Properties

Label 625.2.d.o.501.4
Level $625$
Weight $2$
Character 625.501
Analytic conductor $4.991$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [625,2,Mod(126,625)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(625, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("625.126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 501.4
Root \(0.917186 + 1.66637i\) of defining polynomial
Character \(\chi\) \(=\) 625.501
Dual form 625.2.d.o.126.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.713605 - 2.19625i) q^{2} +(-0.384204 - 0.279141i) q^{3} +(-2.69625 - 1.95894i) q^{4} +(-0.887234 + 0.644613i) q^{6} +3.03582 q^{7} +(-2.48990 + 1.80902i) q^{8} +(-0.857358 - 2.63868i) q^{9} +(0.618034 - 1.90211i) q^{11} +(0.489091 + 1.50527i) q^{12} +(-0.441032 - 1.35736i) q^{13} +(2.16637 - 6.66742i) q^{14} +(0.136498 + 0.420099i) q^{16} +(-1.50497 + 1.09343i) q^{17} -6.40701 q^{18} +(-0.730800 + 0.530958i) q^{19} +(-1.16637 - 0.847421i) q^{21} +(-3.73648 - 2.71472i) q^{22} +(-1.02882 + 3.16637i) q^{23} +1.46160 q^{24} -3.29582 q^{26} +(-0.847421 + 2.60809i) q^{27} +(-8.18532 - 5.94699i) q^{28} +(-3.20619 - 2.32943i) q^{29} +(5.21004 - 3.78532i) q^{31} -5.13532 q^{32} +(-0.768409 + 0.558282i) q^{33} +(1.32748 + 4.08557i) q^{34} +(-2.85736 + 8.79404i) q^{36} +(1.18051 + 3.63324i) q^{37} +(0.644613 + 1.98391i) q^{38} +(-0.209447 + 0.644613i) q^{39} +(-0.566805 - 1.74445i) q^{41} +(-2.69348 + 1.95693i) q^{42} -3.59445 q^{43} +(-5.39250 + 3.91788i) q^{44} +(6.21998 + 4.51908i) q^{46} +(3.88324 + 2.82134i) q^{47} +(0.0648235 - 0.199506i) q^{48} +2.21619 q^{49} +0.883436 q^{51} +(-1.46985 + 4.52373i) q^{52} +(7.68949 + 5.58674i) q^{53} +(5.12330 + 3.72230i) q^{54} +(-7.55888 + 5.49184i) q^{56} +0.428989 q^{57} +(-7.40398 + 5.37930i) q^{58} +(3.28968 + 10.1246i) q^{59} +(4.41097 - 13.5756i) q^{61} +(-4.59559 - 14.1438i) q^{62} +(-2.60278 - 8.01054i) q^{63} +(-3.93759 + 12.1186i) q^{64} +(0.677786 + 2.08601i) q^{66} +(8.64854 - 6.28353i) q^{67} +6.19974 q^{68} +(1.27914 - 0.929350i) q^{69} +(-10.0802 - 7.32371i) q^{71} +(6.90814 + 5.01906i) q^{72} +(0.0827026 - 0.254532i) q^{73} +8.82193 q^{74} +3.01054 q^{76} +(1.87624 - 5.77447i) q^{77} +(1.26627 + 0.919998i) q^{78} +(6.93470 + 5.03835i) q^{79} +(-5.68017 + 4.12688i) q^{81} -4.23572 q^{82} +(10.2083 - 7.41677i) q^{83} +(1.48479 + 4.56972i) q^{84} +(-2.56502 + 7.89432i) q^{86} +(0.581593 + 1.78996i) q^{87} +(1.90211 + 5.85410i) q^{88} +(-1.47338 + 4.53460i) q^{89} +(-1.33889 - 4.12069i) q^{91} +(8.97669 - 6.52195i) q^{92} -3.05836 q^{93} +(8.96746 - 6.51524i) q^{94} +(1.97301 + 1.43348i) q^{96} +(8.05623 + 5.85319i) q^{97} +(1.58148 - 4.86730i) q^{98} -5.54893 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 12 q^{6} - 2 q^{9} - 8 q^{11} + 14 q^{14} - 4 q^{16} - 20 q^{19} + 2 q^{21} + 40 q^{24} + 12 q^{26} - 30 q^{29} + 2 q^{31} + 24 q^{34} - 34 q^{36} - 24 q^{39} - 18 q^{41} - 16 q^{44} + 32 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.713605 2.19625i 0.504595 1.55298i −0.296855 0.954922i \(-0.595938\pi\)
0.801450 0.598061i \(-0.204062\pi\)
\(3\) −0.384204 0.279141i −0.221821 0.161162i 0.471325 0.881959i \(-0.343776\pi\)
−0.693146 + 0.720797i \(0.743776\pi\)
\(4\) −2.69625 1.95894i −1.34813 0.979470i
\(5\) 0 0
\(6\) −0.887234 + 0.644613i −0.362212 + 0.263162i
\(7\) 3.03582 1.14743 0.573716 0.819055i \(-0.305502\pi\)
0.573716 + 0.819055i \(0.305502\pi\)
\(8\) −2.48990 + 1.80902i −0.880312 + 0.639584i
\(9\) −0.857358 2.63868i −0.285786 0.879558i
\(10\) 0 0
\(11\) 0.618034 1.90211i 0.186344 0.573509i −0.813625 0.581390i \(-0.802509\pi\)
0.999969 + 0.00788181i \(0.00250889\pi\)
\(12\) 0.489091 + 1.50527i 0.141188 + 0.434533i
\(13\) −0.441032 1.35736i −0.122320 0.376463i 0.871083 0.491136i \(-0.163418\pi\)
−0.993403 + 0.114673i \(0.963418\pi\)
\(14\) 2.16637 6.66742i 0.578988 1.78194i
\(15\) 0 0
\(16\) 0.136498 + 0.420099i 0.0341246 + 0.105025i
\(17\) −1.50497 + 1.09343i −0.365009 + 0.265195i −0.755138 0.655565i \(-0.772430\pi\)
0.390129 + 0.920760i \(0.372430\pi\)
\(18\) −6.40701 −1.51015
\(19\) −0.730800 + 0.530958i −0.167657 + 0.121810i −0.668450 0.743757i \(-0.733042\pi\)
0.500793 + 0.865567i \(0.333042\pi\)
\(20\) 0 0
\(21\) −1.16637 0.847421i −0.254524 0.184922i
\(22\) −3.73648 2.71472i −0.796621 0.578779i
\(23\) −1.02882 + 3.16637i −0.214523 + 0.660235i 0.784664 + 0.619922i \(0.212836\pi\)
−0.999187 + 0.0403132i \(0.987164\pi\)
\(24\) 1.46160 0.298348
\(25\) 0 0
\(26\) −3.29582 −0.646364
\(27\) −0.847421 + 2.60809i −0.163086 + 0.501928i
\(28\) −8.18532 5.94699i −1.54688 1.12387i
\(29\) −3.20619 2.32943i −0.595375 0.432565i 0.248859 0.968540i \(-0.419944\pi\)
−0.844234 + 0.535974i \(0.819944\pi\)
\(30\) 0 0
\(31\) 5.21004 3.78532i 0.935751 0.679863i −0.0116431 0.999932i \(-0.503706\pi\)
0.947394 + 0.320069i \(0.103706\pi\)
\(32\) −5.13532 −0.907805
\(33\) −0.768409 + 0.558282i −0.133763 + 0.0971844i
\(34\) 1.32748 + 4.08557i 0.227661 + 0.700669i
\(35\) 0 0
\(36\) −2.85736 + 8.79404i −0.476226 + 1.46567i
\(37\) 1.18051 + 3.63324i 0.194075 + 0.597301i 0.999986 + 0.00526493i \(0.00167589\pi\)
−0.805911 + 0.592037i \(0.798324\pi\)
\(38\) 0.644613 + 1.98391i 0.104570 + 0.321833i
\(39\) −0.209447 + 0.644613i −0.0335384 + 0.103221i
\(40\) 0 0
\(41\) −0.566805 1.74445i −0.0885201 0.272437i 0.896991 0.442049i \(-0.145748\pi\)
−0.985511 + 0.169613i \(0.945748\pi\)
\(42\) −2.69348 + 1.95693i −0.415613 + 0.301960i
\(43\) −3.59445 −0.548149 −0.274074 0.961708i \(-0.588371\pi\)
−0.274074 + 0.961708i \(0.588371\pi\)
\(44\) −5.39250 + 3.91788i −0.812950 + 0.590643i
\(45\) 0 0
\(46\) 6.21998 + 4.51908i 0.917086 + 0.666302i
\(47\) 3.88324 + 2.82134i 0.566428 + 0.411534i 0.833806 0.552057i \(-0.186157\pi\)
−0.267378 + 0.963592i \(0.586157\pi\)
\(48\) 0.0648235 0.199506i 0.00935647 0.0287962i
\(49\) 2.21619 0.316598
\(50\) 0 0
\(51\) 0.883436 0.123706
\(52\) −1.46985 + 4.52373i −0.203831 + 0.627329i
\(53\) 7.68949 + 5.58674i 1.05623 + 0.767398i 0.973388 0.229165i \(-0.0735995\pi\)
0.0828447 + 0.996562i \(0.473599\pi\)
\(54\) 5.12330 + 3.72230i 0.697193 + 0.506540i
\(55\) 0 0
\(56\) −7.55888 + 5.49184i −1.01010 + 0.733879i
\(57\) 0.428989 0.0568209
\(58\) −7.40398 + 5.37930i −0.972190 + 0.706337i
\(59\) 3.28968 + 10.1246i 0.428279 + 1.31811i 0.899819 + 0.436263i \(0.143698\pi\)
−0.471540 + 0.881845i \(0.656302\pi\)
\(60\) 0 0
\(61\) 4.41097 13.5756i 0.564766 1.73817i −0.103879 0.994590i \(-0.533125\pi\)
0.668645 0.743582i \(-0.266875\pi\)
\(62\) −4.59559 14.1438i −0.583641 1.79626i
\(63\) −2.60278 8.01054i −0.327920 1.00923i
\(64\) −3.93759 + 12.1186i −0.492198 + 1.51483i
\(65\) 0 0
\(66\) 0.677786 + 2.08601i 0.0834297 + 0.256770i
\(67\) 8.64854 6.28353i 1.05659 0.767656i 0.0831333 0.996538i \(-0.473507\pi\)
0.973454 + 0.228883i \(0.0735073\pi\)
\(68\) 6.19974 0.751828
