691i
\(813\) −5.13632 + 8.89636i −0.180138 + 0.312009i
\(814\) −3.06696 + 3.06696i −0.107497 + 0.107497i
\(815\) 28.4460 + 7.31907i 0.996420 + 0.256376i
\(816\) 0.216579 0.125042i 0.00758178 0.00437734i
\(817\) −0.332517 + 0.191979i −0.0116333 + 0.00671648i
\(818\) −14.9850 14.9850i −0.523937 0.523937i
\(819\) 0 0
\(820\) −6.17331 3.48261i −0.215582 0.121618i
\(821\) −18.8872 5.06082i −0.659169 0.176624i −0.0862981 0.996269i \(-0.527504\pi\)
−0.572871 + 0.819646i \(0.694170\pi\)
\(822\) 5.11260 19.0805i 0.178322 0.665508i
\(823\) −39.4302 + 10.5653i −1.37445 + 0.368283i −0.869102 0.494633i \(-0.835303\pi\)
−0.505348 + 0.862915i \(0.668636\pi\)
\(824\) 12.1421 + 12.1421i 0.422989 + 0.422989i
\(825\) 0.336958 + 16.9051i 0.0117314 + 0.588560i
\(826\) −10.2042 + 2.73420i −0.355049 + 0.0951350i
\(827\) 31.8649i 1.10805i −0.832499 0.554026i \(-0.813091\pi\)
0.832499 0.554026i \(-0.186909\pi\)
\(828\) 0.812920 + 3.03386i 0.0282509 + 0.105434i
\(829\) −27.6391 47.8724i −0.959946 1.66268i −0.722620 0.691246i \(-0.757062\pi\)
−0.237326 0.971430i \(-0.576271\pi\)
\(830\) −8.98680 8.80946i −0.311937 0.305781i
\(831\) 7.21389i 0.250247i
\(832\) 0 0
\(833\) 0.0154318 0.0154318i 0.000534681 0.000534681i
\(834\) 4.21208 15.7197i 0.145853 0.544329i
\(835\) 5.24580 + 5.14228i 0.181538 + 0.177956i
\(836\) 3.70036 + 2.13640i 0.127980 + 0.0738890i
\(837\) 12.3070 0.425390
\(838\) −2.91830 1.68488i −0.100811 0.0582032i
\(839\) 1.00953 + 3.76762i 0.0348528 + 0.130073i 0.981160 0.193195i \(-0.0618851\pi\)
−0.946307 + 0.323268i \(0.895218\pi\)
\(840\) 4.96358 8.79850i 0.171260 0.303577i
\(841\) −2.07559 + 3.59503i −0.0715721 + 0.123966i
\(842\) 50.7629 + 13.6019i 1.74940 + 0.468751i
\(843\) −6.10453 10.5734i −0.210251 0.364166i
\(844\) 6.03930 0.207881
\(845\) 0 0
\(846\) −8.87908 −0.305269
\(847\) −18.1568 31.4485i −0.623876 1.08058i
\(848\) 41.3796 + 11.0876i 1.42098 + 0.380751i
\(849\) 1.94727 3.37277i 0.0668301 0.115753i
\(850\) −0.148830 + 0.603284i −0.00510482 + 0.0206925i
\(851\) −0.600167 2.23986i −0.0205735 0.0767812i
\(852\) 1.37098 + 0.791536i 0.0469690 + 0.0271176i
\(853\) 53.5726 1.83429 0.917145 0.398554i \(-0.130488\pi\)
0.917145 + 0.398554i \(0.130488\pi\)
\(854\) 18.7107 + 10.8026i 0.640266 + 0.369658i
\(855\) −0.159022 15.9578i −0.00543844 0.545745i
\(856\) −2.41729 + 9.02145i −0.0826213 + 0.308347i
\(857\) 18.9164 18.9164i 0.646171 0.646171i −0.305894 0.952066i \(-0.598955\pi\)
