Properties

Label 63.3.k.a.61.4
Level $63$
Weight $3$
Character 63.61
Analytic conductor $1.717$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(31,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.31");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 61.4
Character \(\chi\) \(=\) 63.61
Dual form 63.3.k.a.31.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12025 - 1.94033i) q^{2} +(1.92745 - 2.29890i) q^{3} +(-0.509909 + 0.883189i) q^{4} -1.93444i q^{5} +(-6.61983 - 1.16455i) q^{6} +(3.87064 + 5.83251i) q^{7} -6.67708 q^{8} +(-1.56985 - 8.86203i) q^{9} +O(q^{10})\) \(q+(-1.12025 - 1.94033i) q^{2} +(1.92745 - 2.29890i) q^{3} +(-0.509909 + 0.883189i) q^{4} -1.93444i q^{5} +(-6.61983 - 1.16455i) q^{6} +(3.87064 + 5.83251i) q^{7} -6.67708 q^{8} +(-1.56985 - 8.86203i) q^{9} +(-3.75345 + 2.16706i) q^{10} -0.372337 q^{11} +(1.04753 + 2.87453i) q^{12} +(-5.01827 + 2.89730i) q^{13} +(6.98089 - 14.0442i) q^{14} +(-4.44709 - 3.72855i) q^{15} +(9.51962 + 16.4885i) q^{16} +(9.96576 - 5.75374i) q^{17} +(-15.4366 + 12.9737i) q^{18} +(18.2323 + 10.5264i) q^{19} +(1.70848 + 0.986391i) q^{20} +(20.8688 + 2.34369i) q^{21} +(0.417109 + 0.722455i) q^{22} +27.2835 q^{23} +(-12.8698 + 15.3499i) q^{24} +21.2579 q^{25} +(11.2434 + 6.49139i) q^{26} +(-23.3987 - 13.4722i) q^{27} +(-7.12488 + 0.444454i) q^{28} +(-20.1404 + 34.8842i) q^{29} +(-2.25276 + 12.8057i) q^{30} +(-42.2746 - 24.4073i) q^{31} +(7.97450 - 13.8122i) q^{32} +(-0.717662 + 0.855964i) q^{33} +(-22.3282 - 12.8912i) q^{34} +(11.2827 - 7.48753i) q^{35} +(8.62732 + 3.13236i) q^{36} +(14.7691 - 25.5809i) q^{37} -47.1687i q^{38} +(-3.01189 + 17.1209i) q^{39} +12.9164i q^{40} +(-19.6397 + 11.3390i) q^{41} +(-18.8307 - 43.1178i) q^{42} +(10.7407 - 18.6035i) q^{43} +(0.189858 - 0.328844i) q^{44} +(-17.1431 + 3.03679i) q^{45} +(-30.5642 - 52.9388i) q^{46} +(-46.1622 + 26.6518i) q^{47} +(56.2539 + 9.89612i) q^{48} +(-19.0363 + 45.1511i) q^{49} +(-23.8141 - 41.2473i) q^{50} +(5.98130 - 34.0003i) q^{51} -5.90944i q^{52} +(43.7300 + 75.7426i) q^{53} +(0.0718380 + 60.4933i) q^{54} +0.720265i q^{55} +(-25.8446 - 38.9441i) q^{56} +(59.3409 - 21.6249i) q^{57} +90.2490 q^{58} +(-7.99438 - 4.61556i) q^{59} +(5.56062 - 2.02639i) q^{60} +(-61.0848 + 35.2673i) q^{61} +109.369i q^{62} +(45.6115 - 43.4579i) q^{63} +40.4233 q^{64} +(5.60467 + 9.70757i) q^{65} +(2.46481 + 0.433606i) q^{66} +(37.7720 - 65.4230i) q^{67} +11.7355i q^{68} +(52.5876 - 62.7219i) q^{69} +(-27.1676 - 13.5041i) q^{70} -97.4729 q^{71} +(10.4820 + 59.1725i) q^{72} +(-75.3269 + 43.4900i) q^{73} -66.1804 q^{74} +(40.9737 - 48.8698i) q^{75} +(-18.5936 + 10.7350i) q^{76} +(-1.44118 - 2.17166i) q^{77} +(36.5942 - 13.3356i) q^{78} +(23.5997 + 40.8759i) q^{79} +(31.8960 - 18.4152i) q^{80} +(-76.0711 + 27.8241i) q^{81} +(44.0025 + 25.4049i) q^{82} +(81.1770 + 46.8676i) q^{83} +(-12.7111 + 17.2360i) q^{84} +(-11.1303 - 19.2782i) q^{85} -48.1291 q^{86} +(41.3755 + 113.538i) q^{87} +2.48612 q^{88} +(-25.6803 - 14.8266i) q^{89} +(25.0969 + 29.8612i) q^{90} +(-36.3225 - 18.0547i) q^{91} +(-13.9121 + 24.0965i) q^{92} +(-137.592 + 50.1411i) q^{93} +(103.426 + 59.7132i) q^{94} +(20.3627 - 35.2693i) q^{95} +(-16.3824 - 44.9550i) q^{96} +(-122.538 - 70.7471i) q^{97} +(108.933 - 13.6437i) q^{98} +(0.584513 + 3.29966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9} - 6 q^{10} - 14 q^{11} - 3 q^{12} + 15 q^{13} - 11 q^{14} - 18 q^{15} - 27 q^{16} - 33 q^{17} + 33 q^{18} - 6 q^{19} + 108 q^{20} + 12 q^{21} - 10 q^{22} - 68 q^{23} + 42 q^{24} - 62 q^{25} + 54 q^{26} - 81 q^{27} - 16 q^{28} + 70 q^{29} - 6 q^{30} + 45 q^{31} + 153 q^{32} - 114 q^{33} + 12 q^{34} + 18 q^{35} - 174 q^{36} + 9 q^{37} - 120 q^{39} - 234 q^{41} - 51 q^{42} + 30 q^{43} + 51 q^{44} + 276 q^{45} - 22 q^{46} - 111 q^{47} + 147 q^{48} + 34 q^{49} + 241 q^{50} - 6 q^{51} + 148 q^{53} + 378 q^{54} - 412 q^{56} + 189 q^{57} - 34 q^{58} + 42 q^{59} + 456 q^{60} + 120 q^{61} - 222 q^{63} - 48 q^{64} + 114 q^{65} - 447 q^{66} - 34 q^{67} + 78 q^{69} + 264 q^{70} - 350 q^{71} - 339 q^{72} - 6 q^{73} - 718 q^{74} - 123 q^{75} + 72 q^{76} - 32 q^{77} - 375 q^{78} - 82 q^{79} - 609 q^{80} - 3 q^{81} - 18 q^{82} + 738 q^{83} + 609 q^{84} + 3 q^{85} - 34 q^{86} + 3 q^{87} - 50 q^{88} + 21 q^{89} - 543 q^{90} + 39 q^{91} + 288 q^{92} + 252 q^{93} - 3 q^{94} + 507 q^{95} - 582 q^{96} - 57 q^{97} + 811 q^{98} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12025 1.94033i −0.560124 0.970163i −0.997485 0.0708770i \(-0.977420\pi\)
0.437361 0.899286i \(-0.355913\pi\)
\(3\) 1.92745 2.29890i 0.642484 0.766299i
\(4\) −0.509909 + 0.883189i −0.127477 + 0.220797i
\(5\) 1.93444i 0.386889i −0.981111 0.193444i \(-0.938034\pi\)
0.981111 0.193444i \(-0.0619659\pi\)
\(6\) −6.61983 1.16455i −1.10331 0.194092i
\(7\) 3.87064 + 5.83251i 0.552948 + 0.833216i
\(8\) −6.67708 −0.834635
\(9\) −1.56985 8.86203i −0.174428 0.984670i
\(10\) −3.75345 + 2.16706i −0.375345 + 0.216706i
\(11\) −0.372337 −0.0338488 −0.0169244 0.999857i \(-0.505387\pi\)
−0.0169244 + 0.999857i \(0.505387\pi\)
\(12\) 1.04753 + 2.87453i 0.0872944 + 0.239544i
\(13\) −5.01827 + 2.89730i −0.386021 + 0.222869i −0.680435 0.732809i \(-0.738209\pi\)
0.294414 + 0.955678i \(0.404876\pi\)
\(14\) 6.98089 14.0442i 0.498635 1.00315i
\(15\) −4.44709 3.72855i −0.296472 0.248570i
\(16\) 9.51962 + 16.4885i 0.594976 + 1.03053i
\(17\) 9.96576 5.75374i 0.586221 0.338455i −0.177381 0.984142i \(-0.556762\pi\)
0.763602 + 0.645687i \(0.223429\pi\)
