Properties

Label 845.2.k.d.268.9
Level $845$
Weight $2$
Character 845.268
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(268,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.268");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 268.9
Root \(1.51805i\) of defining polynomial
Character \(\chi\) \(=\) 845.268
Dual form 845.2.k.d.577.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.51805 q^{2} +(0.478298 + 0.478298i) q^{3} +0.304465 q^{4} +(-0.600231 + 2.15400i) q^{5} +(0.726078 + 0.726078i) q^{6} +2.59488i q^{7} -2.57390 q^{8} -2.54246i q^{9} +(-0.911178 + 3.26987i) q^{10} +(-3.53513 + 3.53513i) q^{11} +(0.145625 + 0.145625i) q^{12} +3.93915i q^{14} +(-1.31734 + 0.743165i) q^{15} -4.51623 q^{16} +(0.0578870 + 0.0578870i) q^{17} -3.85958i q^{18} +(1.98490 - 1.98490i) q^{19} +(-0.182749 + 0.655819i) q^{20} +(-1.24113 + 1.24113i) q^{21} +(-5.36650 + 5.36650i) q^{22} +(-2.86909 + 2.86909i) q^{23} +(-1.23109 - 1.23109i) q^{24} +(-4.27945 - 2.58580i) q^{25} +(2.65095 - 2.65095i) q^{27} +0.790051i q^{28} +4.98486i q^{29} +(-1.99979 + 1.12816i) q^{30} +(2.32124 + 2.32124i) q^{31} -1.70805 q^{32} -3.38169 q^{33} +(0.0878751 + 0.0878751i) q^{34} +(-5.58938 - 1.55753i) q^{35} -0.774091i q^{36} +0.571501i q^{37} +(3.01318 - 3.01318i) q^{38} +(1.54493 - 5.54419i) q^{40} +(7.36174 + 7.36174i) q^{41} +(-1.88409 + 1.88409i) q^{42} +(-0.0967193 + 0.0967193i) q^{43} +(-1.07633 + 1.07633i) q^{44} +(5.47647 + 1.52606i) q^{45} +(-4.35541 + 4.35541i) q^{46} -2.30053i q^{47} +(-2.16010 - 2.16010i) q^{48} +0.266585 q^{49} +(-6.49640 - 3.92536i) q^{50} +0.0553744i q^{51} +(6.70735 + 6.70735i) q^{53} +(4.02426 - 4.02426i) q^{54} +(-5.49279 - 9.73658i) q^{55} -6.67897i q^{56} +1.89875 q^{57} +7.56725i q^{58} +(-1.89634 - 1.89634i) q^{59} +(-0.401085 + 0.226268i) q^{60} +5.48474 q^{61} +(3.52374 + 3.52374i) q^{62} +6.59739 q^{63} +6.43957 q^{64} -5.13357 q^{66} -15.7868 q^{67} +(0.0176246 + 0.0176246i) q^{68} -2.74456 q^{69} +(-8.48494 - 2.36440i) q^{70} +(5.43544 + 5.43544i) q^{71} +6.54405i q^{72} +6.61894 q^{73} +0.867565i q^{74} +(-0.810069 - 3.28363i) q^{75} +(0.604334 - 0.604334i) q^{76} +(-9.17326 - 9.17326i) q^{77} -5.71054i q^{79} +(2.71078 - 9.72797i) q^{80} -5.09150 q^{81} +(11.1755 + 11.1755i) q^{82} -3.70736i q^{83} +(-0.377880 + 0.377880i) q^{84} +(-0.159434 + 0.0899431i) q^{85} +(-0.146824 + 0.146824i) q^{86} +(-2.38425 + 2.38425i) q^{87} +(9.09908 - 9.09908i) q^{88} +(12.6520 + 12.6520i) q^{89} +(8.31353 + 2.31664i) q^{90} +(-0.873538 + 0.873538i) q^{92} +2.22048i q^{93} -3.49231i q^{94} +(3.08409 + 5.46689i) q^{95} +(-0.816956 - 0.816956i) q^{96} -5.36986 q^{97} +0.404689 q^{98} +(8.98794 + 8.98794i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{2} + 4 q^{3} + 12 q^{4} + 6 q^{5} - 4 q^{6} - 12 q^{8} + 8 q^{10} - 8 q^{11} + 24 q^{12} + 24 q^{15} + 4 q^{16} + 14 q^{17} + 4 q^{19} + 22 q^{20} - 4 q^{21} - 32 q^{22} - 8 q^{23} - 4 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51805 1.07342 0.536710 0.843766i \(-0.319667\pi\)
0.536710 + 0.843766i \(0.319667\pi\)
\(3\) 0.478298 + 0.478298i 0.276145 + 0.276145i 0.831568 0.555423i \(-0.187444\pi\)
−0.555423 + 0.831568i \(0.687444\pi\)
\(4\) 0.304465 0.152233
\(5\) −0.600231 + 2.15400i −0.268431 + 0.963299i
\(6\) 0.726078 + 0.726078i 0.296420 + 0.296420i
\(7\) 2.59488i 0.980773i 0.871505 + 0.490387i \(0.163144\pi\)
−0.871505 + 0.490387i \(0.836856\pi\)
\(8\) −2.57390 −0.910011
\(9\) 2.54246i 0.847487i
\(10\) −0.911178 + 3.26987i −0.288140 + 1.03403i
\(11\) −3.53513 + 3.53513i −1.06588 + 1.06588i −0.0682120 + 0.997671i \(0.521729\pi\)
−0.997671 + 0.0682120i \(0.978271\pi\)
\(12\) 0.145625 + 0.145625i 0.0420383 + 0.0420383i
\(13\) 0 0
\(14\) 3.93915i 1.05278i
\(15\) −1.31734 + 0.743165i −0.340137 + 0.191884i
\(16\) −4.51623 −1.12906
\(17\) 0.0578870 + 0.0578870i 0.0140397 + 0.0140397i 0.714092 0.700052i \(-0.246840\pi\)
−0.700052 + 0.714092i \(0.746840\pi\)
\(18\) 3.85958i 0.909711i
\(19\) 1.98490 1.98490i 0.455368 0.455368i −0.441763 0.897132i \(-0.645647\pi\)
0.897132 + 0.441763i \(0.145647\pi\)
\(20\) −0.182749 + 0.655819i −0.0408640 + 0.146645i
\(21\) −1.24113 + 1.24113i −0.270836 + 0.270836i
\(22\) −5.36650 + 5.36650i −1.14414 + 1.14414i
\(23\) −2.86909 + 2.86909i −0.598247 + 0.598247i −0.939846 0.341599i \(-0.889031\pi\)
0.341599 + 0.939846i \(0.389031\pi\)
\(24\) −1.23109 1.23109i −0.251295 0.251295i
\(25\) −4.27945 2.58580i −0.855889 0.517159i
\(26\) 0 0
\(27\) 2.65095 2.65095i 0.510175 0.510175i
\(28\) 0.790051i 0.149306i
\(29\) 4.98486i 0.925665i 0.886446 + 0.462833i \(0.153167\pi\)
−0.886446 + 0.462833i \(0.846833\pi\)
\(30\) −1.99979 + 1.12816i −0.365110 + 0.205973i
\(31\) 2.32124 + 2.32124i 0.416906 + 0.416906i 0.884136 0.467230i \(-0.154748\pi\)
−0.467230 + 0.884136i \(0.654748\pi\)
\(32\) −1.70805 −0.301943
\(33\) −3.38169 −0.588677
\(34\) 0.0878751 + 0.0878751i 0.0150705 + 0.0150705i
\(35\) −5.58938 1.55753i −0.944778 0.263270i
\(36\) 0.774091i 0.129015i
\(37\) 0.571501i 0.0939542i 0.998896 + 0.0469771i \(0.0149588\pi\)
−0.998896 + 0.0469771i \(0.985041\pi\)
\(38\) 3.01318 3.01318i 0.488802 0.488802i
\(39\) 0 0
\(40\) 1.54493 5.54419i 0.244276 0.876613i
\(41\) 7.36174 + 7.36174i 1.14971 + 1.14971i 0.986609 + 0.163100i \(0.0521495\pi\)
0.163100 + 0.986609i \(0.447851\pi\)
\(42\) −1.88409 + 1.88409i −0.290721 + 0.290721i
\(43\) −0.0967193 + 0.0967193i −0.0147496 + 0.0147496i −0.714443 0.699694i \(-0.753320\pi\)
0.699694 + 0.714443i \(0.253320\pi\)
\(44\) −1.07633 + 1.07633i −0.162262 + 0.162262i
\(45\) 5.47647 + 1.52606i 0.816384 + 0.227492i
\(46\) −4.35541 + 4.35541i −0.642170 + 0.642170i
\(47\) 2.30053i 0.335567i −0.985824 0.167784i \(-0.946339\pi\)
0.985824 0.167784i \(-0.0536610\pi\)
\(48\) −2.16010 2.16010i −0.311784 0.311784i
\(49\) 0.266585 0.0380836
\(50\) −6.49640 3.92536i −0.918729 0.555130i
\(51\) 0.0553744i 0.00775397i
\(52\) 0 0
\(53\) 6.70735 + 6.70735i 0.921326 + 0.921326i 0.997123 0.0757974i \(-0.0241502\pi\)
−0.0757974 + 0.997123i \(0.524150\pi\)
\(54\) 4.02426 4.02426i 0.547633 0.547633i
\(55\) −5.49279 9.73658i −0.740647 1.31288i
\(56\) 6.67897i 0.892515i
\(57\) 1.89875 0.251496
\(58\) 7.56725i 0.993628i
\(59\) −1.89634 1.89634i −0.246883 0.246883i 0.572807 0.819690i \(-0.305854\pi\)
−0.819690 + 0.572807i \(0.805854\pi\)
\(60\) −0.401085 + 0.226268i −0.0517799 + 0.0292111i
\(61\) 5.48474 0.702249 0.351124 0.936329i \(-0.385799\pi\)
0.351124 + 0.936329i \(0.385799\pi\)
\(62\) 3.52374 + 3.52374i 0.447516 + 0.447516i
\(63\) 6.59739 0.831193
\(64\) 6.43957 0.804946
\(65\) 0 0
\(66\) −5.13357 −0.631899
\(67\) −15.7868 −1.92866 −0.964331 0.264699i \(-0.914728\pi\)
−0.964331 + 0.264699i \(0.914728\pi\)
\(68\) 0.0176246 + 0.0176246i 0.00213729 + 0.00213729i
\(69\) −2.74456 −0.330406
\(70\) −8.48494 2.36440i −1.01414 0.282600i
\(71\) 5.43544 + 5.43544i 0.645068 + 0.645068i 0.951797 0.306729i \(-0.0992344\pi\)