\(69\) 1.27914 0.929350i 0.153990 0.111881i
\(70\) 0 0
\(71\) −10.0802 7.32371i −1.19630 0.869165i −0.202387 0.979306i \(-0.564870\pi\)
−0.993916 + 0.110141i \(0.964870\pi\)
\(72\) 6.90814 + 5.01906i 0.814132 + 0.591502i
\(73\) 0.0827026 0.254532i 0.00967961 0.0297908i −0.946100 0.323874i \(-0.895014\pi\)
0.955780 + 0.294084i \(0.0950144\pi\)
\(74\) 8.82193 1.02553
\(75\) 0 0
\(76\) 3.01054 0.345332
\(77\) 1.87624 5.77447i 0.213817 0.658062i
\(78\) 1.26627 + 0.919998i 0.143377 + 0.104169i
\(79\) 6.93470 + 5.03835i 0.780214 + 0.566859i 0.905043 0.425319i \(-0.139838\pi\)
−0.124829 + 0.992178i \(0.539838\pi\)
\(80\) 0 0
\(81\) −5.68017 + 4.12688i −0.631129 + 0.458542i
\(82\) −4.23572 −0.467757
\(83\) 10.2083 7.41677i 1.12051 0.814097i 0.136222 0.990678i \(-0.456504\pi\)
0.984286 + 0.176582i \(0.0565039\pi\)
\(84\) 1.48479 + 4.56972i 0.162004 + 0.498597i
\(85\) 0 0
\(86\) −2.56502 + 7.89432i −0.276593 + 0.851266i
\(87\) 0.581593 + 1.78996i 0.0623533 + 0.191904i
\(88\) 1.90211 + 5.85410i 0.202766 + 0.624049i
\(89\) −1.47338 + 4.53460i −0.156178 + 0.480666i −0.998278 0.0586546i \(-0.981319\pi\)
0.842100 + 0.539321i \(0.181319\pi\)
\(90\) 0 0
\(91\) −1.33889 4.12069i −0.140354 0.431966i
\(92\) 8.97669 6.52195i 0.935885 0.679960i
\(93\) −3.05836 −0.317137
\(94\) 8.96746 6.51524i 0.924923 0.671996i
\(95\) 0 0
\(96\) 1.97301 + 1.43348i 0.201370 + 0.146304i
\(97\) 8.05623 + 5.85319i 0.817986 + 0.594302i 0.916135 0.400870i \(-0.131292\pi\)
−0.0981488 + 0.995172i \(0.531292\pi\)
\(98\) 1.58148 4.86730i 0.159754 0.491671i
\(99\) −5.54893 −0.557689
\(100\) 0 0
\(101\) 9.34612 0.929974 0.464987 0.885318i \(-0.346059\pi\)
0.464987 + 0.885318i \(0.346059\pi\)
\(102\) 0.630425 1.94025i 0.0624213 0.192113i
\(103\) −7.34917 5.33949i −0.724136 0.526115i 0.163567 0.986532i \(-0.447700\pi\)
−0.887703 + 0.460417i \(0.847700\pi\)
\(104\) 3.55361 + 2.58185i 0.348460 + 0.253171i
\(105\) 0 0
\(106\) 17.7571 12.9013i 1.72473 1.25309i
\(107\) 5.62871 0.544148 0.272074 0.962276i \(-0.412290\pi\)
0.272074 + 0.962276i \(0.412290\pi\)
\(108\) 7.39396 5.37202i 0.711484 0.516923i
\(109\) −3.12509 9.61803i −0.299329 0.921240i −0.981733 0.190265i \(-0.939065\pi\)
0.682404 0.730975i \(-0.260935\pi\)
\(110\) 0 0
\(111\) 0.560629 1.72544i 0.0532125 0.163771i
\(112\) 0.414384 + 1.27534i 0.0391556 + 0.120509i
\(113\) 3.31019 + 10.1877i 0.311397 + 0.958381i 0.977212 + 0.212264i \(0.0680838\pi\)
−0.665815 + 0.746116i \(0.731916\pi\)
\(114\) 0.306129 0.942167i 0.0286716 0.0882420i
\(115\) 0 0
\(116\) 4.08147 + 12.5615i 0.378955 + 1.16630i
\(117\) −3.20350 + 2.32748i −0.296164 + 0.215176i
\(118\) 24.5836 2.26311
\(119\) −4.56882 + 3.31944i −0.418823 + 0.304293i
\(120\) 0 0
\(121\) 5.66312 + 4.11450i 0.514829 + 0.374045i
\(122\) −26.6676 19.3752i −2.41437 1.75415i
\(123\) −0.269177 + 0.828443i −0.0242709 + 0.0746982i
\(124\) −21.4628 −1.92742
\(125\) 0 0
\(126\) −19.4505 −1.73279
\(127\) −3.51072 + 10.8049i −0.311526 + 0.958779i 0.665635 + 0.746278i \(0.268161\pi\)
−0.977161 + 0.212501i \(0.931839\pi\)
\(128\) 15.4966 + 11.2589i 1.36972 + 0.995158i
\(129\) 1.38100 + 1.00336i 0.121591 + 0.0883408i
\(130\) 0 0
\(131\) −6.46219 + 4.69506i −0.564605 + 0.410209i −0.833141 0.553060i \(-0.813460\pi\)
0.268537 + 0.963269i \(0.413460\pi\)
\(132\) 3.16546 0.275518
\(133\) −2.21858 + 1.61189i −0.192375 + 0.139769i
\(134\) −7.62857 23.4783i −0.659008 2.02822i
\(135\) 0 0
\(136\) 1.76920 5.44504i 0.151708 0.466908i
\(137\) 2.88537 + 8.88027i 0.246514 + 0.758692i 0.995384 + 0.0959750i \(0.0305969\pi\)
−0.748870 + 0.662717i \(0.769403\pi\)
\(138\) −1.12828 3.47250i −0.0960460 0.295599i
\(139\) 5.53605 17.0382i 0.469562 1.44516i −0.383592 0.923503i \(-0.625313\pi\)
0.853154 0.521660i \(-0.174687\pi\)
\(140\) 0 0
\(141\) −0.704407 2.16794i −0.0593217 0.182574i
\(142\) −23.2780 + 16.9125i −1.95345 + 1.41926i
\(143\) −2.85442 −0.238699
\(144\) 0.991477 0.720350i 0.0826231 0.0600292i
\(145\) 0 0
\(146\) −0.500000 0.363271i −0.0413803 0.0300645i
\(147\) −0.851468 0.618628i −0.0702279 0.0510236i
\(148\) 3.93435 12.1087i 0.323402 0.995328i
\(149\) −6.31395 −0.517259 −0.258629 0.965977i \(-0.583271\pi\)
−0.258629 + 0.965977i \(0.583271\pi\)
\(150\) 0 0
\(151\) 4.71947 0.384065 0.192033 0.981389i \(-0.438492\pi\)
0.192033 + 0.981389i \(0.438492\pi\)
\(152\) 0.859107 2.64406i 0.0696828 0.214462i
\(153\) 4.17549 + 3.03367i 0.337569 + 0.245258i
\(154\) −11.3433 8.24138i −0.914068 0.664109i
\(155\) 0 0
\(156\) 1.82748 1.32774i 0.146316 0.106305i
\(157\) 1.46908 0.117245 0.0586225 0.998280i \(-0.481329\pi\)
0.0586225 + 0.998280i \(0.481329\pi\)
\(158\) 16.0141 11.6349i 1.27402 0.925626i
\(159\) −1.39485 4.29290i −0.110619 0.340449i
\(160\) 0 0
\(161\) −3.12330 + 9.61253i −0.246151 + 0.757574i
\(162\) 5.01027 + 15.4200i 0.393644 + 1.21151i
\(163\) 1.37812 + 4.24142i 0.107943 + 0.332214i 0.990410 0.138160i \(-0.0441190\pi\)
−0.882467 + 0.470374i \(0.844119\pi\)
\(164\) −1.88902 + 5.81380i −0.147508 + 0.453982i
\(165\) 0 0
\(166\) −9.00439 27.7127i −0.698876 2.15092i
\(167\) −8.44101 + 6.13275i −0.653185 + 0.474567i −0.864355 0.502883i \(-0.832273\pi\)
0.211170 + 0.977449i \(0.432273\pi\)
\(168\) 4.43715 0.342334
\(169\) 8.86931 6.44393i 0.682255 0.495687i
\(170\) 0 0
\(171\) 2.02758 + 1.47312i 0.155053 + 0.112653i
\(172\) 9.69155 + 7.04132i 0.738973 + 0.536896i
\(173\) −2.37207 + 7.30049i −0.180345 + 0.555046i −0.999837 0.0180448i \(-0.994256\pi\)
0.819492 + 0.573091i \(0.194256\pi\)
\(174\) 4.34623 0.329486
\(175\) 0 0
\(176\) 0.883436 0.0665915
\(177\) 1.56228 4.80819i 0.117428 0.361406i
\(178\) 8.90770 + 6.47182i 0.667660 + 0.485084i
\(179\) −12.5533 9.12053i −0.938280 0.681700i 0.00972631 0.999953i \(-0.496904\pi\)
−0.948006 + 0.318253i \(0.896904\pi\)
\(180\) 0 0
\(181\) 1.28679 0.934906i 0.0956462 0.0694910i −0.538934 0.842348i \(-0.681173\pi\)
0.634580 + 0.772857i \(0.281173\pi\)
\(182\) −10.0055 −0.741658
\(183\) −5.48421 + 3.98451i −0.405404 + 0.294543i
\(184\) −3.16637 9.74510i −0.233428 0.718418i
\(185\) 0 0
\(186\) −2.18246 + 6.71692i −0.160026 + 0.492509i
\(187\) 1.14970 + 3.53840i 0.0840741 + 0.258753i
\(188\) −4.94335 15.2141i −0.360531 1.10960i
\(189\) −2.57261 + 7.91769i −0.187130 + 0.575927i
\(190\) 0 0
\(191\) 6.07788 + 18.7058i 0.439780 + 1.35350i 0.888108 + 0.459635i \(0.152020\pi\)
−0.448328 + 0.893869i \(0.647980\pi\)
\(192\) 4.89565 3.55690i 0.353313 0.256697i
\(193\) 13.1100 0.943680 0.471840 0.881684i \(-0.343590\pi\)
0.471840 + 0.881684i \(0.343590\pi\)
\(194\) 18.6040 13.5166i 1.33569 0.970437i
\(195\) 0 0
\(196\) −5.97539 4.34138i −0.426814 0.310098i
\(197\) 2.77451 + 2.01580i 0.197676 + 0.143620i 0.682220 0.731147i \(-0.261015\pi\)
−0.484544 + 0.874767i \(0.661015\pi\)
\(198\) −3.95975 + 12.1869i −0.281407 + 0.866082i