\(18\) −15.4366 + 12.9737i −0.857589 + 0.720760i
\(19\) 18.2323 + 10.5264i 0.959593 + 0.554021i 0.896048 0.443958i \(-0.146426\pi\)
0.0635451 + 0.997979i \(0.479759\pi\)
\(20\) 1.70848 + 0.986391i 0.0854239 + 0.0493195i
\(21\) 20.8688 + 2.34369i 0.993753 + 0.111604i
\(22\) 0.417109 + 0.722455i 0.0189595 + 0.0328389i
\(23\) 27.2835 1.18624 0.593119 0.805115i \(-0.297896\pi\)
0.593119 + 0.805115i \(0.297896\pi\)
\(24\) −12.8698 + 15.3499i −0.536240 + 0.639580i
\(25\) 21.2579 0.850317
\(26\) 11.2434 + 6.49139i 0.432439 + 0.249669i
\(27\) −23.3987 13.4722i −0.866619 0.498971i
\(28\) −7.12488 + 0.444454i −0.254460 + 0.0158734i
\(29\) −20.1404 + 34.8842i −0.694497 + 1.20290i 0.275853 + 0.961200i \(0.411040\pi\)
−0.970350 + 0.241704i \(0.922294\pi\)
\(30\) −2.25276 + 12.8057i −0.0750921 + 0.426856i
\(31\) −42.2746 24.4073i −1.36370 0.787331i −0.373584 0.927596i \(-0.621871\pi\)
−0.990114 + 0.140265i \(0.955205\pi\)
\(32\) 7.97450 13.8122i 0.249203 0.431633i
\(33\) −0.717662 + 0.855964i −0.0217473 + 0.0259383i
\(34\) −22.3282 12.8912i −0.656713 0.379154i
\(35\) 11.2827 7.48753i 0.322362 0.213929i
\(36\) 8.62732 + 3.13236i 0.239648 + 0.0870099i
\(37\) 14.7691 25.5809i 0.399166 0.691376i −0.594457 0.804127i \(-0.702633\pi\)
0.993623 + 0.112751i \(0.0359663\pi\)
\(38\) 47.1687i 1.24128i
\(39\) −3.01189 + 17.1209i −0.0772279 + 0.438998i
\(40\) 12.9164i 0.322911i
\(41\) −19.6397 + 11.3390i −0.479016 + 0.276560i −0.720006 0.693968i \(-0.755861\pi\)
0.240990 + 0.970528i \(0.422528\pi\)
\(42\) −18.8307 43.1178i −0.448350 1.02661i
\(43\) 10.7407 18.6035i 0.249785 0.432639i −0.713681 0.700470i \(-0.752974\pi\)
0.963466 + 0.267831i \(0.0863069\pi\)
\(44\) 0.189858 0.328844i 0.00431495 0.00747372i
\(45\) −17.1431 + 3.03679i −0.380958 + 0.0674841i
\(46\) −30.5642 52.9388i −0.664440 1.15084i
\(47\) −46.1622 + 26.6518i −0.982175 + 0.567059i −0.902926 0.429796i \(-0.858586\pi\)
−0.0792489 + 0.996855i \(0.525252\pi\)
\(48\) 56.2539 + 9.89612i 1.17196 + 0.206169i
\(49\) −19.0363 + 45.1511i −0.388496 + 0.921450i
\(50\) −23.8141 41.2473i −0.476283 0.824946i
\(51\) 5.98130 34.0003i 0.117280 0.666673i
\(52\) 5.90944i 0.113643i
\(53\) 43.7300 + 75.7426i 0.825094 + 1.42911i 0.901847 + 0.432055i \(0.142211\pi\)
−0.0767530 + 0.997050i \(0.524455\pi\)
\(54\) 0.0718380 + 60.4933i 0.00133033 + 1.12025i
\(55\) 0.720265i 0.0130957i
\(56\) −25.8446 38.9441i −0.461510 0.695431i
\(57\) 59.3409 21.6249i 1.04107 0.379385i
\(58\) 90.2490 1.55602
\(59\) −7.99438 4.61556i −0.135498 0.0782298i 0.430719 0.902486i \(-0.358260\pi\)
−0.566217 + 0.824256i \(0.691593\pi\)
\(60\) 5.56062 2.02639i 0.0926770 0.0337732i
\(61\) −61.0848 + 35.2673i −1.00139 + 0.578153i −0.908659 0.417539i \(-0.862893\pi\)
−0.0927306 + 0.995691i \(0.529560\pi\)
\(62\) 109.369i 1.76401i
\(63\) 45.6115 43.4579i 0.723993 0.689808i
\(64\) 40.4233 0.631614
\(65\) 5.60467 + 9.70757i 0.0862256 + 0.149347i
\(66\) 2.46481 + 0.433606i 0.0373456 + 0.00656979i
\(67\) 37.7720 65.4230i 0.563761 0.976463i −0.433403 0.901200i \(-0.642687\pi\)
0.997164 0.0752625i \(-0.0239795\pi\)
\(68\) 11.7355i 0.172581i
\(69\) 52.5876 62.7219i 0.762139 0.909013i
\(70\) −27.1676 13.5041i −0.388109 0.192916i
\(71\) −97.4729 −1.37286 −0.686429 0.727197i \(-0.740823\pi\)
−0.686429 + 0.727197i \(0.740823\pi\)
\(72\) 10.4820 + 59.1725i 0.145584 + 0.821840i
\(73\) −75.3269 + 43.4900i −1.03188 + 0.595754i −0.917521 0.397687i \(-0.869813\pi\)
−0.114354 + 0.993440i \(0.536480\pi\)
\(74\) −66.1804 −0.894330
\(75\) 40.9737 48.8698i 0.546315 0.651597i
\(76\) −18.5936 + 10.7350i −0.244653 + 0.141250i
\(77\) −1.44118 2.17166i −0.0187166 0.0282033i
\(78\) 36.5942 13.3356i 0.469156 0.170969i
\(79\) 23.5997 + 40.8759i 0.298730 + 0.517416i 0.975846 0.218461i \(-0.0701036\pi\)
−0.677115 + 0.735877i \(0.736770\pi\)
\(80\) 31.8960 18.4152i 0.398700 0.230190i
\(81\) −76.0711 + 27.8241i −0.939150 + 0.343508i
\(82\) 44.0025 + 25.4049i 0.536616 + 0.309816i
\(83\) 81.1770 + 46.8676i 0.978036 + 0.564669i 0.901677 0.432411i \(-0.142337\pi\)
0.0763594 + 0.997080i \(0.475670\pi\)
\(84\) −12.7111 + 17.2360i −0.151323 + 0.205191i
\(85\) −11.1303 19.2782i −0.130944 0.226802i
\(86\) −48.1291 −0.559641
\(87\) 41.3755 + 113.538i 0.475580 + 1.30504i
\(88\) 2.48612 0.0282514
\(89\) −25.6803 14.8266i −0.288543 0.166590i 0.348742 0.937219i \(-0.386609\pi\)
−0.637285 + 0.770628i \(0.719942\pi\)
\(90\) 25.0969 + 29.8612i 0.278854 + 0.331792i
\(91\) −36.3225 18.0547i −0.399148 0.198403i
\(92\) −13.9121 + 24.0965i −0.151218 + 0.261918i
\(93\) −137.592 + 50.1411i −1.47949 + 0.539152i
\(94\) 103.426 + 59.7132i 1.10028 + 0.635246i
\(95\) 20.3627 35.2693i 0.214345 0.371256i
\(96\) −16.3824 44.9550i −0.170650 0.468281i
\(97\) −122.538 70.7471i −1.26327 0.729351i −0.289567 0.957158i \(-0.593511\pi\)
−0.973706 + 0.227806i \(0.926845\pi\)
\(98\) 108.933 13.6437i 1.11156 0.139222i
\(99\) 0.584513 + 3.29966i 0.00590417 + 0.0333299i
\(100\) −10.8396 + 18.7748i −0.108396 + 0.187748i
\(101\) 46.9206i 0.464561i −0.972649 0.232280i \(-0.925381\pi\)
0.972649 0.232280i \(-0.0746187\pi\)
\(102\) −72.6722 + 26.4831i −0.712473 + 0.259638i
\(103\) 131.547i 1.27715i −0.769559 0.638576i \(-0.779524\pi\)
0.769559 0.638576i \(-0.220476\pi\)
\(104\) 33.5074 19.3455i 0.322187 0.186015i
\(105\) 4.53373 40.3695i 0.0431784 0.384472i
\(106\) 97.9768 169.701i 0.924310 1.60095i
\(107\) 69.9586 121.172i 0.653819 1.13245i −0.328369 0.944549i \(-0.606499\pi\)
0.982188 0.187899i \(-0.0601676\pi\)
\(108\) 23.8297 13.7959i 0.220646 0.127739i