−0.306729 + 0.951797i \(0.599234\pi\)
\(72\) 6.54405i 0.771223i
\(73\) 6.61894 0.774688 0.387344 0.921935i \(-0.373393\pi\)
0.387344 + 0.921935i \(0.373393\pi\)
\(74\) 0.867565i 0.100852i
\(75\) −0.810069 3.28363i −0.0935387 0.379161i
\(76\) 0.604334 0.604334i 0.0693219 0.0693219i
\(77\) −9.17326 9.17326i −1.04539 1.04539i
\(78\) 0 0
\(79\) 5.71054i 0.642486i −0.946997 0.321243i \(-0.895899\pi\)
0.946997 0.321243i \(-0.104101\pi\)
\(80\) 2.71078 9.72797i 0.303075 1.08762i
\(81\) −5.09150 −0.565722
\(82\) 11.1755 + 11.1755i 1.23412 + 1.23412i
\(83\) 3.70736i 0.406936i −0.979082 0.203468i \(-0.934779\pi\)
0.979082 0.203468i \(-0.0652213\pi\)
\(84\) −0.377880 + 0.377880i −0.0412301 + 0.0412301i
\(85\) −0.159434 + 0.0899431i −0.0172931 + 0.00975570i
\(86\) −0.146824 + 0.146824i −0.0158325 + 0.0158325i
\(87\) −2.38425 + 2.38425i −0.255618 + 0.255618i
\(88\) 9.09908 9.09908i 0.969965 0.969965i
\(89\) 12.6520 + 12.6520i 1.34110 + 1.34110i 0.894962 + 0.446142i \(0.147202\pi\)
0.446142 + 0.894962i \(0.352798\pi\)
\(90\) 8.31353 + 2.31664i 0.876323 + 0.244195i
\(91\) 0 0
\(92\) −0.873538 + 0.873538i −0.0910726 + 0.0910726i
\(93\) 2.22048i 0.230253i
\(94\) 3.49231i 0.360205i
\(95\) 3.08409 + 5.46689i 0.316421 + 0.560891i
\(96\) −0.816956 0.816956i −0.0833802 0.0833802i
\(97\) −5.36986 −0.545226 −0.272613 0.962124i \(-0.587888\pi\)
−0.272613 + 0.962124i \(0.587888\pi\)
\(98\) 0.404689 0.0408798
\(99\) 8.98794 + 8.98794i 0.903322 + 0.903322i
\(100\) −1.30294 0.787285i −0.130294 0.0787285i
\(101\) 2.51081i 0.249835i −0.992167 0.124918i \(-0.960133\pi\)
0.992167 0.124918i \(-0.0398666\pi\)
\(102\) 0.0840609i 0.00832327i
\(103\) −4.71738 + 4.71738i −0.464817 + 0.464817i −0.900230 0.435414i \(-0.856602\pi\)
0.435414 + 0.900230i \(0.356602\pi\)
\(104\) 0 0
\(105\) −1.92843 3.41835i −0.188195 0.333597i
\(106\) 10.1821 + 10.1821i 0.988971 + 0.988971i
\(107\) 2.56582 2.56582i 0.248047 0.248047i −0.572122 0.820169i \(-0.693880\pi\)
0.820169 + 0.572122i \(0.193880\pi\)
\(108\) 0.807121 0.807121i 0.0776653 0.0776653i
\(109\) 1.58528 1.58528i 0.151843 0.151843i −0.627098 0.778941i \(-0.715757\pi\)
0.778941 + 0.627098i \(0.215757\pi\)
\(110\) −8.33831 14.7806i −0.795026 1.40927i
\(111\) −0.273348 + 0.273348i −0.0259450 + 0.0259450i
\(112\) 11.7191i 1.10735i
\(113\) 4.04975 + 4.04975i 0.380968 + 0.380968i 0.871451 0.490483i \(-0.163179\pi\)
−0.490483 + 0.871451i \(0.663179\pi\)
\(114\) 2.88239 0.269961
\(115\) −4.45791 7.90214i −0.415702 0.736878i
\(116\) 1.51772i 0.140916i
\(117\) 0 0
\(118\) −2.87873 2.87873i −0.265009 0.265009i
\(119\) −0.150210 + 0.150210i −0.0137697 + 0.0137697i
\(120\) 3.39071 1.91283i 0.309528 0.174617i
\(121\) 13.9943i 1.27221i
\(122\) 8.32609 0.753809
\(123\) 7.04220i 0.634974i
\(124\) 0.706736 + 0.706736i 0.0634667 + 0.0634667i
\(125\) 8.13846 7.66586i 0.727926 0.685655i
\(126\) 10.0151 0.892220
\(127\) −0.575918 0.575918i −0.0511044 0.0511044i 0.681093 0.732197i \(-0.261505\pi\)
−0.732197 + 0.681093i \(0.761505\pi\)
\(128\) 13.1917 1.16599
\(129\) −0.0925213 −0.00814605
\(130\) 0 0
\(131\) −16.1062 −1.40721 −0.703604 0.710592i \(-0.748427\pi\)
−0.703604 + 0.710592i \(0.748427\pi\)
\(132\) −1.02961 −0.0896159
\(133\) 5.15059 + 5.15059i 0.446613 + 0.446613i
\(134\) −23.9651 −2.07027
\(135\) 4.11897 + 7.30133i 0.354504 + 0.628398i
\(136\) −0.148995 0.148995i −0.0127762 0.0127762i
\(137\) 19.2374i 1.64356i −0.569802 0.821782i \(-0.692980\pi\)
0.569802 0.821782i \(-0.307020\pi\)
\(138\) −4.16637 −0.354665
\(139\) 15.8490i 1.34430i −0.740417 0.672148i \(-0.765372\pi\)
0.740417 0.672148i \(-0.234628\pi\)
\(140\) −1.70177 0.474213i −0.143826 0.0400783i
\(141\) 1.10034 1.10034i 0.0926653 0.0926653i
\(142\) 8.25125 + 8.25125i 0.692430 + 0.692430i
\(143\) 0 0
\(144\) 11.4823i 0.956862i
\(145\) −10.7374 2.99207i −0.891692 0.248478i
\(146\) 10.0479 0.831566
\(147\) 0.127507 + 0.127507i 0.0105166 + 0.0105166i
\(148\) 0.174002i 0.0143029i
\(149\) 1.01843 1.01843i 0.0834332 0.0834332i −0.664159 0.747592i \(-0.731210\pi\)
0.747592 + 0.664159i \(0.231210\pi\)
\(150\) −1.22972 4.98470i −0.100406 0.406999i
\(151\) −13.9253 + 13.9253i −1.13322 + 1.13322i −0.143585 + 0.989638i \(0.545863\pi\)
−0.989638 + 0.143585i \(0.954137\pi\)
\(152\) −5.10895 + 5.10895i −0.414390 + 0.414390i
\(153\) 0.147175 0.147175i 0.0118984 0.0118984i
\(154\) −13.9254 13.9254i −1.12214 1.12214i
\(155\) −6.39322 + 3.60667i −0.513516 + 0.289695i
\(156\) 0 0
\(157\) 4.54644 4.54644i 0.362845 0.362845i −0.502014 0.864859i \(-0.667408\pi\)
0.864859 + 0.502014i \(0.167408\pi\)
\(158\) 8.66887i 0.689658i
\(159\) 6.41623i 0.508840i
\(160\) 1.02522 3.67914i 0.0810510 0.290861i
\(161\) −7.44495 7.44495i −0.586744 0.586744i
\(162\) −7.72914 −0.607258
\(163\) 13.1358 1.02887 0.514437 0.857528i \(-0.328001\pi\)
0.514437 + 0.857528i \(0.328001\pi\)
\(164\) 2.24139 + 2.24139i 0.175023 + 0.175023i
\(165\) 2.02980 7.28417i 0.158019 0.567072i
\(166\) 5.62795i 0.436814i
\(167\) 3.28516i 0.254213i 0.991889 + 0.127107i \(0.0405691\pi\)
−0.991889 + 0.127107i \(0.959431\pi\)
\(168\) 3.19454 3.19454i 0.246464 0.246464i
\(169\) 0 0
\(170\) −0.242028 + 0.136538i −0.0185627 + 0.0104720i
\(171\) −5.04654 5.04654i −0.385919 0.385919i
\(172\) −0.0294477 + 0.0294477i −0.00224536 + 0.00224536i
\(173\) 2.99677 2.99677i 0.227840 0.227840i −0.583950 0.811790i \(-0.698493\pi\)
0.811790 + 0.583950i \(0.198493\pi\)
\(174\) −3.61940 + 3.61940i −0.274386 + 0.274386i
\(175\) 6.70984 11.1047i 0.507216 0.839433i
\(176\) 15.9655 15.9655i 1.20344 1.20344i
\(177\) 1.81403i 0.136351i
\(178\) 19.2062 + 19.2062i 1.43957 + 1.43957i
\(179\) −13.9617 −1.04354 −0.521772 0.853085i \(-0.674729\pi\)
−0.521772 + 0.853085i \(0.674729\pi\)
\(180\) 1.66739 + 0.464633i 0.124280 + 0.0346317i
\(181\) 8.64775i 0.642782i 0.946947 + 0.321391i \(0.104150\pi\)
−0.946947 + 0.321391i \(0.895850\pi\)
\(182\) 0 0
\(183\) 2.62334 + 2.62334i 0.193923 + 0.193923i
\(184\) 7.38475 7.38475i 0.544411 0.544411i
\(185\) −1.23101 0.343032i −0.0905060 0.0252202i
\(186\) 3.37080i 0.247159i
\(187\) −0.409276 −0.0299292
\(188\) 0.700432i 0.0510842i
\(189\) 6.87890 + 6.87890i 0.500366 + 0.500366i
\(190\) 4.68179 + 8.29899i 0.339653 + 0.602072i
\(191\) 16.9129 1.22378 0.611889 0.790944i \(-0.290410\pi\)
0.611889 + 0.790944i \(0.290410\pi\)
\(192\) 3.08003 + 3.08003i 0.222282 + 0.222282i
\(193\) −8.55560 −0.615845 −0.307923 0.951411i \(-0.599634\pi\)
−0.307923 + 0.951411i \(0.599634\pi\)
\(194\) −8.15169 −0.585257
\(195\) 0 0
\(196\) 0.0811660 0.00579757
\(197\) −7.65684 −0.545527 −0.272764 0.962081i \(-0.587938\pi\)
−0.272764 + 0.962081i \(0.587938\pi\)
\(198\) 13.6441 + 13.6441i 0.969645 + 0.969645i
\(199\) 15.3276 1.08654 0.543272 0.839557i \(-0.317185\pi\)
0.543272 + 0.839557i \(0.317185\pi\)
\(200\) 11.0149 + 6.65558i 0.778869 + 0.470621i
\(201\) −7.55078 7.55078i −0.532591 0.532591i
\(202\) 3.81153i 0.268178i
