Properties

Label 845.2.f.e.408.9
Level $845$
Weight $2$
Character 845.408
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(408,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.408");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 408.9
Root \(1.51805i\) of defining polynomial
Character \(\chi\) \(=\) 845.408
Dual form 845.2.f.e.437.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.51805i q^{2} +(0.478298 + 0.478298i) q^{3} -0.304465 q^{4} +(-2.15400 - 0.600231i) q^{5} +(-0.726078 + 0.726078i) q^{6} +2.59488 q^{7} +2.57390i q^{8} -2.54246i q^{9} +(0.911178 - 3.26987i) q^{10} +(3.53513 + 3.53513i) q^{11} +(-0.145625 - 0.145625i) q^{12} +3.93915i q^{14} +(-0.743165 - 1.31734i) q^{15} -4.51623 q^{16} +(-0.0578870 - 0.0578870i) q^{17} +3.85958 q^{18} +(1.98490 + 1.98490i) q^{19} +(0.655819 + 0.182749i) q^{20} +(1.24113 + 1.24113i) q^{21} +(-5.36650 + 5.36650i) q^{22} +(2.86909 - 2.86909i) q^{23} +(-1.23109 + 1.23109i) q^{24} +(4.27945 + 2.58580i) q^{25} +(2.65095 - 2.65095i) q^{27} -0.790051 q^{28} +4.98486i q^{29} +(1.99979 - 1.12816i) q^{30} +(-2.32124 + 2.32124i) q^{31} -1.70805i q^{32} +3.38169i q^{33} +(0.0878751 - 0.0878751i) q^{34} +(-5.58938 - 1.55753i) q^{35} +0.774091i q^{36} +0.571501 q^{37} +(-3.01318 + 3.01318i) q^{38} +(1.54493 - 5.54419i) q^{40} +(-7.36174 + 7.36174i) q^{41} +(-1.88409 + 1.88409i) q^{42} +(0.0967193 - 0.0967193i) q^{43} +(-1.07633 - 1.07633i) q^{44} +(-1.52606 + 5.47647i) q^{45} +(4.35541 + 4.35541i) q^{46} -2.30053 q^{47} +(-2.16010 - 2.16010i) q^{48} -0.266585 q^{49} +(-3.92536 + 6.49640i) q^{50} -0.0553744i q^{51} +(6.70735 + 6.70735i) q^{53} +(4.02426 + 4.02426i) q^{54} +(-5.49279 - 9.73658i) q^{55} +6.67897i q^{56} +1.89875i q^{57} -7.56725 q^{58} +(-1.89634 + 1.89634i) q^{59} +(0.226268 + 0.401085i) q^{60} +5.48474 q^{61} +(-3.52374 - 3.52374i) q^{62} -6.59739i q^{63} -6.43957 q^{64} -5.13357 q^{66} -15.7868i q^{67} +(0.0176246 + 0.0176246i) q^{68} +2.74456 q^{69} +(2.36440 - 8.48494i) q^{70} +(-5.43544 + 5.43544i) q^{71} +6.54405 q^{72} -6.61894i q^{73} +0.867565i q^{74} +(0.810069 + 3.28363i) q^{75} +(-0.604334 - 0.604334i) q^{76} +(9.17326 + 9.17326i) q^{77} -5.71054i q^{79} +(9.72797 + 2.71078i) q^{80} -5.09150 q^{81} +(-11.1755 - 11.1755i) q^{82} +3.70736 q^{83} +(-0.377880 - 0.377880i) q^{84} +(0.0899431 + 0.159434i) q^{85} +(0.146824 + 0.146824i) q^{86} +(-2.38425 + 2.38425i) q^{87} +(-9.09908 + 9.09908i) q^{88} +(12.6520 - 12.6520i) q^{89} +(-8.31353 - 2.31664i) q^{90} +(-0.873538 + 0.873538i) q^{92} -2.22048 q^{93} -3.49231i q^{94} +(-3.08409 - 5.46689i) q^{95} +(0.816956 - 0.816956i) q^{96} -5.36986i q^{97} -0.404689i q^{98} +(8.98794 - 8.98794i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} - 12 q^{4} + 4 q^{6} + 4 q^{7} - 8 q^{10} + 8 q^{11} - 24 q^{12} + 28 q^{15} + 4 q^{16} - 14 q^{17} + 4 q^{19} - 12 q^{20} + 4 q^{21} - 32 q^{22} + 8 q^{23} - 4 q^{24} + 18 q^{25} + 4 q^{27}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51805i 1.07342i 0.843766 + 0.536710i \(0.180333\pi\)
−0.843766 + 0.536710i \(0.819667\pi\)
\(3\) 0.478298 + 0.478298i 0.276145 + 0.276145i 0.831568 0.555423i \(-0.187444\pi\)
−0.555423 + 0.831568i \(0.687444\pi\)
\(4\) −0.304465 −0.152233
\(5\) −2.15400 0.600231i −0.963299 0.268431i
\(6\) −0.726078 + 0.726078i −0.296420 + 0.296420i
\(7\) 2.59488 0.980773 0.490387 0.871505i \(-0.336856\pi\)
0.490387 + 0.871505i \(0.336856\pi\)
\(8\) 2.57390i 0.910011i
\(9\) 2.54246i 0.847487i
\(10\) 0.911178 3.26987i 0.288140 1.03403i
\(11\) 3.53513 + 3.53513i 1.06588 + 1.06588i 0.997671 + 0.0682120i \(0.0217294\pi\)
0.0682120 + 0.997671i \(0.478271\pi\)
\(12\) −0.145625 0.145625i −0.0420383 0.0420383i
\(13\) 0 0
\(14\) 3.93915i 1.05278i
\(15\) −0.743165 1.31734i −0.191884 0.340137i
\(16\) −4.51623 −1.12906
\(17\) −0.0578870 0.0578870i −0.0140397 0.0140397i 0.700052 0.714092i \(-0.253160\pi\)
−0.714092 + 0.700052i \(0.753160\pi\)
\(18\) 3.85958 0.909711
\(19\) 1.98490 + 1.98490i 0.455368 + 0.455368i 0.897132 0.441763i \(-0.145647\pi\)
−0.441763 + 0.897132i \(0.645647\pi\)
\(20\) 0.655819 + 0.182749i 0.146645 + 0.0408640i
\(21\) 1.24113 + 1.24113i 0.270836 + 0.270836i
\(22\) −5.36650 + 5.36650i −1.14414 + 1.14414i
\(23\) 2.86909 2.86909i 0.598247 0.598247i −0.341599 0.939846i \(-0.610969\pi\)
0.939846 + 0.341599i \(0.110969\pi\)
\(24\) −1.23109 + 1.23109i −0.251295 + 0.251295i
\(25\) 4.27945 + 2.58580i 0.855889 + 0.517159i
\(26\) 0 0
\(27\) 2.65095 2.65095i 0.510175 0.510175i
\(28\) −0.790051 −0.149306
\(29\) 4.98486i 0.925665i 0.886446 + 0.462833i \(0.153167\pi\)
−0.886446 + 0.462833i \(0.846833\pi\)
\(30\) 1.99979 1.12816i 0.365110 0.205973i
\(31\) −2.32124 + 2.32124i −0.416906 + 0.416906i −0.884136 0.467230i \(-0.845252\pi\)
0.467230 + 0.884136i \(0.345252\pi\)
\(32\) 1.70805i 0.301943i
\(33\) 3.38169i 0.588677i
\(34\) 0.0878751 0.0878751i 0.0150705 0.0150705i
\(35\) −5.58938 1.55753i −0.944778 0.263270i
\(36\) 0.774091i 0.129015i
\(37\) 0.571501 0.0939542 0.0469771 0.998896i \(-0.485041\pi\)
0.0469771 + 0.998896i \(0.485041\pi\)
\(38\) −3.01318 + 3.01318i −0.488802 + 0.488802i
\(39\) 0 0
\(40\) 1.54493 5.54419i 0.244276 0.876613i
\(41\) −7.36174 + 7.36174i −1.14971 + 1.14971i −0.163100 + 0.986609i \(0.552149\pi\)
−0.986609 + 0.163100i \(0.947851\pi\)
\(42\) −1.88409 + 1.88409i −0.290721 + 0.290721i
\(43\) 0.0967193 0.0967193i 0.0147496 0.0147496i −0.699694 0.714443i \(-0.746680\pi\)
0.714443 + 0.699694i \(0.246680\pi\)
\(44\) −1.07633 1.07633i −0.162262 0.162262i
\(45\) −1.52606 + 5.47647i −0.227492 + 0.816384i
\(46\) 4.35541 + 4.35541i 0.642170 + 0.642170i
\(47\) −2.30053 −0.335567 −0.167784 0.985824i \(-0.553661\pi\)
−0.167784 + 0.985824i \(0.553661\pi\)
\(48\) −2.16010 2.16010i −0.311784 0.311784i
\(49\) −0.266585 −0.0380836
\(50\) −3.92536 + 6.49640i −0.555130 + 0.918729i
\(51\) 0.0553744i 0.00775397i
\(52\) 0 0
\(53\) 6.70735 + 6.70735i 0.921326 + 0.921326i 0.997123 0.0757974i \(-0.0241502\pi\)
−0.0757974 + 0.997123i \(0.524150\pi\)
\(54\) 4.02426 + 4.02426i 0.547633 + 0.547633i
\(55\) −5.49279 9.73658i −0.740647 1.31288i
\(56\) 6.67897i 0.892515i
\(57\) 1.89875i 0.251496i
\(58\) −7.56725 −0.993628
\(59\) −1.89634 + 1.89634i −0.246883 + 0.246883i −0.819690 0.572807i \(-0.805854\pi\)
0.572807 + 0.819690i \(0.305854\pi\)
\(60\) 0.226268 + 0.401085i 0.0292111 + 0.0517799i
\(61\) 5.48474 0.702249 0.351124 0.936329i \(-0.385799\pi\)
0.351124 + 0.936329i \(0.385799\pi\)
\(62\) −3.52374 3.52374i −0.447516 0.447516i
\(63\) 6.59739i 0.831193i
\(64\) −6.43957 −0.804946
\(65\) 0 0
\(66\) −5.13357 −0.631899
\(67\) 15.7868i 1.92866i −0.264699 0.964331i \(-0.585272\pi\)
0.264699 0.964331i \(-0.414728\pi\)
\(68\) 0.0176246 + 0.0176246i 0.00213729 + 0.00213729i
\(69\) 2.74456 0.330406
\(70\) 2.36440 8.48494i 0.282600 1.01414i
\(71\) −5.43544 + 5.43544i −0.645068 + 0.645068i −0.951797 0.306729i \(-0.900766\pi\)