\(199\) 17.6959 1.25443 0.627215 0.778846i \(-0.284195\pi\)
0.627215 + 0.778846i \(0.284195\pi\)
\(200\) 0 0
\(201\) −5.07680 −0.358090
\(202\) 6.66944 20.5264i 0.469260 1.44423i
\(203\) −9.73341 7.07174i −0.683152 0.496339i
\(204\) −2.38197 1.73060i −0.166771 0.121166i
\(205\) 0 0
\(206\) −16.9713 + 12.3303i −1.18244 + 0.859096i
\(207\) 9.23710 0.642023
\(208\) 0.510024 0.370554i 0.0353638 0.0256933i
\(209\) 0.558282 + 1.71821i 0.0386172 + 0.118851i
\(210\) 0 0
\(211\) −1.00235 + 3.08491i −0.0690044 + 0.212374i −0.979612 0.200898i \(-0.935614\pi\)
0.910608 + 0.413272i \(0.135614\pi\)
\(212\) −9.78869 30.1265i −0.672290 2.06910i
\(213\) 1.82852 + 5.62761i 0.125288 + 0.385597i
\(214\) 4.01668 12.3621i 0.274575 0.845054i
\(215\) 0 0
\(216\) −2.60809 8.02688i −0.177458 0.546160i
\(217\) 15.8167 11.4915i 1.07371 0.780096i
\(218\) −23.3537 −1.58171
\(219\) −0.102825 + 0.0747068i −0.00694828 + 0.00504822i
\(220\) 0 0
\(221\) 2.14791 + 1.56055i 0.144484 + 0.104974i
\(222\) −3.38943 2.46256i −0.227483 0.165276i
\(223\) 8.87335 27.3094i 0.594203 1.82877i 0.0355515 0.999368i \(-0.488681\pi\)
0.558652 0.829402i \(-0.311319\pi\)
\(224\) −15.5899 −1.04164
\(225\) 0 0
\(226\) 24.7370 1.64548
\(227\) 3.62187 11.1470i 0.240392 0.739851i −0.755968 0.654609i \(-0.772833\pi\)
0.996360 0.0852426i \(-0.0271665\pi\)
\(228\) −1.15666 0.840364i −0.0766018 0.0556544i
\(229\) 13.2689 + 9.64043i 0.876835 + 0.637058i 0.932412 0.361397i \(-0.117700\pi\)
−0.0555774 + 0.998454i \(0.517700\pi\)
\(230\) 0 0
\(231\) −2.33275 + 1.69484i −0.153484 + 0.111512i
\(232\) 12.1971 0.800777
\(233\) −18.2147 + 13.2337i −1.19328 + 0.866971i −0.993607 0.112891i \(-0.963989\pi\)
−0.199676 + 0.979862i \(0.563989\pi\)
\(234\) 2.82570 + 8.69660i 0.184722 + 0.568514i
\(235\) 0 0
\(236\) 10.9637 33.7427i 0.713674 2.19646i
\(237\) −1.25793 3.87152i −0.0817114 0.251482i
\(238\) 4.02999 + 12.4030i 0.261226 + 0.803969i
\(239\) −2.04981 + 6.30867i −0.132591 + 0.408074i −0.995208 0.0977848i \(-0.968824\pi\)
0.862616 + 0.505859i \(0.168824\pi\)
\(240\) 0 0
\(241\) 8.10430 + 24.9425i 0.522044 + 1.60668i 0.770089 + 0.637936i \(0.220212\pi\)
−0.248045 + 0.968748i \(0.579788\pi\)
\(242\) 13.0777 9.50150i 0.840666 0.610780i
\(243\) 11.5613 0.741655
\(244\) −38.4868 + 27.9623i −2.46386 + 1.79010i
\(245\) 0 0
\(246\) 1.62738 + 1.18236i 0.103758 + 0.0753846i
\(247\) 1.04301 + 0.757788i 0.0663649 + 0.0482169i
\(248\) −6.12477 + 18.8501i −0.388923 + 1.19698i
\(249\) −5.99241 −0.379753
\(250\) 0 0
\(251\) −10.9121 −0.688766 −0.344383 0.938829i \(-0.611912\pi\)
−0.344383 + 0.938829i \(0.611912\pi\)
\(252\) −8.67441 + 26.6971i −0.546437 + 1.68176i
\(253\) 5.38696 + 3.91385i 0.338675 + 0.246062i
\(254\) 21.2250 + 15.4208i 1.33177 + 0.967590i
\(255\) 0 0
\(256\) 15.1684 11.0205i 0.948024 0.688780i
\(257\) 6.58051 0.410481 0.205240 0.978712i \(-0.434202\pi\)
0.205240 + 0.978712i \(0.434202\pi\)
\(258\) 3.18912 2.31703i 0.198546 0.144252i
\(259\) 3.58382 + 11.0299i 0.222688 + 0.685362i
\(260\) 0 0
\(261\) −3.39777 + 10.4573i −0.210317 + 0.647288i
\(262\) 5.70007 + 17.5430i 0.352152 + 1.08381i
\(263\) −8.37660 25.7805i −0.516524 1.58970i −0.780493 0.625165i \(-0.785032\pi\)
0.263969 0.964531i \(-0.414968\pi\)
\(264\) 0.903319 2.78013i 0.0555954 0.171105i
\(265\) 0 0
\(266\) 1.95693 + 6.02280i 0.119987 + 0.369282i
\(267\) 1.83187 1.33093i 0.112109 0.0814517i
\(268\) −35.6277 −2.17631
\(269\) −0.816664 + 0.593341i −0.0497929 + 0.0361766i −0.612403 0.790546i \(-0.709797\pi\)
0.562610 + 0.826722i \(0.309797\pi\)
\(270\) 0 0
\(271\) −5.05800 3.67485i −0.307252 0.223231i 0.423465 0.905913i \(-0.360814\pi\)
−0.730716 + 0.682681i \(0.760814\pi\)
\(272\) −0.664773 0.482986i −0.0403078 0.0292853i
\(273\) −0.635844 + 1.95693i −0.0384830 + 0.118439i
\(274\) 21.5623 1.30263
\(275\) 0 0
\(276\) −5.26943 −0.317182
\(277\) −7.62355 + 23.4629i −0.458055 + 1.40975i 0.409456 + 0.912330i \(0.365718\pi\)
−0.867511 + 0.497418i \(0.834282\pi\)
\(278\) −33.4696 24.3171i −2.00738 1.45844i
\(279\) −14.4551 10.5022i −0.865404 0.628753i
\(280\) 0 0
\(281\) −1.48771 + 1.08089i −0.0887495 + 0.0644803i −0.631275 0.775559i \(-0.717468\pi\)
0.542526 + 0.840039i \(0.317468\pi\)
\(282\) −5.26401 −0.313467
\(283\) 6.99084 5.07915i 0.415563 0.301924i −0.360287 0.932841i \(-0.617321\pi\)
0.775850 + 0.630918i \(0.217321\pi\)
\(284\) 12.8321 + 39.4931i 0.761445 + 2.34349i
\(285\) 0 0
\(286\) −2.03693 + 6.26902i −0.120446 + 0.370695i
\(287\) −1.72072 5.29582i −0.101571 0.312602i
\(288\) 4.40280 + 13.5504i 0.259438 + 0.798467i
\(289\) −4.18393 + 12.8768i −0.246114 + 0.757460i
\(290\) 0 0
\(291\) −1.46137 4.49765i −0.0856672 0.263657i
\(292\) −0.721601 + 0.524274i −0.0422285 + 0.0306808i
\(293\) 6.29156 0.367557 0.183779 0.982968i \(-0.441167\pi\)
0.183779 + 0.982968i \(0.441167\pi\)
\(294\) −1.96627 + 1.42858i −0.114675 + 0.0833166i
\(295\) 0 0
\(296\) −9.51195 6.91084i −0.552871 0.401684i
\(297\) 4.43715 + 3.22378i 0.257470 + 0.187063i
\(298\) −4.50567 + 13.8670i −0.261006 + 0.803295i
\(299\) 4.75164 0.274795
\(300\) 0 0
\(301\) −10.9121 −0.628963
\(302\) 3.36784 10.3651i 0.193797 0.596447i
\(303\) −3.59082 2.60888i −0.206287 0.149876i
\(304\) −0.322808 0.234534i −0.0185143 0.0134514i
\(305\) 0 0
\(306\) 9.64236 7.00558i 0.551217 0.400483i
\(307\) −28.6661 −1.63606 −0.818030 0.575175i \(-0.804934\pi\)
−0.818030 + 0.575175i \(0.804934\pi\)
\(308\) −16.3706 + 11.8940i −0.932804 + 0.677722i
\(309\) 1.33312 + 4.10291i 0.0758383 + 0.233406i
\(310\) 0 0
\(311\) −2.42161 + 7.45295i −0.137317 + 0.422618i −0.995943 0.0899842i \(-0.971318\pi\)
0.858626 + 0.512602i \(0.171318\pi\)
\(312\) −0.644613 1.98391i −0.0364940 0.112317i
\(313\) 6.61582 + 20.3614i 0.373949 + 1.15090i 0.944185 + 0.329415i \(0.106851\pi\)
−0.570237 + 0.821480i \(0.693149\pi\)
\(314\) 1.04834 3.22646i 0.0591613 0.182080i
\(315\) 0 0
\(316\) −8.82785 27.1693i −0.496605 1.52839i
\(317\) −3.25211 + 2.36280i −0.182657 + 0.132708i −0.675356 0.737491i \(-0.736010\pi\)
0.492699 + 0.870200i \(0.336010\pi\)
\(318\) −10.4237 −0.584530
\(319\) −6.41238 + 4.65887i −0.359025 + 0.260847i
\(320\) 0 0
\(321\) −2.16258 1.57120i −0.120703 0.0876961i
\(322\) 18.8827 + 13.7191i 1.05229 + 0.764536i
\(323\) 0.519271 1.59815i 0.0288930 0.0889235i
\(324\) 23.3995 1.29997
\(325\) 0 0
\(326\) 10.2987 0.570390
\(327\) −1.48411 + 4.56763i −0.0820716 + 0.252590i
\(328\) 4.56702 + 3.31813i 0.252171 + 0.183213i
\(329\) 11.7888 + 8.56506i 0.649938 + 0.472207i
\(330\) 0 0
\(331\) −9.42008 + 6.84409i −0.517775 + 0.376185i −0.815765 0.578384i \(-0.803684\pi\)
0.297990 + 0.954569i \(0.403684\pi\)
\(332\) −42.0532 −2.30797
\(333\) 8.57483 6.22998i 0.469898 0.341401i
\(334\) 7.44552 + 22.9149i 0.407400 + 1.25385i
\(335\) 0 0
\(336\) 0.196792 0.605664i 0.0107359 0.0330417i
\(337\) −6.65461 20.4808i −0.362500 1.11566i −0.951532 0.307550i \(-0.900491\pi\)