\(203\) −12.9351 −0.907868
\(204\) 0.0168596i 0.00118041i
\(205\) −20.2759 + 11.4385i −1.41613 + 0.798896i
\(206\) −7.16120 + 7.16120i −0.498944 + 0.498944i
\(207\) 7.29455 + 7.29455i 0.507006 + 0.507006i
\(208\) 0 0
\(209\) 14.0338i 0.970739i
\(210\) −2.92744 5.18922i −0.202013 0.358090i
\(211\) 19.8358 1.36555 0.682775 0.730629i \(-0.260773\pi\)
0.682775 + 0.730629i \(0.260773\pi\)
\(212\) 2.04216 + 2.04216i 0.140256 + 0.140256i
\(213\) 5.19952i 0.356265i
\(214\) 3.89503 3.89503i 0.266259 0.266259i
\(215\) −0.150280 0.266388i −0.0102490 0.0181675i
\(216\) −6.82328 + 6.82328i −0.464265 + 0.464265i
\(217\) −6.02333 + 6.02333i −0.408891 + 0.408891i
\(218\) 2.40654 2.40654i 0.162991 0.162991i
\(219\) 3.16582 + 3.16582i 0.213927 + 0.213927i
\(220\) −1.67236 2.96445i −0.112751 0.199863i
\(221\) 0 0
\(222\) −0.414955 + 0.414955i −0.0278499 + 0.0278499i
\(223\) 18.9731i 1.27053i 0.772294 + 0.635265i \(0.219109\pi\)
−0.772294 + 0.635265i \(0.780891\pi\)
\(224\) 4.43218i 0.296138i
\(225\) −6.57429 + 10.8803i −0.438286 + 0.725355i
\(226\) 6.14771 + 6.14771i 0.408939 + 0.408939i
\(227\) −26.9587 −1.78931 −0.894656 0.446755i \(-0.852579\pi\)
−0.894656 + 0.446755i \(0.852579\pi\)
\(228\) 0.578104 0.0382858
\(229\) −11.1801 11.1801i −0.738799 0.738799i 0.233547 0.972346i \(-0.424967\pi\)
−0.972346 + 0.233547i \(0.924967\pi\)
\(230\) −6.76731 11.9958i −0.446223 0.790981i
\(231\) 8.77510i 0.577359i
\(232\) 12.8305i 0.842366i
\(233\) −6.75797 + 6.75797i −0.442729 + 0.442729i −0.892928 0.450199i \(-0.851353\pi\)
0.450199 + 0.892928i \(0.351353\pi\)
\(234\) 0 0
\(235\) 4.95535 + 1.38085i 0.323251 + 0.0900767i
\(236\) −0.577370 0.577370i −0.0375836 0.0375836i
\(237\) 2.73134 2.73134i 0.177420 0.177420i
\(238\) −0.228026 + 0.228026i −0.0147807 + 0.0147807i
\(239\) 1.98766 1.98766i 0.128571 0.128571i −0.639893 0.768464i \(-0.721021\pi\)
0.768464 + 0.639893i \(0.221021\pi\)
\(240\) 5.94943 3.35631i 0.384034 0.216649i
\(241\) −1.94097 + 1.94097i −0.125029 + 0.125029i −0.766852 0.641824i \(-0.778178\pi\)
0.641824 + 0.766852i \(0.278178\pi\)
\(242\) 21.2441i 1.36562i
\(243\) −10.3881 10.3881i −0.666397 0.666397i
\(244\) 1.66991 0.106905
\(245\) −0.160013 + 0.574225i −0.0102228 + 0.0366859i
\(246\) 10.6904i 0.681595i
\(247\) 0 0
\(248\) −5.97463 5.97463i −0.379389 0.379389i
\(249\) 1.77322 1.77322i 0.112374 0.112374i
\(250\) 12.3546 11.6371i 0.781371 0.735997i
\(251\) 2.83379i 0.178867i −0.995993 0.0894337i \(-0.971494\pi\)
0.995993 0.0894337i \(-0.0285057\pi\)
\(252\) 2.00868 0.126535
\(253\) 20.2852i 1.27532i
\(254\) −0.874270 0.874270i −0.0548566 0.0548566i
\(255\) −0.119277 0.0332374i −0.00746939 0.00208141i
\(256\) 7.14642 0.446651
\(257\) 14.1859 + 14.1859i 0.884895 + 0.884895i 0.994027 0.109132i \(-0.0348072\pi\)
−0.109132 + 0.994027i \(0.534807\pi\)
\(258\) −0.140452 −0.00874414
\(259\) −1.48298 −0.0921478
\(260\) 0 0
\(261\) 12.6738 0.784490
\(262\) −24.4500 −1.51053
\(263\) 6.66222 + 6.66222i 0.410810 + 0.410810i 0.882021 0.471210i \(-0.156183\pi\)
−0.471210 + 0.882021i \(0.656183\pi\)
\(264\) 8.70414 0.535703
\(265\) −18.4736 + 10.4217i −1.13482 + 0.640199i
\(266\) 7.81884 + 7.81884i 0.479404 + 0.479404i
\(267\) 12.1028i 0.740679i
\(268\) −4.80653 −0.293605
\(269\) 3.21488i 0.196015i 0.995186 + 0.0980075i \(0.0312469\pi\)
−0.995186 + 0.0980075i \(0.968753\pi\)
\(270\) 6.25278 + 11.0838i 0.380532 + 0.674536i
\(271\) 10.7387 10.7387i 0.652332 0.652332i −0.301222 0.953554i \(-0.597395\pi\)
0.953554 + 0.301222i \(0.0973945\pi\)
\(272\) −0.261431 0.261431i −0.0158516 0.0158516i
\(273\) 0 0
\(274\) 29.2033i 1.76424i
\(275\) 24.2695 5.98728i 1.46351 0.361047i
\(276\) −0.835623 −0.0502986
\(277\) 7.54121 + 7.54121i 0.453107 + 0.453107i 0.896385 0.443277i \(-0.146184\pi\)
−0.443277 + 0.896385i \(0.646184\pi\)
\(278\) 24.0595i 1.44300i
\(279\) 5.90165 5.90165i 0.353323 0.353323i
\(280\) 14.3865 + 4.00892i 0.859759 + 0.239579i
\(281\) 12.7630 12.7630i 0.761379 0.761379i −0.215193 0.976572i \(-0.569038\pi\)
0.976572 + 0.215193i \(0.0690380\pi\)
\(282\) 1.67037 1.67037i 0.0994689 0.0994689i
\(283\) −4.07125 + 4.07125i −0.242010 + 0.242010i −0.817681 0.575671i \(-0.804741\pi\)
0.575671 + 0.817681i \(0.304741\pi\)
\(284\) 1.65490 + 1.65490i 0.0982004 + 0.0982004i
\(285\) −1.13969 + 4.08991i −0.0675093 + 0.242266i
\(286\) 0 0
\(287\) −19.1028 + 19.1028i −1.12760 + 1.12760i
\(288\) 4.34265i 0.255893i
\(289\) 16.9933i 0.999606i
\(290\) −16.2999 4.54209i −0.957161 0.266721i
\(291\) −2.56839 2.56839i −0.150562 0.150562i
\(292\) 2.01524 0.117933
\(293\) 3.19607 0.186717 0.0933583 0.995633i \(-0.470240\pi\)
0.0933583 + 0.995633i \(0.470240\pi\)
\(294\) 0.193562 + 0.193562i 0.0112888 + 0.0112888i
\(295\) 5.22297 2.94648i 0.304093 0.171551i
\(296\) 1.47099i 0.0854994i
\(297\) 18.7429i 1.08757i
\(298\) 1.54603 1.54603i 0.0895590 0.0895590i
\(299\) 0 0
\(300\) −0.246638 0.999751i −0.0142396 0.0577207i
\(301\) −0.250975 0.250975i −0.0144660 0.0144660i
\(302\) −21.1392 + 21.1392i −1.21643 + 1.21643i
\(303\) 1.20092 1.20092i 0.0689908 0.0689908i
\(304\) −8.96429 + 8.96429i −0.514137 + 0.514137i
\(305\) −3.29211 + 11.8141i −0.188506 + 0.676476i
\(306\) 0.223419 0.223419i 0.0127720 0.0127720i
\(307\) 24.2740i 1.38539i 0.721231 + 0.692695i \(0.243577\pi\)
−0.721231 + 0.692695i \(0.756423\pi\)
\(308\) −2.79294 2.79294i −0.159142 0.159142i
\(309\) −4.51262 −0.256714
\(310\) −9.70521 + 5.47509i −0.551219 + 0.310964i
\(311\) 16.9053i 0.958614i −0.877647 0.479307i \(-0.840888\pi\)
0.877647 0.479307i \(-0.159112\pi\)
\(312\) 0 0
\(313\) −8.40997 8.40997i −0.475359 0.475359i 0.428285 0.903644i \(-0.359118\pi\)
−0.903644 + 0.428285i \(0.859118\pi\)
\(314\) 6.90170 6.90170i 0.389486 0.389486i
\(315\) −3.95996 + 14.2108i −0.223118 + 0.800687i
\(316\) 1.73866i 0.0978074i
\(317\) −11.9484 −0.671087 −0.335543 0.942025i \(-0.608920\pi\)
−0.335543 + 0.942025i \(0.608920\pi\)
\(318\) 9.74013i 0.546199i
\(319\) −17.6221 17.6221i −0.986651 0.986651i
\(320\) −3.86523 + 13.8708i −0.216073 + 0.775403i
\(321\) 2.45445 0.136994
\(322\) −11.3018 11.3018i −0.629824 0.629824i
\(323\) 0.229800 0.0127864
\(324\) −1.55018 −0.0861214
\(325\) 0 0
\(326\) 19.9407 1.10442
\(327\) 1.51648 0.0838613
\(328\) −18.9484 18.9484i −1.04625 1.04625i
\(329\) 5.96961 0.329115
\(330\) 3.08133 11.0577i 0.169621 0.608707i
\(331\) 15.1666 + 15.1666i 0.833631 + 0.833631i 0.988011 0.154380i \(-0.0493381\pi\)
−0.154380 + 0.988011i \(0.549338\pi\)
\(332\) 1.12876i 0.0619489i
\(333\) 1.45302 0.0796250
\(334\) 4.98703i 0.272878i
\(335\) 9.47571 34.0048i 0.517713 1.85788i
\(336\) 5.60522 5.60522i 0.305790 0.305790i
\(337\) −14.1264 14.1264i −0.769514 0.769514i 0.208507 0.978021i \(-0.433140\pi\)
−0.978021 + 0.208507i \(0.933140\pi\)
\(338\) 0 0
\(339\) 3.87397i 0.210405i
\(340\) −0.0485421 + 0.0273845i −0.00263257 + 0.00148514i
\(341\) −16.4118 −0.888746
\(342\) −7.66089 7.66089i −0.414253 0.414253i