0.306729 + 0.951797i \(0.400766\pi\)
\(72\) 6.54405 0.771223
\(73\) 6.61894i 0.774688i −0.921935 0.387344i \(-0.873393\pi\)
0.921935 0.387344i \(-0.126607\pi\)
\(74\) 0.867565i 0.100852i
\(75\) 0.810069 + 3.28363i 0.0935387 + 0.379161i
\(76\) −0.604334 0.604334i −0.0693219 0.0693219i
\(77\) 9.17326 + 9.17326i 1.04539 + 1.04539i
\(78\) 0 0
\(79\) 5.71054i 0.642486i −0.946997 0.321243i \(-0.895899\pi\)
0.946997 0.321243i \(-0.104101\pi\)
\(80\) 9.72797 + 2.71078i 1.08762 + 0.303075i
\(81\) −5.09150 −0.565722
\(82\) −11.1755 11.1755i −1.23412 1.23412i
\(83\) 3.70736 0.406936 0.203468 0.979082i \(-0.434779\pi\)
0.203468 + 0.979082i \(0.434779\pi\)
\(84\) −0.377880 0.377880i −0.0412301 0.0412301i
\(85\) 0.0899431 + 0.159434i 0.00975570 + 0.0172931i
\(86\) 0.146824 + 0.146824i 0.0158325 + 0.0158325i
\(87\) −2.38425 + 2.38425i −0.255618 + 0.255618i
\(88\) −9.09908 + 9.09908i −0.969965 + 0.969965i
\(89\) 12.6520 12.6520i 1.34110 1.34110i 0.446142 0.894962i \(-0.352798\pi\)
0.894962 0.446142i \(-0.147202\pi\)
\(90\) −8.31353 2.31664i −0.876323 0.244195i
\(91\) 0 0
\(92\) −0.873538 + 0.873538i −0.0910726 + 0.0910726i
\(93\) −2.22048 −0.230253
\(94\) 3.49231i 0.360205i
\(95\) −3.08409 5.46689i −0.316421 0.560891i
\(96\) 0.816956 0.816956i 0.0833802 0.0833802i
\(97\) 5.36986i 0.545226i −0.962124 0.272613i \(-0.912112\pi\)
0.962124 0.272613i \(-0.0878879\pi\)
\(98\) 0.404689i 0.0408798i
\(99\) 8.98794 8.98794i 0.903322 0.903322i
\(100\) −1.30294 0.787285i −0.130294 0.0787285i
\(101\) 2.51081i 0.249835i 0.992167 + 0.124918i \(0.0398666\pi\)
−0.992167 + 0.124918i \(0.960133\pi\)
\(102\) 0.0840609 0.00832327
\(103\) 4.71738 4.71738i 0.464817 0.464817i −0.435414 0.900230i \(-0.643398\pi\)
0.900230 + 0.435414i \(0.143398\pi\)
\(104\) 0 0
\(105\) −1.92843 3.41835i −0.188195 0.333597i
\(106\) −10.1821 + 10.1821i −0.988971 + 0.988971i
\(107\) 2.56582 2.56582i 0.248047 0.248047i −0.572122 0.820169i \(-0.693880\pi\)
0.820169 + 0.572122i \(0.193880\pi\)
\(108\) −0.807121 + 0.807121i −0.0776653 + 0.0776653i
\(109\) 1.58528 + 1.58528i 0.151843 + 0.151843i 0.778941 0.627098i \(-0.215757\pi\)
−0.627098 + 0.778941i \(0.715757\pi\)
\(110\) 14.7806 8.33831i 1.40927 0.795026i
\(111\) 0.273348 + 0.273348i 0.0259450 + 0.0259450i
\(112\) −11.7191 −1.10735
\(113\) 4.04975 + 4.04975i 0.380968 + 0.380968i 0.871451 0.490483i \(-0.163179\pi\)
−0.490483 + 0.871451i \(0.663179\pi\)
\(114\) −2.88239 −0.269961
\(115\) −7.90214 + 4.45791i −0.736878 + 0.415702i
\(116\) 1.51772i 0.140916i
\(117\) 0 0
\(118\) −2.87873 2.87873i −0.265009 0.265009i
\(119\) −0.150210 0.150210i −0.0137697 0.0137697i
\(120\) 3.39071 1.91283i 0.309528 0.174617i
\(121\) 13.9943i 1.27221i
\(122\) 8.32609i 0.753809i
\(123\) −7.04220 −0.634974
\(124\) 0.706736 0.706736i 0.0634667 0.0634667i
\(125\) −7.66586 8.13846i −0.685655 0.727926i
\(126\) 10.0151 0.892220
\(127\) 0.575918 + 0.575918i 0.0511044 + 0.0511044i 0.732197 0.681093i \(-0.238495\pi\)
−0.681093 + 0.732197i \(0.738495\pi\)
\(128\) 13.1917i 1.16599i
\(129\) 0.0925213 0.00814605
\(130\) 0 0
\(131\) −16.1062 −1.40721 −0.703604 0.710592i \(-0.748427\pi\)
−0.703604 + 0.710592i \(0.748427\pi\)
\(132\) 1.02961i 0.0896159i
\(133\) 5.15059 + 5.15059i 0.446613 + 0.446613i
\(134\) 23.9651 2.07027
\(135\) −7.30133 + 4.11897i −0.628398 + 0.354504i
\(136\) 0.148995 0.148995i 0.0127762 0.0127762i
\(137\) −19.2374 −1.64356 −0.821782 0.569802i \(-0.807020\pi\)
−0.821782 + 0.569802i \(0.807020\pi\)
\(138\) 4.16637i 0.354665i
\(139\) 15.8490i 1.34430i −0.740417 0.672148i \(-0.765372\pi\)
0.740417 0.672148i \(-0.234628\pi\)
\(140\) 1.70177 + 0.474213i 0.143826 + 0.0400783i
\(141\) −1.10034 1.10034i −0.0926653 0.0926653i
\(142\) −8.25125 8.25125i −0.692430 0.692430i
\(143\) 0 0
\(144\) 11.4823i 0.956862i
\(145\) 2.99207 10.7374i 0.248478 0.891692i
\(146\) 10.0479 0.831566
\(147\) −0.127507 0.127507i −0.0105166 0.0105166i
\(148\) −0.174002 −0.0143029
\(149\) 1.01843 + 1.01843i 0.0834332 + 0.0834332i 0.747592 0.664159i \(-0.231210\pi\)
−0.664159 + 0.747592i \(0.731210\pi\)
\(150\) −4.98470 + 1.22972i −0.406999 + 0.100406i
\(151\) 13.9253 + 13.9253i 1.13322 + 1.13322i 0.989638 + 0.143585i \(0.0458631\pi\)
0.143585 + 0.989638i \(0.454137\pi\)
\(152\) −5.10895 + 5.10895i −0.414390 + 0.414390i
\(153\) −0.147175 + 0.147175i −0.0118984 + 0.0118984i
\(154\) −13.9254 + 13.9254i −1.12214 + 1.12214i
\(155\) 6.39322 3.60667i 0.513516 0.289695i
\(156\) 0 0
\(157\) 4.54644 4.54644i 0.362845 0.362845i −0.502014 0.864859i \(-0.667408\pi\)
0.864859 + 0.502014i \(0.167408\pi\)
\(158\) 8.66887 0.689658
\(159\) 6.41623i 0.508840i
\(160\) −1.02522 + 3.67914i −0.0810510 + 0.290861i
\(161\) 7.44495 7.44495i 0.586744 0.586744i
\(162\) 7.72914i 0.607258i
\(163\) 13.1358i 1.02887i −0.857528 0.514437i \(-0.828001\pi\)
0.857528 0.514437i \(-0.171999\pi\)
\(164\) 2.24139 2.24139i 0.175023 0.175023i
\(165\) 2.02980 7.28417i 0.158019 0.567072i
\(166\) 5.62795i 0.436814i
\(167\) 3.28516 0.254213 0.127107 0.991889i \(-0.459431\pi\)
0.127107 + 0.991889i \(0.459431\pi\)
\(168\) −3.19454 + 3.19454i −0.246464 + 0.246464i
\(169\) 0 0
\(170\) −0.242028 + 0.136538i −0.0185627 + 0.0104720i
\(171\) 5.04654 5.04654i 0.385919 0.385919i
\(172\) −0.0294477 + 0.0294477i −0.00224536 + 0.00224536i
\(173\) −2.99677 + 2.99677i −0.227840 + 0.227840i −0.811790 0.583950i \(-0.801507\pi\)
0.583950 + 0.811790i \(0.301507\pi\)
\(174\) −3.61940 3.61940i −0.274386 0.274386i
\(175\) 11.1047 + 6.70984i 0.839433 + 0.507216i
\(176\) −15.9655 15.9655i −1.20344 1.20344i
\(177\) −1.81403 −0.136351
\(178\) 19.2062 + 19.2062i 1.43957 + 1.43957i
\(179\) 13.9617 1.04354 0.521772 0.853085i \(-0.325271\pi\)
0.521772 + 0.853085i \(0.325271\pi\)
\(180\) 0.464633 1.66739i 0.0346317 0.124280i
\(181\) 8.64775i 0.642782i −0.946947 0.321391i \(-0.895850\pi\)
0.946947 0.321391i \(-0.104150\pi\)
\(182\) 0 0
\(183\) 2.62334 + 2.62334i 0.193923 + 0.193923i
\(184\) 7.38475 + 7.38475i 0.544411 + 0.544411i
\(185\) −1.23101 0.343032i −0.0905060 0.0252202i
\(186\) 3.37080i 0.247159i
\(187\) 0.409276i 0.0299292i
\(188\) 0.700432 0.0510842
\(189\) 6.87890 6.87890i 0.500366 0.500366i
\(190\) 8.29899 4.68179i 0.602072 0.339653i
\(191\) 16.9129 1.22378 0.611889 0.790944i \(-0.290410\pi\)
0.611889 + 0.790944i \(0.290410\pi\)
\(192\) −3.08003 3.08003i −0.222282 0.222282i
\(193\) 8.55560i 0.615845i 0.951411 + 0.307923i \(0.0996338\pi\)
−0.951411 + 0.307923i \(0.900366\pi\)
\(194\) 8.15169 0.585257
\(195\) 0 0
\(196\) 0.0811660 0.00579757
\(197\) 7.65684i 0.545527i −0.962081 0.272764i \(-0.912062\pi\)
0.962081 0.272764i \(-0.0879377\pi\)
\(198\) 13.6441 + 13.6441i 0.969645 + 0.969645i
\(199\) −15.3276 −1.08654 −0.543272 0.839557i \(-0.682815\pi\)
−0.543272 + 0.839557i \(0.682815\pi\)
\(200\) −6.65558 + 11.0149i −0.470621 + 0.778869i
\(201\) 7.55078 7.55078i 0.532591 0.532591i
\(202\) −3.81153 −0.268178
\(203\) 12.9351i 0.907868i