0.589032 0.808110i \(-0.299509\pi\)
\(338\) −7.82330 24.0777i −0.425532 1.30965i
\(339\) 1.57202 4.83818i 0.0853804 0.262774i
\(340\) 0 0
\(341\) −3.98012 12.2495i −0.215535 0.663350i
\(342\) 4.68224 3.40185i 0.253187 0.183951i
\(343\) −14.5228 −0.784157
\(344\) 8.94982 6.50243i 0.482542 0.350587i
\(345\) 0 0
\(346\) 14.3410 + 10.4193i 0.770976 + 0.560147i
\(347\) −12.6184 9.16782i −0.677393 0.492155i 0.195099 0.980784i \(-0.437497\pi\)
−0.872492 + 0.488629i \(0.837497\pi\)
\(348\) 1.93830 5.96548i 0.103904 0.319783i
\(349\) 5.56598 0.297940 0.148970 0.988842i \(-0.452404\pi\)
0.148970 + 0.988842i \(0.452404\pi\)
\(350\) 0 0
\(351\) 3.91385 0.208906
\(352\) −3.17380 + 9.76796i −0.169164 + 0.520634i
\(353\) −6.49007 4.71531i −0.345431 0.250971i 0.401519 0.915851i \(-0.368483\pi\)
−0.746950 + 0.664880i \(0.768483\pi\)
\(354\) −9.44515 6.86230i −0.502004 0.364727i
\(355\) 0 0
\(356\) 12.8556 9.34014i 0.681346 0.495027i
\(357\) 2.68195 0.141944
\(358\) −28.9891 + 21.0618i −1.53212 + 1.11315i
\(359\) −3.81411 11.7386i −0.201301 0.619541i −0.999845 0.0176044i \(-0.994396\pi\)
0.798544 0.601936i \(-0.205604\pi\)
\(360\) 0 0
\(361\) −5.61917 + 17.2940i −0.295746 + 0.910212i
\(362\) −1.13503 3.49326i −0.0596558 0.183602i
\(363\) −1.02727 3.16162i −0.0539178 0.165942i
\(364\) −4.46219 + 13.7332i −0.233883 + 0.719816i
\(365\) 0 0
\(366\) 4.83742 + 14.8881i 0.252856 + 0.778211i
\(367\) −21.7423 + 15.7967i −1.13494 + 0.824581i −0.986406 0.164327i \(-0.947455\pi\)
−0.148532 + 0.988908i \(0.547455\pi\)
\(368\) −1.47062 −0.0766615
\(369\) −4.11707 + 2.99123i −0.214326 + 0.155717i
\(370\) 0 0
\(371\) 23.3439 + 16.9603i 1.21195 + 0.880536i
\(372\) 8.24610 + 5.99114i 0.427540 + 0.310626i
\(373\) −8.54089 + 26.2862i −0.442231 + 1.36105i 0.443262 + 0.896392i \(0.353821\pi\)
−0.885492 + 0.464654i \(0.846179\pi\)
\(374\) 8.59164 0.444263
\(375\) 0 0
\(376\) −14.7727 −0.761845
\(377\) −1.74784 + 5.37930i −0.0900184 + 0.277048i
\(378\) 15.5534 + 11.3002i 0.799981 + 0.581220i
\(379\) 2.81103 + 2.04233i 0.144393 + 0.104908i 0.657637 0.753335i \(-0.271556\pi\)
−0.513244 + 0.858243i \(0.671556\pi\)
\(380\) 0 0
\(381\) 4.36492 3.17130i 0.223622 0.162471i
\(382\) 45.4198 2.32388
\(383\) −22.1443 + 16.0888i −1.13152 + 0.822098i −0.985916 0.167244i \(-0.946513\pi\)
−0.145606 + 0.989343i \(0.546513\pi\)
\(384\) −2.81103 8.65146i −0.143450 0.441493i
\(385\) 0 0
\(386\) 9.35538 28.7929i 0.476176 1.46552i
\(387\) 3.08173 + 9.48459i 0.156653 + 0.482129i
\(388\) −10.2556 31.5634i −0.520647 1.60239i
\(389\) 3.36350 10.3518i 0.170536 0.524857i −0.828865 0.559448i \(-0.811013\pi\)
0.999402 + 0.0345916i \(0.0110130\pi\)
\(390\) 0 0
\(391\) −1.91385 5.89024i −0.0967878 0.297882i
\(392\) −5.51808 + 4.00912i −0.278705 + 0.202491i
\(393\) 3.79339 0.191351
\(394\) 6.40712 4.65504i 0.322786 0.234518i
\(395\) 0 0
\(396\) 14.9613 + 10.8700i 0.751835 + 0.546240i
\(397\) −13.1233 9.53460i −0.658637 0.478528i 0.207565 0.978221i \(-0.433446\pi\)
−0.866202 + 0.499693i \(0.833446\pi\)
\(398\) 12.6279 38.8647i 0.632979 1.94811i
\(399\) 1.30233 0.0651981
\(400\) 0 0
\(401\) 3.78686 0.189107 0.0945534 0.995520i \(-0.469858\pi\)
0.0945534 + 0.995520i \(0.469858\pi\)
\(402\) −3.62283 + 11.1499i −0.180690 + 0.556108i
\(403\) −7.43582 5.40244i −0.370405 0.269115i
\(404\) −25.1995 18.3085i −1.25372 0.910882i
\(405\) 0 0
\(406\) −22.4771 + 16.3306i −1.11552 + 0.810473i
\(407\) 7.64044 0.378722
\(408\) −2.19967 + 1.59815i −0.108900 + 0.0791203i
\(409\) 0.573491 + 1.76502i 0.0283573 + 0.0872748i 0.964234 0.265054i \(-0.0853898\pi\)
−0.935876 + 0.352329i \(0.885390\pi\)
\(410\) 0 0
\(411\) 1.37027 4.21726i 0.0675905 0.208022i
\(412\) 9.35547 + 28.7932i 0.460911 + 1.41854i
\(413\) 9.98686 + 30.7364i 0.491421 + 1.51244i
\(414\) 6.59164 20.2870i 0.323961 0.997051i
\(415\) 0 0
\(416\) 2.26484 + 6.97046i 0.111043 + 0.341755i
\(417\) −6.88304 + 5.00082i −0.337064 + 0.244891i
\(418\) 4.17202 0.204060
\(419\) −11.6071 + 8.43307i −0.567045 + 0.411983i −0.834031 0.551718i \(-0.813972\pi\)
0.266985 + 0.963701i \(0.413972\pi\)
\(420\) 0 0
\(421\) −12.5030 9.08394i −0.609358 0.442724i 0.239830 0.970815i \(-0.422908\pi\)
−0.849188 + 0.528091i \(0.822908\pi\)
\(422\) 6.05995 + 4.40281i 0.294994 + 0.214325i
\(423\) 4.11527 12.6655i 0.200091 0.615818i
\(424\) −29.2525 −1.42063
\(425\) 0 0
\(426\) 13.6645 0.662046
\(427\) 13.3909 41.2129i 0.648030 1.99443i
\(428\) −15.1764 11.0263i −0.733580 0.532977i
\(429\) 1.09668 + 0.796785i 0.0529483 + 0.0384692i
\(430\) 0 0
\(431\) −10.1162 + 7.34985i −0.487280 + 0.354030i −0.804137 0.594444i \(-0.797372\pi\)
0.316857 + 0.948473i \(0.397372\pi\)
\(432\) −1.21133 −0.0582801
\(433\) 18.1989 13.2223i 0.874586 0.635424i −0.0572279 0.998361i \(-0.518226\pi\)
0.931813 + 0.362937i \(0.118226\pi\)
\(434\) −13.9514 42.9379i −0.669688 2.06109i
\(435\) 0 0
\(436\) −10.4151 + 32.0545i −0.498794 + 1.53513i
\(437\) −0.929350 2.86025i −0.0444569 0.136824i
\(438\) 0.0906984 + 0.279141i 0.00433374 + 0.0133379i
\(439\) 3.76308 11.5816i 0.179602 0.552758i −0.820212 0.572060i \(-0.806145\pi\)
0.999814 + 0.0193023i \(0.00614450\pi\)
\(440\) 0 0
\(441\) −1.90006 5.84779i −0.0904792 0.278466i
\(442\) 4.96011 3.60373i 0.235929 0.171412i
\(443\) −20.7101 −0.983968 −0.491984 0.870604i \(-0.663728\pi\)
−0.491984 + 0.870604i \(0.663728\pi\)
\(444\) −4.89162 + 3.55397i −0.232146 + 0.168664i
\(445\) 0 0
\(446\) −53.6461 38.9762i −2.54022 1.84558i
\(447\) 2.42585 + 1.76248i 0.114739 + 0.0833625i
\(448\) −11.9538 + 36.7900i −0.564764 + 1.73816i
\(449\) −25.9539 −1.22484 −0.612420 0.790533i \(-0.709804\pi\)
−0.612420 + 0.790533i \(0.709804\pi\)
\(450\) 0 0
\(451\) −3.66844 −0.172740
\(452\) 11.0320 33.9531i 0.518904 1.59702i
\(453\) −1.81324 1.31740i −0.0851936 0.0618968i
\(454\) −21.8970 15.9091i −1.02768 0.746650i
\(455\) 0 0
\(456\) −1.06814 + 0.776048i −0.0500202 + 0.0363418i
\(457\) −8.50150 −0.397684 −0.198842 0.980032i \(-0.563718\pi\)
−0.198842 + 0.980032i \(0.563718\pi\)
\(458\) 30.6416 22.2624i 1.43179 1.04025i
\(459\) −1.57641 4.85170i −0.0735806 0.226458i
\(460\) 0 0
\(461\) 4.56884 14.0614i 0.212792 0.654906i −0.786511 0.617576i \(-0.788115\pi\)
0.999303 0.0373301i \(-0.0118853\pi\)
\(462\) 2.05763 + 6.33275i 0.0957298 + 0.294626i
\(463\) −6.85774 21.1060i −0.318706 0.980877i −0.974202 0.225678i \(-0.927540\pi\)
0.655496 0.755199i \(-0.272460\pi\)
\(464\) 0.540953 1.66488i 0.0251131 0.0772902i
\(465\) 0 0
\(466\) 16.0665 + 49.4477i 0.744267 + 2.29062i
\(467\) 23.0581 16.7527i 1.06700 0.775222i 0.0916308 0.995793i \(-0.470792\pi\)
0.975371 + 0.220571i \(0.0707920\pi\)
\(468\) 13.1968 0.610024
\(469\) 26.2554 19.0757i 1.21236 0.880832i
\(470\) 0 0
\(471\) −0.564426 0.410079i −0.0260074 0.0188955i
\(472\) −26.5065 19.2581i −1.22006 0.886426i