\(109\) 55.5420 + 96.2016i 0.509560 + 0.882583i 0.999939 + 0.0110739i \(0.00352500\pi\)
−0.490379 + 0.871509i \(0.663142\pi\)
\(110\) 1.39755 0.806875i 0.0127050 0.00733522i
\(111\) −30.3410 83.2587i −0.273343 0.750079i
\(112\) −59.3221 + 119.344i −0.529662 + 1.06557i
\(113\) 50.7636 + 87.9252i 0.449236 + 0.778099i 0.998336 0.0576571i \(-0.0183630\pi\)
−0.549101 + 0.835756i \(0.685030\pi\)
\(114\) −108.436 90.9155i −0.951193 0.797504i
\(115\) 52.7783i 0.458942i
\(116\) −20.5396 35.5756i −0.177065 0.306686i
\(117\) 33.5539 + 39.9238i 0.286786 + 0.341229i
\(118\) 20.6823i 0.175273i
\(119\) 72.1326 + 35.8548i 0.606156 + 0.301301i
\(120\) 29.6936 + 24.8958i 0.247446 + 0.207465i
\(121\) −120.861 −0.998854
\(122\) 136.860 + 79.0162i 1.12180 + 0.647674i
\(123\) −11.7874 + 67.0048i −0.0958326 + 0.544755i
\(124\) 43.1125 24.8910i 0.347681 0.200734i
\(125\) 89.4834i 0.715867i
\(126\) −135.419 39.8177i −1.07475 0.316013i
\(127\) −49.1014 −0.386625 −0.193312 0.981137i \(-0.561923\pi\)
−0.193312 + 0.981137i \(0.561923\pi\)
\(128\) −77.1821 133.683i −0.602985 1.04440i
\(129\) −22.0653 60.5492i −0.171048 0.469374i
\(130\) 12.5572 21.7498i 0.0965941 0.167306i
\(131\) 124.241i 0.948403i −0.880416 0.474202i \(-0.842737\pi\)
0.880416 0.474202i \(-0.157263\pi\)
\(132\) −0.390035 1.07029i −0.00295481 0.00810829i
\(133\) 9.17517 + 147.084i 0.0689863 + 1.10589i
\(134\) −169.256 −1.26310
\(135\) −26.0613 + 45.2635i −0.193046 + 0.335285i
\(136\) −66.5422 + 38.4182i −0.489281 + 0.282487i
\(137\) 4.63071 0.0338008 0.0169004 0.999857i \(-0.494620\pi\)
0.0169004 + 0.999857i \(0.494620\pi\)
\(138\) −180.612 31.7731i −1.30878 0.230240i
\(139\) −37.7043 + 21.7686i −0.271254 + 0.156608i −0.629457 0.777035i \(-0.716723\pi\)
0.358204 + 0.933644i \(0.383389\pi\)
\(140\) 0.859772 + 13.7827i 0.00614123 + 0.0984477i
\(141\) −27.7058 + 157.492i −0.196495 + 1.11697i
\(142\) 109.194 + 189.129i 0.768970 + 1.33190i
\(143\) 1.86849 1.07877i 0.0130664 0.00754386i
\(144\) 131.177 110.248i 0.910951 0.765608i
\(145\) 67.4815 + 38.9605i 0.465390 + 0.268693i
\(146\) 168.770 + 97.4391i 1.15596 + 0.667391i
\(147\) 67.1060 + 130.789i 0.456504 + 0.889722i
\(148\) 15.0618 + 26.0879i 0.101769 + 0.176269i
\(149\) −26.2607 −0.176246 −0.0881232 0.996110i \(-0.528087\pi\)
−0.0881232 + 0.996110i \(0.528087\pi\)
\(150\) −140.724 24.7560i −0.938159 0.165040i
\(151\) 119.873 0.793861 0.396931 0.917849i \(-0.370075\pi\)
0.396931 + 0.917849i \(0.370075\pi\)
\(152\) −121.738 70.2857i −0.800910 0.462406i
\(153\) −66.6345 79.2844i −0.435520 0.518199i
\(154\) −2.59924 + 5.22916i −0.0168782 + 0.0339556i
\(155\) −47.2145 + 81.7779i −0.304610 + 0.527599i
\(156\) −13.5852 11.3902i −0.0870846 0.0730139i
\(157\) 169.702 + 97.9773i 1.08090 + 0.624059i 0.931140 0.364663i \(-0.118816\pi\)
0.149763 + 0.988722i \(0.452149\pi\)
\(158\) 52.8750 91.5822i 0.334652 0.579634i
\(159\) 258.412 + 45.4595i 1.62523 + 0.285909i
\(160\) −26.7190 15.4262i −0.166994 0.0964139i
\(161\) 105.604 + 159.131i 0.655928 + 0.988392i
\(162\) 139.206 + 116.433i 0.859299 + 0.718722i
\(163\) 41.8418 72.4721i 0.256698 0.444614i −0.708657 0.705553i \(-0.750699\pi\)
0.965355 + 0.260939i \(0.0840321\pi\)
\(164\) 23.1274i 0.141020i
\(165\) 1.65581 + 1.38828i 0.0100352 + 0.00841380i
\(166\) 210.013i 1.26514i
\(167\) −215.835 + 124.612i −1.29242 + 0.746181i −0.979083 0.203460i \(-0.934781\pi\)
−0.313340 + 0.949641i \(0.601448\pi\)
\(168\) −139.343 15.6490i −0.829421 0.0931488i
\(169\) −67.7113 + 117.279i −0.400659 + 0.693961i
\(170\) −24.9373 + 43.1927i −0.146690 + 0.254075i
\(171\) 64.6634 178.100i 0.378148 1.04152i
\(172\) 10.9536 + 18.9722i 0.0636837 + 0.110303i
\(173\) 241.148 139.227i 1.39392 0.804779i 0.400171 0.916440i \(-0.368951\pi\)
0.993746 + 0.111661i \(0.0356172\pi\)
\(174\) 173.951 207.473i 0.999716 1.19237i
\(175\) 82.2818 + 123.987i 0.470181 + 0.708497i
\(176\) −3.54451 6.13926i −0.0201392 0.0348822i
\(177\) −26.0195 + 9.48198i −0.147003 + 0.0535705i
\(178\) 66.4376i 0.373245i
\(179\) −128.758 223.015i −0.719317 1.24589i −0.961271 0.275605i \(-0.911122\pi\)
0.241954 0.970288i \(-0.422212\pi\)
\(180\) 6.05937 16.6891i 0.0336632 0.0927171i
\(181\) 29.2542i 0.161625i −0.996729 0.0808126i \(-0.974248\pi\)
0.996729 0.0808126i \(-0.0257515\pi\)
\(182\) 5.65812 + 90.7032i 0.0310886 + 0.498369i
\(183\) −36.6621 + 208.404i −0.200340 + 1.13882i
\(184\) −182.174 −0.990076
\(185\) −49.4848 28.5701i −0.267486 0.154433i
\(186\) 251.427 + 210.803i 1.35176 + 1.13335i
\(187\) −3.71062 + 2.14233i −0.0198429 + 0.0114563i
\(188\) 54.3599i 0.289149i
\(189\) −11.9911 188.619i −0.0634448 0.997985i
\(190\) −91.2452 −0.480238
\(191\) 30.3852 + 52.6287i 0.159085 + 0.275543i 0.934539 0.355861i \(-0.115812\pi\)
−0.775454 + 0.631404i \(0.782479\pi\)
\(192\) 77.9140 92.9290i 0.405802 0.484005i
\(193\) −12.4384 + 21.5439i −0.0644474 + 0.111626i −0.896449 0.443147i \(-0.853862\pi\)
0.832001 + 0.554774i \(0.187195\pi\)
\(194\) 317.017i 1.63411i
\(195\) 33.1194 + 5.82633i 0.169843 + 0.0298786i
\(196\) −30.1701 39.8356i −0.153929 0.203243i
\(197\) 174.320 0.884873 0.442437 0.896800i \(-0.354114\pi\)
0.442437 + 0.896800i \(0.354114\pi\)
\(198\) 5.74762 4.83058i 0.0290284 0.0243969i
\(199\) 250.227 144.468i 1.25742 0.725972i 0.284848 0.958573i \(-0.408057\pi\)
0.972572 + 0.232600i \(0.0747234\pi\)
\(200\) −141.941 −0.709705
\(201\) −77.5970 212.934i −0.386055 1.05937i
\(202\) −91.0413 + 52.5627i −0.450699 + 0.260211i
\(203\) −281.419 + 17.5551i −1.38630 + 0.0864782i