\(343\) 18.8559i 1.01812i
\(344\) 0.248946 0.248946i 0.0134223 0.0134223i
\(345\) 1.64737 5.91179i 0.0886914 0.318280i
\(346\) 4.54924 4.54924i 0.244569 0.244569i
\(347\) −17.4159 + 17.4159i −0.934936 + 0.934936i −0.998009 0.0630727i \(-0.979910\pi\)
0.0630727 + 0.998009i \(0.479910\pi\)
\(348\) −0.725920 + 0.725920i −0.0389134 + 0.0389134i
\(349\) −19.2668 19.2668i −1.03133 1.03133i −0.999493 0.0318358i \(-0.989865\pi\)
−0.0318358 0.999493i \(-0.510135\pi\)
\(350\) 10.1858 16.8574i 0.544456 0.901065i
\(351\) 0 0
\(352\) 6.03818 6.03818i 0.321836 0.321836i
\(353\) 8.79926i 0.468337i 0.972196 + 0.234169i \(0.0752368\pi\)
−0.972196 + 0.234169i \(0.924763\pi\)
\(354\) 2.75379i 0.146362i
\(355\) −14.9705 + 8.44543i −0.794550 + 0.448237i
\(356\) 3.85208 + 3.85208i 0.204160 + 0.204160i
\(357\) −0.143690 −0.00760489
\(358\) −21.1945 −1.12016
\(359\) 11.1256 + 11.1256i 0.587186 + 0.587186i 0.936868 0.349683i \(-0.113711\pi\)
−0.349683 + 0.936868i \(0.613711\pi\)
\(360\) −14.0959 3.92794i −0.742918 0.207020i
\(361\) 11.1203i 0.585279i
\(362\) 13.1277i 0.689976i
\(363\) 6.69346 6.69346i 0.351316 0.351316i
\(364\) 0 0
\(365\) −3.97289 + 14.2572i −0.207951 + 0.746256i
\(366\) 3.98235 + 3.98235i 0.208161 + 0.208161i
\(367\) 7.76295 7.76295i 0.405223 0.405223i −0.474846 0.880069i \(-0.657496\pi\)
0.880069 + 0.474846i \(0.157496\pi\)
\(368\) 12.9575 12.9575i 0.675455 0.675455i
\(369\) 18.7169 18.7169i 0.974365 0.974365i
\(370\) −1.86874 0.520739i −0.0971510 0.0270719i
\(371\) −17.4048 + 17.4048i −0.903612 + 0.903612i
\(372\) 0.676060i 0.0350521i
\(373\) 7.48104 + 7.48104i 0.387354 + 0.387354i 0.873742 0.486389i \(-0.161686\pi\)
−0.486389 + 0.873742i \(0.661686\pi\)
\(374\) −0.621300 −0.0321267
\(375\) 7.55917 + 0.226045i 0.390354 + 0.0116729i
\(376\) 5.92134i 0.305370i
\(377\) 0 0
\(378\) 10.4425 + 10.4425i 0.537104 + 0.537104i
\(379\) −6.93105 + 6.93105i −0.356024 + 0.356024i −0.862345 0.506321i \(-0.831005\pi\)
0.506321 + 0.862345i \(0.331005\pi\)
\(380\) 0.938997 + 1.66448i 0.0481695 + 0.0853859i
\(381\) 0.550921i 0.0282245i
\(382\) 25.6746 1.31363
\(383\) 26.0567i 1.33144i 0.746204 + 0.665718i \(0.231874\pi\)
−0.746204 + 0.665718i \(0.768126\pi\)
\(384\) 6.30954 + 6.30954i 0.321982 + 0.321982i
\(385\) 25.2653 14.2531i 1.28764 0.726407i
\(386\) −12.9878 −0.661061
\(387\) 0.245905 + 0.245905i 0.0125001 + 0.0125001i
\(388\) −1.63493 −0.0830012
\(389\) 32.4888 1.64725 0.823623 0.567138i \(-0.191950\pi\)
0.823623 + 0.567138i \(0.191950\pi\)
\(390\) 0 0
\(391\) −0.332166 −0.0167983
\(392\) −0.686164 −0.0346565
\(393\) −7.70358 7.70358i −0.388594 0.388594i
\(394\) −11.6234 −0.585580
\(395\) 12.3005 + 3.42764i 0.618906 + 0.172463i
\(396\) 2.73652 + 2.73652i 0.137515 + 0.137515i
\(397\) 24.1854i 1.21383i 0.794767 + 0.606914i \(0.207593\pi\)
−0.794767 + 0.606914i \(0.792407\pi\)
\(398\) 23.2680 1.16632
\(399\) 4.92704i 0.246660i
\(400\) 19.3270 + 11.6781i 0.966348 + 0.583903i
\(401\) 23.2202 23.2202i 1.15956 1.15956i 0.174992 0.984570i \(-0.444010\pi\)
0.984570 0.174992i \(-0.0559899\pi\)
\(402\) −11.4624 11.4624i −0.571695 0.571695i
\(403\) 0 0
\(404\) 0.764454i 0.0380330i
\(405\) 3.05608 10.9671i 0.151858 0.544960i
\(406\) −19.6361 −0.974524
\(407\) −2.02033 2.02033i −0.100144 0.100144i
\(408\) 0.142528i 0.00705620i
\(409\) −9.87122 + 9.87122i −0.488101 + 0.488101i −0.907706 0.419606i \(-0.862168\pi\)
0.419606 + 0.907706i \(0.362168\pi\)
\(410\) −30.7798 + 17.3641i −1.52011 + 0.857552i
\(411\) 9.20122 9.20122i 0.453863 0.453863i
\(412\) −1.43628 + 1.43628i −0.0707603 + 0.0707603i
\(413\) 4.92078 4.92078i 0.242136 0.242136i
\(414\) 11.0735 + 11.0735i 0.544231 + 0.544231i
\(415\) 7.98567 + 2.22527i 0.392001 + 0.109234i
\(416\) 0 0
\(417\) 7.58055 7.58055i 0.371221 0.371221i
\(418\) 21.3040i 1.04201i
\(419\) 2.21980i 0.108444i −0.998529 0.0542221i \(-0.982732\pi\)
0.998529 0.0542221i \(-0.0172679\pi\)
\(420\) −0.587139 1.04077i −0.0286494 0.0507843i
\(421\) −24.4795 24.4795i −1.19306 1.19306i −0.976204 0.216853i \(-0.930421\pi\)
−0.216853 0.976204i \(-0.569579\pi\)
\(422\) 30.1116 1.46581
\(423\) −5.84901 −0.284389
\(424\) −17.2641 17.2641i −0.838417 0.838417i
\(425\) −0.0980403 0.397408i −0.00475565 0.0192771i
\(426\) 7.89311i 0.382423i
\(427\) 14.2323i 0.688747i
\(428\) 0.781202 0.781202i 0.0377608 0.0377608i
\(429\) 0 0
\(430\) −0.228132 0.404389i −0.0110015 0.0195014i
\(431\) 1.16851 + 1.16851i 0.0562851 + 0.0562851i 0.734689 0.678404i \(-0.237328\pi\)
−0.678404 + 0.734689i \(0.737328\pi\)
\(432\) −11.9723 + 11.9723i −0.576017 + 0.576017i
\(433\) 10.4765 10.4765i 0.503466 0.503466i −0.409047 0.912513i \(-0.634139\pi\)
0.912513 + 0.409047i \(0.134139\pi\)
\(434\) −9.14370 + 9.14370i −0.438912 + 0.438912i
\(435\) −3.70457 6.56677i −0.177621 0.314853i
\(436\) 0.482664 0.482664i 0.0231154 0.0231154i
\(437\) 11.3897i 0.544845i
\(438\) 4.80587 + 4.80587i 0.229633 + 0.229633i
\(439\) 21.8725 1.04392 0.521959 0.852970i \(-0.325201\pi\)
0.521959 + 0.852970i \(0.325201\pi\)
\(440\) 14.1379 + 25.0610i 0.673997 + 1.19474i
\(441\) 0.677783i 0.0322754i
\(442\) 0 0
\(443\) −6.14972 6.14972i −0.292182 0.292182i 0.545760 0.837942i \(-0.316241\pi\)
−0.837942 + 0.545760i \(0.816241\pi\)
\(444\) −0.0832249 + 0.0832249i −0.00394968 + 0.00394968i
\(445\) −34.8464 + 19.6582i −1.65188 + 0.931890i
\(446\) 28.8020i 1.36381i
\(447\) 0.974228 0.0460794
\(448\) 16.7099i 0.789469i
\(449\) 3.30563 + 3.30563i 0.156002 + 0.156002i 0.780793 0.624790i \(-0.214816\pi\)
−0.624790 + 0.780793i \(0.714816\pi\)
\(450\) −9.98008 + 16.5168i −0.470465 + 0.778612i
\(451\) −52.0494 −2.45091
\(452\) 1.23301 + 1.23301i 0.0579958 + 0.0579958i
\(453\) −13.3209 −0.625869
\(454\) −40.9246 −1.92069
\(455\) 0 0
\(456\) −4.88720 −0.228864
\(457\) 30.0361 1.40503 0.702514 0.711670i \(-0.252061\pi\)
0.702514 + 0.711670i \(0.252061\pi\)
\(458\) −16.9718 16.9718i −0.793042 0.793042i
\(459\) 0.306911 0.0143254
\(460\) −1.35728 2.40593i −0.0632834 0.112177i
\(461\) −1.85792 1.85792i −0.0865318 0.0865318i 0.662516 0.749048i \(-0.269489\pi\)
−0.749048 + 0.662516i \(0.769489\pi\)
\(462\) 13.3210i 0.619749i
\(463\) −25.1475 −1.16870 −0.584352 0.811500i \(-0.698651\pi\)
−0.584352 + 0.811500i \(0.698651\pi\)
\(464\) 22.5128i 1.04513i
\(465\) −4.78293 1.33280i −0.221803 0.0618073i
\(466\) −10.2589 + 10.2589i −0.475235 + 0.475235i
\(467\) 14.9907 + 14.9907i 0.693688 + 0.693688i 0.963041 0.269354i \(-0.0868100\pi\)
−0.269354 + 0.963041i \(0.586810\pi\)
\(468\) 0 0
\(469\) 40.9648i 1.89158i
\(470\) 7.52245 + 2.09619i 0.346985 + 0.0966902i
\(471\) 4.34910 0.200396
\(472\) 4.88100 + 4.88100i 0.224666 + 0.224666i
\(473\) 0.683832i 0.0314426i
\(474\) 4.14630 4.14630i 0.190446 0.190446i
\(475\) −13.6268 + 3.36173i −0.625243 + 0.154247i
\(476\) −0.0457337 + 0.0457337i −0.00209620 + 0.00209620i
\(477\) 17.0532 17.0532i 0.780812 0.780812i
\(478\) 3.01736 3.01736i 0.138011 0.138011i