\(473\) −2.22149 + 6.83706i −0.102144 + 0.314368i
\(474\) −9.40048 −0.431779
\(475\) 0 0
\(476\) 18.8213 0.862671
\(477\) 8.14895 25.0799i 0.373115 1.14833i
\(478\) 12.3927 + 9.00380i 0.566827 + 0.411824i
\(479\) −20.2715 14.7281i −0.926227 0.672943i 0.0188390 0.999823i \(-0.494003\pi\)
−0.945066 + 0.326879i \(0.894003\pi\)
\(480\) 0 0
\(481\) 4.41097 3.20475i 0.201123 0.146124i
\(482\) 60.5632 2.75858
\(483\) 3.88324 2.82134i 0.176693 0.128375i
\(484\) −7.20913 22.1874i −0.327688 1.00852i
\(485\) 0 0
\(486\) 8.25017 25.3914i 0.374235 1.15178i
\(487\) −0.452644 1.39310i −0.0205113 0.0631272i 0.940277 0.340410i \(-0.110566\pi\)
−0.960788 + 0.277283i \(0.910566\pi\)
\(488\) 13.5756 + 41.7813i 0.614537 + 1.89135i
\(489\) 0.654474 2.01426i 0.0295963 0.0910881i
\(490\) 0 0
\(491\) −6.20155 19.0864i −0.279872 0.861358i −0.987889 0.155162i \(-0.950410\pi\)
0.708017 0.706195i \(-0.249590\pi\)
\(492\) 2.34864 1.70639i 0.105885 0.0769298i
\(493\) 7.37229 0.332031
\(494\) 2.40859 1.74994i 0.108367 0.0787335i
\(495\) 0 0
\(496\) 2.30137 + 1.67204i 0.103335 + 0.0750770i
\(497\) −30.6017 22.2335i −1.37268 0.997307i
\(498\) −4.27621 + 13.1608i −0.191622 + 0.589751i
\(499\) 0.624999 0.0279788 0.0139894 0.999902i \(-0.495547\pi\)
0.0139894 + 0.999902i \(0.495547\pi\)
\(500\) 0 0
\(501\) 4.95498 0.221372
\(502\) −7.78693 + 23.9657i −0.347548 + 1.06964i
\(503\) 15.6182 + 11.3473i 0.696382 + 0.505951i 0.878752 0.477279i \(-0.158377\pi\)
−0.182370 + 0.983230i \(0.558377\pi\)
\(504\) 20.9719 + 15.2369i 0.934161 + 0.678707i
\(505\) 0 0
\(506\) 12.4400 9.03816i 0.553024 0.401795i
\(507\) −5.20639 −0.231224
\(508\) 30.6319 22.2554i 1.35907 0.987423i
\(509\) −3.25091 10.0053i −0.144094 0.443476i 0.852799 0.522239i \(-0.174903\pi\)
−0.996893 + 0.0787629i \(0.974903\pi\)
\(510\) 0 0
\(511\) 0.251070 0.772714i 0.0111067 0.0341828i
\(512\) −1.54116 4.74321i −0.0681103 0.209622i
\(513\) −0.765491 2.35594i −0.0337973 0.104017i
\(514\) 4.69588 14.4524i 0.207127 0.637470i
\(515\) 0 0
\(516\) −1.75801 5.41061i −0.0773923 0.238189i
\(517\) 7.76648 5.64267i 0.341569 0.248165i
\(518\) 26.7818 1.17672
\(519\) 2.94923 2.14274i 0.129457 0.0940558i
\(520\) 0 0
\(521\) 8.09580 + 5.88195i 0.354684 + 0.257693i 0.750831 0.660494i \(-0.229653\pi\)
−0.396148 + 0.918187i \(0.629653\pi\)
\(522\) 20.5421 + 14.9247i 0.899103 + 0.653237i
\(523\) 7.04035 21.6680i 0.307853 0.947474i −0.670744 0.741689i \(-0.734025\pi\)
0.978597 0.205785i \(-0.0659748\pi\)
\(524\) 26.6210 1.16295
\(525\) 0 0
\(526\) −62.5981 −2.72941
\(527\) −3.70200 + 11.3936i −0.161262 + 0.496312i
\(528\) −0.339420 0.246603i −0.0147714 0.0107320i
\(529\) 9.63993 + 7.00382i 0.419127 + 0.304514i
\(530\) 0 0
\(531\) 23.8951 17.3608i 1.03696 0.753393i
\(532\) 9.13943 0.396245
\(533\) −2.11786 + 1.53871i −0.0917346 + 0.0666491i
\(534\) −1.61583 4.97301i −0.0699237 0.215203i
\(535\) 0 0
\(536\) −10.1670 + 31.2907i −0.439146 + 1.35155i
\(537\) 2.27713 + 7.00829i 0.0982655 + 0.302430i
\(538\) 0.720350 + 2.21701i 0.0310565 + 0.0955821i
\(539\) 1.36968 4.21544i 0.0589962 0.181572i
\(540\) 0 0
\(541\) 1.00709 + 3.09949i 0.0432980 + 0.133257i 0.970369 0.241629i \(-0.0776817\pi\)
−0.927071 + 0.374886i \(0.877682\pi\)
\(542\) −11.6803 + 8.48624i −0.501712 + 0.364515i
\(543\) −0.755360 −0.0324156
\(544\) 7.72851 5.61509i 0.331357 0.240745i
\(545\) 0 0
\(546\) 3.84416 + 2.79295i 0.164515 + 0.119527i
\(547\) 10.9932 + 7.98700i 0.470033 + 0.341499i 0.797454 0.603379i \(-0.206179\pi\)
−0.327421 + 0.944879i \(0.606179\pi\)
\(548\) 9.61622 29.5957i 0.410785 1.26427i
\(549\) −39.6033 −1.69023
\(550\) 0 0
\(551\) 3.57992 0.152510
\(552\) −1.50372 + 4.62798i −0.0640026 + 0.196980i
\(553\) 21.0525 + 15.2955i 0.895242 + 0.650432i
\(554\) 46.0901 + 33.4865i 1.95818 + 1.42270i
\(555\) 0 0
\(556\) −48.3034 + 35.0945i −2.04852 + 1.48834i
\(557\) −27.6399 −1.17114 −0.585571 0.810621i \(-0.699130\pi\)
−0.585571 + 0.810621i \(0.699130\pi\)
\(558\) −33.3808 + 24.2525i −1.41312 + 1.02669i
\(559\) 1.58527 + 4.87896i 0.0670498 + 0.206358i
\(560\) 0 0
\(561\) 0.545994 1.68040i 0.0230519 0.0709464i
\(562\) 1.31226 + 4.03871i 0.0553543 + 0.170363i
\(563\) −0.512737 1.57804i −0.0216093 0.0665065i 0.939670 0.342081i \(-0.111132\pi\)
−0.961280 + 0.275575i \(0.911132\pi\)
\(564\) −2.34761 + 7.22520i −0.0988522 + 0.304236i
\(565\) 0 0
\(566\) −6.16637 18.9781i −0.259192 0.797711i
\(567\) −17.2439 + 12.5285i −0.724178 + 0.526146i
\(568\) 38.3475 1.60902
\(569\) −14.4675 + 10.5113i −0.606509 + 0.440655i −0.848183 0.529703i \(-0.822303\pi\)
0.241674 + 0.970357i \(0.422303\pi\)
\(570\) 0 0
\(571\) 29.8303 + 21.6730i 1.24836 + 0.906987i 0.998126 0.0611975i \(-0.0194920\pi\)
0.250235 + 0.968185i \(0.419492\pi\)
\(572\) 7.69623 + 5.59164i 0.321796 + 0.233798i
\(573\) 2.88640 8.88344i 0.120581 0.371111i
\(574\) −12.8589 −0.536718
\(575\) 0 0
\(576\) 35.3531 1.47305
\(577\) −7.04982 + 21.6971i −0.293488 + 0.903262i 0.690238 + 0.723583i \(0.257506\pi\)
−0.983725 + 0.179679i \(0.942494\pi\)
\(578\) 25.2950 + 18.3779i 1.05213 + 0.764421i
\(579\) −5.03693 3.65954i −0.209328 0.152085i
\(580\) 0 0
\(581\) 30.9906 22.5160i 1.28571 0.934120i
\(582\) −10.9208 −0.452682
\(583\) 15.3790 11.1735i 0.636932 0.462758i
\(584\) 0.254532 + 0.783370i 0.0105326 + 0.0324161i
\(585\) 0 0
\(586\) 4.48969 13.8179i 0.185467 0.570810i
\(587\) −3.42560 10.5429i −0.141390 0.435153i 0.855139 0.518398i \(-0.173471\pi\)
−0.996529 + 0.0832455i \(0.973471\pi\)
\(588\) 1.08392 + 3.33595i 0.0447000 + 0.137572i
\(589\) −1.79766 + 5.53262i −0.0740712 + 0.227968i
\(590\) 0 0
\(591\) −0.503288 1.54896i −0.0207025 0.0637157i
\(592\) −1.36518 + 0.991864i −0.0561087 + 0.0407654i
\(593\) 11.1321 0.457139 0.228570 0.973528i \(-0.426595\pi\)
0.228570 + 0.973528i \(0.426595\pi\)
\(594\) 10.2466 7.44459i 0.420423 0.305455i
\(595\) 0 0
\(596\) 17.0240 + 12.3687i 0.697330 + 0.506640i
\(597\) −6.79885 4.93965i −0.278258 0.202167i
\(598\) 3.39080 10.4358i 0.138660 0.426752i
\(599\) 36.2736 1.48210 0.741049 0.671451i \(-0.234329\pi\)
0.741049 + 0.671451i \(0.234329\pi\)
\(600\) 0 0
\(601\) −15.1051 −0.616150 −0.308075 0.951362i \(-0.599685\pi\)
−0.308075 + 0.951362i \(0.599685\pi\)
\(602\) −7.78693 + 23.9657i −0.317372 + 0.976769i
\(603\) −23.9951 17.4335i −0.977156 0.709945i
\(604\) −12.7249 9.24517i −0.517768 0.376181i
\(605\) 0 0
\(606\) −8.29219 + 6.02463i −0.336847 + 0.244734i
\(607\) −33.5066 −1.35999 −0.679996 0.733216i \(-0.738018\pi\)
−0.679996 + 0.733216i \(0.738018\pi\)
\(608\) 3.75289 2.72664i 0.152200 0.110580i
\(609\) 1.76561 + 5.43399i 0.0715461 + 0.220196i
\(610\) 0 0
\(611\) 2.11693 6.51524i 0.0856418 0.263579i
\(612\) −5.31539 16.3591i −0.214862 0.661277i
\(613\) −8.66140 26.6571i −0.349831 1.07667i −0.958947 0.283587i \(-0.908476\pi\)
0.609116 0.793081i \(-0.291524\pi\)