\(204\) 26.9788 + 22.6197i 0.132249 + 0.110881i
\(205\) 21.9346 + 37.9918i 0.106998 + 0.185326i
\(206\) −255.243 + 147.365i −1.23905 + 0.715363i
\(207\) −42.8310 241.787i −0.206913 1.16805i
\(208\) −95.5441 55.1624i −0.459347 0.265204i
\(209\) −6.78854 3.91937i −0.0324811 0.0187530i
\(210\) −83.4089 + 36.4270i −0.397185 + 0.173462i
\(211\) −149.601 259.116i −0.709009 1.22804i −0.965225 0.261419i \(-0.915809\pi\)
0.256217 0.966619i \(-0.417524\pi\)
\(212\) −89.1933 −0.420723
\(213\) −187.874 + 224.080i −0.882039 + 1.05202i
\(214\) −313.484 −1.46488
\(215\) −35.9874 20.7773i −0.167383 0.0966388i
\(216\) 156.235 + 89.9551i 0.723310 + 0.416459i
\(217\) −21.2742 341.039i −0.0980379 1.57161i
\(218\) 124.442 215.539i 0.570833 0.988712i
\(219\) −45.2100 + 256.994i −0.206439 + 1.17349i
\(220\) −0.636130 0.367270i −0.00289150 0.00166941i
\(221\) −33.3406 + 57.7477i −0.150863 + 0.261302i
\(222\) −127.560 + 152.142i −0.574593 + 0.685324i
\(223\) −14.0772 8.12745i −0.0631263 0.0364460i 0.468105 0.883673i \(-0.344937\pi\)
−0.531231 + 0.847227i \(0.678270\pi\)
\(224\) 111.426 6.95085i 0.497439 0.0310306i
\(225\) −33.3718 188.388i −0.148319 0.837282i
\(226\) 113.736 196.996i 0.503255 0.871664i
\(227\) 30.5448i 0.134559i 0.997734 + 0.0672793i \(0.0214319\pi\)
−0.997734 + 0.0672793i \(0.978568\pi\)
\(228\) −11.1596 + 63.4360i −0.0489456 + 0.278228i
\(229\) 182.597i 0.797368i 0.917088 + 0.398684i \(0.130533\pi\)
−0.917088 + 0.398684i \(0.869467\pi\)
\(230\) −102.407 + 59.1248i −0.445249 + 0.257064i
\(231\) −7.77023 0.872642i −0.0336373 0.00377767i
\(232\) 134.479 232.925i 0.579652 1.00399i
\(233\) 174.898 302.932i 0.750635 1.30014i −0.196880 0.980428i \(-0.563081\pi\)
0.947515 0.319710i \(-0.103586\pi\)
\(234\) 39.8764 109.830i 0.170412 0.469359i
\(235\) 51.5563 + 89.2982i 0.219389 + 0.379992i
\(236\) 8.15281 4.70703i 0.0345458 0.0199450i
\(237\) 139.457 + 24.5331i 0.588425 + 0.103515i
\(238\) −11.2364 180.127i −0.0472119 0.756836i
\(239\) 49.6154 + 85.9365i 0.207596 + 0.359567i 0.950957 0.309324i \(-0.100103\pi\)
−0.743361 + 0.668891i \(0.766769\pi\)
\(240\) 19.1435 108.820i 0.0797646 0.453417i
\(241\) 280.989i 1.16593i −0.812498 0.582964i \(-0.801893\pi\)
0.812498 0.582964i \(-0.198107\pi\)
\(242\) 135.395 + 234.510i 0.559482 + 0.969051i
\(243\) −82.6588 + 228.509i −0.340160 + 0.940368i
\(244\) 71.9325i 0.294805i
\(245\) 87.3422 + 36.8247i 0.356499 + 0.150305i
\(246\) 143.216 52.1906i 0.582179 0.212157i
\(247\) −121.993 −0.493897
\(248\) 282.271 + 162.969i 1.13819 + 0.657135i
\(249\) 264.208 96.2825i 1.06108 0.386677i
\(250\) −173.627 + 100.244i −0.694507 + 0.400974i
\(251\) 16.5983i 0.0661286i 0.999453 + 0.0330643i \(0.0105266\pi\)
−0.999453 + 0.0330643i \(0.989473\pi\)
\(252\) 15.1238 + 62.4432i 0.0600149 + 0.247790i
\(253\) −10.1586 −0.0401527
\(254\) 55.0057 + 95.2726i 0.216558 + 0.375089i
\(255\) −65.7717 11.5705i −0.257928 0.0453744i
\(256\) −92.0795 + 159.486i −0.359686 + 0.622994i
\(257\) 85.2012i 0.331522i 0.986166 + 0.165761i \(0.0530080\pi\)
−0.986166 + 0.165761i \(0.946992\pi\)
\(258\) −92.7666 + 110.644i −0.359561 + 0.428852i
\(259\) 206.367 12.8733i 0.796783 0.0497038i
\(260\) −11.4315 −0.0439672
\(261\) 340.762 + 123.722i 1.30560 + 0.474030i
\(262\) −241.068 + 139.180i −0.920105 + 0.531223i
\(263\) −356.654 −1.35610 −0.678050 0.735016i \(-0.737175\pi\)
−0.678050 + 0.735016i \(0.737175\pi\)
\(264\) 4.79189 5.71534i 0.0181511 0.0216490i
\(265\) 146.520 84.5932i 0.552905 0.319220i
\(266\) 275.112 182.573i 1.03426 0.686365i
\(267\) −83.5824 + 30.4590i −0.313043 + 0.114079i
\(268\) 38.5206 + 66.7196i 0.143733 + 0.248954i
\(269\) −333.500 + 192.546i −1.23978 + 0.715785i −0.969048 0.246871i \(-0.920597\pi\)
−0.270727 + 0.962656i \(0.587264\pi\)
\(270\) 117.021 0.138967i 0.433411 0.000514691i
\(271\) 53.9536 + 31.1502i 0.199091 + 0.114945i 0.596231 0.802813i \(-0.296664\pi\)
−0.397140 + 0.917758i \(0.629997\pi\)
\(272\) 189.741 + 109.547i 0.697576 + 0.402746i
\(273\) −111.516 + 48.7020i −0.408483 + 0.178395i
\(274\) −5.18755 8.98509i −0.0189327 0.0327923i
\(275\) −7.91511 −0.0287822
\(276\) 28.5803 + 78.4272i 0.103552 + 0.284157i
\(277\) 85.0115 0.306901 0.153450 0.988156i \(-0.450961\pi\)
0.153450 + 0.988156i \(0.450961\pi\)
\(278\) 84.4762 + 48.7724i 0.303871 + 0.175440i
\(279\) −149.933 + 412.955i −0.537395 + 1.48012i
\(280\) −75.3352 + 49.9949i −0.269054 + 0.178553i
\(281\) 73.8831 127.969i 0.262929 0.455407i −0.704090 0.710111i \(-0.748645\pi\)
0.967019 + 0.254704i \(0.0819781\pi\)
\(282\) 336.624 122.672i 1.19370 0.435007i
\(283\) 303.815 + 175.408i 1.07355 + 0.619815i 0.929150 0.369704i \(-0.120541\pi\)
0.144402 + 0.989519i \(0.453874\pi\)
\(284\) 49.7023 86.0869i 0.175008 0.303123i
\(285\) −41.8322 114.792i −0.146780 0.402778i
\(286\) −4.18634 2.41698i −0.0146375 0.00845099i
\(287\) −142.153 70.6594i −0.495305 0.246200i
\(288\) −134.923 48.9871i −0.468484 0.170094i
\(289\) −78.2890 + 135.601i −0.270896 + 0.469206i
\(290\) 174.582i 0.602005i
\(291\) −398.826 + 145.339i −1.37053 + 0.499448i
\(292\) 88.7038i 0.303780i
\(293\) 42.7689 24.6927i 0.145969 0.0842753i −0.425237 0.905082i \(-0.639809\pi\)
0.571206 + 0.820807i \(0.306476\pi\)
\(294\) 178.598 276.724i 0.607476 0.941237i
\(295\) −8.92853 + 15.4647i −0.0302662 + 0.0524226i
\(296\) −98.6148 + 170.806i −0.333158 + 0.577047i
\(297\) 8.71220 + 5.01620i 0.0293340 + 0.0168896i
\(298\) 29.4185 + 50.9544i 0.0987198 + 0.170988i
\(299\) −136.916 + 79.0484i −0.457913 + 0.264376i