0.952066 + 0.305894i \(0.0989554\pi\)
\(858\) 0 0
\(859\) 18.1203i 0.618258i 0.951020 + 0.309129i \(0.100037\pi\)
−0.951020 + 0.309129i \(0.899963\pi\)
\(860\) 0.0931171 0.000927928i 0.00317527 3.16421e-5i
\(861\) 9.13685 + 15.8255i 0.311383 + 0.539331i
\(862\) 0.649274 + 2.42312i 0.0221144 + 0.0825320i
\(863\) 21.4967i 0.731757i 0.930663 + 0.365879i \(0.119232\pi\)
−0.930663 + 0.365879i \(0.880768\pi\)
\(864\) 6.18529 1.65734i 0.210428 0.0563840i
\(865\) 4.81986 + 8.15937i 0.163880 + 0.277427i
\(866\) 15.9037 + 15.9037i 0.540431 + 0.540431i
\(867\) −11.1029 + 2.97500i −0.377073 + 0.101036i
\(868\) −0.671252 + 2.50515i −0.0227838 + 0.0850303i
\(869\) −27.5767 7.38915i −0.935475 0.250660i
\(870\) −5.62372 + 9.96866i −0.190662 + 0.337969i
\(871\) 0 0
\(872\) −4.08036 4.08036i −0.138179 0.138179i
\(873\) −11.8235 + 6.82633i −0.400167 + 0.231036i
\(874\) −14.9737 + 8.64508i −0.506493 + 0.292424i
\(875\) 8.34303 + 27.7862i 0.282046 + 0.939344i
\(876\) 0.963883 0.963883i 0.0325666 0.0325666i
\(877\) −10.6745 + 18.4889i −0.360454 + 0.624324i −0.988036 0.154226i \(-0.950711\pi\)
0.627582 + 0.778551i \(0.284045\pi\)
\(878\) −16.6018 + 28.7551i −0.560282 + 0.970437i
\(879\) 1.52867 1.52867i 0.0515609 0.0515609i
\(880\) 25.6781 + 43.4696i 0.865608 + 1.46536i
\(881\) 11.4703 6.62238i 0.386444 0.223114i −0.294174 0.955752i \(-0.595045\pi\)
0.680618 + 0.732638i \(0.261711\pi\)
\(882\) 0.891059 0.514453i 0.0300035 0.0173225i
\(883\) 32.5668 + 32.5668i 1.09596 + 1.09596i 0.994878 + 0.101082i \(0.0322304\pi\)
0.101082 + 0.994878i \(0.467770\pi\)
\(884\) 0 0
\(885\) 3.90743 1.08884i 0.131347 0.0366009i
\(886\) 12.7526 + 3.41705i 0.428432 + 0.114798i
\(887\) 4.13600 15.4358i 0.138873 0.518282i −0.861079 0.508472i \(-0.830211\pi\)
0.999952 0.00981024i \(-0.00312275\pi\)
\(888\) −0.961094 + 0.257524i −0.0322522 + 0.00864195i
\(889\) 1.49444 + 1.49444i 0.0501219 + 0.0501219i
\(890\) 52.2933 30.8904i 1.75287 1.03545i
\(891\) −24.5873 + 6.58814i −0.823705 + 0.220711i
\(892\) 5.77663i 0.193416i
\(893\) −1.67139 6.23773i −0.0559311 0.208738i
\(894\) −0.739462 1.28079i −0.0247313 0.0428359i
\(895\) 21.8543 22.2942i 0.730507 0.745213i
\(896\) 34.2308i 1.14357i
\(897\) 0 0
\(898\) 5.01810 5.01810i 0.167456 0.167456i
\(899\) −4.23529 + 15.8063i −0.141255 + 0.527170i
\(900\) −1.86805 + 3.38981i −0.0622682 + 0.112994i
\(901\) 0.672500 + 0.388268i 0.0224042 + 0.0129351i
\(902\) −79.0135 −2.63086