\(614\) −20.4563 + 62.9579i −0.825548 + 2.54078i
\(615\) 0 0
\(616\) 5.77447 + 17.7720i 0.232660 + 0.716054i
\(617\) −24.6931 + 17.9406i −0.994105 + 0.722260i −0.960816 0.277186i \(-0.910598\pi\)
−0.0332890 + 0.999446i \(0.510598\pi\)
\(618\) 9.96234 0.400744
\(619\) 17.5533 12.7532i 0.705528 0.512596i −0.176200 0.984354i \(-0.556381\pi\)
0.881728 + 0.471758i \(0.156381\pi\)
\(620\) 0 0
\(621\) −7.38636 5.36650i −0.296404 0.215350i
\(622\) 14.6405 + 10.6369i 0.587029 + 0.426502i
\(623\) −4.47291 + 13.7662i −0.179203 + 0.551531i
\(624\) −0.299391 −0.0119852
\(625\) 0 0
\(626\) 49.4399 1.97601
\(627\) 0.265130 0.815985i 0.0105883 0.0325873i
\(628\) −3.96100 2.87783i −0.158061 0.114838i
\(629\) −5.74932 4.17712i −0.229240 0.166553i
\(630\) 0 0
\(631\) 13.1285 9.53840i 0.522637 0.379718i −0.294960 0.955510i \(-0.595306\pi\)
0.817596 + 0.575792i \(0.195306\pi\)
\(632\) −26.3812 −1.04939
\(633\) 1.24623 0.905439i 0.0495332 0.0359880i
\(634\) 2.86857 + 8.82857i 0.113926 + 0.350627i
\(635\) 0 0
\(636\) −4.64868 + 14.3072i −0.184332 + 0.567316i
\(637\) −0.977409 3.00816i −0.0387264 0.119187i
\(638\) 5.65614 + 17.4078i 0.223929 + 0.689181i
\(639\) −10.6825 + 32.8775i −0.422595 + 1.30061i
\(640\) 0 0
\(641\) −6.85321 21.0920i −0.270685 0.833084i −0.990329 0.138740i \(-0.955695\pi\)
0.719643 0.694344i \(-0.244305\pi\)
\(642\) −4.99398 + 3.62834i −0.197097 + 0.143199i
\(643\) −13.2767 −0.523583 −0.261792 0.965124i \(-0.584313\pi\)
−0.261792 + 0.965124i \(0.584313\pi\)
\(644\) 27.2516 19.7994i 1.07386 0.780207i
\(645\) 0 0
\(646\) −3.13939 2.28090i −0.123518 0.0897407i
\(647\) 9.12999 + 6.63333i 0.358937 + 0.260783i 0.752609 0.658468i \(-0.228795\pi\)
−0.393672 + 0.919251i \(0.628795\pi\)
\(648\) 6.67743 20.5510i 0.262314 0.807321i
\(649\) 21.2912 0.835754
\(650\) 0 0
\(651\) −9.28462 −0.363893
\(652\) 4.59293 14.1356i 0.179873 0.553592i
\(653\) 28.9736 + 21.0506i 1.13383 + 0.823773i 0.986247 0.165277i \(-0.0528520\pi\)
0.147579 + 0.989050i \(0.452852\pi\)
\(654\) 8.97259 + 6.51897i 0.350856 + 0.254912i
\(655\) 0 0
\(656\) 0.655472 0.476228i 0.0255919 0.0185936i
\(657\) −0.742534 −0.0289690
\(658\) 27.2236 19.7791i 1.06129 0.771069i
\(659\) 12.2882 + 37.8193i 0.478681 + 1.47323i 0.840928 + 0.541147i \(0.182010\pi\)
−0.362247 + 0.932082i \(0.617990\pi\)
\(660\) 0 0
\(661\) −1.93053 + 5.94157i −0.0750890 + 0.231100i −0.981555 0.191178i \(-0.938769\pi\)
0.906466 + 0.422278i \(0.138769\pi\)
\(662\) 8.30912 + 25.5728i 0.322943 + 0.993917i
\(663\) −0.389624 1.19914i −0.0151317 0.0465707i
\(664\) −12.0006 + 36.9340i −0.465713 + 1.43332i
\(665\) 0 0
\(666\) −7.56355 23.2782i −0.293082 0.902012i
\(667\) 10.6744 7.75544i 0.413316 0.300292i
\(668\) 34.7728 1.34540
\(669\) −11.0323 + 8.01546i −0.426535 + 0.309896i
\(670\) 0 0
\(671\) −23.0961 16.7803i −0.891616 0.647797i
\(672\) 5.98970 + 4.35178i 0.231058 + 0.167873i
\(673\) −12.8127 + 39.4334i −0.493893 + 1.52005i 0.324782 + 0.945789i \(0.394709\pi\)
−0.818675 + 0.574257i \(0.805291\pi\)
\(674\) −49.7297 −1.91552
\(675\) 0 0
\(676\) −36.5372 −1.40528
\(677\) −0.444723 + 1.36872i −0.0170921 + 0.0526041i −0.959239 0.282597i \(-0.908804\pi\)
0.942147 + 0.335201i \(0.108804\pi\)
\(678\) −9.50406 6.90510i −0.365001 0.265189i
\(679\) 24.4572 + 17.7692i 0.938583 + 0.681920i
\(680\) 0 0
\(681\) −4.50312 + 3.27171i −0.172560 + 0.125372i
\(682\) −29.7433 −1.13893
\(683\) 6.86550 4.98808i 0.262701 0.190864i −0.448636 0.893715i \(-0.648090\pi\)
0.711337 + 0.702851i \(0.248090\pi\)
\(684\) −2.58111 7.94382i −0.0986910 0.303740i
\(685\) 0 0
\(686\) −10.3635 + 31.8957i −0.395682 + 1.21778i
\(687\) −2.40694 7.40779i −0.0918304 0.282625i
\(688\) −0.490637 1.51003i −0.0187054 0.0575692i
\(689\) 4.19189 12.9013i 0.159698 0.491501i
\(690\) 0 0
\(691\) −13.5287 41.6370i −0.514655 1.58395i −0.783908 0.620877i \(-0.786777\pi\)
0.269253 0.963070i \(-0.413223\pi\)
\(692\) 20.6969 15.0372i 0.786780 0.571629i
\(693\) −16.8456 −0.639910
\(694\) −29.1394 + 21.1710i −1.10612 + 0.803641i
\(695\) 0 0
\(696\) −4.68617 3.40470i −0.177629 0.129055i
\(697\) 2.76045 + 2.00558i 0.104559 + 0.0759668i
\(698\) 3.97191 12.2243i 0.150339 0.462696i
\(699\) 10.6922 0.404418
\(700\) 0 0
\(701\) 0.840795 0.0317564 0.0158782 0.999874i \(-0.494946\pi\)
0.0158782 + 0.999874i \(0.494946\pi\)
\(702\) 2.79295 8.59580i 0.105413 0.324428i
\(703\) −2.79182 2.02837i −0.105295 0.0765015i
\(704\) 20.6175 + 14.9795i 0.777050 + 0.564560i
\(705\) 0 0
\(706\) −14.9873 + 10.8889i −0.564056 + 0.409811i
\(707\) 28.3731 1.06708
\(708\) −13.6313 + 9.90369i −0.512294 + 0.372203i
\(709\) −4.13503 12.7263i −0.155294 0.477947i 0.842896 0.538076i \(-0.180849\pi\)
−0.998191 + 0.0601294i \(0.980849\pi\)
\(710\) 0 0
\(711\) 7.34906 22.6181i 0.275611 0.848244i
\(712\) −4.53460 13.9561i −0.169941 0.523025i
\(713\) 6.62555 + 20.3913i 0.248129 + 0.763662i
\(714\) 1.91385 5.89024i 0.0716242 0.220437i
\(715\) 0 0
\(716\) 15.9803 + 49.1824i 0.597214 + 1.83803i
\(717\) 2.54855 1.85163i 0.0951775 0.0691505i
\(718\) −28.5027 −1.06371
\(719\) −35.1233 + 25.5186i −1.30988 + 0.951683i −0.309880 + 0.950776i \(0.600289\pi\)
−1.00000 0.000907154i \(0.999711\pi\)
\(720\) 0 0
\(721\) −22.3107 16.2097i −0.830896 0.603681i
\(722\) 33.9721 + 24.6822i 1.26431 + 0.918577i
\(723\) 3.84875 11.8452i 0.143137 0.440529i
\(724\) −5.30093 −0.197007
\(725\) 0 0
\(726\) −7.67677 −0.284912
\(727\) −9.90338 + 30.4795i −0.367296 + 1.13042i 0.581235 + 0.813736i \(0.302570\pi\)
−0.948531 + 0.316685i \(0.897430\pi\)
\(728\) 10.7881 + 7.83802i 0.399834 + 0.290496i
\(729\) 12.5986 + 9.15342i 0.466615 + 0.339016i
\(730\) 0 0
\(731\) 5.40955 3.93027i 0.200079 0.145366i
\(732\) 22.5922 0.835032
\(733\) −6.58481 + 4.78415i −0.243216 + 0.176706i −0.702715 0.711472i \(-0.748029\pi\)
0.459499 + 0.888178i \(0.348029\pi\)
\(734\) 19.1781 + 59.0241i 0.707877 + 2.17862i
\(735\) 0 0
\(736\) 5.28331 16.2603i 0.194745 0.599364i
\(737\) −6.60690 20.3339i −0.243368 0.749010i
\(738\) 3.63152 + 11.1767i 0.133678 + 0.411419i
\(739\) −2.20241 + 6.77831i −0.0810169 + 0.249344i −0.983358 0.181678i \(-0.941847\pi\)
0.902341 + 0.431023i \(0.141847\pi\)
\(740\) 0 0
\(741\) −0.189198 0.582291i −0.00695036 0.0213910i
\(742\) 53.9074 39.1660i 1.97900 1.43783i
\(743\) 21.9040 0.803578 0.401789 0.915732i \(-0.368388\pi\)
0.401789 + 0.915732i \(0.368388\pi\)
\(744\) 7.61500 5.53262i 0.279179 0.202836i
\(745\) 0 0
\(746\) 51.6362 + 37.5159i 1.89054 + 1.37355i
\(747\) −28.3226 20.5776i −1.03627 0.752895i
\(748\) 3.83165 11.7926i 0.140099 0.431180i
\(749\) 17.0877 0.624373
\(750\) 0 0
\(751\) 9.21909 0.336409 0.168205 0.985752i \(-0.446203\pi\)
0.168205 + 0.985752i \(0.446203\pi\)
\(752\) −0.655185 + 2.01645i −0.0238921 + 0.0735325i
\(753\) 4.19248 + 3.04601i 0.152782 + 0.111003i
\(754\) 10.5670 + 7.67740i 0.384829 + 0.279594i
\(755\) 0 0