\(204\) 0.0168596i 0.00118041i
\(205\) 20.2759 11.4385i 1.41613 0.798896i
\(206\) 7.16120 + 7.16120i 0.498944 + 0.498944i
\(207\) −7.29455 7.29455i −0.507006 0.507006i
\(208\) 0 0
\(209\) 14.0338i 0.970739i
\(210\) 5.18922 2.92744i 0.358090 0.202013i
\(211\) 19.8358 1.36555 0.682775 0.730629i \(-0.260773\pi\)
0.682775 + 0.730629i \(0.260773\pi\)
\(212\) −2.04216 2.04216i −0.140256 0.140256i
\(213\) −5.19952 −0.356265
\(214\) 3.89503 + 3.89503i 0.266259 + 0.266259i
\(215\) −0.266388 + 0.150280i −0.0181675 + 0.0102490i
\(216\) 6.82328 + 6.82328i 0.464265 + 0.464265i
\(217\) −6.02333 + 6.02333i −0.408891 + 0.408891i
\(218\) −2.40654 + 2.40654i −0.162991 + 0.162991i
\(219\) 3.16582 3.16582i 0.213927 0.213927i
\(220\) 1.67236 + 2.96445i 0.112751 + 0.199863i
\(221\) 0 0
\(222\) −0.414955 + 0.414955i −0.0278499 + 0.0278499i
\(223\) −18.9731 −1.27053 −0.635265 0.772294i \(-0.719109\pi\)
−0.635265 + 0.772294i \(0.719109\pi\)
\(224\) 4.43218i 0.296138i
\(225\) 6.57429 10.8803i 0.438286 0.725355i
\(226\) −6.14771 + 6.14771i −0.408939 + 0.408939i
\(227\) 26.9587i 1.78931i −0.446755 0.894656i \(-0.647421\pi\)
0.446755 0.894656i \(-0.352579\pi\)
\(228\) 0.578104i 0.0382858i
\(229\) −11.1801 + 11.1801i −0.738799 + 0.738799i −0.972346 0.233547i \(-0.924967\pi\)
0.233547 + 0.972346i \(0.424967\pi\)
\(230\) −6.76731 11.9958i −0.446223 0.790981i
\(231\) 8.77510i 0.577359i
\(232\) −12.8305 −0.842366
\(233\) 6.75797 6.75797i 0.442729 0.442729i −0.450199 0.892928i \(-0.648647\pi\)
0.892928 + 0.450199i \(0.148647\pi\)
\(234\) 0 0
\(235\) 4.95535 + 1.38085i 0.323251 + 0.0900767i
\(236\) 0.577370 0.577370i 0.0375836 0.0375836i
\(237\) 2.73134 2.73134i 0.177420 0.177420i
\(238\) 0.228026 0.228026i 0.0147807 0.0147807i
\(239\) 1.98766 + 1.98766i 0.128571 + 0.128571i 0.768464 0.639893i \(-0.221021\pi\)
−0.639893 + 0.768464i \(0.721021\pi\)
\(240\) 3.35631 + 5.94943i 0.216649 + 0.384034i
\(241\) 1.94097 + 1.94097i 0.125029 + 0.125029i 0.766852 0.641824i \(-0.221822\pi\)
−0.641824 + 0.766852i \(0.721822\pi\)
\(242\) −21.2441 −1.36562
\(243\) −10.3881 10.3881i −0.666397 0.666397i
\(244\) −1.66991 −0.106905
\(245\) 0.574225 + 0.160013i 0.0366859 + 0.0102228i
\(246\) 10.6904i 0.681595i
\(247\) 0 0
\(248\) −5.97463 5.97463i −0.379389 0.379389i
\(249\) 1.77322 + 1.77322i 0.112374 + 0.112374i
\(250\) 12.3546 11.6371i 0.781371 0.735997i
\(251\) 2.83379i 0.178867i 0.995993 + 0.0894337i \(0.0285057\pi\)
−0.995993 + 0.0894337i \(0.971494\pi\)
\(252\) 2.00868i 0.126535i
\(253\) 20.2852 1.27532
\(254\) −0.874270 + 0.874270i −0.0548566 + 0.0548566i
\(255\) −0.0332374 + 0.119277i −0.00208141 + 0.00746939i
\(256\) 7.14642 0.446651
\(257\) −14.1859 14.1859i −0.884895 0.884895i 0.109132 0.994027i \(-0.465193\pi\)
−0.994027 + 0.109132i \(0.965193\pi\)
\(258\) 0.140452i 0.00874414i
\(259\) 1.48298 0.0921478
\(260\) 0 0
\(261\) 12.6738 0.784490
\(262\) 24.4500i 1.51053i
\(263\) 6.66222 + 6.66222i 0.410810 + 0.410810i 0.882021 0.471210i \(-0.156183\pi\)
−0.471210 + 0.882021i \(0.656183\pi\)
\(264\) −8.70414 −0.535703
\(265\) −10.4217 18.4736i −0.640199 1.13482i
\(266\) −7.81884 + 7.81884i −0.479404 + 0.479404i
\(267\) 12.1028 0.740679
\(268\) 4.80653i 0.293605i
\(269\) 3.21488i 0.196015i 0.995186 + 0.0980075i \(0.0312469\pi\)
−0.995186 + 0.0980075i \(0.968753\pi\)
\(270\) −6.25278 11.0838i −0.380532 0.674536i
\(271\) −10.7387 10.7387i −0.652332 0.652332i 0.301222 0.953554i \(-0.402605\pi\)
−0.953554 + 0.301222i \(0.902605\pi\)
\(272\) 0.261431 + 0.261431i 0.0158516 + 0.0158516i
\(273\) 0 0
\(274\) 29.2033i 1.76424i
\(275\) 5.98728 + 24.2695i 0.361047 + 1.46351i
\(276\) −0.835623 −0.0502986
\(277\) −7.54121 7.54121i −0.453107 0.453107i 0.443277 0.896385i \(-0.353816\pi\)
−0.896385 + 0.443277i \(0.853816\pi\)
\(278\) 24.0595 1.44300
\(279\) 5.90165 + 5.90165i 0.353323 + 0.353323i
\(280\) 4.00892 14.3865i 0.239579 0.859759i
\(281\) −12.7630 12.7630i −0.761379 0.761379i 0.215193 0.976572i \(-0.430962\pi\)
−0.976572 + 0.215193i \(0.930962\pi\)
\(282\) 1.67037 1.67037i 0.0994689 0.0994689i
\(283\) 4.07125 4.07125i 0.242010 0.242010i −0.575671 0.817681i \(-0.695259\pi\)
0.817681 + 0.575671i \(0.195259\pi\)
\(284\) 1.65490 1.65490i 0.0982004 0.0982004i
\(285\) 1.13969 4.08991i 0.0675093 0.242266i
\(286\) 0 0
\(287\) −19.1028 + 19.1028i −1.12760 + 1.12760i
\(288\) −4.34265 −0.255893
\(289\) 16.9933i 0.999606i
\(290\) 16.2999 + 4.54209i 0.957161 + 0.266721i
\(291\) 2.56839 2.56839i 0.150562 0.150562i
\(292\) 2.01524i 0.117933i
\(293\) 3.19607i 0.186717i −0.995633 0.0933583i \(-0.970240\pi\)
0.995633 0.0933583i \(-0.0297602\pi\)
\(294\) 0.193562 0.193562i 0.0112888 0.0112888i
\(295\) 5.22297 2.94648i 0.304093 0.171551i
\(296\) 1.47099i 0.0854994i
\(297\) 18.7429 1.08757
\(298\) −1.54603 + 1.54603i −0.0895590 + 0.0895590i
\(299\) 0 0
\(300\) −0.246638 0.999751i −0.0142396 0.0577207i
\(301\) 0.250975 0.250975i 0.0144660 0.0144660i
\(302\) −21.1392 + 21.1392i −1.21643 + 1.21643i
\(303\) −1.20092 + 1.20092i −0.0689908 + 0.0689908i
\(304\) −8.96429 8.96429i −0.514137 0.514137i
\(305\) −11.8141 3.29211i −0.676476 0.188506i
\(306\) −0.223419 0.223419i −0.0127720 0.0127720i
\(307\) 24.2740 1.38539 0.692695 0.721231i \(-0.256423\pi\)
0.692695 + 0.721231i \(0.256423\pi\)
\(308\) −2.79294 2.79294i −0.159142 0.159142i
\(309\) 4.51262 0.256714
\(310\) 5.47509 + 9.70521i 0.310964 + 0.551219i
\(311\) 16.9053i 0.958614i 0.877647 + 0.479307i \(0.159112\pi\)
−0.877647 + 0.479307i \(0.840888\pi\)
\(312\) 0 0
\(313\) −8.40997 8.40997i −0.475359 0.475359i 0.428285 0.903644i \(-0.359118\pi\)
−0.903644 + 0.428285i \(0.859118\pi\)
\(314\) 6.90170 + 6.90170i 0.389486 + 0.389486i
\(315\) −3.95996 + 14.2108i −0.223118 + 0.800687i
\(316\) 1.73866i 0.0978074i
\(317\) 11.9484i 0.671087i −0.942025 0.335543i \(-0.891080\pi\)
0.942025 0.335543i \(-0.108920\pi\)
\(318\) −9.74013 −0.546199
\(319\) −17.6221 + 17.6221i −0.986651 + 0.986651i
\(320\) 13.8708 + 3.86523i 0.775403 + 0.216073i
\(321\) 2.45445 0.136994
\(322\) 11.3018 + 11.3018i 0.629824 + 0.629824i
\(323\) 0.229800i 0.0127864i
\(324\) 1.55018 0.0861214
\(325\) 0 0
\(326\) 19.9407 1.10442
\(327\) 1.51648i 0.0838613i
\(328\) −18.9484 18.9484i −1.04625 1.04625i
\(329\) −5.96961 −0.329115
\(330\) 11.0577 + 3.08133i 0.608707 + 0.169621i
\(331\) −15.1666 + 15.1666i −0.833631 + 0.833631i −0.988011 0.154380i \(-0.950662\pi\)
0.154380 + 0.988011i \(0.450662\pi\)
\(332\) −1.12876 −0.0619489
\(333\) 1.45302i 0.0796250i
\(334\) 4.98703i 0.272878i
\(335\) −9.47571 + 34.0048i −0.517713 + 1.85788i
\(336\) −5.60522 5.60522i −0.305790 0.305790i
\(337\) 14.1264 + 14.1264i 0.769514 + 0.769514i 0.978021 0.208507i \(-0.0668604\pi\)
−0.208507 + 0.978021i \(0.566860\pi\)
\(338\) 0 0
\(339\) 3.87397i 0.210405i
\(340\) −0.0273845 0.0485421i −0.00148514 0.00263257i
\(341\) −16.4118 −0.888746
\(342\) 7.66089 + 7.66089i 0.414253 + 0.414253i