\(479\) −1.61898 1.61898i −0.0739730 0.0739730i 0.669152 0.743125i \(-0.266657\pi\)
−0.743125 + 0.669152i \(0.766657\pi\)
\(480\) 2.25009 1.26936i 0.102702 0.0579382i
\(481\) 0 0
\(482\) −2.94648 + 2.94648i −0.134208 + 0.134208i
\(483\) 7.12181i 0.324054i
\(484\) 4.26079i 0.193672i
\(485\) 3.22315 11.5667i 0.146356 0.525216i
\(486\) −15.7696 15.7696i −0.715324 0.715324i
\(487\) 5.56643 0.252239 0.126119 0.992015i \(-0.459748\pi\)
0.126119 + 0.992015i \(0.459748\pi\)
\(488\) −14.1172 −0.639054
\(489\) 6.28282 + 6.28282i 0.284119 + 0.284119i
\(490\) −0.242907 + 0.871701i −0.0109734 + 0.0393794i
\(491\) 6.10997i 0.275739i −0.990450 0.137869i \(-0.955975\pi\)
0.990450 0.137869i \(-0.0440255\pi\)
\(492\) 2.14411i 0.0966638i
\(493\) −0.288558 + 0.288558i −0.0129960 + 0.0129960i
\(494\) 0 0
\(495\) −24.7549 + 13.9652i −1.11265 + 0.627689i
\(496\) −10.4832 10.4832i −0.470711 0.470711i
\(497\) −14.1043 + 14.1043i −0.632666 + 0.632666i
\(498\) 2.69184 2.69184i 0.120624 0.120624i
\(499\) −6.22738 + 6.22738i −0.278776 + 0.278776i −0.832620 0.553844i \(-0.813160\pi\)
0.553844 + 0.832620i \(0.313160\pi\)
\(500\) 2.47788 2.33399i 0.110814 0.104379i
\(501\) −1.57129 + 1.57129i −0.0701999 + 0.0701999i
\(502\) 4.30183i 0.192000i
\(503\) 2.59944 + 2.59944i 0.115903 + 0.115903i 0.762680 0.646776i \(-0.223883\pi\)
−0.646776 + 0.762680i \(0.723883\pi\)
\(504\) −16.9810 −0.756395
\(505\) 5.40829 + 1.50707i 0.240666 + 0.0670635i
\(506\) 30.7939i 1.36896i
\(507\) 0 0
\(508\) −0.175347 0.175347i −0.00777976 0.00777976i
\(509\) −7.92432 + 7.92432i −0.351239 + 0.351239i −0.860571 0.509331i \(-0.829893\pi\)
0.509331 + 0.860571i \(0.329893\pi\)
\(510\) −0.181067 0.0504560i −0.00801780 0.00223423i
\(511\) 17.1754i 0.759793i
\(512\) −15.5347 −0.686544
\(513\) 10.5238i 0.464635i
\(514\) 21.5349 + 21.5349i 0.949865 + 0.949865i
\(515\) −7.32972 12.9927i −0.322986 0.572529i
\(516\) −0.0281695 −0.00124009
\(517\) 8.13269 + 8.13269i 0.357675 + 0.357675i
\(518\) −2.25123 −0.0989133
\(519\) 2.86670 0.125834
\(520\) 0 0
\(521\) 35.9604 1.57545 0.787726 0.616026i \(-0.211258\pi\)
0.787726 + 0.616026i \(0.211258\pi\)
\(522\) 19.2394 0.842088
\(523\) −5.93427 5.93427i −0.259487 0.259487i 0.565358 0.824846i \(-0.308738\pi\)
−0.824846 + 0.565358i \(0.808738\pi\)
\(524\) −4.90379 −0.214223
\(525\) 8.52064 2.10203i 0.371871 0.0917403i
\(526\) 10.1136 + 10.1136i 0.440972 + 0.440972i
\(527\) 0.268739i 0.0117064i
\(528\) 15.2725 0.664651
\(529\) 6.53664i 0.284202i
\(530\) −28.0438 + 15.8206i −1.21814 + 0.687203i
\(531\) −4.82138 + 4.82138i −0.209230 + 0.209230i
\(532\) 1.56818 + 1.56818i 0.0679891 + 0.0679891i
\(533\) 0 0
\(534\) 18.3726i 0.795061i
\(535\) 3.98669 + 7.06686i 0.172360 + 0.305527i
\(536\) 40.6336 1.75510
\(537\) −6.67783 6.67783i −0.288170 0.288170i
\(538\) 4.88034i 0.210407i
\(539\) −0.942415 + 0.942415i −0.0405927 + 0.0405927i
\(540\) 1.25408 + 2.22300i 0.0539671 + 0.0956627i
\(541\) −4.13066 + 4.13066i −0.177591 + 0.177591i −0.790305 0.612714i \(-0.790078\pi\)
0.612714 + 0.790305i \(0.290078\pi\)
\(542\) 16.3019 16.3019i 0.700227 0.700227i
\(543\) −4.13620 + 4.13620i −0.177501 + 0.177501i
\(544\) −0.0988737 0.0988737i −0.00423917 0.00423917i
\(545\) 2.46317 + 4.36624i 0.105511 + 0.187029i
\(546\) 0 0
\(547\) −7.90229 + 7.90229i −0.337877 + 0.337877i −0.855568 0.517691i \(-0.826792\pi\)
0.517691 + 0.855568i \(0.326792\pi\)
\(548\) 5.85713i 0.250204i
\(549\) 13.9447i 0.595147i
\(550\) 36.8423 9.08897i 1.57096 0.387555i
\(551\) 9.89447 + 9.89447i 0.421519 + 0.421519i
\(552\) 7.06422 0.300673
\(553\) 14.8182 0.630133
\(554\) 11.4479 + 11.4479i 0.486375 + 0.486375i
\(555\) −0.424720 0.752863i −0.0180283 0.0319573i
\(556\) 4.82547i 0.204646i
\(557\) 11.7868i 0.499423i −0.968320 0.249712i \(-0.919664\pi\)
0.968320 0.249712i \(-0.0803358\pi\)
\(558\) 8.95899 8.95899i 0.379264 0.379264i
\(559\) 0 0
\(560\) 25.2429 + 7.03416i 1.06671 + 0.297247i
\(561\) −0.195756 0.195756i −0.00826482 0.00826482i
\(562\) 19.3749 19.3749i 0.817280 0.817280i
\(563\) −22.7376 + 22.7376i −0.958277 + 0.958277i −0.999164 0.0408873i \(-0.986982\pi\)
0.0408873 + 0.999164i \(0.486982\pi\)
\(564\) 0.335015 0.335015i 0.0141067 0.0141067i
\(565\) −11.1540 + 6.29238i −0.469250 + 0.264723i
\(566\) −6.18034 + 6.18034i −0.259779 + 0.259779i
\(567\) 13.2118i 0.554845i
\(568\) −13.9903 13.9903i −0.587019 0.587019i
\(569\) 9.28474 0.389237 0.194618 0.980879i \(-0.437653\pi\)
0.194618 + 0.980879i \(0.437653\pi\)
\(570\) −1.73010 + 6.20868i −0.0724659 + 0.260053i
\(571\) 31.1596i 1.30399i −0.758223 0.651995i \(-0.773932\pi\)
0.758223 0.651995i \(-0.226068\pi\)
\(572\) 0 0
\(573\) 8.08942 + 8.08942i 0.337940 + 0.337940i
\(574\) −28.9990 + 28.9990i −1.21039 + 1.21039i
\(575\) 19.6970 4.85924i 0.821422 0.202644i
\(576\) 16.3724i 0.682181i
\(577\) −4.57285 −0.190370 −0.0951852 0.995460i \(-0.530344\pi\)
−0.0951852 + 0.995460i \(0.530344\pi\)
\(578\) 25.7966i 1.07300i
\(579\) −4.09212 4.09212i −0.170063 0.170063i
\(580\) −3.26916 0.910980i −0.135745 0.0378264i
\(581\) 9.62018 0.399112
\(582\) −3.89894 3.89894i −0.161616 0.161616i
\(583\) −47.4228 −1.96405
\(584\) −17.0365 −0.704975
\(585\) 0 0
\(586\) 4.85179 0.200425
\(587\) 7.19181 0.296838 0.148419 0.988925i \(-0.452582\pi\)
0.148419 + 0.988925i \(0.452582\pi\)
\(588\) 0.0388215 + 0.0388215i 0.00160097 + 0.00160097i
\(589\) 9.21486 0.379692
\(590\) 7.92870 4.47289i 0.326420 0.184146i
\(591\) −3.66225 3.66225i −0.150645 0.150645i
\(592\) 2.58103i 0.106080i
\(593\) −28.0561 −1.15212 −0.576062 0.817406i \(-0.695411\pi\)
−0.576062 + 0.817406i \(0.695411\pi\)
\(594\) 28.4526i 1.16742i
\(595\) −0.233392 0.413713i −0.00956813 0.0169606i
\(596\) 0.310077 0.310077i 0.0127013 0.0127013i
\(597\) 7.33116 + 7.33116i 0.300044 + 0.300044i
\(598\) 0 0
\(599\) 0.912959i 0.0373025i −0.999826 0.0186513i \(-0.994063\pi\)
0.999826 0.0186513i \(-0.00593722\pi\)
\(600\) 2.08504 + 8.45174i 0.0851213 + 0.345041i
\(601\) 12.4538 0.508002 0.254001 0.967204i \(-0.418253\pi\)
0.254001 + 0.967204i \(0.418253\pi\)
\(602\) −0.380992 0.380992i −0.0155281 0.0155281i
\(603\) 40.1373i 1.63452i
\(604\) −4.23976 + 4.23976i −0.172514 + 0.172514i
\(605\) 30.1438 + 8.39983i 1.22552 + 0.341502i
\(606\) 1.82305 1.82305i 0.0740562 0.0740562i
\(607\) −27.4162 + 27.4162i −1.11279 + 1.11279i −0.120017 + 0.992772i \(0.538295\pi\)
−0.992772 + 0.120017i \(0.961705\pi\)
\(608\) −3.39031 + 3.39031i −0.137495 + 0.137495i
\(609\) −6.18684 6.18684i −0.250703 0.250703i
\(610\) −4.99757 + 17.9344i −0.202346 + 0.726143i
\(611\) 0 0
\(612\) 0.0448098 0.0448098i 0.00181133 0.00181133i
\(613\) 24.6113i 0.994042i −0.867739 0.497021i \(-0.834427\pi\)
0.867739 0.497021i \(-0.165573\pi\)
\(614\) 36.8490i 1.48711i
\(615\) −15.1689 4.22695i −0.611670 0.170447i
\(616\) 23.6110 + 23.6110i 0.951316 + 0.951316i
\(617\) 15.4154 0.620600 0.310300 0.950639i \(-0.399571\pi\)