\(903\) −0.207917 0.120041i −0.00691905 0.00399471i
\(904\) −3.81532 14.2390i −0.126896 0.473581i
\(905\) −18.6273 + 5.19065i −0.619192 + 0.172543i
\(906\) 10.1108 17.5125i 0.335910 0.581814i
\(907\) 5.07458 + 1.35973i 0.168499 + 0.0451491i 0.342082 0.939670i \(-0.388868\pi\)
−0.173583 + 0.984819i \(0.555535\pi\)
\(908\) 4.10399 + 7.10833i 0.136196 + 0.235898i
\(909\) −6.38364 −0.211732
\(910\) 0 0
\(911\) 9.49722 0.314657 0.157328 0.987546i \(-0.449712\pi\)
0.157328 + 0.987546i \(0.449712\pi\)
\(912\) 4.28760 + 7.42634i 0.141977 + 0.245911i
\(913\) −17.9032 4.79714i −0.592508 0.158762i
\(914\) −22.7981 + 39.4874i −0.754093 + 1.30613i
\(915\) −7.22529 4.07607i −0.238861 0.134751i
\(916\) −1.24593 4.64987i −0.0411666 0.153636i
\(917\) −36.1945 20.8969i −1.19525 0.690076i
\(918\) 0.465905 0.0153771
\(919\) −45.6207 26.3391i −1.50489 0.868847i −0.999984 0.00567026i \(-0.998195\pi\)
−0.504903 0.863176i \(-0.668472\pi\)
\(920\) −23.3515 + 0.232702i −0.769875 + 0.00767194i
\(921\) −4.24963 + 15.8598i −0.140030 + 0.522599i
\(922\) −2.82041 + 2.82041i −0.0928851 + 0.0928851i
\(923\) 0 0
\(924\) 2.67171i 0.0878929i
\(925\) 1.37915 2.50265i 0.0453463 0.0822867i
\(926\) 19.0876 + 33.0606i 0.627256 + 1.08644i
\(927\) 4.39002 + 16.3838i 0.144187 + 0.538114i
\(928\) 8.51438i 0.279498i
\(929\) −8.04841 + 2.15657i −0.264060 + 0.0707546i −0.388420 0.921483i \(-0.626979\pi\)
0.124360 + 0.992237i \(0.460312\pi\)
\(930\) 1.87816 7.29958i 0.0615873 0.239363i
\(931\) 0.529147 + 0.529147i 0.0173421 + 0.0173421i
\(932\) 2.81069 0.753121i 0.0920671 0.0246693i
\(933\) 2.95960 11.0454i 0.0968931 0.361610i
\(934\) −31.0861 8.32950i −1.01717 0.272549i
\(935\) 0.245660 + 0.881582i 0.00803395 + 0.0288308i
\(936\) 0 0
\(937\) 16.3814 + 16.3814i 0.535156 + 0.535156i 0.922102 0.386947i \(-0.126470\pi\)
−0.386947 + 0.922102i \(0.626470\pi\)
\(938\) 53.8551 31.0933i 1.75843 1.01523i
\(939\) 6.96712 4.02247i 0.227363 0.131268i
\(940\) −0.390271 + 1.51681i −0.0127292 + 0.0494729i
\(941\) 24.2325 24.2325i 0.789956 0.789956i −0.191530 0.981487i \(-0.561345\pi\)
0.981487 + 0.191530i \(0.0613451\pi\)
\(942\) −3.30107 + 5.71762i −0.107555 + 0.186290i
\(943\) 21.1215 36.5835i 0.687810 1.19132i
\(944\) 8.56432 8.56432i 0.278745 0.278745i
\(945\) 18.7293 11.0637i 0.609265 0.359901i
\(946\) 0.899011 0.519044i 0.0292294 0.0168756i
\(947\) 28.9613 16.7208i 0.941114 0.543353i 0.0508048 0.998709i \(-0.483821\pi\)
0.890309 + 0.455356i \(0.150488\pi\)