\(343\) −18.8559 −1.01812
\(344\) 0.248946 + 0.248946i 0.0134223 + 0.0134223i
\(345\) −5.91179 1.64737i −0.318280 0.0886914i
\(346\) −4.54924 4.54924i −0.244569 0.244569i
\(347\) −17.4159 + 17.4159i −0.934936 + 0.934936i −0.998009 0.0630727i \(-0.979910\pi\)
0.0630727 + 0.998009i \(0.479910\pi\)
\(348\) 0.725920 0.725920i 0.0389134 0.0389134i
\(349\) −19.2668 + 19.2668i −1.03133 + 1.03133i −0.0318358 + 0.999493i \(0.510135\pi\)
−0.999493 + 0.0318358i \(0.989865\pi\)
\(350\) −10.1858 + 16.8574i −0.544456 + 0.901065i
\(351\) 0 0
\(352\) 6.03818 6.03818i 0.321836 0.321836i
\(353\) −8.79926 −0.468337 −0.234169 0.972196i \(-0.575237\pi\)
−0.234169 + 0.972196i \(0.575237\pi\)
\(354\) 2.75379i 0.146362i
\(355\) 14.9705 8.44543i 0.794550 0.448237i
\(356\) −3.85208 + 3.85208i −0.204160 + 0.204160i
\(357\) 0.143690i 0.00760489i
\(358\) 21.1945i 1.12016i
\(359\) 11.1256 11.1256i 0.587186 0.587186i −0.349683 0.936868i \(-0.613711\pi\)
0.936868 + 0.349683i \(0.113711\pi\)
\(360\) −14.0959 3.92794i −0.742918 0.207020i
\(361\) 11.1203i 0.585279i
\(362\) 13.1277 0.689976
\(363\) −6.69346 + 6.69346i −0.351316 + 0.351316i
\(364\) 0 0
\(365\) −3.97289 + 14.2572i −0.207951 + 0.746256i
\(366\) −3.98235 + 3.98235i −0.208161 + 0.208161i
\(367\) 7.76295 7.76295i 0.405223 0.405223i −0.474846 0.880069i \(-0.657496\pi\)
0.880069 + 0.474846i \(0.157496\pi\)
\(368\) −12.9575 + 12.9575i −0.675455 + 0.675455i
\(369\) 18.7169 + 18.7169i 0.974365 + 0.974365i
\(370\) 0.520739 1.86874i 0.0270719 0.0971510i
\(371\) 17.4048 + 17.4048i 0.903612 + 0.903612i
\(372\) 0.676060 0.0350521
\(373\) 7.48104 + 7.48104i 0.387354 + 0.387354i 0.873742 0.486389i \(-0.161686\pi\)
−0.486389 + 0.873742i \(0.661686\pi\)
\(374\) 0.621300 0.0321267
\(375\) 0.226045 7.55917i 0.0116729 0.390354i
\(376\) 5.92134i 0.305370i
\(377\) 0 0
\(378\) 10.4425 + 10.4425i 0.537104 + 0.537104i
\(379\) −6.93105 6.93105i −0.356024 0.356024i 0.506321 0.862345i \(-0.331005\pi\)
−0.862345 + 0.506321i \(0.831005\pi\)
\(380\) 0.938997 + 1.66448i 0.0481695 + 0.0853859i
\(381\) 0.550921i 0.0282245i
\(382\) 25.6746i 1.31363i
\(383\) −26.0567 −1.33144 −0.665718 0.746204i \(-0.731874\pi\)
−0.665718 + 0.746204i \(0.731874\pi\)
\(384\) 6.30954 6.30954i 0.321982 0.321982i
\(385\) −14.2531 25.2653i −0.726407 1.28764i
\(386\) −12.9878 −0.661061
\(387\) −0.245905 0.245905i −0.0125001 0.0125001i
\(388\) 1.63493i 0.0830012i
\(389\) −32.4888 −1.64725 −0.823623 0.567138i \(-0.808050\pi\)
−0.823623 + 0.567138i \(0.808050\pi\)
\(390\) 0 0
\(391\) −0.332166 −0.0167983
\(392\) 0.686164i 0.0346565i
\(393\) −7.70358 7.70358i −0.388594 0.388594i
\(394\) 11.6234 0.585580
\(395\) −3.42764 + 12.3005i −0.172463 + 0.618906i
\(396\) −2.73652 + 2.73652i −0.137515 + 0.137515i
\(397\) 24.1854 1.21383 0.606914 0.794767i \(-0.292407\pi\)
0.606914 + 0.794767i \(0.292407\pi\)
\(398\) 23.2680i 1.16632i
\(399\) 4.92704i 0.246660i
\(400\) −19.3270 11.6781i −0.966348 0.583903i
\(401\) −23.2202 23.2202i −1.15956 1.15956i −0.984570 0.174992i \(-0.944010\pi\)
−0.174992 0.984570i \(-0.555990\pi\)
\(402\) 11.4624 + 11.4624i 0.571695 + 0.571695i
\(403\) 0 0
\(404\) 0.764454i 0.0380330i
\(405\) 10.9671 + 3.05608i 0.544960 + 0.151858i
\(406\) −19.6361 −0.974524
\(407\) 2.02033 + 2.02033i 0.100144 + 0.100144i
\(408\) 0.142528 0.00705620
\(409\) −9.87122 9.87122i −0.488101 0.488101i 0.419606 0.907706i \(-0.362168\pi\)
−0.907706 + 0.419606i \(0.862168\pi\)
\(410\) 17.3641 + 30.7798i 0.857552 + 1.52011i
\(411\) −9.20122 9.20122i −0.453863 0.453863i
\(412\) −1.43628 + 1.43628i −0.0707603 + 0.0707603i
\(413\) −4.92078 + 4.92078i −0.242136 + 0.242136i
\(414\) 11.0735 11.0735i 0.544231 0.544231i
\(415\) −7.98567 2.22527i −0.392001 0.109234i
\(416\) 0 0
\(417\) 7.58055 7.58055i 0.371221 0.371221i
\(418\) −21.3040 −1.04201
\(419\) 2.21980i 0.108444i −0.998529 0.0542221i \(-0.982732\pi\)
0.998529 0.0542221i \(-0.0172679\pi\)
\(420\) 0.587139 + 1.04077i 0.0286494 + 0.0507843i
\(421\) 24.4795 24.4795i 1.19306 1.19306i 0.216853 0.976204i \(-0.430421\pi\)
0.976204 0.216853i \(-0.0695792\pi\)
\(422\) 30.1116i 1.46581i
\(423\) 5.84901i 0.284389i
\(424\) −17.2641 + 17.2641i −0.838417 + 0.838417i
\(425\) −0.0980403 0.397408i −0.00475565 0.0192771i
\(426\) 7.89311i 0.382423i
\(427\) 14.2323 0.688747
\(428\) −0.781202 + 0.781202i −0.0377608 + 0.0377608i
\(429\) 0 0
\(430\) −0.228132 0.404389i −0.0110015 0.0195014i
\(431\) −1.16851 + 1.16851i −0.0562851 + 0.0562851i −0.734689 0.678404i \(-0.762672\pi\)
0.678404 + 0.734689i \(0.262672\pi\)
\(432\) −11.9723 + 11.9723i −0.576017 + 0.576017i
\(433\) −10.4765 + 10.4765i −0.503466 + 0.503466i −0.912513 0.409047i \(-0.865861\pi\)
0.409047 + 0.912513i \(0.365861\pi\)
\(434\) −9.14370 9.14370i −0.438912 0.438912i
\(435\) 6.56677 3.70457i 0.314853 0.177621i
\(436\) −0.482664 0.482664i −0.0231154 0.0231154i
\(437\) 11.3897 0.544845
\(438\) 4.80587 + 4.80587i 0.229633 + 0.229633i
\(439\) −21.8725 −1.04392 −0.521959 0.852970i \(-0.674799\pi\)
−0.521959 + 0.852970i \(0.674799\pi\)
\(440\) 25.0610 14.1379i 1.19474 0.673997i
\(441\) 0.677783i 0.0322754i
\(442\) 0 0
\(443\) −6.14972 6.14972i −0.292182 0.292182i 0.545760 0.837942i \(-0.316241\pi\)
−0.837942 + 0.545760i \(0.816241\pi\)
\(444\) −0.0832249 0.0832249i −0.00394968 0.00394968i
\(445\) −34.8464 + 19.6582i −1.65188 + 0.931890i
\(446\) 28.8020i 1.36381i
\(447\) 0.974228i 0.0460794i
\(448\) −16.7099 −0.789469
\(449\) 3.30563 3.30563i 0.156002 0.156002i −0.624790 0.780793i \(-0.714816\pi\)
0.780793 + 0.624790i \(0.214816\pi\)
\(450\) 16.5168 + 9.98008i 0.778612 + 0.470465i
\(451\) −52.0494 −2.45091
\(452\) −1.23301 1.23301i −0.0579958 0.0579958i
\(453\) 13.3209i 0.625869i
\(454\) 40.9246 1.92069
\(455\) 0 0
\(456\) −4.88720 −0.228864
\(457\) 30.0361i 1.40503i 0.711670 + 0.702514i \(0.247939\pi\)
−0.711670 + 0.702514i \(0.752061\pi\)
\(458\) −16.9718 16.9718i −0.793042 0.793042i
\(459\) −0.306911 −0.0143254
\(460\) 2.40593 1.35728i 0.112177 0.0632834i
\(461\) 1.85792 1.85792i 0.0865318 0.0865318i −0.662516 0.749048i \(-0.730511\pi\)
0.749048 + 0.662516i \(0.230511\pi\)
\(462\) −13.3210 −0.619749
\(463\) 25.1475i 1.16870i 0.811500 + 0.584352i \(0.198651\pi\)
−0.811500 + 0.584352i \(0.801349\pi\)
\(464\) 22.5128i 1.04513i
\(465\) 4.78293 + 1.33280i 0.221803 + 0.0618073i
\(466\) 10.2589 + 10.2589i 0.475235 + 0.475235i
\(467\) −14.9907 14.9907i −0.693688 0.693688i 0.269354 0.963041i \(-0.413190\pi\)
−0.963041 + 0.269354i \(0.913190\pi\)
\(468\) 0 0
\(469\) 40.9648i 1.89158i
\(470\) −2.09619 + 7.52245i −0.0966902 + 0.346985i
\(471\) 4.34910 0.200396
\(472\) −4.88100 4.88100i −0.224666 0.224666i
\(473\) 0.683832 0.0314426
\(474\) 4.14630 + 4.14630i 0.190446 + 0.190446i
\(475\) 3.36173 + 13.6268i 0.154247 + 0.625243i
\(476\) 0.0457337 + 0.0457337i 0.00209620 + 0.00209620i
\(477\) 17.0532 17.0532i 0.780812 0.780812i
\(478\) −3.01736 + 3.01736i −0.138011 + 0.138011i