\(300\) 22.2684 + 61.1066i 0.0742280 + 0.203689i
\(301\) 150.079 9.36199i 0.498600 0.0311030i
\(302\) −134.288 232.593i −0.444661 0.770175i
\(303\) −107.866 90.4373i −0.355992 0.298473i
\(304\) 400.829i 1.31852i
\(305\) 68.2226 + 118.165i 0.223681 + 0.387426i
\(306\) −79.1904 + 218.111i −0.258792 + 0.712781i
\(307\) 432.680i 1.40938i 0.709515 + 0.704691i \(0.248914\pi\)
−0.709515 + 0.704691i \(0.751086\pi\)
\(308\) 2.65286 0.165487i 0.00861317 0.000537295i
\(309\) −302.412 253.550i −0.978680 0.820550i
\(310\) 211.568 0.682476
\(311\) −144.790 83.5947i −0.465563 0.268793i 0.248817 0.968550i \(-0.419958\pi\)
−0.714381 + 0.699757i \(0.753291\pi\)
\(312\) 20.1106 114.318i 0.0644572 0.366403i
\(313\) −223.941 + 129.293i −0.715467 + 0.413075i −0.813082 0.582149i \(-0.802212\pi\)
0.0976148 + 0.995224i \(0.468879\pi\)
\(314\) 439.035i 1.39820i
\(315\) −84.0668 88.2330i −0.266879 0.280105i
\(316\) −48.1348 −0.152325
\(317\) 101.257 + 175.382i 0.319422 + 0.553255i 0.980368 0.197179i \(-0.0631780\pi\)
−0.660946 + 0.750434i \(0.729845\pi\)
\(318\) −201.279 552.329i −0.632953 1.73688i
\(319\) 7.49902 12.9887i 0.0235079 0.0407169i
\(320\) 78.1966i 0.244364i
\(321\) −143.720 394.381i −0.447725 1.22860i
\(322\) 190.463 383.173i 0.591500 1.18998i
\(323\) 242.265 0.750045
\(324\) 14.2154 81.3729i 0.0438748 0.251151i
\(325\) −106.678 + 61.5906i −0.328240 + 0.189510i
\(326\) −187.493 −0.575131
\(327\) 328.212 + 57.7387i 1.00371 + 0.176571i
\(328\) 131.136 75.7112i 0.399804 0.230827i
\(329\) −334.124 166.082i −1.01557 0.504809i
\(330\) 0.838787 4.76803i 0.00254178 0.0144486i
\(331\) −17.0781 29.5802i −0.0515956 0.0893662i 0.839074 0.544017i \(-0.183097\pi\)
−0.890670 + 0.454651i \(0.849764\pi\)
\(332\) −82.7858 + 47.7964i −0.249355 + 0.143965i
\(333\) −249.884 90.7264i −0.750403 0.272452i
\(334\) 483.576 + 279.193i 1.44783 + 0.835907i
\(335\) −126.557 73.0678i −0.377783 0.218113i
\(336\) 160.019 + 366.406i 0.476248 + 1.09049i
\(337\) 205.854 + 356.550i 0.610844 + 1.05801i 0.991099 + 0.133130i \(0.0425029\pi\)
−0.380255 + 0.924882i \(0.624164\pi\)
\(338\) 303.414 0.897673
\(339\) 299.975 + 52.7713i 0.884883 + 0.155668i
\(340\) 22.7017 0.0667698
\(341\) 15.7404 + 9.08773i 0.0461595 + 0.0266502i
\(342\) −418.010 + 74.0478i −1.22225 + 0.216514i
\(343\) −337.027 + 63.7340i −0.982585 + 0.185813i
\(344\) −71.7168 + 124.217i −0.208479 + 0.361096i
\(345\) −121.332 101.728i −0.351687 0.294863i
\(346\) −540.290 311.937i −1.56153 0.901551i
\(347\) 298.744 517.439i 0.860933 1.49118i −0.0100965 0.999949i \(-0.503214\pi\)
0.871029 0.491231i \(-0.163453\pi\)
\(348\) −121.374 21.3519i −0.348775 0.0613560i
\(349\) 72.8266 + 42.0465i 0.208672 + 0.120477i 0.600694 0.799479i \(-0.294891\pi\)
−0.392022 + 0.919956i \(0.628224\pi\)
\(350\) 148.399 298.550i 0.423998 0.852999i
\(351\) 156.454 0.185795i 0.445738 0.000529331i
\(352\) −2.96920 + 5.14281i −0.00843523 + 0.0146102i
\(353\) 458.436i 1.29869i −0.760496 0.649343i \(-0.775044\pi\)
0.760496 0.649343i \(-0.224956\pi\)
\(354\) 47.5464 + 39.8641i 0.134312 + 0.112610i
\(355\) 188.556i 0.531143i
\(356\) 26.1893 15.1204i 0.0735654 0.0424730i
\(357\) 221.459 96.7170i 0.620332 0.270916i
\(358\) −288.481 + 499.664i −0.805813 + 1.39571i
\(359\) 6.42758 11.1329i 0.0179041 0.0310109i −0.856935 0.515425i \(-0.827634\pi\)
0.874839 + 0.484414i \(0.160967\pi\)
\(360\) 114.466 20.2769i 0.317961 0.0563247i
\(361\) 41.1103 + 71.2051i 0.113879 + 0.197244i
\(362\) −56.7626 + 32.7719i −0.156803 + 0.0905302i
\(363\) −232.955 + 277.848i −0.641748 + 0.765421i
\(364\) 34.4669 22.8733i 0.0946892 0.0628388i
\(365\) 84.1290 + 145.716i 0.230490 + 0.399221i
\(366\) 445.442 162.327i 1.21705 0.443517i
\(367\) 618.348i 1.68487i −0.538796 0.842436i \(-0.681121\pi\)
0.538796 0.842436i \(-0.318879\pi\)
\(368\) 259.728 + 449.863i 0.705784 + 1.22245i
\(369\) 131.318 + 156.247i 0.355874 + 0.423433i
\(370\) 128.022i 0.346006i
\(371\) −272.506 + 548.228i −0.734518 + 1.47770i
\(372\) 25.8754 147.087i 0.0695576 0.395396i
\(373\) 0.579265 0.00155299 0.000776495 1.00000i \(-0.499753\pi\)
0.000776495 1.00000i \(0.499753\pi\)
\(374\) 8.31363 + 4.79988i 0.0222290 + 0.0128339i
\(375\) −205.713 172.475i −0.548568 0.459933i
\(376\) 308.229 177.956i 0.819758 0.473287i
\(377\) 233.411i 0.619128i
\(378\) −352.550 + 234.567i −0.932671 + 0.620547i
\(379\) 18.5015 0.0488165 0.0244083 0.999702i \(-0.492230\pi\)
0.0244083 + 0.999702i \(0.492230\pi\)
\(380\) 20.7663 + 35.9683i 0.0546481 + 0.0946533i
\(381\) −94.6406 + 112.879i −0.248400 + 0.296270i
\(382\) 68.0779 117.914i 0.178214 0.308676i
\(383\) 56.6187i 0.147829i 0.997265 + 0.0739147i \(0.0235493\pi\)
−0.997265 + 0.0739147i \(0.976451\pi\)
\(384\) −456.089 80.2347i −1.18773 0.208944i
\(385\) −4.20095 + 2.78788i −0.0109116 + 0.00724126i
\(386\) 55.7361 0.144394
\(387\) −181.726 65.9800i −0.469576 0.170491i
\(388\) 124.966 72.1492i 0.322077 0.185951i
\(389\) 413.566 1.06315 0.531575 0.847011i \(-0.321600\pi\)
0.531575 + 0.847011i \(0.321600\pi\)
\(390\) −25.7970 70.7894i −0.0661461 0.181511i
\(391\) 271.901 156.982i 0.695398 0.401488i
\(392\) 127.107 301.477i 0.324253 0.769075i
\(393\) −285.617 239.468i −0.726760 0.609334i
\(394\) −195.282 338.238i −0.495639 0.858471i
\(395\) 79.0721 45.6523i 0.200182 0.115575i
\(396\) −3.21227 1.16629i −0.00811180 0.00294518i
\(397\) −540.503 312.059i −1.36147 0.786044i −0.371648 0.928374i \(-0.621207\pi\)
−0.989819 + 0.142330i \(0.954541\pi\)
\(398\) −560.632 323.681i −1.40862 0.813269i