\(948\) 0.831598 + 0.831598i 0.0270091 + 0.0270091i
\(949\) 0 0
\(950\) −20.6862 5.10327i −0.671149 0.165572i
\(951\) 7.80666 + 2.09179i 0.253148 + 0.0678309i
\(952\) 0.141515 0.528140i 0.00458652 0.0171171i
\(953\) 14.5138 3.88895i 0.470147 0.125975i −0.0159642 0.999873i \(-0.505082\pi\)
0.486111 + 0.873897i \(0.338415\pi\)
\(954\) 25.8875 + 25.8875i 0.838140 + 0.838140i
\(955\) 36.6256 + 9.42365i 1.18518 + 0.304942i
\(956\) −0.826681 + 0.221508i −0.0267368 + 0.00716409i
\(957\) 16.8573i 0.544918i
\(958\) −0.899575 3.35726i −0.0290640 0.108468i
\(959\) −24.9594 43.2310i −0.805982 1.39600i
\(960\) 0.0970551 + 9.73943i 0.00313244 + 0.314339i
\(961\) 20.2237i 0.652378i
\(962\) 0 0
\(963\) −6.52350 + 6.52350i −0.210217 + 0.210217i
\(964\) −0.216305 + 0.807262i −0.00696672 + 0.0260002i
\(965\) 13.3921 13.6617i 0.431107 0.439786i
\(966\) −9.36281 5.40562i −0.301243 0.173923i
\(967\) −7.49252 −0.240943 −0.120472 0.992717i \(-0.538441\pi\)
−0.120472 + 0.992717i \(0.538441\pi\)
\(968\) 31.1943 + 18.0100i 1.00262 + 0.578864i
\(969\) 0.0402309 + 0.150144i 0.00129240 + 0.00482332i
\(970\) 4.89290 + 17.5588i 0.157101 + 0.563778i
\(971\) −13.9303 + 24.1280i −0.447045 + 0.774304i −0.998192 0.0601036i \(-0.980857\pi\)
0.551147 + 0.834408i \(0.314190\pi\)
\(972\) 4.32048 + 1.15767i 0.138580 + 0.0371323i
\(973\) −20.5632 35.6165i −0.659225 1.14181i
\(974\) 8.45010 0.270759
\(975\) 0 0
\(976\) −24.7704 −0.792880
\(977\) 19.4382 + 33.6679i 0.621883 + 1.07713i 0.989135 + 0.147011i \(0.0469654\pi\)
−0.367252 + 0.930122i \(0.619701\pi\)
\(978\) −13.0286 3.49101i −0.416609 0.111630i
\(979\) 44.7263 77.4683i 1.42946 2.47590i
\(980\) −0.0487183 0.174832i −0.00155625 0.00558479i
\(981\) −1.47527 5.50580i −0.0471019 0.175787i
\(982\) −8.03257 4.63761i −0.256330 0.147992i
\(983\) −0.207440 −0.00661630 −0.00330815 0.999995i \(-0.501053\pi\)
−0.00330815 + 0.999995i \(0.501053\pi\)
\(984\) −15.6975 9.06297i −0.500419 0.288917i
\(985\) 11.9853 12.2266i 0.381883 0.389571i
\(986\) −0.160336 + 0.598381i −0.00510613 + 0.0190563i
\(987\) 2.85525 2.85525i 0.0908836 0.0908836i
\(988\) 0 0
\(989\) 0.554993i 0.0176477i
\(990\) 0.429941 + 43.1443i 0.0136644 + 1.37122i
\(991\) 12.7480 + 22.0803i 0.404955 + 0.701402i 0.994316 0.106467i \(-0.0339539\pi\)
−0.589361 + 0.807869i \(0.700621\pi\)
\(992\) −1.45121 5.41599i −0.0460760 0.171958i
\(993\) 14.5083i 0.460407i
\(994\) 29.2480 7.83698i 0.927691 0.248574i