\(479\) −1.61898 + 1.61898i −0.0739730 + 0.0739730i −0.743125 0.669152i \(-0.766657\pi\)
0.669152 + 0.743125i \(0.266657\pi\)
\(480\) −2.25009 + 1.26936i −0.102702 + 0.0579382i
\(481\) 0 0
\(482\) −2.94648 + 2.94648i −0.134208 + 0.134208i
\(483\) 7.12181 0.324054
\(484\) 4.26079i 0.193672i
\(485\) −3.22315 + 11.5667i −0.146356 + 0.525216i
\(486\) 15.7696 15.7696i 0.715324 0.715324i
\(487\) 5.56643i 0.252239i 0.992015 + 0.126119i \(0.0402523\pi\)
−0.992015 + 0.126119i \(0.959748\pi\)
\(488\) 14.1172i 0.639054i
\(489\) 6.28282 6.28282i 0.284119 0.284119i
\(490\) −0.242907 + 0.871701i −0.0109734 + 0.0393794i
\(491\) 6.10997i 0.275739i 0.990450 + 0.137869i \(0.0440255\pi\)
−0.990450 + 0.137869i \(0.955975\pi\)
\(492\) 2.14411 0.0966638
\(493\) 0.288558 0.288558i 0.0129960 0.0129960i
\(494\) 0 0
\(495\) −24.7549 + 13.9652i −1.11265 + 0.627689i
\(496\) 10.4832 10.4832i 0.470711 0.470711i
\(497\) −14.1043 + 14.1043i −0.632666 + 0.632666i
\(498\) −2.69184 + 2.69184i −0.120624 + 0.120624i
\(499\) −6.22738 6.22738i −0.278776 0.278776i 0.553844 0.832620i \(-0.313160\pi\)
−0.832620 + 0.553844i \(0.813160\pi\)
\(500\) 2.33399 + 2.47788i 0.104379 + 0.110814i
\(501\) 1.57129 + 1.57129i 0.0701999 + 0.0701999i
\(502\) −4.30183 −0.192000
\(503\) 2.59944 + 2.59944i 0.115903 + 0.115903i 0.762680 0.646776i \(-0.223883\pi\)
−0.646776 + 0.762680i \(0.723883\pi\)
\(504\) 16.9810 0.756395
\(505\) 1.50707 5.40829i 0.0670635 0.240666i
\(506\) 30.7939i 1.36896i
\(507\) 0 0
\(508\) −0.175347 0.175347i −0.00777976 0.00777976i
\(509\) −7.92432 7.92432i −0.351239 0.351239i 0.509331 0.860571i \(-0.329893\pi\)
−0.860571 + 0.509331i \(0.829893\pi\)
\(510\) −0.181067 0.0504560i −0.00801780 0.00223423i
\(511\) 17.1754i 0.759793i
\(512\) 15.5347i 0.686544i
\(513\) 10.5238 0.464635
\(514\) 21.5349 21.5349i 0.949865 0.949865i
\(515\) −12.9927 + 7.32972i −0.572529 + 0.322986i
\(516\) −0.0281695 −0.00124009
\(517\) −8.13269 8.13269i −0.357675 0.357675i
\(518\) 2.25123i 0.0989133i
\(519\) −2.86670 −0.125834
\(520\) 0 0
\(521\) 35.9604 1.57545 0.787726 0.616026i \(-0.211258\pi\)
0.787726 + 0.616026i \(0.211258\pi\)
\(522\) 19.2394i 0.842088i
\(523\) −5.93427 5.93427i −0.259487 0.259487i 0.565358 0.824846i \(-0.308738\pi\)
−0.824846 + 0.565358i \(0.808738\pi\)
\(524\) 4.90379 0.214223
\(525\) 2.10203 + 8.52064i 0.0917403 + 0.371871i
\(526\) −10.1136 + 10.1136i −0.440972 + 0.440972i
\(527\) 0.268739 0.0117064
\(528\) 15.2725i 0.664651i
\(529\) 6.53664i 0.284202i
\(530\) 28.0438 15.8206i 1.21814 0.687203i
\(531\) 4.82138 + 4.82138i 0.209230 + 0.209230i
\(532\) −1.56818 1.56818i −0.0679891 0.0679891i
\(533\) 0 0
\(534\) 18.3726i 0.795061i
\(535\) −7.06686 + 3.98669i −0.305527 + 0.172360i
\(536\) 40.6336 1.75510
\(537\) 6.67783 + 6.67783i 0.288170 + 0.288170i
\(538\) −4.88034 −0.210407
\(539\) −0.942415 0.942415i −0.0405927 0.0405927i
\(540\) 2.22300 1.25408i 0.0956627 0.0539671i
\(541\) 4.13066 + 4.13066i 0.177591 + 0.177591i 0.790305 0.612714i \(-0.209922\pi\)
−0.612714 + 0.790305i \(0.709922\pi\)
\(542\) 16.3019 16.3019i 0.700227 0.700227i
\(543\) 4.13620 4.13620i 0.177501 0.177501i
\(544\) −0.0988737 + 0.0988737i −0.00423917 + 0.00423917i
\(545\) −2.46317 4.36624i −0.105511 0.187029i
\(546\) 0 0
\(547\) −7.90229 + 7.90229i −0.337877 + 0.337877i −0.855568 0.517691i \(-0.826792\pi\)
0.517691 + 0.855568i \(0.326792\pi\)
\(548\) 5.85713 0.250204
\(549\) 13.9447i 0.595147i
\(550\) −36.8423 + 9.08897i −1.57096 + 0.387555i
\(551\) −9.89447 + 9.89447i −0.421519 + 0.421519i
\(552\) 7.06422i 0.300673i
\(553\) 14.8182i 0.630133i
\(554\) 11.4479 11.4479i 0.486375 0.486375i
\(555\) −0.424720 0.752863i −0.0180283 0.0319573i
\(556\) 4.82547i 0.204646i
\(557\) −11.7868 −0.499423 −0.249712 0.968320i \(-0.580336\pi\)
−0.249712 + 0.968320i \(0.580336\pi\)
\(558\) −8.95899 + 8.95899i −0.379264 + 0.379264i
\(559\) 0 0
\(560\) 25.2429 + 7.03416i 1.06671 + 0.297247i
\(561\) 0.195756 0.195756i 0.00826482 0.00826482i
\(562\) 19.3749 19.3749i 0.817280 0.817280i
\(563\) 22.7376 22.7376i 0.958277 0.958277i −0.0408873 0.999164i \(-0.513018\pi\)
0.999164 + 0.0408873i \(0.0130184\pi\)
\(564\) 0.335015 + 0.335015i 0.0141067 + 0.0141067i
\(565\) −6.29238 11.1540i −0.264723 0.469250i
\(566\) 6.18034 + 6.18034i 0.259779 + 0.259779i
\(567\) −13.2118 −0.554845
\(568\) −13.9903 13.9903i −0.587019 0.587019i
\(569\) −9.28474 −0.389237 −0.194618 0.980879i \(-0.562347\pi\)
−0.194618 + 0.980879i \(0.562347\pi\)
\(570\) 6.20868 + 1.73010i 0.260053 + 0.0724659i
\(571\) 31.1596i 1.30399i 0.758223 + 0.651995i \(0.226068\pi\)
−0.758223 + 0.651995i \(0.773932\pi\)
\(572\) 0 0
\(573\) 8.08942 + 8.08942i 0.337940 + 0.337940i
\(574\) −28.9990 28.9990i −1.21039 1.21039i
\(575\) 19.6970 4.85924i 0.821422 0.202644i
\(576\) 16.3724i 0.682181i
\(577\) 4.57285i 0.190370i −0.995460 0.0951852i \(-0.969656\pi\)
0.995460 0.0951852i \(-0.0303443\pi\)
\(578\) 25.7966 1.07300
\(579\) −4.09212 + 4.09212i −0.170063 + 0.170063i
\(580\) −0.910980 + 3.26916i −0.0378264 + 0.135745i
\(581\) 9.62018 0.399112
\(582\) 3.89894 + 3.89894i 0.161616 + 0.161616i
\(583\) 47.4228i 1.96405i
\(584\) 17.0365 0.704975
\(585\) 0 0
\(586\) 4.85179 0.200425
\(587\) 7.19181i 0.296838i 0.988925 + 0.148419i \(0.0474184\pi\)
−0.988925 + 0.148419i \(0.952582\pi\)
\(588\) 0.0388215 + 0.0388215i 0.00160097 + 0.00160097i
\(589\) −9.21486 −0.379692
\(590\) 4.47289 + 7.92870i 0.184146 + 0.326420i
\(591\) 3.66225 3.66225i 0.150645 0.150645i
\(592\) −2.58103 −0.106080
\(593\) 28.0561i 1.15212i 0.817406 + 0.576062i \(0.195411\pi\)
−0.817406 + 0.576062i \(0.804589\pi\)
\(594\) 28.4526i 1.16742i
\(595\) 0.233392 + 0.413713i 0.00956813 + 0.0169606i
\(596\) −0.310077 0.310077i −0.0127013 0.0127013i
\(597\) −7.33116 7.33116i −0.300044 0.300044i
\(598\) 0 0
\(599\) 0.912959i 0.0373025i −0.999826 0.0186513i \(-0.994063\pi\)
0.999826 0.0186513i \(-0.00593722\pi\)
\(600\) −8.45174 + 2.08504i −0.345041 + 0.0851213i
\(601\) 12.4538 0.508002 0.254001 0.967204i \(-0.418253\pi\)
0.254001 + 0.967204i \(0.418253\pi\)
\(602\) 0.380992 + 0.380992i 0.0155281 + 0.0155281i
\(603\) −40.1373 −1.63452
\(604\) −4.23976 4.23976i −0.172514 0.172514i
\(605\) 8.39983 30.1438i 0.341502 1.22552i
\(606\) −1.82305 1.82305i −0.0740562 0.0740562i
\(607\) −27.4162 + 27.4162i −1.11279 + 1.11279i −0.120017 + 0.992772i \(0.538295\pi\)
−0.992772 + 0.120017i \(0.961705\pi\)
\(608\) 3.39031 3.39031i 0.137495 0.137495i
\(609\) −6.18684 + 6.18684i −0.250703 + 0.250703i
\(610\) 4.99757 17.9344i 0.202346 0.726143i
\(611\) 0 0
\(612\) 0.0448098 0.0448098i 0.00181133 0.00181133i
\(613\) 24.6113 0.994042 0.497021 0.867739i \(-0.334427\pi\)
0.497021 + 0.867739i \(0.334427\pi\)
\(614\) 36.8490i 1.48711i
\(615\) 15.1689 + 4.22695i 0.611670 + 0.170447i
\(616\) −23.6110 + 23.6110i −0.951316 + 0.951316i
\(617\) 15.4154i 0.620600i 0.950639 + 0.310300i \(0.100429\pi\)
−0.950639 + 0.310300i \(0.899571\pi\)