\(399\) 355.815 + 262.404i 0.891767 + 0.657655i
\(400\) 202.367 + 350.511i 0.505919 + 0.876277i
\(401\) 126.874 0.316395 0.158198 0.987407i \(-0.449432\pi\)
0.158198 + 0.987407i \(0.449432\pi\)
\(402\) −326.233 + 389.102i −0.811525 + 0.967915i
\(403\) 282.861 0.701888
\(404\) 41.4398 + 23.9253i 0.102574 + 0.0592209i
\(405\) 53.8242 + 147.155i 0.132899 + 0.363347i
\(406\) 349.321 + 526.378i 0.860397 + 1.29650i
\(407\) −5.49910 + 9.52472i −0.0135113 + 0.0234023i
\(408\) −39.9376 + 227.023i −0.0978863 + 0.556429i
\(409\) −374.582 216.265i −0.915848 0.528765i −0.0335397 0.999437i \(-0.510678\pi\)
−0.882308 + 0.470672i \(0.844011\pi\)
\(410\) 49.1443 85.1205i 0.119864 0.207611i
\(411\) 8.92548 10.6455i 0.0217165 0.0259015i
\(412\) 116.181 + 67.0769i 0.281992 + 0.162808i
\(413\) −4.02308 64.4924i −0.00974110 0.156156i
\(414\) −421.164 + 353.967i −1.01730 + 0.854993i
\(415\) 90.6626 157.032i 0.218464 0.378391i
\(416\) 92.4181i 0.222159i
\(417\) −22.6295 + 128.636i −0.0542674 + 0.308480i
\(418\) 17.5626i 0.0420159i
\(419\) 150.801 87.0648i 0.359906 0.207792i −0.309134 0.951019i \(-0.600039\pi\)
0.669040 + 0.743227i \(0.266706\pi\)
\(420\) 33.3421 + 24.5889i 0.0793860 + 0.0585451i
\(421\) −175.470 + 303.923i −0.416793 + 0.721907i −0.995615 0.0935470i \(-0.970179\pi\)
0.578822 + 0.815454i \(0.303513\pi\)
\(422\) −335.180 + 580.549i −0.794265 + 1.37571i
\(423\) 308.657 + 367.252i 0.729685 + 0.868207i
\(424\) −291.989 505.739i −0.688653 1.19278i
\(425\) 211.852 122.313i 0.498474 0.287794i
\(426\) 645.254 + 113.512i 1.51468 + 0.266461i
\(427\) −442.134 219.770i −1.03544 0.514685i
\(428\) 71.3451 + 123.573i 0.166694 + 0.288723i
\(429\) 1.12144 6.37474i 0.00261407 0.0148595i
\(430\) 93.1031i 0.216519i
\(431\) 367.837 + 637.113i 0.853451 + 1.47822i 0.878075 + 0.478524i \(0.158828\pi\)
−0.0246236 + 0.999697i \(0.507839\pi\)
\(432\) −0.610464 514.059i −0.00141311 1.18995i
\(433\) 134.778i 0.311266i −0.987815 0.155633i \(-0.950258\pi\)
0.987815 0.155633i \(-0.0497417\pi\)
\(434\) −637.894 + 423.327i −1.46980 + 0.975408i
\(435\) 219.634 80.0386i 0.504905 0.183997i
\(436\) −113.285 −0.259829
\(437\) 497.439 + 287.197i 1.13831 + 0.657201i
\(438\) 549.298 200.174i 1.25410 0.457019i
\(439\) 5.06360 2.92347i 0.0115344 0.00665939i −0.494222 0.869336i \(-0.664547\pi\)
0.505756 + 0.862677i \(0.331214\pi\)
\(440\) 4.80927i 0.0109302i
\(441\) 430.014 + 97.8200i 0.975089 + 0.221814i
\(442\) 149.399 0.338007
\(443\) 80.1590 + 138.839i 0.180946 + 0.313407i 0.942203 0.335043i \(-0.108751\pi\)
−0.761257 + 0.648450i \(0.775417\pi\)
\(444\) 89.0043 + 15.6575i 0.200460 + 0.0352647i
\(445\) −28.6811 + 49.6772i −0.0644520 + 0.111634i
\(446\) 36.4190i 0.0816570i
\(447\) −50.6163 + 60.3707i −0.113236 + 0.135057i
\(448\) 156.464 + 235.769i 0.349250 + 0.526271i
\(449\) 46.7901 0.104209 0.0521047 0.998642i \(-0.483407\pi\)
0.0521047 + 0.998642i \(0.483407\pi\)
\(450\) −328.150 + 275.794i −0.729223 + 0.612875i
\(451\) 7.31257 4.22191i 0.0162141 0.00936122i
\(452\) −103.539 −0.229069
\(453\) 231.050 275.576i 0.510044 0.608335i
\(454\) 59.2669 34.2177i 0.130544 0.0753695i
\(455\) −34.9258 + 70.2638i −0.0767601 + 0.154426i
\(456\) −396.224 + 144.392i −0.868913 + 0.316648i
\(457\) −277.170 480.073i −0.606499 1.05049i −0.991813 0.127702i \(-0.959240\pi\)
0.385314 0.922786i \(-0.374093\pi\)
\(458\) 354.298 204.554i 0.773577 0.446625i
\(459\) −310.702 + 0.368970i −0.676910 + 0.000803855i
\(460\) 46.6132 + 26.9122i 0.101333 + 0.0585047i
\(461\) 117.654 + 67.9273i 0.255214 + 0.147348i 0.622149 0.782899i \(-0.286260\pi\)
−0.366935 + 0.930246i \(0.619593\pi\)
\(462\) 7.01137 + 16.0543i 0.0151761 + 0.0347497i
\(463\) 0.952160 + 1.64919i 0.00205650 + 0.00356196i 0.867052 0.498218i \(-0.166012\pi\)
−0.864995 + 0.501780i \(0.832679\pi\)
\(464\) −766.916 −1.65284
\(465\) 96.9952 + 266.164i 0.208592 + 0.572396i
\(466\) −783.716 −1.68179
\(467\) −89.3271 51.5730i −0.191278 0.110435i 0.401302 0.915946i \(-0.368558\pi\)
−0.592581 + 0.805511i \(0.701891\pi\)
\(468\) −52.3697 + 9.27694i −0.111901 + 0.0198225i
\(469\) 527.782 32.9234i 1.12533 0.0701991i
\(470\) 115.512 200.072i 0.245770 0.425686i
\(471\) 552.332 201.280i 1.17268 0.427346i
\(472\) 53.3791 + 30.8184i 0.113091 + 0.0652933i
\(473\) −3.99917 + 6.92677i −0.00845491 + 0.0146443i
\(474\) −108.624 298.075i −0.229164 0.628849i
\(475\) 387.580 + 223.769i 0.815958 + 0.471094i
\(476\) −68.4476 + 45.4240i −0.143797 + 0.0954286i
\(477\) 602.583 506.441i 1.26328 1.06172i
\(478\) 111.163 192.540i 0.232559 0.402804i
\(479\) 191.432i 0.399649i −0.979832 0.199825i \(-0.935963\pi\)
0.979832 0.199825i \(-0.0640372\pi\)
\(480\) −86.9629 + 31.6909i −0.181173 + 0.0660227i
\(481\) 171.163i 0.355848i
\(482\) −545.209 + 314.777i −1.13114 + 0.653064i
\(483\) 569.374 + 63.9440i 1.17883 + 0.132389i
\(484\) 61.6283 106.743i 0.127331 0.220544i
\(485\) −136.856 + 237.042i −0.282178 + 0.488746i
\(486\) 535.981 95.6021i 1.10284 0.196712i
\(487\) −224.406 388.683i −0.460794 0.798118i 0.538207 0.842813i \(-0.319102\pi\)
−0.999001 + 0.0446948i \(0.985768\pi\)
\(488\) 407.868 235.483i 0.835795 0.482547i
\(489\) −85.9578 235.876i −0.175783 0.482365i
\(490\) −26.3930 210.725i −0.0538633 0.430051i
\(491\) −40.8828 70.8111i −0.0832644 0.144218i 0.821386 0.570373i \(-0.193201\pi\)
−0.904650 + 0.426155i \(0.859868\pi\)
\(492\) −53.1674 44.5769i −0.108064 0.0906034i
\(493\) 463.530i 0.940224i
\(494\) 136.662 + 236.705i 0.276644 + 0.479161i
\(495\) 6.38301 1.13071i 0.0128950 0.00228426i