0.310300 + 0.950639i \(0.399571\pi\)
\(618\) −6.85037 −0.275562
\(619\) −20.7915 20.7915i −0.835683 0.835683i 0.152604 0.988287i \(-0.451234\pi\)
−0.988287 + 0.152604i \(0.951234\pi\)
\(620\) −1.94651 + 1.09811i −0.0781739 + 0.0441010i
\(621\) 15.2116i 0.610421i
\(622\) 25.6631i 1.02900i
\(623\) −32.8303 + 32.8303i −1.31532 + 1.31532i
\(624\) 0 0
\(625\) 11.6273 + 22.1315i 0.465093 + 0.885262i
\(626\) −12.7667 12.7667i −0.510261 0.510261i
\(627\) −6.71234 + 6.71234i −0.268065 + 0.268065i
\(628\) 1.38423 1.38423i 0.0552369 0.0552369i
\(629\) −0.0330825 + 0.0330825i −0.00131908 + 0.00131908i
\(630\) −6.01140 + 21.5726i −0.239500 + 0.859475i
\(631\) 8.91183 8.91183i 0.354774 0.354774i −0.507108 0.861882i \(-0.669286\pi\)
0.861882 + 0.507108i \(0.169286\pi\)
\(632\) 14.6984i 0.584670i
\(633\) 9.48740 + 9.48740i 0.377090 + 0.377090i
\(634\) −18.1382 −0.720359
\(635\) 1.58621 0.894844i 0.0629469 0.0355108i
\(636\) 1.95352i 0.0774620i
\(637\) 0 0
\(638\) −26.7512 26.7512i −1.05909 1.05909i
\(639\) 13.8194 13.8194i 0.546687 0.546687i
\(640\) −7.91804 + 28.4149i −0.312988 + 1.12320i
\(641\) 9.76116i 0.385543i −0.981244 0.192771i \(-0.938252\pi\)
0.981244 0.192771i \(-0.0617476\pi\)
\(642\) 3.72597 0.147052
\(643\) 27.8114i 1.09677i −0.836225 0.548387i \(-0.815242\pi\)
0.836225 0.548387i \(-0.184758\pi\)
\(644\) −2.26673 2.26673i −0.0893216 0.0893216i
\(645\) 0.0555341 0.199291i 0.00218665 0.00784708i
\(646\) 0.348847 0.0137252
\(647\) 13.0281 + 13.0281i 0.512188 + 0.512188i 0.915196 0.403008i \(-0.132035\pi\)
−0.403008 + 0.915196i \(0.632035\pi\)
\(648\) 13.1050 0.514814
\(649\) 13.4076 0.526296
\(650\) 0 0
\(651\) −5.76190 −0.225826
\(652\) 3.99939 0.156628
\(653\) 5.21579 + 5.21579i 0.204110 + 0.204110i 0.801758 0.597648i \(-0.203898\pi\)
−0.597648 + 0.801758i \(0.703898\pi\)
\(654\) 2.30208 0.0900185
\(655\) 9.66746 34.6929i 0.377739 1.35556i
\(656\) −33.2473 33.2473i −1.29809 1.29809i
\(657\) 16.8284i 0.656538i
\(658\) 9.06214 0.353279
\(659\) 13.9472i 0.543304i 0.962396 + 0.271652i \(0.0875700\pi\)
−0.962396 + 0.271652i \(0.912430\pi\)
\(660\) 0.618002 2.21778i 0.0240557 0.0863269i
\(661\) −0.160275 + 0.160275i −0.00623398 + 0.00623398i −0.710217 0.703983i \(-0.751403\pi\)
0.703983 + 0.710217i \(0.251403\pi\)
\(662\) 23.0236 + 23.0236i 0.894837 + 0.894837i
\(663\) 0 0
\(664\) 9.54239i 0.370317i
\(665\) −14.1859 + 8.00284i −0.550107 + 0.310337i
\(666\) 2.20575 0.0854711
\(667\) −14.3020 14.3020i −0.553776 0.553776i
\(668\) 1.00022i 0.0386996i
\(669\) −9.07477 + 9.07477i −0.350851 + 0.350851i
\(670\) 14.3846 51.6208i 0.555724 1.99429i
\(671\) −19.3893 + 19.3893i −0.748515 + 0.748515i
\(672\) 2.11990 2.11990i 0.0817771 0.0817771i
\(673\) −23.7719 + 23.7719i −0.916340 + 0.916340i −0.996761 0.0804210i \(-0.974374\pi\)
0.0804210 + 0.996761i \(0.474374\pi\)
\(674\) −21.4445 21.4445i −0.826012 0.826012i
\(675\) −18.1994 + 4.48978i −0.700495 + 0.172812i
\(676\) 0 0
\(677\) 25.1691 25.1691i 0.967326 0.967326i −0.0321566 0.999483i \(-0.510238\pi\)
0.999483 + 0.0321566i \(0.0102375\pi\)
\(678\) 5.88087i 0.225854i
\(679\) 13.9341i 0.534743i
\(680\) 0.410368 0.231505i 0.0157369 0.00887779i
\(681\) −12.8943 12.8943i −0.494110 0.494110i
\(682\) −24.9138 −0.953999
\(683\) 30.7567 1.17687 0.588437 0.808543i \(-0.299744\pi\)
0.588437 + 0.808543i \(0.299744\pi\)
\(684\) −1.53650 1.53650i −0.0587494 0.0587494i
\(685\) 41.4374 + 11.5469i 1.58324 + 0.441184i
\(686\) 28.6242i 1.09288i
\(687\) 10.6948i 0.408032i
\(688\) 0.436807 0.436807i 0.0166531 0.0166531i
\(689\) 0 0
\(690\) 2.50078 8.97436i 0.0952032 0.341648i
\(691\) −27.3944 27.3944i −1.04213 1.04213i −0.999072 0.0430609i \(-0.986289\pi\)
−0.0430609 0.999072i \(-0.513711\pi\)
\(692\) 0.912413 0.912413i 0.0346847 0.0346847i
\(693\) −23.3227 + 23.3227i −0.885954 + 0.885954i
\(694\) −26.4382 + 26.4382i −1.00358 + 1.00358i
\(695\) 34.1388 + 9.51307i 1.29496 + 0.360851i
\(696\) 6.13682 6.13682i 0.232615 0.232615i
\(697\) 0.852297i 0.0322831i
\(698\) −29.2479 29.2479i −1.10705 1.10705i
\(699\) −6.46464 −0.244515
\(700\) 2.04291 3.38098i 0.0772148 0.127789i
\(701\) 19.8876i 0.751143i 0.926793 + 0.375571i \(0.122553\pi\)
−0.926793 + 0.375571i \(0.877447\pi\)
\(702\) 0 0
\(703\) 1.13437 + 1.13437i 0.0427838 + 0.0427838i
\(704\) −22.7647 + 22.7647i −0.857978 + 0.857978i
\(705\) 1.70968 + 3.03059i 0.0643901 + 0.114139i
\(706\) 13.3577i 0.502723i
\(707\) 6.51526 0.245032
\(708\) 0.552310i 0.0207571i
\(709\) −22.5347 22.5347i −0.846309 0.846309i 0.143362 0.989670i \(-0.454209\pi\)
−0.989670 + 0.143362i \(0.954209\pi\)
\(710\) −22.7259 + 12.8206i −0.852887 + 0.481147i
\(711\) −14.5188 −0.544499
\(712\) −32.5649 32.5649i −1.22042 1.22042i
\(713\) −13.3197 −0.498826
\(714\) −0.218128 −0.00816325
\(715\) 0 0
\(716\) −4.25084 −0.158861
\(717\) 1.90138 0.0710085
\(718\) 16.8892 + 16.8892i 0.630298 + 0.630298i
\(719\) 30.9635 1.15474 0.577372 0.816481i \(-0.304078\pi\)
0.577372 + 0.816481i \(0.304078\pi\)
\(720\) −24.7330 6.89206i −0.921744 0.256852i
\(721\) −12.2410 12.2410i −0.455880 0.455880i
\(722\) 16.8811i 0.628251i
\(723\) −1.85672 −0.0690522
\(724\) 2.63294i 0.0978524i
\(725\) 12.8898 21.3324i 0.478716 0.792267i
\(726\) 10.1610 10.1610i 0.377110 0.377110i
\(727\) −16.2588 16.2588i −0.603007 0.603007i 0.338103 0.941109i \(-0.390215\pi\)
−0.941109 + 0.338103i \(0.890215\pi\)
\(728\) 0 0
\(729\) 5.33729i 0.197678i
\(730\) −6.03103 + 21.6431i −0.223218 + 0.801047i
\(731\) −0.0111976 −0.000414157
\(732\) 0.798715 + 0.798715i 0.0295214 + 0.0295214i
\(733\) 31.2515i 1.15430i −0.816638 0.577150i \(-0.804165\pi\)
0.816638 0.577150i \(-0.195835\pi\)
\(734\) 11.7845 11.7845i 0.434975 0.434975i
\(735\) −0.351185 + 0.198117i −0.0129536 + 0.00730766i
\(736\) 4.90054 4.90054i 0.180636 0.180636i
\(737\) 55.8084 55.8084i 2.05573 2.05573i
\(738\) 28.4132 28.4132i 1.04590 1.04590i
\(739\) 19.3018 + 19.3018i 0.710029 + 0.710029i 0.966541 0.256512i \(-0.0825733\pi\)
−0.256512 + 0.966541i \(0.582573\pi\)
\(740\) −0.374801 0.104441i −0.0137780 0.00383934i
\(741\) 0 0
\(742\) −26.4213 + 26.4213i −0.969956 + 0.969956i
\(743\) 32.9660i 1.20941i −0.796451 0.604703i \(-0.793292\pi\)
0.796451 0.604703i \(-0.206708\pi\)
\(744\) 5.71531i 0.209533i
\(745\) 1.58241 + 2.80500i 0.0579750 + 0.102767i
\(746\) 11.3566 + 11.3566i 0.415794 + 0.415794i
\(747\) −9.42584 −0.344873
\(748\) −0.124610 −0.00455621
\(749\) 6.65800 + 6.65800i 0.243278 + 0.243278i
\(750\) 11.4752 + 0.343147i 0.419014 + 0.0125300i
\(751\) 30.9738i 1.13025i −0.825005 0.565125i \(-0.808828\pi\)
0.825005 0.565125i \(-0.191172\pi\)
\(752\) 10.3897i 0.378875i
\(753\) 1.35540 1.35540i 0.0493934 0.0493934i
\(754\) 0 0
\(755\) −21.6367 38.3535i −0.787440 1.39583i
\(756\) 2.09439 + 2.09439i 0.0761720 + 0.0761720i
\(757\) 36.1312 36.1312i 1.31321 1.31321i 0.394173 0.919036i \(-0.371031\pi\)
0.919036 0.394173i \(-0.128969\pi\)