\(756\) 22.4467 16.3085i 0.816379 0.593134i
\(757\) 45.6524 1.65926 0.829632 0.558311i \(-0.188550\pi\)
0.829632 + 0.558311i \(0.188550\pi\)
\(758\) 6.49144 4.71631i 0.235780 0.171304i
\(759\) −0.977177 3.00744i −0.0354693 0.109163i
\(760\) 0 0
\(761\) 12.3316 37.9526i 0.447019 1.37578i −0.433236 0.901280i \(-0.642628\pi\)
0.880255 0.474501i \(-0.157372\pi\)
\(762\) −3.85014 11.8495i −0.139476 0.429263i
\(763\) −9.48719 29.1986i −0.343459 1.05706i
\(764\) 20.2561 62.3417i 0.732838 2.25544i
\(765\) 0 0
\(766\) 19.5327 + 60.1155i 0.705745 + 2.17206i
\(767\) 12.2918 8.93053i 0.443832 0.322463i
\(768\) −8.90403 −0.321296
\(769\) 35.8734 26.0636i 1.29363 0.939876i 0.293757 0.955880i \(-0.405094\pi\)
0.999872 + 0.0160040i \(0.00509446\pi\)
\(770\) 0 0
\(771\) −2.52826 1.83689i −0.0910531 0.0661539i
\(772\) −35.3479 25.6818i −1.27220 0.924307i
\(773\) −11.8954 + 36.6103i −0.427848 + 1.31678i 0.472392 + 0.881389i \(0.343391\pi\)
−0.900240 + 0.435393i \(0.856609\pi\)
\(774\) 23.0297 0.827785
\(775\) 0 0
\(776\) −30.6477 −1.10019
\(777\) 1.70197 5.23811i 0.0610577 0.187916i
\(778\) −20.3349 14.7742i −0.729042 0.529680i
\(779\) 1.34045 + 0.973893i 0.0480265 + 0.0348933i
\(780\) 0 0
\(781\) −20.1605 + 14.6474i −0.721398 + 0.524126i
\(782\) −14.3022 −0.511445
\(783\) 8.79238 6.38803i 0.314214 0.228290i
\(784\) 0.302506 + 0.931017i 0.0108038 + 0.0332506i
\(785\) 0 0
\(786\) 2.70698 8.33123i 0.0965548 0.297165i
\(787\) −16.3841 50.4252i −0.584031 1.79746i −0.603126 0.797646i \(-0.706078\pi\)
0.0190942 0.999818i \(-0.493922\pi\)
\(788\) −3.53195 10.8702i −0.125820 0.387236i
\(789\) −3.97807 + 12.2433i −0.141623 + 0.435871i
\(790\) 0 0
\(791\) 10.0491 + 30.9281i 0.357306 + 1.09968i
\(792\) 13.8163 10.0381i 0.490940 0.356689i
\(793\) −20.3723 −0.723440
\(794\) −30.3052 + 22.0180i −1.07549 + 0.781390i
\(795\) 0 0
\(796\) −47.7126 34.6653i −1.69113 1.22868i
\(797\) 10.2558 + 7.45127i 0.363279 + 0.263938i 0.754418 0.656394i \(-0.227919\pi\)
−0.391139 + 0.920331i \(0.627919\pi\)
\(798\) 0.929350 2.86025i 0.0328986 0.101252i
\(799\) −8.92908 −0.315888
\(800\) 0 0
\(801\) 13.2285 0.467407
\(802\) 2.70232 8.31689i 0.0954223 0.293680i
\(803\) −0.433036 0.314619i −0.0152815 0.0111027i
\(804\) 13.6883 + 9.94515i 0.482750 + 0.350738i
\(805\) 0 0
\(806\) −17.1714 + 12.4757i −0.604835 + 0.439439i
\(807\) 0.479392 0.0168754
\(808\) −23.2709 + 16.9073i −0.818667 + 0.594796i
\(809\) −12.9458 39.8431i −0.455150 1.40081i −0.870959 0.491356i \(-0.836501\pi\)
0.415808 0.909452i \(-0.363499\pi\)
\(810\) 0 0
\(811\) −10.6761 + 32.8577i −0.374889 + 1.15379i 0.568665 + 0.822569i \(0.307460\pi\)
−0.943554 + 0.331220i \(0.892540\pi\)
\(812\) 12.3906 + 38.1344i 0.434825 + 1.33825i
\(813\) 0.917505 + 2.82379i 0.0321783 + 0.0990346i
\(814\) 5.45225 16.7803i 0.191101 0.588150i
\(815\) 0 0
\(816\) 0.120588 + 0.371131i 0.00422141 + 0.0129922i
\(817\) 2.62683 1.90850i 0.0919011 0.0667700i
\(818\) 4.28568 0.149845
\(819\) −9.72525 + 7.06581i −0.339828 + 0.246899i
\(820\) 0 0
\(821\) 17.0985 + 12.4228i 0.596740 + 0.433557i 0.844720 0.535208i \(-0.179767\pi\)
−0.247980 + 0.968765i \(0.579767\pi\)
\(822\) −8.28433 6.01892i −0.288949 0.209934i
\(823\) 0.981789 3.02164i 0.0342230 0.105328i −0.932486 0.361207i \(-0.882365\pi\)
0.966709 + 0.255879i \(0.0823649\pi\)
\(824\) 27.9579 0.973960
\(825\) 0 0
\(826\) 74.6315 2.59676
\(827\) 3.01131 9.26787i 0.104714 0.322275i −0.884949 0.465687i \(-0.845807\pi\)
0.989663 + 0.143412i \(0.0458073\pi\)
\(828\) −24.9055 18.0949i −0.865527 0.628842i
\(829\) −18.9595 13.7749i −0.658490 0.478421i 0.207663 0.978200i \(-0.433414\pi\)
−0.866153 + 0.499780i \(0.833414\pi\)
\(830\) 0 0
\(831\) 9.47845 6.88650i 0.328804 0.238890i
\(832\) 18.1859 0.630484
\(833\) −3.33530 + 2.42323i −0.115561 + 0.0839601i
\(834\) 6.07128 + 18.6855i 0.210231 + 0.647026i
\(835\) 0 0
\(836\) 1.86061 5.72638i 0.0643507 0.198051i
\(837\) 5.45736 + 16.7960i 0.188634 + 0.580556i
\(838\) 10.2382 + 31.5101i 0.353674 + 1.08850i
\(839\) 13.1894 40.5929i 0.455350 1.40142i −0.415375 0.909650i \(-0.636350\pi\)
0.870724 0.491771i \(-0.163650\pi\)
\(840\) 0 0
\(841\) −4.10809 12.6434i −0.141658 0.435980i
\(842\) −28.8728 + 20.9773i −0.995022 + 0.722926i
\(843\) 0.873305 0.0300782
\(844\) 8.74573 6.35414i 0.301040 0.218719i
\(845\) 0 0
\(846\) −24.8799 18.0763i −0.855390 0.621477i
\(847\) 17.1922 + 12.4909i 0.590731 + 0.429191i
\(848\) −1.29738 + 3.99293i −0.0445522 + 0.137118i
\(849\) −4.10371 −0.140839
\(850\) 0 0
\(851\) −12.7187 −0.435993
\(852\) 6.09400 18.7554i 0.208777 0.642550i
\(853\) −13.7217 9.96942i −0.469823 0.341347i 0.327549 0.944834i \(-0.393777\pi\)
−0.797372 + 0.603488i \(0.793777\pi\)
\(854\) −80.9581 58.8195i −2.77033 2.01276i
\(855\) 0 0
\(856\) −14.0149 + 10.1824i −0.479020 + 0.348029i
\(857\) −39.3176 −1.34306 −0.671531 0.740976i \(-0.734363\pi\)
−0.671531 + 0.740976i \(0.734363\pi\)
\(858\) 2.53254 1.84000i 0.0864594 0.0628164i
\(859\) 0.218492 + 0.672450i 0.00745486 + 0.0229437i 0.954715 0.297523i \(-0.0961604\pi\)
−0.947260 + 0.320466i \(0.896160\pi\)
\(860\) 0 0
\(861\) −0.817173 + 2.51500i −0.0278492 + 0.0857110i
\(862\) 8.92314 + 27.4626i 0.303923 + 0.935380i
\(863\) 0.281023 + 0.864900i 0.00956613 + 0.0294415i 0.955726 0.294259i \(-0.0950729\pi\)
−0.946160 + 0.323701i \(0.895073\pi\)
\(864\) 4.35178 13.3934i 0.148050 0.455652i
\(865\) 0 0
\(866\) −16.0526 49.4050i −0.545491 1.67885i
\(867\) 5.20193 3.77942i 0.176667 0.128356i
\(868\) −65.1571 −2.21158
\(869\) 13.8694 10.0767i 0.470487 0.341829i
\(870\) 0 0
\(871\) −12.3433 8.96792i −0.418236 0.303866i
\(872\) 25.1803 + 18.2946i 0.852713 + 0.619533i
\(873\) 8.53761 26.2761i 0.288954 0.889310i
\(874\) −6.94501 −0.234918
\(875\) 0 0
\(876\) 0.423589 0.0143117
\(877\) 10.4019 32.0138i 0.351248 1.08103i −0.606906 0.794774i \(-0.707589\pi\)
0.958153 0.286255i \(-0.0924106\pi\)
\(878\) −22.7506 16.5293i −0.767797 0.557837i
\(879\) −2.41725 1.75623i −0.0815317 0.0592363i
\(880\) 0 0
\(881\) 16.1223 11.7136i 0.543175 0.394640i −0.282088 0.959389i \(-0.591027\pi\)
0.825263 + 0.564749i \(0.191027\pi\)
\(882\) −14.1991 −0.478109
\(883\) −12.6272 + 9.17421i −0.424940 + 0.308737i −0.779622 0.626250i \(-0.784589\pi\)
0.354683 + 0.934987i \(0.384589\pi\)
\(884\) −2.73428 8.41526i −0.0919639 0.283036i
\(885\) 0 0
\(886\) −14.7789 + 45.4846i −0.496505 + 1.52809i
\(887\) 14.4919 + 44.6015i 0.486591 + 1.49757i 0.829664 + 0.558263i \(0.188532\pi\)
−0.343073 + 0.939309i \(0.611468\pi\)
\(888\) 1.72544 + 5.31035i 0.0579019 + 0.178204i
\(889\) −10.6579 + 32.8017i −0.357455 + 1.10013i
\(890\) 0 0
\(891\) 4.33926 + 13.3549i 0.145371 + 0.447405i
\(892\) −77.4222 + 56.2505i −2.59229 + 1.88341i
\(893\) −4.33588 −0.145095
\(894\) 5.60195 4.07005i 0.187357 0.136123i
\(895\) 0 0
\(896\) 47.0448 + 34.1800i 1.57166 + 1.14187i