\(618\) 6.85037i 0.275562i
\(619\) −20.7915 + 20.7915i −0.835683 + 0.835683i −0.988287 0.152604i \(-0.951234\pi\)
0.152604 + 0.988287i \(0.451234\pi\)
\(620\) −1.94651 + 1.09811i −0.0781739 + 0.0441010i
\(621\) 15.2116i 0.610421i
\(622\) −25.6631 −1.02900
\(623\) 32.8303 32.8303i 1.31532 1.31532i
\(624\) 0 0
\(625\) 11.6273 + 22.1315i 0.465093 + 0.885262i
\(626\) 12.7667 12.7667i 0.510261 0.510261i
\(627\) −6.71234 + 6.71234i −0.268065 + 0.268065i
\(628\) −1.38423 + 1.38423i −0.0552369 + 0.0552369i
\(629\) −0.0330825 0.0330825i −0.00131908 0.00131908i
\(630\) −21.5726 6.01140i −0.859475 0.239500i
\(631\) −8.91183 8.91183i −0.354774 0.354774i 0.507108 0.861882i \(-0.330714\pi\)
−0.861882 + 0.507108i \(0.830714\pi\)
\(632\) 14.6984 0.584670
\(633\) 9.48740 + 9.48740i 0.377090 + 0.377090i
\(634\) 18.1382 0.720359
\(635\) −0.894844 1.58621i −0.0355108 0.0629469i
\(636\) 1.95352i 0.0774620i
\(637\) 0 0
\(638\) −26.7512 26.7512i −1.05909 1.05909i
\(639\) 13.8194 + 13.8194i 0.546687 + 0.546687i
\(640\) −7.91804 + 28.4149i −0.312988 + 1.12320i
\(641\) 9.76116i 0.385543i 0.981244 + 0.192771i \(0.0617476\pi\)
−0.981244 + 0.192771i \(0.938252\pi\)
\(642\) 3.72597i 0.147052i
\(643\) 27.8114 1.09677 0.548387 0.836225i \(-0.315242\pi\)
0.548387 + 0.836225i \(0.315242\pi\)
\(644\) −2.26673 + 2.26673i −0.0893216 + 0.0893216i
\(645\) −0.199291 0.0555341i −0.00784708 0.00218665i
\(646\) 0.348847 0.0137252
\(647\) −13.0281 13.0281i −0.512188 0.512188i 0.403008 0.915196i \(-0.367965\pi\)
−0.915196 + 0.403008i \(0.867965\pi\)
\(648\) 13.1050i 0.514814i
\(649\) −13.4076 −0.526296
\(650\) 0 0
\(651\) −5.76190 −0.225826
\(652\) 3.99939i 0.156628i
\(653\) 5.21579 + 5.21579i 0.204110 + 0.204110i 0.801758 0.597648i \(-0.203898\pi\)
−0.597648 + 0.801758i \(0.703898\pi\)
\(654\) −2.30208 −0.0900185
\(655\) 34.6929 + 9.66746i 1.35556 + 0.377739i
\(656\) 33.2473 33.2473i 1.29809 1.29809i
\(657\) −16.8284 −0.656538
\(658\) 9.06214i 0.353279i
\(659\) 13.9472i 0.543304i 0.962396 + 0.271652i \(0.0875700\pi\)
−0.962396 + 0.271652i \(0.912430\pi\)
\(660\) −0.618002 + 2.21778i −0.0240557 + 0.0863269i
\(661\) 0.160275 + 0.160275i 0.00623398 + 0.00623398i 0.710217 0.703983i \(-0.248597\pi\)
−0.703983 + 0.710217i \(0.748597\pi\)
\(662\) −23.0236 23.0236i −0.894837 0.894837i
\(663\) 0 0
\(664\) 9.54239i 0.370317i
\(665\) −8.00284 14.1859i −0.310337 0.550107i
\(666\) 2.20575 0.0854711
\(667\) 14.3020 + 14.3020i 0.553776 + 0.553776i
\(668\) −1.00022 −0.0386996
\(669\) −9.07477 9.07477i −0.350851 0.350851i
\(670\) −51.6208 14.3846i −1.99429 0.555724i
\(671\) 19.3893 + 19.3893i 0.748515 + 0.748515i
\(672\) 2.11990 2.11990i 0.0817771 0.0817771i
\(673\) 23.7719 23.7719i 0.916340 0.916340i −0.0804210 0.996761i \(-0.525626\pi\)
0.996761 + 0.0804210i \(0.0256265\pi\)
\(674\) −21.4445 + 21.4445i −0.826012 + 0.826012i
\(675\) 18.1994 4.48978i 0.700495 0.172812i
\(676\) 0 0
\(677\) 25.1691 25.1691i 0.967326 0.967326i −0.0321566 0.999483i \(-0.510238\pi\)
0.999483 + 0.0321566i \(0.0102375\pi\)
\(678\) −5.88087 −0.225854
\(679\) 13.9341i 0.534743i
\(680\) −0.410368 + 0.231505i −0.0157369 + 0.00887779i
\(681\) 12.8943 12.8943i 0.494110 0.494110i
\(682\) 24.9138i 0.953999i
\(683\) 30.7567i 1.17687i −0.808543 0.588437i \(-0.799744\pi\)
0.808543 0.588437i \(-0.200256\pi\)
\(684\) −1.53650 + 1.53650i −0.0587494 + 0.0587494i
\(685\) 41.4374 + 11.5469i 1.58324 + 0.441184i
\(686\) 28.6242i 1.09288i
\(687\) −10.6948 −0.408032
\(688\) −0.436807 + 0.436807i −0.0166531 + 0.0166531i
\(689\) 0 0
\(690\) 2.50078 8.97436i 0.0952032 0.341648i
\(691\) 27.3944 27.3944i 1.04213 1.04213i 0.0430609 0.999072i \(-0.486289\pi\)
0.999072 0.0430609i \(-0.0137109\pi\)
\(692\) 0.912413 0.912413i 0.0346847 0.0346847i
\(693\) 23.3227 23.3227i 0.885954 0.885954i
\(694\) −26.4382 26.4382i −1.00358 1.00358i
\(695\) −9.51307 + 34.1388i −0.360851 + 1.29496i
\(696\) −6.13682 6.13682i −0.232615 0.232615i
\(697\) 0.852297 0.0322831
\(698\) −29.2479 29.2479i −1.10705 1.10705i
\(699\) 6.46464 0.244515
\(700\) −3.38098 2.04291i −0.127789 0.0772148i
\(701\) 19.8876i 0.751143i −0.926793 0.375571i \(-0.877447\pi\)
0.926793 0.375571i \(-0.122553\pi\)
\(702\) 0 0
\(703\) 1.13437 + 1.13437i 0.0427838 + 0.0427838i
\(704\) −22.7647 22.7647i −0.857978 0.857978i
\(705\) 1.70968 + 3.03059i 0.0643901 + 0.114139i
\(706\) 13.3577i 0.502723i
\(707\) 6.51526i 0.245032i
\(708\) 0.552310 0.0207571
\(709\) −22.5347 + 22.5347i −0.846309 + 0.846309i −0.989670 0.143362i \(-0.954209\pi\)
0.143362 + 0.989670i \(0.454209\pi\)
\(710\) 12.8206 + 22.7259i 0.481147 + 0.852887i
\(711\) −14.5188 −0.544499
\(712\) 32.5649 + 32.5649i 1.22042 + 1.22042i
\(713\) 13.3197i 0.498826i
\(714\) 0.218128 0.00816325
\(715\) 0 0
\(716\) −4.25084 −0.158861
\(717\) 1.90138i 0.0710085i
\(718\) 16.8892 + 16.8892i 0.630298 + 0.630298i
\(719\) −30.9635 −1.15474 −0.577372 0.816481i \(-0.695922\pi\)
−0.577372 + 0.816481i \(0.695922\pi\)
\(720\) 6.89206 24.7330i 0.256852 0.921744i
\(721\) 12.2410 12.2410i 0.455880 0.455880i
\(722\) 16.8811 0.628251
\(723\) 1.85672i 0.0690522i
\(724\) 2.63294i 0.0978524i
\(725\) −12.8898 + 21.3324i −0.478716 + 0.792267i
\(726\) −10.1610 10.1610i −0.377110 0.377110i
\(727\) 16.2588 + 16.2588i 0.603007 + 0.603007i 0.941109 0.338103i \(-0.109785\pi\)
−0.338103 + 0.941109i \(0.609785\pi\)
\(728\) 0 0
\(729\) 5.33729i 0.197678i
\(730\) −21.6431 6.03103i −0.801047 0.223218i
\(731\) −0.0111976 −0.000414157
\(732\) −0.798715 0.798715i −0.0295214 0.0295214i
\(733\) 31.2515 1.15430 0.577150 0.816638i \(-0.304165\pi\)
0.577150 + 0.816638i \(0.304165\pi\)
\(734\) 11.7845 + 11.7845i 0.434975 + 0.434975i
\(735\) 0.198117 + 0.351185i 0.00730766 + 0.0129536i
\(736\) −4.90054 4.90054i −0.180636 0.180636i
\(737\) 55.8084 55.8084i 2.05573 2.05573i
\(738\) −28.4132 + 28.4132i −1.04590 + 1.04590i
\(739\) 19.3018 19.3018i 0.710029 0.710029i −0.256512 0.966541i \(-0.582573\pi\)
0.966541 + 0.256512i \(0.0825733\pi\)
\(740\) 0.374801 + 0.104441i 0.0137780 + 0.00383934i
\(741\) 0 0
\(742\) −26.4213 + 26.4213i −0.969956 + 0.969956i
\(743\) 32.9660 1.20941 0.604703 0.796451i \(-0.293292\pi\)
0.604703 + 0.796451i \(0.293292\pi\)
\(744\) 5.71531i 0.209533i
\(745\) −1.58241 2.80500i −0.0579750 0.102767i
\(746\) −11.3566 + 11.3566i −0.415794 + 0.415794i
\(747\) 9.42584i 0.344873i
\(748\) 0.124610i 0.00455621i
\(749\) 6.65800 6.65800i 0.243278 0.243278i
\(750\) 11.4752 + 0.343147i 0.419014 + 0.0125300i
\(751\) 30.9738i 1.13025i 0.825005 + 0.565125i \(0.191172\pi\)
−0.825005 + 0.565125i \(0.808828\pi\)
\(752\) 10.3897 0.378875
\(753\) −1.35540 + 1.35540i −0.0493934 + 0.0493934i
\(754\) 0 0
\(755\) −21.6367 38.3535i −0.787440 1.39583i
\(756\) −2.09439 + 2.09439i −0.0761720 + 0.0761720i
\(757\) 36.1312 36.1312i 1.31321 1.31321i 0.394173 0.919036i \(-0.371031\pi\)
0.919036 0.394173i \(-0.128969\pi\)
\(758\) 10.5217 10.5217i 0.382164 0.382164i