\(758\) −10.5217 + 10.5217i −0.382164 + 0.382164i
\(759\) 9.70238 9.70238i 0.352174 0.352174i
\(760\) −7.93813 14.0712i −0.287946 0.510417i
\(761\) 0.818500 0.818500i 0.0296706 0.0296706i −0.692116 0.721786i \(-0.743321\pi\)
0.721786 + 0.692116i \(0.243321\pi\)
\(762\) 0.836323i 0.0302968i
\(763\) 4.11363 + 4.11363i 0.148923 + 0.148923i
\(764\) 5.14940 0.186299
\(765\) 0.228677 + 0.405355i 0.00826783 + 0.0146557i
\(766\) 39.5553i 1.42919i
\(767\) 0 0
\(768\) 3.41812 + 3.41812i 0.123341 + 0.123341i
\(769\) 21.3762 21.3762i 0.770844 0.770844i −0.207410 0.978254i \(-0.566503\pi\)
0.978254 + 0.207410i \(0.0665035\pi\)
\(770\) 38.3539 21.6369i 1.38218 0.779741i
\(771\) 13.5702i 0.488719i
\(772\) −2.60488 −0.0937517
\(773\) 7.19282i 0.258708i −0.991598 0.129354i \(-0.958710\pi\)
0.991598 0.129354i \(-0.0412903\pi\)
\(774\) 0.373296 + 0.373296i 0.0134178 + 0.0134178i
\(775\) −3.93136 15.9358i −0.141219 0.572432i
\(776\) 13.8215 0.496162
\(777\) −0.709305 0.709305i −0.0254462 0.0254462i
\(778\) 49.3194 1.76819
\(779\) 29.2247 1.04708
\(780\) 0 0
\(781\) −38.4300 −1.37513
\(782\) −0.504243 −0.0180317
\(783\) 13.2146 + 13.2146i 0.472251 + 0.472251i
\(784\) −1.20396 −0.0429986
\(785\) 7.06412 + 12.5219i 0.252129 + 0.446927i
\(786\) −11.6944 11.6944i −0.417125 0.417125i
\(787\) 7.17886i 0.255899i 0.991781 + 0.127949i \(0.0408395\pi\)
−0.991781 + 0.127949i \(0.959160\pi\)
\(788\) −2.33124 −0.0830470
\(789\) 6.37306i 0.226887i
\(790\) 18.6728 + 5.20332i 0.664347 + 0.185126i
\(791\) −10.5086 + 10.5086i −0.373644 + 0.373644i
\(792\) −23.1341 23.1341i −0.822034 0.822034i
\(793\) 0 0
\(794\) 36.7145i 1.30295i
\(795\) −13.8206 3.85122i −0.490165 0.136589i
\(796\) 4.66672 0.165407
\(797\) −27.8584 27.8584i −0.986795 0.986795i 0.0131190 0.999914i \(-0.495824\pi\)
−0.999914 + 0.0131190i \(0.995824\pi\)
\(798\) 7.47947i 0.264770i
\(799\) 0.133171 0.133171i 0.00471124 0.00471124i
\(800\) 7.30950 + 4.41666i 0.258430 + 0.156153i
\(801\) 32.1671 32.1671i 1.13657 1.13657i
\(802\) 35.2493 35.2493i 1.24470 1.24470i
\(803\) −23.3988 + 23.3988i −0.825727 + 0.825727i
\(804\) −2.29895 2.29895i −0.0810778 0.0810778i
\(805\) 20.5051 11.5677i 0.722711 0.407710i
\(806\) 0 0
\(807\) −1.53767 + 1.53767i −0.0541286 + 0.0541286i
\(808\) 6.46258i 0.227353i
\(809\) 27.9509i 0.982700i 0.870962 + 0.491350i \(0.163496\pi\)
−0.870962 + 0.491350i \(0.836504\pi\)
\(810\) 4.63926 16.6486i 0.163007 0.584971i
\(811\) 23.2784 + 23.2784i 0.817415 + 0.817415i 0.985733 0.168317i \(-0.0538334\pi\)
−0.168317 + 0.985733i \(0.553833\pi\)
\(812\) −3.93829 −0.138207
\(813\) 10.2726 0.360277
\(814\) −3.06696 3.06696i −0.107497 0.107497i
\(815\) −7.88450 + 28.2945i −0.276182 + 0.991113i
\(816\) 0.250084i 0.00875468i
\(817\) 0.383957i 0.0134330i
\(818\) −14.9850 + 14.9850i −0.523937 + 0.523937i
\(819\) 0 0
\(820\) −6.17331 + 3.48261i −0.215582 + 0.121618i
\(821\) 13.8264 + 13.8264i 0.482545 + 0.482545i 0.905944 0.423398i \(-0.139163\pi\)
−0.423398 + 0.905944i \(0.639163\pi\)
\(822\) 13.9679 13.9679i 0.487186 0.487186i
\(823\) 28.8649 28.8649i 1.00617 1.00617i 0.00618675 0.999981i \(-0.498031\pi\)
0.999981 0.00618675i \(-0.00196932\pi\)
\(824\) 12.1421 12.1421i 0.422989 0.422989i
\(825\) 14.4718 + 8.74437i 0.503843 + 0.304440i
\(826\) 7.46998 7.46998i 0.259914 0.259914i
\(827\) 31.8649i 1.10805i 0.832499 + 0.554026i \(0.186909\pi\)
−0.832499 + 0.554026i \(0.813091\pi\)
\(828\) 2.22094 + 2.22094i 0.0771829 + 0.0771829i
\(829\) 55.2782 1.91989 0.959946 0.280184i \(-0.0903956\pi\)
0.959946 + 0.280184i \(0.0903956\pi\)
\(830\) 12.1226 + 3.37807i 0.420782 + 0.117255i
\(831\) 7.21389i 0.250247i
\(832\) 0 0
\(833\) 0.0154318 + 0.0154318i 0.000534681 + 0.000534681i
\(834\) 11.5076 11.5076i 0.398477 0.398477i
\(835\) −7.07624 1.97185i −0.244883 0.0682388i
\(836\) 4.27281i 0.147778i
\(837\) 12.3070 0.425390
\(838\) 3.36976i 0.116406i
\(839\) 2.75809 + 2.75809i 0.0952197 + 0.0952197i 0.753112 0.657892i \(-0.228552\pi\)
−0.657892 + 0.753112i \(0.728552\pi\)
\(840\) 4.96358 + 8.79850i 0.171260 + 0.303577i
\(841\) 4.15118 0.143144
\(842\) −37.1610 37.1610i −1.28065 1.28065i
\(843\) 12.2091 0.420503
\(844\) 6.03930 0.207881
\(845\) 0 0
\(846\) −8.87908 −0.305269
\(847\) 36.3137 1.24775
\(848\) −30.2920 30.2920i −1.04023 1.04023i
\(849\) −3.89454 −0.133660
\(850\) −0.148830 0.603284i −0.00510482 0.0206925i
\(851\) −1.63969 1.63969i −0.0562078 0.0562078i
\(852\) 1.58307i 0.0542352i
\(853\) 53.5726 1.83429 0.917145 0.398554i \(-0.130488\pi\)
0.917145 + 0.398554i \(0.130488\pi\)
\(854\) 21.6052i 0.739315i
\(855\) 13.8994 7.84117i 0.475348 0.268163i
\(856\) −6.60416 + 6.60416i −0.225726 + 0.225726i
\(857\) 18.9164 + 18.9164i 0.646171 + 0.646171i 0.952066 0.305894i \(-0.0989554\pi\)
−0.305894 + 0.952066i \(0.598955\pi\)
\(858\) 0 0
\(859\) 18.1203i 0.618258i −0.951020 0.309129i \(-0.899963\pi\)
0.951020 0.309129i \(-0.100037\pi\)
\(860\) −0.0457549 0.0811057i −0.00156023 0.00276568i
\(861\) −18.2737 −0.622766
\(862\) 1.77385 + 1.77385i 0.0604176 + 0.0604176i
\(863\) 21.4967i 0.731757i −0.930663 0.365879i \(-0.880768\pi\)
0.930663 0.365879i \(-0.119232\pi\)
\(864\) −4.52795 + 4.52795i −0.154044 + 0.154044i
\(865\) 4.65630 + 8.25380i 0.158319 + 0.280638i
\(866\) 15.9037 15.9037i 0.540431 0.540431i
\(867\) 8.12786 8.12786i 0.276037 0.276037i
\(868\) −1.83390 + 1.83390i −0.0622465 + 0.0622465i
\(869\) 20.1875 + 20.1875i 0.684815 + 0.684815i
\(870\) −5.62372 9.96866i −0.190662 0.337969i
\(871\) 0 0
\(872\) −4.08036 + 4.08036i −0.138179 + 0.138179i
\(873\) 13.6527i 0.462072i
\(874\) 17.2902i 0.584848i
\(875\) 19.8920 + 21.1184i 0.672473 + 0.713931i
\(876\) 0.963883 + 0.963883i 0.0325666 + 0.0325666i
\(877\) 21.3491 0.720907 0.360454 0.932777i \(-0.382622\pi\)
0.360454 + 0.932777i \(0.382622\pi\)
\(878\) 33.2035 1.12056
\(879\) 1.52867 + 1.52867i 0.0515609 + 0.0515609i
\(880\) 24.8067 + 43.9726i 0.836234 + 1.48232i
\(881\) 13.2448i 0.446227i −0.974792 0.223114i \(-0.928378\pi\)
0.974792 0.223114i \(-0.0716221\pi\)
\(882\) 1.02891i 0.0346451i
\(883\) 32.5668 32.5668i 1.09596 1.09596i 0.101082 0.994878i \(-0.467770\pi\)
0.994878 0.101082i \(-0.0322304\pi\)
\(884\) 0 0
\(885\) 3.90743 + 1.08884i 0.131347 + 0.0366009i
\(886\) −9.33555 9.33555i −0.313634 0.313634i
\(887\) 11.2998 11.2998i 0.379409 0.379409i −0.491480 0.870889i \(-0.663544\pi\)
0.870889 + 0.491480i \(0.163544\pi\)
\(888\) 0.703570 0.703570i 0.0236103 0.0236103i
\(889\) 1.49444 1.49444i 0.0501219 0.0501219i
\(890\) −52.8985 + 29.8421i −1.77316 + 1.00031i
\(891\) 17.9991 17.9991i 0.602994 0.602994i
\(892\) 5.77663i 0.193416i
\(893\) −4.56634 4.56634i −0.152807 0.152807i
\(894\) 1.47892 0.0494626
\(895\) 8.38022 30.0734i 0.280120 1.00524i
\(896\) 34.2308i 1.14357i
\(897\) 0 0
\(898\) 5.01810 + 5.01810i 0.167456 + 0.167456i
\(899\) −11.5710 + 11.5710i −0.385916 + 0.385916i
\(900\) −2.00164 + 3.31268i −0.0667214 + 0.110423i
\(901\) 0.776537i 0.0258702i