\(897\) −1.82560 1.32638i −0.0609551 0.0442865i
\(898\) −18.5208 + 57.0013i −0.618048 + 1.90216i
\(899\) −25.5220 −0.851208
\(900\) 0 0
\(901\) −17.6811 −0.589044
\(902\) −2.61782 + 8.05681i −0.0871638 + 0.268262i
\(903\) 4.19248 + 3.04601i 0.139517 + 0.101365i
\(904\) −26.6718 19.3782i −0.887091 0.644510i
\(905\) 0 0
\(906\) −4.18728 + 3.04223i −0.139113 + 0.101071i
\(907\) 1.43447 0.0476308 0.0238154 0.999716i \(-0.492419\pi\)
0.0238154 + 0.999716i \(0.492419\pi\)
\(908\) −31.6018 + 22.9600i −1.04874 + 0.761955i
\(909\) −8.01297 24.6614i −0.265773 0.817966i
\(910\) 0 0
\(911\) −0.868737 + 2.67370i −0.0287825 + 0.0885835i −0.964416 0.264390i \(-0.914829\pi\)
0.935633 + 0.352973i \(0.114829\pi\)
\(912\) 0.0585563 + 0.180218i 0.00193899 + 0.00596761i
\(913\) −7.79846 24.0012i −0.258091 0.794323i
\(914\) −6.06672 + 18.6714i −0.200669 + 0.617596i
\(915\) 0 0
\(916\) −16.8913 51.9860i −0.558104 1.71767i
\(917\) −19.6180 + 14.2533i −0.647845 + 0.470687i
\(918\) −11.7805 −0.388814
\(919\) −0.802736 + 0.583222i −0.0264798 + 0.0192387i −0.600946 0.799289i \(-0.705210\pi\)
0.574467 + 0.818528i \(0.305210\pi\)
\(920\) 0 0
\(921\) 11.0136 + 8.00188i 0.362912 + 0.263671i
\(922\) −27.6221 20.0686i −0.909685 0.660925i
\(923\) −5.49519 + 16.9125i −0.180877 + 0.556681i
\(924\) 9.60977 0.316138
\(925\) 0 0
\(926\) −51.2477 −1.68410
\(927\) −7.78830 + 23.9699i −0.255801 + 0.787276i
\(928\) 16.4648 + 11.9624i 0.540484 + 0.392685i
\(929\) −26.9587 19.5866i −0.884485 0.642616i 0.0499493 0.998752i \(-0.484094\pi\)
−0.934434 + 0.356136i \(0.884094\pi\)
\(930\) 0 0
\(931\) −1.61959 + 1.17670i −0.0530799 + 0.0385648i
\(932\) 75.0355 2.45787
\(933\) 3.01081 2.18749i 0.0985697 0.0716150i
\(934\) −20.3387 62.5962i −0.665504 2.04821i
\(935\) 0 0
\(936\) 3.76594 11.5904i 0.123094 0.378844i
\(937\) 4.13079 + 12.7133i 0.134947 + 0.415325i 0.995582 0.0938984i \(-0.0299329\pi\)
−0.860635 + 0.509223i \(0.829933\pi\)
\(938\) −23.1589 71.2759i −0.756166 2.32724i
\(939\) 3.14187 9.66969i 0.102531 0.315559i
\(940\) 0 0
\(941\) −0.664330 2.04460i −0.0216565 0.0666520i 0.939644 0.342153i \(-0.111156\pi\)
−0.961301 + 0.275501i \(0.911156\pi\)
\(942\) −1.30341 + 0.946986i −0.0424675 + 0.0308545i
\(943\) 6.10671 0.198862
\(944\) −3.80429 + 2.76398i −0.123819 + 0.0899599i
\(945\) 0 0
\(946\) 13.4306 + 9.75792i 0.436667 + 0.317257i
\(947\) −28.2495 20.5245i −0.917985 0.666955i 0.0250363 0.999687i \(-0.492030\pi\)
−0.943022 + 0.332731i \(0.892030\pi\)
\(948\) −4.19237 + 12.9028i −0.136162 + 0.419063i
\(949\) −0.381966 −0.0123991
\(950\) 0 0
\(951\) 1.90903 0.0619046
\(952\) 5.37097 16.5301i 0.174074 0.535745i
\(953\) 6.69772 + 4.86618i 0.216960 + 0.157631i 0.690957 0.722896i \(-0.257189\pi\)
−0.473997 + 0.880526i \(0.657189\pi\)
\(954\) −49.2666 35.7943i −1.59507 1.15888i
\(955\) 0 0
\(956\) 17.8851 12.9943i 0.578446 0.420266i
\(957\) 3.76415 0.121678
\(958\) −46.8124 + 34.0112i −1.51244 + 1.09885i
\(959\) 8.75947 + 26.9589i 0.282858 + 0.870547i
\(960\) 0 0
\(961\) 3.23638 9.96056i 0.104399 0.321308i
\(962\) −3.89076 11.9745i −0.125443 0.386074i
\(963\) −4.82582 14.8523i −0.155510 0.478610i
\(964\) 27.0096 83.1270i 0.869920 2.67734i
\(965\) 0 0
\(966\) −3.42527 10.5419i −0.110206 0.339180i
\(967\) −23.8556 + 17.3321i −0.767143 + 0.557362i −0.901093 0.433626i \(-0.857234\pi\)
0.133950 + 0.990988i \(0.457234\pi\)
\(968\) −21.5438 −0.692443
\(969\) −0.645616 + 0.469067i −0.0207402 + 0.0150686i
\(970\) 0 0
\(971\) −17.6905 12.8529i −0.567714 0.412469i 0.266560 0.963818i \(-0.414113\pi\)
−0.834274 + 0.551350i \(0.814113\pi\)
\(972\) −31.1721 22.6478i −0.999844 0.726429i
\(973\) 16.8064 51.7249i 0.538790 1.65822i
\(974\) −3.38260 −0.108385
\(975\) 0 0
\(976\) 6.30517 0.201823
\(977\) 4.27933 13.1704i 0.136908 0.421359i −0.858974 0.512019i \(-0.828898\pi\)
0.995882 + 0.0906602i \(0.0288977\pi\)
\(978\) −3.95679 2.87478i −0.126524 0.0919252i
\(979\) 7.71472 + 5.60507i 0.246563 + 0.179139i
\(980\) 0 0
\(981\) −22.6995 + 16.4922i −0.724740 + 0.526555i
\(982\) −46.3440 −1.47890
\(983\) −2.37477 + 1.72537i −0.0757434 + 0.0550308i −0.625013 0.780615i \(-0.714906\pi\)
0.549269 + 0.835646i \(0.314906\pi\)
\(984\) −0.828443 2.54968i −0.0264098 0.0812810i
\(985\) 0 0
\(986\) 5.26090 16.1914i 0.167541 0.515639i
\(987\) −2.13845 6.58147i −0.0680676 0.209491i
\(988\) −1.32774 4.08637i −0.0422411 0.130005i
\(989\) 3.69804 11.3814i 0.117591 0.361907i
\(990\) 0 0
\(991\) 9.76918 + 30.0664i 0.310328 + 0.955092i 0.977635 + 0.210309i \(0.0674470\pi\)
−0.667307 + 0.744783i \(0.732553\pi\)
\(992\) −26.7552 + 19.4388i −0.849479 + 0.617183i
\(993\) 5.52970 0.175480
\(994\) −70.6678 + 51.3432i −2.24145 + 1.62851i
\(995\) 0 0
\(996\) 16.1570 + 11.7388i 0.511955 + 0.371957i
\(997\) 9.77977 + 7.10542i 0.309728 + 0.225031i 0.731780 0.681541i \(-0.238690\pi\)
−0.422052 + 0.906572i \(0.638690\pi\)
\(998\) 0.446002 1.37265i 0.0141180 0.0434506i
\(999\) −10.4762 −0.331453
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.d.o.501.4 16
5.2 odd 4 625.2.e.a.124.2 8
5.3 odd 4 625.2.e.i.124.1 8
5.4 even 2 inner 625.2.d.o.501.1 16
25.2 odd 20 125.2.e.b.49.2 8
25.3 odd 20 125.2.e.b.74.2 8
25.4 even 10 125.2.d.b.51.4 16
25.6 even 5 inner 625.2.d.o.126.4 16
25.8 odd 20 625.2.e.a.499.2 8
25.9 even 10 625.2.a.f.1.1 8
25.11 even 5 125.2.d.b.76.1 16
25.12 odd 20 625.2.b.c.624.8 8
25.13 odd 20 625.2.b.c.624.1 8
25.14 even 10 125.2.d.b.76.4 16
25.16 even 5 625.2.a.f.1.8 8
25.17 odd 20 625.2.e.i.499.1 8
25.19 even 10 inner 625.2.d.o.126.1 16
25.21 even 5 125.2.d.b.51.1 16
25.22 odd 20 25.2.e.a.14.1 yes 8
25.23 odd 20 25.2.e.a.9.1 8
75.23 even 20 225.2.m.a.109.2 8
75.41 odd 10 5625.2.a.x.1.1 8
75.47 even 20 225.2.m.a.64.2 8
75.59 odd 10 5625.2.a.x.1.8 8
100.23 even 20 400.2.y.c.209.1 8
100.47 even 20 400.2.y.c.289.1 8
100.59 odd 10 10000.2.a.bj.1.5 8
100.91 odd 10 10000.2.a.bj.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.e.a.9.1 8 25.23 odd 20
25.2.e.a.14.1 yes 8 25.22 odd 20
125.2.d.b.51.1 16 25.21 even 5
125.2.d.b.51.4 16 25.4 even 10
125.2.d.b.76.1 16 25.11 even 5
125.2.d.b.76.4 16 25.14 even 10
125.2.e.b.49.2 8 25.2 odd 20
125.2.e.b.74.2 8 25.3 odd 20
225.2.m.a.64.2 8 75.47 even 20
225.2.m.a.109.2 8 75.23 even 20
400.2.y.c.209.1 8 100.23 even 20
400.2.y.c.289.1 8 100.47 even 20
625.2.a.f.1.1 8 25.9 even 10
625.2.a.f.1.8 8 25.16 even 5
625.2.b.c.624.1 8 25.13 odd 20
625.2.b.c.624.8 8 25.12 odd 20
625.2.d.o.126.1 16 25.19 even 10 inner
625.2.d.o.126.4 16 25.6 even 5 inner
625.2.d.o.501.1 16 5.4 even 2 inner
625.2.d.o.501.4 16 1.1 even 1 trivial
625.2.e.a.124.2 8 5.2 odd 4
625.2.e.a.499.2 8 25.8 odd 20
625.2.e.i.124.1 8 5.3 odd 4
625.2.e.i.499.1 8 25.17 odd 20
5625.2.a.x.1.1 8 75.41 odd 10
5625.2.a.x.1.8 8 75.59 odd 10
10000.2.a.bj.1.4 8 100.91 odd 10
10000.2.a.bj.1.5 8 100.59 odd 10