\(496\) 929.392i 1.87377i
\(497\) −377.282 568.511i −0.759119 1.14389i
\(498\) −482.798 404.790i −0.969474 0.812832i
\(499\) −27.5430 −0.0551964 −0.0275982 0.999619i \(-0.508786\pi\)
−0.0275982 + 0.999619i \(0.508786\pi\)
\(500\) 79.0307 + 45.6284i 0.158061 + 0.0912568i
\(501\) −129.541 + 736.366i −0.258564 + 1.46979i
\(502\) 32.2061 18.5942i 0.0641556 0.0370402i
\(503\) 49.4903i 0.0983902i 0.998789 + 0.0491951i \(0.0156656\pi\)
−0.998789 + 0.0491951i \(0.984334\pi\)
\(504\) −304.552 + 290.172i −0.604270 + 0.575738i
\(505\) −90.7653 −0.179733
\(506\) 11.3802 + 19.7111i 0.0224905 + 0.0389547i
\(507\) 139.103 + 381.712i 0.274365 + 0.752883i
\(508\) 25.0372 43.3658i 0.0492859 0.0853657i
\(509\) 125.689i 0.246934i −0.992349 0.123467i \(-0.960599\pi\)
0.992349 0.123467i \(-0.0394013\pi\)
\(510\) 51.2301 + 140.580i 0.100451 + 0.275648i
\(511\) −545.219 271.011i −1.06696 0.530354i
\(512\) −204.849 −0.400097
\(513\) −284.797 491.933i −0.555160 0.958934i
\(514\) 165.318 95.4464i 0.321630 0.185693i
\(515\) −254.470 −0.494116
\(516\) 64.7276 + 11.3868i 0.125441 + 0.0220675i
\(517\) 17.1879 9.92344i 0.0332454 0.0191943i
\(518\) −256.160 385.998i −0.494518 0.745169i
\(519\) 144.733 822.727i 0.278869 1.58522i
\(520\) −37.4228 64.8182i −0.0719670 0.124650i
\(521\) −606.831 + 350.354i −1.16474 + 0.672464i −0.952436 0.304739i \(-0.901431\pi\)
−0.212306 + 0.977203i \(0.568097\pi\)
\(522\) −141.677 799.789i −0.271413 1.53216i
\(523\) −302.754 174.795i −0.578879 0.334216i 0.181809 0.983334i \(-0.441805\pi\)
−0.760688 + 0.649118i \(0.775138\pi\)
\(524\) 109.728 + 63.3515i 0.209405 + 0.120900i
\(525\) 443.628 + 49.8220i 0.845005 + 0.0948990i
\(526\) 399.541 + 692.026i 0.759584 + 1.31564i
\(527\) −561.732 −1.06591
\(528\) −20.9454 3.68469i −0.0396693 0.00697858i
\(529\) 215.388 0.407160
\(530\) −328.277 189.531i −0.619390 0.357605i
\(531\) −28.3532 + 78.0921i −0.0533959 + 0.147066i
\(532\) −134.581 66.8959i −0.252972 0.125744i
\(533\) 65.7048 113.804i 0.123273 0.213516i
\(534\) 152.733 + 128.055i 0.286017 + 0.239804i
\(535\) −234.400 135.331i −0.438131 0.252955i
\(536\) −252.207 + 436.835i −0.470535 + 0.814990i
\(537\) −760.862 133.850i −1.41688 0.249255i
\(538\) 747.204 + 431.399i 1.38886 + 0.801856i
\(539\) 7.08792 16.8114i 0.0131501 0.0311900i
\(540\) −26.6873 46.0973i −0.0494209 0.0853653i
\(541\) −350.723 + 607.469i −0.648286 + 1.12286i 0.335246 + 0.942131i \(0.391180\pi\)
−0.983532 + 0.180734i \(0.942153\pi\)
\(542\) 139.584i 0.257534i
\(543\) −67.2523 56.3860i −0.123853 0.103842i
\(544\) 183.533i 0.337376i
\(545\) 186.096 107.443i 0.341461 0.197143i
\(546\) 219.423 + 161.819i 0.401873 + 0.296371i
\(547\) −202.629 + 350.964i −0.370437 + 0.641616i −0.989633 0.143620i \(-0.954126\pi\)
0.619195 + 0.785237i \(0.287459\pi\)
\(548\) −2.36124 + 4.08979i −0.00430884 + 0.00746313i
\(549\) 408.434 + 485.971i 0.743960 + 0.885193i
\(550\) 8.86688 + 15.3579i 0.0161216 + 0.0279234i
\(551\) −734.410 + 424.012i −1.33287 + 0.769532i
\(552\) −351.132 + 418.799i −0.636108 + 0.758694i
\(553\) −147.063 + 295.861i −0.265937 + 0.535011i
\(554\) −95.2339 164.950i −0.171902 0.297744i
\(555\) −161.059 + 58.6930i −0.290197 + 0.105753i
\(556\) 44.4000i 0.0798560i
\(557\) −51.7943 89.7104i −0.0929880 0.161060i 0.815779 0.578364i \(-0.196308\pi\)
−0.908767 + 0.417304i \(0.862975\pi\)
\(558\) 969.229 171.693i 1.73697 0.307693i
\(559\) 124.477i 0.222677i
\(560\) 230.865 + 114.755i 0.412258 + 0.204920i
\(561\) −2.22706 + 12.6596i −0.00396980 + 0.0225661i
\(562\) −331.069 −0.589092
\(563\) 113.286 + 65.4059i 0.201219 + 0.116174i 0.597224 0.802074i \(-0.296270\pi\)
−0.396005 + 0.918248i \(0.629604\pi\)
\(564\) −124.968 104.776i −0.221574 0.185773i
\(565\) 170.086 98.1994i 0.301038 0.173804i
\(566\) 786.000i 1.38869i
\(567\) −456.728 335.988i −0.805517 0.592572i
\(568\) 650.834 1.14584
\(569\) 317.790 + 550.428i 0.558506 + 0.967361i 0.997621 + 0.0689303i \(0.0219586\pi\)
−0.439115 + 0.898431i \(0.644708\pi\)
\(570\) −175.871 + 209.763i −0.308545 + 0.368006i
\(571\) −86.0297 + 149.008i −0.150665 + 0.260959i −0.931472 0.363813i \(-0.881475\pi\)
0.780807 + 0.624772i \(0.214808\pi\)
\(572\) 2.20030i 0.00384668i
\(573\) 179.554 + 31.5869i 0.313358 + 0.0551255i
\(574\) 22.1438 + 354.978i 0.0385780 + 0.618429i
\(575\) 579.990 1.00868
\(576\) −63.4585 358.233i −0.110171 0.621932i
\(577\) 27.4829 15.8672i 0.0476306 0.0274996i −0.475996 0.879448i \(-0.657912\pi\)
0.523626 + 0.851948i \(0.324579\pi\)
\(578\) 350.812 0.606942
\(579\) 25.5528 + 70.1193i 0.0441326 + 0.121104i
\(580\) −68.8189 + 39.7326i −0.118653 + 0.0685045i
\(581\) 40.8514 + 654.873i 0.0703122 + 1.12715i
\(582\) 728.789 + 611.035i 1.25222 + 1.04989i
\(583\) −16.2823 28.2017i −0.0279285 0.0483735i
\(584\) 502.964 290.386i 0.861240 0.497237i
\(585\) 77.2303 64.9081i 0.132018 0.110954i
\(586\) −95.8236 55.3238i −0.163521 0.0944092i
\(587\) 780.765 + 450.775i 1.33009 + 0.767929i 0.985314 0.170754i \(-0.0546204\pi\)
0.344779 + 0.938684i \(0.387954\pi\)
\(588\) −149.729 7.42327i −0.254642 0.0126246i
\(589\) −513.842 890.000i −0.872396 1.51104i
\(590\) 40.0087 0.0678113
\(591\) 335.994 400.744i 0.568517 0.678077i
\(592\) 562.387 0.949978
\(593\) −92.1847 53.2228i −0.155455 0.0897518i 0.420255 0.907406i \(-0.361941\pi\)
−0.575709 + 0.817654i \(0.695274\pi\)
\(594\) −0.0267479 22.5239i −4.50302e−5 0.0379190i
\(595\) 69.3590 139.536i 0.116570 0.234515i
\(596\) 13.3906 23.1932i 0.0224674 0.0389147i
\(597\) 150.182 853.702i 0.251561 1.42999i