\(902\) −79.0135 −2.63086
\(903\) 0.240082i 0.00798943i
\(904\) −10.4237 10.4237i −0.346686 0.346686i
\(905\) −18.6273 5.19065i −0.619192 0.172543i
\(906\) −20.2217 −0.671821
\(907\) −3.71485 3.71485i −0.123350 0.123350i 0.642737 0.766087i \(-0.277799\pi\)
−0.766087 + 0.642737i \(0.777799\pi\)
\(908\) −8.20799 −0.272392
\(909\) −6.38364 −0.211732
\(910\) 0 0
\(911\) 9.49722 0.314657 0.157328 0.987546i \(-0.449712\pi\)
0.157328 + 0.987546i \(0.449712\pi\)
\(912\) −8.57520 −0.283953
\(913\) 13.1060 + 13.1060i 0.433746 + 0.433746i
\(914\) 45.5961 1.50819
\(915\) −7.22529 + 4.07607i −0.238861 + 0.134751i
\(916\) −3.40394 3.40394i −0.112469 0.112469i
\(917\) 41.7938i 1.38015i
\(918\) 0.465905 0.0153771
\(919\) 52.6782i 1.73769i −0.495081 0.868847i \(-0.664862\pi\)
0.495081 0.868847i \(-0.335138\pi\)
\(920\) 11.4742 + 20.3393i 0.378294 + 0.670568i
\(921\) −11.6102 + 11.6102i −0.382569 + 0.382569i
\(922\) −2.82041 2.82041i −0.0928851 0.0928851i
\(923\) 0 0
\(924\) 2.67171i 0.0878929i
\(925\) 1.47778 2.44571i 0.0485893 0.0804144i
\(926\) −38.1751 −1.25451
\(927\) 11.9937 + 11.9937i 0.393926 + 0.393926i
\(928\) 8.51438i 0.279498i
\(929\) 5.89185 5.89185i 0.193305 0.193305i −0.603817 0.797123i \(-0.706354\pi\)
0.797123 + 0.603817i \(0.206354\pi\)
\(930\) −7.26071 2.02326i −0.238088 0.0663452i
\(931\) 0.529147 0.529147i 0.0173421 0.0173421i
\(932\) −2.05757 + 2.05757i −0.0673978 + 0.0673978i
\(933\) 8.08579 8.08579i 0.264717 0.264717i
\(934\) 22.7566 + 22.7566i 0.744619 + 0.744619i
\(935\) 0.245660 0.881582i 0.00803395 0.0288308i
\(936\) 0 0
\(937\) 16.3814 16.3814i 0.535156 0.535156i −0.386947 0.922102i \(-0.626470\pi\)
0.922102 + 0.386947i \(0.126470\pi\)
\(938\) 62.1865i 2.03046i
\(939\) 8.04494i 0.262537i
\(940\) 1.50873 + 0.420421i 0.0492094 + 0.0137126i
\(941\) 24.2325 + 24.2325i 0.789956 + 0.789956i 0.981487 0.191530i \(-0.0613451\pi\)
−0.191530 + 0.981487i \(0.561345\pi\)
\(942\) 6.60214 0.215109
\(943\) −42.2430 −1.37562
\(944\) 8.56432 + 8.56432i 0.278745 + 0.278745i
\(945\) −18.9461 + 10.6882i −0.616316 + 0.347688i
\(946\) 1.03809i 0.0337512i
\(947\) 33.4416i 1.08671i −0.839505 0.543353i \(-0.817155\pi\)
0.839505 0.543353i \(-0.182845\pi\)
\(948\) 0.831598 0.831598i 0.0270091 0.0270091i
\(949\) 0 0
\(950\) −20.6862 + 5.10327i −0.671149 + 0.165572i
\(951\) −5.71487 5.71487i −0.185318 0.185318i
\(952\) 0.386625 0.386625i 0.0125306 0.0125306i
\(953\) −10.6248 + 10.6248i −0.344171 + 0.344171i −0.857933 0.513762i \(-0.828252\pi\)
0.513762 + 0.857933i \(0.328252\pi\)
\(954\) 25.8875 25.8875i 0.838140 0.838140i
\(955\) −10.1517 + 36.4305i −0.328500 + 1.17886i
\(956\) 0.605172 0.605172i 0.0195727 0.0195727i
\(957\) 16.8573i 0.544918i
\(958\) −2.45769 2.45769i −0.0794042 0.0794042i
\(959\) 49.9188 1.61196
\(960\) −8.48312 + 4.78566i −0.273792 + 0.154457i
\(961\) 20.2237i 0.652378i
\(962\) 0 0
\(963\) −6.52350 6.52350i −0.210217 0.210217i
\(964\) −0.590957 + 0.590957i −0.0190334 + 0.0190334i
\(965\) 5.13533 18.4288i 0.165312 0.593243i
\(966\) 10.8112i 0.347846i
\(967\) −7.49252 −0.240943 −0.120472 0.992717i \(-0.538441\pi\)
−0.120472 + 0.992717i \(0.538441\pi\)
\(968\) 36.0200i 1.15773i
\(969\) 0.109913 + 0.109913i 0.00353091 + 0.00353091i
\(970\) 4.89290 17.5588i 0.157101 0.563778i
\(971\) 27.8606 0.894090 0.447045 0.894512i \(-0.352476\pi\)
0.447045 + 0.894512i \(0.352476\pi\)
\(972\) −3.16281 3.16281i −0.101447 0.101447i
\(973\) 41.1263 1.31845
\(974\) 8.45010 0.270759
\(975\) 0 0
\(976\) −24.7704 −0.792880
\(977\) −38.8764 −1.24377 −0.621883 0.783110i \(-0.713632\pi\)
−0.621883 + 0.783110i \(0.713632\pi\)
\(978\) 9.53761 + 9.53761i 0.304979 + 0.304979i
\(979\) −89.4527 −2.85892
\(980\) −0.0487183 + 0.174832i −0.00155625 + 0.00558479i
\(981\) −4.03053 4.03053i −0.128685 0.128685i
\(982\) 9.27522i 0.295984i
\(983\) −0.207440 −0.00661630 −0.00330815 0.999995i \(-0.501053\pi\)
−0.00330815 + 0.999995i \(0.501053\pi\)
\(984\) 18.1259i 0.577834i
\(985\) 4.59587 16.4928i 0.146437 0.525506i
\(986\) −0.438045 + 0.438045i −0.0139502 + 0.0139502i
\(987\) 2.85525 + 2.85525i 0.0908836 + 0.0908836i
\(988\) 0 0
\(989\) 0.554993i 0.0176477i
\(990\) −37.5791 + 21.1998i −1.19434 + 0.673775i
\(991\) −25.4961 −0.809910 −0.404955 0.914337i \(-0.632713\pi\)
−0.404955 + 0.914337i \(0.632713\pi\)
\(992\) −3.96478 3.96478i −0.125882 0.125882i
\(993\) 14.5083i 0.460407i
\(994\) −21.4110 + 21.4110i −0.679117 + 0.679117i
\(995\) −9.20009 + 33.0157i −0.291663 + 1.04667i
\(996\) 0.539885 0.539885i 0.0171069 0.0171069i
\(997\) −24.5049 + 24.5049i −0.776078 + 0.776078i −0.979162 0.203083i \(-0.934904\pi\)
0.203083 + 0.979162i \(0.434904\pi\)
\(998\) −9.45345 + 9.45345i −0.299244 + 0.299244i
\(999\) 1.51502 + 1.51502i 0.0479331 + 0.0479331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.d.268.9 20
5.2 odd 4 845.2.f.d.437.9 20
13.2 odd 12 845.2.t.e.188.5 20
13.3 even 3 845.2.o.g.488.1 20
13.4 even 6 845.2.o.e.258.5 20
13.5 odd 4 845.2.f.d.408.2 20
13.6 odd 12 845.2.t.g.418.1 20
13.7 odd 12 65.2.t.a.28.5 yes 20
13.8 odd 4 845.2.f.e.408.9 20
13.9 even 3 845.2.o.f.258.1 20
13.10 even 6 65.2.o.a.33.5 yes 20
13.11 odd 12 845.2.t.f.188.1 20
13.12 even 2 845.2.k.e.268.2 20
39.20 even 12 585.2.dp.a.28.1 20
39.23 odd 6 585.2.cf.a.163.1 20
65.2 even 12 845.2.o.f.357.1 20
65.7 even 12 65.2.o.a.2.5 20
65.12 odd 4 845.2.f.e.437.2 20
65.17 odd 12 845.2.t.f.427.1 20
65.22 odd 12 845.2.t.e.427.5 20
65.23 odd 12 325.2.x.b.7.1 20
65.32 even 12 845.2.o.g.587.1 20
65.33 even 12 325.2.s.b.132.1 20
65.37 even 12 845.2.o.e.357.5 20
65.42 odd 12 845.2.t.g.657.1 20
65.47 even 4 845.2.k.e.577.2 20
65.49 even 6 325.2.s.b.293.1 20
65.57 even 4 inner 845.2.k.d.577.9 20
65.59 odd 12 325.2.x.b.93.1 20
65.62 odd 12 65.2.t.a.7.5 yes 20
195.62 even 12 585.2.dp.a.397.1 20
195.137 odd 12 585.2.cf.a.262.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.5 20 65.7 even 12
65.2.o.a.33.5 yes 20 13.10 even 6
65.2.t.a.7.5 yes 20 65.62 odd 12
65.2.t.a.28.5 yes 20 13.7 odd 12
325.2.s.b.132.1 20 65.33 even 12
325.2.s.b.293.1 20 65.49 even 6
325.2.x.b.7.1 20 65.23 odd 12
325.2.x.b.93.1 20 65.59 odd 12
585.2.cf.a.163.1 20 39.23 odd 6
585.2.cf.a.262.1 20 195.137 odd 12
585.2.dp.a.28.1 20 39.20 even 12
585.2.dp.a.397.1 20 195.62 even 12
845.2.f.d.408.2 20 13.5 odd 4
845.2.f.d.437.9 20 5.2 odd 4
845.2.f.e.408.9 20 13.8 odd 4
845.2.f.e.437.2 20 65.12 odd 4
845.2.k.d.268.9 20 1.1 even 1 trivial
845.2.k.d.577.9 20 65.57 even 4 inner
845.2.k.e.268.2 20 13.12 even 2
845.2.k.e.577.2 20 65.47 even 4
845.2.o.e.258.5 20 13.4 even 6
845.2.o.e.357.5 20 65.37 even 12
845.2.o.f.258.1 20 13.9 even 3
845.2.o.f.357.1 20 65.2 even 12
845.2.o.g.488.1 20 13.3 even 3
845.2.o.g.587.1 20 65.32 even 12
845.2.t.e.188.5 20 13.2 odd 12
845.2.t.e.427.5 20 65.22 odd 12
845.2.t.f.188.1 20 13.11 odd 12
845.2.t.f.427.1 20 65.17 odd 12
845.2.t.g.418.1 20 13.6 odd 12
845.2.t.g.657.1 20 65.42 odd 12