\(995\) 33.1924 + 8.54032i 1.05227 + 0.270746i
\(996\) 0.539885 + 0.539885i 0.0171069 + 0.0171069i
\(997\) 33.4743 8.96942i 1.06014 0.284064i 0.313706 0.949520i \(-0.398429\pi\)
0.746437 + 0.665456i \(0.231763\pi\)
\(998\) −3.46020 + 12.9137i −0.109531 + 0.408774i
\(999\) −2.06955 0.554536i −0.0654778 0.0175447i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.g.587.1 20
5.3 odd 4 845.2.t.g.418.1 20
13.2 odd 12 845.2.f.e.437.2 20
13.3 even 3 845.2.k.d.577.9 20
13.4 even 6 845.2.o.e.357.5 20
13.5 odd 4 845.2.t.f.427.1 20
13.6 odd 12 65.2.t.a.7.5 yes 20
13.7 odd 12 845.2.t.g.657.1 20
13.8 odd 4 845.2.t.e.427.5 20
13.9 even 3 845.2.o.f.357.1 20
13.10 even 6 845.2.k.e.577.2 20
13.11 odd 12 845.2.f.d.437.9 20
13.12 even 2 65.2.o.a.2.5 20
39.32 even 12 585.2.dp.a.397.1 20
39.38 odd 2 585.2.cf.a.262.1 20
65.3 odd 12 845.2.f.d.408.2 20
65.8 even 4 845.2.o.f.258.1 20
65.12 odd 4 325.2.x.b.93.1 20
65.18 even 4 845.2.o.e.258.5 20
65.19 odd 12 325.2.x.b.7.1 20
65.23 odd 12 845.2.f.e.408.9 20
65.28 even 12 845.2.k.e.268.2 20
65.32 even 12 325.2.s.b.293.1 20
65.33 even 12 inner 845.2.o.g.488.1 20
65.38 odd 4 65.2.t.a.28.5 yes 20
65.43 odd 12 845.2.t.f.188.1 20
65.48 odd 12 845.2.t.e.188.5 20
65.58 even 12 65.2.o.a.33.5 yes 20
65.63 even 12 845.2.k.d.268.9 20
65.64 even 2 325.2.s.b.132.1 20
195.38 even 4 585.2.dp.a.28.1 20
195.188 odd 12 585.2.cf.a.163.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.5 20 13.12 even 2
65.2.o.a.33.5 yes 20 65.58 even 12
65.2.t.a.7.5 yes 20 13.6 odd 12
65.2.t.a.28.5 yes 20 65.38 odd 4
325.2.s.b.132.1 20 65.64 even 2
325.2.s.b.293.1 20 65.32 even 12
325.2.x.b.7.1 20 65.19 odd 12
325.2.x.b.93.1 20 65.12 odd 4
585.2.cf.a.163.1 20 195.188 odd 12
585.2.cf.a.262.1 20 39.38 odd 2
585.2.dp.a.28.1 20 195.38 even 4
585.2.dp.a.397.1 20 39.32 even 12
845.2.f.d.408.2 20 65.3 odd 12
845.2.f.d.437.9 20 13.11 odd 12
845.2.f.e.408.9 20 65.23 odd 12
845.2.f.e.437.2 20 13.2 odd 12
845.2.k.d.268.9 20 65.63 even 12
845.2.k.d.577.9 20 13.3 even 3
845.2.k.e.268.2 20 65.28 even 12
845.2.k.e.577.2 20 13.10 even 6
845.2.o.e.258.5 20 65.18 even 4
845.2.o.e.357.5 20 13.4 even 6
845.2.o.f.258.1 20 65.8 even 4
845.2.o.f.357.1 20 13.9 even 3
845.2.o.g.488.1 20 65.33 even 12 inner
845.2.o.g.587.1 20 1.1 even 1 trivial
845.2.t.e.188.5 20 65.48 odd 12
845.2.t.e.427.5 20 13.8 odd 4
845.2.t.f.188.1 20 65.43 odd 12
845.2.t.f.427.1 20 13.5 odd 4
845.2.t.g.418.1 20 5.3 odd 4
845.2.t.g.657.1 20 13.7 odd 12