\(759\) 9.70238 + 9.70238i 0.352174 + 0.352174i
\(760\) 14.0712 7.93813i 0.510417 0.287946i
\(761\) −0.818500 0.818500i −0.0296706 0.0296706i 0.692116 0.721786i \(-0.256679\pi\)
−0.721786 + 0.692116i \(0.756679\pi\)
\(762\) −0.836323 −0.0302968
\(763\) 4.11363 + 4.11363i 0.148923 + 0.148923i
\(764\) −5.14940 −0.186299
\(765\) 0.405355 0.228677i 0.0146557 0.00826783i
\(766\) 39.5553i 1.42919i
\(767\) 0 0
\(768\) 3.41812 + 3.41812i 0.123341 + 0.123341i
\(769\) 21.3762 + 21.3762i 0.770844 + 0.770844i 0.978254 0.207410i \(-0.0665035\pi\)
−0.207410 + 0.978254i \(0.566503\pi\)
\(770\) 38.3539 21.6369i 1.38218 0.779741i
\(771\) 13.5702i 0.488719i
\(772\) 2.60488i 0.0937517i
\(773\) 7.19282 0.258708 0.129354 0.991598i \(-0.458710\pi\)
0.129354 + 0.991598i \(0.458710\pi\)
\(774\) 0.373296 0.373296i 0.0134178 0.0134178i
\(775\) −15.9358 + 3.93136i −0.572432 + 0.141219i
\(776\) 13.8215 0.496162
\(777\) 0.709305 + 0.709305i 0.0254462 + 0.0254462i
\(778\) 49.3194i 1.76819i
\(779\) −29.2247 −1.04708
\(780\) 0 0
\(781\) −38.4300 −1.37513
\(782\) 0.504243i 0.0180317i
\(783\) 13.2146 + 13.2146i 0.472251 + 0.472251i
\(784\) 1.20396 0.0429986
\(785\) −12.5219 + 7.06412i −0.446927 + 0.252129i
\(786\) 11.6944 11.6944i 0.417125 0.417125i
\(787\) 7.17886 0.255899 0.127949 0.991781i \(-0.459160\pi\)
0.127949 + 0.991781i \(0.459160\pi\)
\(788\) 2.33124i 0.0830470i
\(789\) 6.37306i 0.226887i
\(790\) −18.6728 5.20332i −0.664347 0.185126i
\(791\) 10.5086 + 10.5086i 0.373644 + 0.373644i
\(792\) 23.1341 + 23.1341i 0.822034 + 0.822034i
\(793\) 0 0
\(794\) 36.7145i 1.30295i
\(795\) 3.85122 13.8206i 0.136589 0.490165i
\(796\) 4.66672 0.165407
\(797\) 27.8584 + 27.8584i 0.986795 + 0.986795i 0.999914 0.0131190i \(-0.00417602\pi\)
−0.0131190 + 0.999914i \(0.504176\pi\)
\(798\) −7.47947 −0.264770
\(799\) 0.133171 + 0.133171i 0.00471124 + 0.00471124i
\(800\) 4.41666 7.30950i 0.156153 0.258430i
\(801\) −32.1671 32.1671i −1.13657 1.13657i
\(802\) 35.2493 35.2493i 1.24470 1.24470i
\(803\) 23.3988 23.3988i 0.825727 0.825727i
\(804\) −2.29895 + 2.29895i −0.0810778 + 0.0810778i
\(805\) −20.5051 + 11.5677i −0.722711 + 0.407710i
\(806\) 0 0
\(807\) −1.53767 + 1.53767i −0.0541286 + 0.0541286i
\(808\) −6.46258 −0.227353
\(809\) 27.9509i 0.982700i 0.870962 + 0.491350i \(0.163496\pi\)
−0.870962 + 0.491350i \(0.836504\pi\)
\(810\) −4.63926 + 16.6486i −0.163007 + 0.584971i
\(811\) −23.2784 + 23.2784i −0.817415 + 0.817415i −0.985733 0.168317i \(-0.946167\pi\)
0.168317 + 0.985733i \(0.446167\pi\)
\(812\) 3.93829i 0.138207i
\(813\) 10.2726i 0.360277i
\(814\) −3.06696 + 3.06696i −0.107497 + 0.107497i
\(815\) −7.88450 + 28.2945i −0.276182 + 0.991113i
\(816\) 0.250084i 0.00875468i
\(817\) 0.383957 0.0134330
\(818\) 14.9850 14.9850i 0.523937 0.523937i
\(819\) 0 0
\(820\) −6.17331 + 3.48261i −0.215582 + 0.121618i
\(821\) −13.8264 + 13.8264i −0.482545 + 0.482545i −0.905944 0.423398i \(-0.860837\pi\)
0.423398 + 0.905944i \(0.360837\pi\)
\(822\) 13.9679 13.9679i 0.487186 0.487186i
\(823\) −28.8649 + 28.8649i −1.00617 + 1.00617i −0.00618675 + 0.999981i \(0.501969\pi\)
−0.999981 + 0.00618675i \(0.998031\pi\)
\(824\) 12.1421 + 12.1421i 0.422989 + 0.422989i
\(825\) −8.74437 + 14.4718i −0.304440 + 0.503843i
\(826\) −7.46998 7.46998i −0.259914 0.259914i
\(827\) 31.8649 1.10805 0.554026 0.832499i \(-0.313091\pi\)
0.554026 + 0.832499i \(0.313091\pi\)
\(828\) 2.22094 + 2.22094i 0.0771829 + 0.0771829i
\(829\) −55.2782 −1.91989 −0.959946 0.280184i \(-0.909604\pi\)
−0.959946 + 0.280184i \(0.909604\pi\)
\(830\) 3.37807 12.1226i 0.117255 0.420782i
\(831\) 7.21389i 0.250247i
\(832\) 0 0
\(833\) 0.0154318 + 0.0154318i 0.000534681 + 0.000534681i
\(834\) 11.5076 + 11.5076i 0.398477 + 0.398477i
\(835\) −7.07624 1.97185i −0.244883 0.0682388i
\(836\) 4.27281i 0.147778i
\(837\) 12.3070i 0.425390i
\(838\) 3.36976 0.116406
\(839\) 2.75809 2.75809i 0.0952197 0.0952197i −0.657892 0.753112i \(-0.728552\pi\)
0.753112 + 0.657892i \(0.228552\pi\)
\(840\) 8.79850 4.96358i 0.303577 0.171260i
\(841\) 4.15118 0.143144
\(842\) 37.1610 + 37.1610i 1.28065 + 1.28065i
\(843\) 12.2091i 0.420503i
\(844\) −6.03930 −0.207881
\(845\) 0 0
\(846\) −8.87908 −0.305269
\(847\) 36.3137i 1.24775i
\(848\) −30.2920 30.2920i −1.04023 1.04023i
\(849\) 3.89454 0.133660
\(850\) 0.603284 0.148830i 0.0206925 0.00510482i
\(851\) 1.63969 1.63969i 0.0562078 0.0562078i
\(852\) 1.58307 0.0542352
\(853\) 53.5726i 1.83429i −0.398554 0.917145i \(-0.630488\pi\)
0.398554 0.917145i \(-0.369512\pi\)
\(854\) 21.6052i 0.739315i
\(855\) −13.8994 + 7.84117i −0.475348 + 0.268163i
\(856\) 6.60416 + 6.60416i 0.225726 + 0.225726i
\(857\) −18.9164 18.9164i −0.646171 0.646171i 0.305894 0.952066i \(-0.401045\pi\)
−0.952066 + 0.305894i \(0.901045\pi\)
\(858\) 0 0
\(859\) 18.1203i 0.618258i −0.951020 0.309129i \(-0.899963\pi\)
0.951020 0.309129i \(-0.100037\pi\)
\(860\) 0.0811057 0.0457549i 0.00276568 0.00156023i
\(861\) −18.2737 −0.622766
\(862\) −1.77385 1.77385i −0.0604176 0.0604176i
\(863\) 21.4967 0.731757 0.365879 0.930663i \(-0.380768\pi\)
0.365879 + 0.930663i \(0.380768\pi\)
\(864\) −4.52795 4.52795i −0.154044 0.154044i
\(865\) 8.25380 4.65630i 0.280638 0.158319i
\(866\) −15.9037 15.9037i −0.540431 0.540431i
\(867\) 8.12786 8.12786i 0.276037 0.276037i
\(868\) 1.83390 1.83390i 0.0622465 0.0622465i
\(869\) 20.1875 20.1875i 0.684815 0.684815i
\(870\) 5.62372 + 9.96866i 0.190662 + 0.337969i
\(871\) 0 0
\(872\) −4.08036 + 4.08036i −0.138179 + 0.138179i
\(873\) −13.6527 −0.462072
\(874\) 17.2902i 0.584848i
\(875\) −19.8920 21.1184i −0.672473 0.713931i
\(876\) −0.963883 + 0.963883i −0.0325666 + 0.0325666i
\(877\) 21.3491i 0.720907i 0.932777 + 0.360454i \(0.117378\pi\)
−0.932777 + 0.360454i \(0.882622\pi\)
\(878\) 33.2035i 1.12056i
\(879\) 1.52867 1.52867i 0.0515609 0.0515609i
\(880\) 24.8067 + 43.9726i 0.836234 + 1.48232i
\(881\) 13.2448i 0.446227i 0.974792 + 0.223114i \(0.0716221\pi\)
−0.974792 + 0.223114i \(0.928378\pi\)
\(882\) −1.02891 −0.0346451
\(883\) −32.5668 + 32.5668i −1.09596 + 1.09596i −0.101082 + 0.994878i \(0.532230\pi\)
−0.994878 + 0.101082i \(0.967770\pi\)
\(884\) 0 0
\(885\) 3.90743 + 1.08884i 0.131347 + 0.0366009i
\(886\) 9.33555 9.33555i 0.313634 0.313634i
\(887\) 11.2998 11.2998i 0.379409 0.379409i −0.491480 0.870889i \(-0.663544\pi\)
0.870889 + 0.491480i \(0.163544\pi\)
\(888\) −0.703570 + 0.703570i −0.0236103 + 0.0236103i
\(889\) 1.49444 + 1.49444i 0.0501219 + 0.0501219i
\(890\) −29.8421 52.8985i −1.00031 1.77316i
\(891\) −17.9991 17.9991i −0.602994 0.602994i
\(892\) 5.77663 0.193416
\(893\) −4.56634 4.56634i −0.152807 0.152807i
\(894\) −1.47892 −0.0494626
\(895\) −30.0734 8.38022i −1.00524 0.280120i
\(896\) 34.2308i 1.14357i
\(897\) 0 0
\(898\) 5.01810 + 5.01810i 0.167456 + 0.167456i
\(899\) −11.5710 11.5710i −0.385916 0.385916i
\(900\) −2.00164 + 3.31268i −0.0667214 + 0.110423i
\(901\) 0.776537i 0.0258702i
\(902\) 79.0135i 2.63086i
\(903\) 0.240082 0.00798943
\(904\) −10.4237 + 10.4237i −0.346686 + 0.346686i
\(905\) −5.19065 + 18.6273i −0.172543 + 0.619192i
\(906\) −20.2217 −0.671821
\(907\) 3.71485 + 3.71485i 0.123350 + 0.123350i 0.766087 0.642737i \(-0.222201\pi\)
−0.642737 + 0.766087i \(0.722201\pi\)
\(908\) 8.20799i 0.272392i
\(909\) 6.38364 0.211732
\(910\) 0 0
\(911\) 9.49722 0.314657 0.157328 0.987546i \(-0.449712\pi\)
0.157328 + 0.987546i \(0.449712\pi\)
\(912\) 8.57520i 0.283953i
\(913\) 13.1060 + 13.1060i 0.433746 + 0.433746i
\(914\) −45.5961 −1.50819
\(915\) −4.07607 7.22529i −0.134751 0.238861i
\(916\) 3.40394 3.40394i 0.112469 0.112469i
\(917\) −41.7938 −1.38015
\(918\) 0.465905i 0.0153771i
\(919\) 52.6782i 1.73769i −0.495081 0.868847i \(-0.664862\pi\)
0.495081 0.868847i \(-0.335138\pi\)
\(920\) −11.4742 20.3393i −0.378294 0.670568i
\(921\) 11.6102 + 11.6102i 0.382569 + 0.382569i
\(922\) 2.82041 + 2.82041i 0.0928851 + 0.0928851i
\(923\) 0 0
\(924\) 2.67171i 0.0878929i
\(925\) 2.44571 + 1.47778i 0.0804144 + 0.0485893i
\(926\) −38.1751 −1.25451
\(927\) −11.9937 11.9937i −0.393926 0.393926i
\(928\) 8.51438 0.279498
\(929\) 5.89185 + 5.89185i 0.193305 + 0.193305i 0.797123 0.603817i \(-0.206354\pi\)
−0.603817 + 0.797123i \(0.706354\pi\)
\(930\) −2.02326 + 7.26071i −0.0663452 + 0.238088i
\(931\) −0.529147 0.529147i −0.0173421 0.0173421i
\(932\) −2.05757 + 2.05757i −0.0673978 + 0.0673978i
\(933\) −8.08579 + 8.08579i −0.264717 + 0.264717i
\(934\) 22.7566 22.7566i 0.744619 0.744619i
\(935\) −0.245660 + 0.881582i −0.00803395 + 0.0288308i
\(936\) 0 0
\(937\) 16.3814 16.3814i 0.535156 0.535156i −0.386947 0.922102i \(-0.626470\pi\)
0.922102 + 0.386947i \(0.126470\pi\)
\(938\) 62.1865 2.03046
\(939\) 8.04494i 0.262537i
\(940\) −1.50873 0.420421i −0.0492094 0.0137126i
\(941\) −24.2325 + 24.2325i −0.789956 + 0.789956i −0.981487 0.191530i \(-0.938655\pi\)
0.191530 + 0.981487i \(0.438655\pi\)
\(942\) 6.60214i 0.215109i
\(943\) 42.2430i 1.37562i
\(944\) 8.56432 8.56432i 0.278745 0.278745i
\(945\) −18.9461 + 10.6882i −0.616316 + 0.347688i
\(946\) 1.03809i 0.0337512i
\(947\) −33.4416 −1.08671 −0.543353 0.839505i \(-0.682845\pi\)
−0.543353 + 0.839505i \(0.682845\pi\)
\(948\) −0.831598 + 0.831598i −0.0270091 + 0.0270091i
\(949\) 0 0
\(950\) −20.6862 + 5.10327i −0.671149 + 0.165572i
\(951\) 5.71487 5.71487i 0.185318 0.185318i
\(952\) 0.386625 0.386625i 0.0125306 0.0125306i
\(953\) 10.6248 10.6248i 0.344171 0.344171i −0.513762 0.857933i \(-0.671748\pi\)
0.857933 + 0.513762i \(0.171748\pi\)
\(954\) 25.8875 + 25.8875i 0.838140 + 0.838140i
\(955\) −36.4305 10.1517i −1.17886 0.328500i
\(956\) −0.605172 0.605172i −0.0195727 0.0195727i
\(957\) −16.8573 −0.544918
\(958\) −2.45769 2.45769i −0.0794042 0.0794042i
\(959\) −49.9188 −1.61196
\(960\) 4.78566 + 8.48312i 0.154457 + 0.273792i
\(961\) 20.2237i 0.652378i
\(962\) 0 0
\(963\) −6.52350 6.52350i −0.210217 0.210217i
\(964\) −0.590957 0.590957i −0.0190334 0.0190334i
\(965\) 5.13533 18.4288i 0.165312 0.593243i
\(966\) 10.8112i 0.347846i
\(967\) 7.49252i 0.240943i −0.992717 0.120472i \(-0.961559\pi\)
0.992717 0.120472i \(-0.0384407\pi\)
\(968\) −36.0200 −1.15773
\(969\) 0.109913 0.109913i 0.00353091 0.00353091i
\(970\) −17.5588 4.89290i −0.563778 0.157101i
\(971\) 27.8606 0.894090 0.447045 0.894512i \(-0.352476\pi\)
0.447045 + 0.894512i \(0.352476\pi\)
\(972\) 3.16281 + 3.16281i 0.101447 + 0.101447i
\(973\) 41.1263i 1.31845i
\(974\) −8.45010 −0.270759
\(975\) 0 0
\(976\) −24.7704 −0.792880
\(977\) 38.8764i 1.24377i −0.783110 0.621883i \(-0.786368\pi\)
0.783110 0.621883i \(-0.213632\pi\)
\(978\) 9.53761 + 9.53761i 0.304979 + 0.304979i
\(979\) 89.4527 2.85892
\(980\) −0.174832 0.0487183i −0.00558479 0.00155625i
\(981\) 4.03053 4.03053i 0.128685 0.128685i
\(982\) −9.27522 −0.295984
\(983\) 0.207440i 0.00661630i 0.999995 + 0.00330815i \(0.00105302\pi\)
−0.999995 + 0.00330815i \(0.998947\pi\)
\(984\) 18.1259i 0.577834i
\(985\) −4.59587 + 16.4928i −0.146437 + 0.525506i
\(986\) 0.438045 + 0.438045i 0.0139502 + 0.0139502i
\(987\) −2.85525 2.85525i −0.0908836 0.0908836i
\(988\) 0 0
\(989\) 0.554993i 0.0176477i
\(990\) −21.1998 37.5791i −0.673775 1.19434i
\(991\) −25.4961 −0.809910 −0.404955 0.914337i \(-0.632713\pi\)
−0.404955 + 0.914337i \(0.632713\pi\)
\(992\) 3.96478 + 3.96478i 0.125882 + 0.125882i
\(993\) −14.5083 −0.460407
\(994\) −21.4110 21.4110i −0.679117 0.679117i
\(995\) 33.0157 + 9.20009i 1.04667 + 0.291663i
\(996\) −0.539885 0.539885i −0.0171069 0.0171069i
\(997\) −24.5049 + 24.5049i −0.776078 + 0.776078i −0.979162 0.203083i \(-0.934904\pi\)
0.203083 + 0.979162i \(0.434904\pi\)
\(998\) 9.45345 9.45345i 0.299244 0.299244i
\(999\) 1.51502 1.51502i 0.0479331 0.0479331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.f.e.408.9 20
5.2 odd 4 845.2.k.e.577.2 20
13.2 odd 12 845.2.o.g.488.1 20
13.3 even 3 845.2.t.f.188.1 20
13.4 even 6 845.2.t.g.418.1 20
13.5 odd 4 845.2.k.d.268.9 20
13.6 odd 12 845.2.o.f.258.1 20
13.7 odd 12 845.2.o.e.258.5 20
13.8 odd 4 845.2.k.e.268.2 20
13.9 even 3 65.2.t.a.28.5 yes 20
13.10 even 6 845.2.t.e.188.5 20
13.11 odd 12 65.2.o.a.33.5 yes 20
13.12 even 2 845.2.f.d.408.2 20
39.11 even 12 585.2.cf.a.163.1 20
39.35 odd 6 585.2.dp.a.28.1 20
65.2 even 12 845.2.t.g.657.1 20
65.7 even 12 845.2.t.f.427.1 20
65.9 even 6 325.2.x.b.93.1 20
65.12 odd 4 845.2.k.d.577.9 20
65.17 odd 12 845.2.o.g.587.1 20
65.22 odd 12 65.2.o.a.2.5 20
65.24 odd 12 325.2.s.b.293.1 20
65.32 even 12 845.2.t.e.427.5 20
65.37 even 12 65.2.t.a.7.5 yes 20
65.42 odd 12 845.2.o.e.357.5 20
65.47 even 4 inner 845.2.f.e.437.2 20
65.48 odd 12 325.2.s.b.132.1 20
65.57 even 4 845.2.f.d.437.9 20
65.62 odd 12 845.2.o.f.357.1 20
65.63 even 12 325.2.x.b.7.1 20
195.152 even 12 585.2.cf.a.262.1 20
195.167 odd 12 585.2.dp.a.397.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.5 20 65.22 odd 12
65.2.o.a.33.5 yes 20 13.11 odd 12
65.2.t.a.7.5 yes 20 65.37 even 12
65.2.t.a.28.5 yes 20 13.9 even 3
325.2.s.b.132.1 20 65.48 odd 12
325.2.s.b.293.1 20 65.24 odd 12
325.2.x.b.7.1 20 65.63 even 12
325.2.x.b.93.1 20 65.9 even 6
585.2.cf.a.163.1 20 39.11 even 12
585.2.cf.a.262.1 20 195.152 even 12
585.2.dp.a.28.1 20 39.35 odd 6
585.2.dp.a.397.1 20 195.167 odd 12
845.2.f.d.408.2 20 13.12 even 2
845.2.f.d.437.9 20 65.57 even 4
845.2.f.e.408.9 20 1.1 even 1 trivial
845.2.f.e.437.2 20 65.47 even 4 inner
845.2.k.d.268.9 20 13.5 odd 4
845.2.k.d.577.9 20 65.12 odd 4
845.2.k.e.268.2 20 13.8 odd 4
845.2.k.e.577.2 20 5.2 odd 4
845.2.o.e.258.5 20 13.7 odd 12
845.2.o.e.357.5 20 65.42 odd 12
845.2.o.f.258.1 20 13.6 odd 12
845.2.o.f.357.1 20 65.62 odd 12
845.2.o.g.488.1 20 13.2 odd 12
845.2.o.g.587.1 20 65.17 odd 12
845.2.t.e.188.5 20 13.10 even 6
845.2.t.e.427.5 20 65.32 even 12
845.2.t.f.188.1 20 13.3 even 3
845.2.t.f.427.1 20 65.7 even 12
845.2.t.g.418.1 20 13.4 even 6
845.2.t.g.657.1 20 65.2 even 12