\(598\) 306.759 + 177.108i 0.512976 + 0.296167i
\(599\) 407.540 705.880i 0.680367 1.17843i −0.294501 0.955651i \(-0.595154\pi\)
0.974869 0.222780i \(-0.0715131\pi\)
\(600\) −273.584 + 326.308i −0.455974 + 0.543846i
\(601\) 222.029 + 128.189i 0.369433 + 0.213292i 0.673211 0.739451i \(-0.264915\pi\)
−0.303778 + 0.952743i \(0.598248\pi\)
\(602\) −186.290 280.714i −0.309453 0.466302i
\(603\) −639.077 232.032i −1.05983 0.384796i
\(604\) −61.1244 + 105.871i −0.101199 + 0.175282i
\(605\) 233.800i 0.386445i
\(606\) −54.6416 + 310.607i −0.0901676 + 0.512552i
\(607\) 323.825i 0.533485i 0.963768 + 0.266742i \(0.0859473\pi\)
−0.963768 + 0.266742i \(0.914053\pi\)
\(608\) 290.786 167.886i 0.478267 0.276128i
\(609\) −502.064 + 680.789i −0.824407 + 1.11788i
\(610\) 152.852 264.748i 0.250578 0.434014i
\(611\) 154.436 267.492i 0.252760 0.437793i
\(612\) 104.001 18.4230i 0.169936 0.0301030i
\(613\) 310.620 + 538.010i 0.506721 + 0.877667i 0.999970 + 0.00777855i \(0.00247602\pi\)
−0.493248 + 0.869888i \(0.664191\pi\)
\(614\) 839.540 484.709i 1.36733 0.789428i
\(615\) 129.617 + 22.8021i 0.210759 + 0.0370766i
\(616\) 9.62289 + 14.5003i 0.0156216 + 0.0235395i
\(617\) 372.353 + 644.935i 0.603490 + 1.04527i 0.992288 + 0.123952i \(0.0395569\pi\)
−0.388799 + 0.921323i \(0.627110\pi\)
\(618\) −153.193 + 870.817i −0.247885 + 1.40909i
\(619\) 183.637i 0.296668i 0.988937 + 0.148334i \(0.0473910\pi\)
−0.988937 + 0.148334i \(0.952609\pi\)
\(620\) −48.1502 83.3986i −0.0776616 0.134514i
\(621\) −638.398 367.569i −1.02802 0.591899i
\(622\) 374.587i 0.602230i
\(623\) −12.9233 207.169i −0.0207437 0.332535i
\(624\) −310.970 + 113.323i −0.498349 + 0.181607i
\(625\) 358.348 0.573356
\(626\) 501.739 + 289.679i 0.801501 + 0.462747i
\(627\) −22.0948 + 8.05176i −0.0352389 + 0.0128417i
\(628\) −173.065 + 99.9191i −0.275581 + 0.159107i
\(629\) 339.911i 0.540399i
\(630\) −77.0250 + 261.960i −0.122262 + 0.415809i
\(631\) 325.873 0.516439 0.258220 0.966086i \(-0.416864\pi\)
0.258220 + 0.966086i \(0.416864\pi\)
\(632\) −157.577 272.932i −0.249331 0.431854i
\(633\) −884.030 155.518i −1.39657 0.245683i
\(634\) 226.865 392.942i 0.357831 0.619782i
\(635\) 94.9838i 0.149581i
\(636\) −171.916 + 205.046i −0.270308 + 0.322400i
\(637\) −35.2868 281.734i −0.0553953 0.442283i
\(638\) −33.6030 −0.0526693
\(639\) 153.018 + 863.807i 0.239464 + 1.35181i
\(640\) −258.603 + 149.304i −0.404067 + 0.233288i
\(641\) −178.662 −0.278725 −0.139362 0.990241i \(-0.544505\pi\)
−0.139362 + 0.990241i \(0.544505\pi\)
\(642\) −604.226 + 720.667i −0.941162 + 1.12253i
\(643\) 60.1837 34.7471i 0.0935983 0.0540390i −0.452470 0.891780i \(-0.649457\pi\)
0.546069 + 0.837740i \(0.316124\pi\)
\(644\) −194.391 + 12.1263i −0.301850 + 0.0188296i
\(645\) −117.129 + 42.6840i −0.181595 + 0.0661767i
\(646\) −271.396 470.072i −0.420118 0.727666i
\(647\) −712.875 + 411.579i −1.10182 + 0.636134i −0.936697 0.350140i \(-0.886134\pi\)
−0.165119 + 0.986274i \(0.552801\pi\)
\(648\) 507.933 185.784i 0.783848 0.286704i
\(649\) 2.97660 + 1.71854i 0.00458644 + 0.00264798i
\(650\) 239.012 + 137.993i 0.367710 + 0.212298i
\(651\) −825.018 608.429i −1.26731 0.934607i
\(652\) 42.6710 + 73.9084i 0.0654463 + 0.113356i
\(653\) 782.435 1.19822 0.599108 0.800668i \(-0.295522\pi\)
0.599108 + 0.800668i \(0.295522\pi\)
\(654\) −255.647 701.520i −0.390897 1.07266i
\(655\) −240.337 −0.366926
\(656\) −373.924 215.885i −0.570006 0.329093i
\(657\) 503.662 + 599.276i 0.766608 + 0.912141i
\(658\) 52.0480 + 834.362i 0.0791004 + 1.26803i
\(659\) 90.6800 157.062i 0.137602 0.238334i −0.788986 0.614411i \(-0.789394\pi\)
0.926589 + 0.376077i \(0.122727\pi\)
\(660\) −2.07042 + 0.754501i −0.00313701 + 0.00114318i
\(661\) −167.119 96.4862i −0.252827 0.145970i 0.368231 0.929734i \(-0.379964\pi\)
−0.621058 + 0.783764i \(0.713297\pi\)
\(662\) −38.2635 + 66.2743i −0.0577999 + 0.100112i
\(663\) 68.4934 + 187.953i 0.103308 + 0.283488i
\(664\) −542.025 312.939i −0.816303 0.471293i
\(665\) 284.525 17.7489i 0.427857 0.0266900i
\(666\) 103.893 + 586.493i 0.155996 + 0.880620i
\(667\) −549.500 + 951.762i −0.823839 + 1.42693i
\(668\) 254.164i 0.380484i
\(669\) −45.8172 + 16.6966i −0.0684861 + 0.0249576i
\(670\) 327.416i 0.488681i
\(671\) 22.7441 13.1313i 0.0338958 0.0195698i
\(672\) 198.790 269.555i 0.295818 0.401124i
\(673\) −41.9447 + 72.6503i −0.0623249 + 0.107950i −0.895504 0.445053i \(-0.853185\pi\)
0.833179 + 0.553003i \(0.186518\pi\)
\(674\) 461.215 798.849i 0.684296 1.18524i
\(675\) −497.408 286.392i −0.736901 0.424284i
\(676\) −69.0532 119.604i −0.102150 0.176929i
\(677\) −179.443 + 103.601i −0.265056 + 0.153030i −0.626639 0.779310i \(-0.715570\pi\)
0.361583 + 0.932340i \(0.382236\pi\)
\(678\) −233.653 641.167i −0.344621 0.945674i
\(679\) −61.6656 988.538i −0.0908182 1.45587i
\(680\) 74.3178 + 128.722i 0.109291 + 0.189297i
\(681\) 70.2193 + 58.8737i 0.103112 + 0.0864518i
\(682\) 40.7220i 0.0597097i
\(683\) −639.939 1108.41i −0.936953 1.62285i −0.771113 0.636698i \(-0.780300\pi\)
−0.165841 0.986153i \(-0.553034\pi\)
\(684\) 124.323 + 147.925i 0.181759 + 0.216264i
\(685\) 8.95786i 0.0130772i
\(686\) 501.218 + 582.544i 0.730639 + 0.849189i
\(687\) 419.772 + 351.948i 0.611022 + 0.512296i
\(688\) 408.991 0.594464
\(689\) −438.898 253.398i −0.637007 0.367776i
\(690\) −61.4632 + 349.384i −0.0890771 + 0.506353i
\(691\) 1052.86 607.869i 1.52368 0.879695i 0.524069 0.851676i \(-0.324413\pi\)
0.999607 0.0280193i \(-0.00892000\pi\)
\(692\) 283.972i 0.410364i
\(693\) −16.9829 + 16.1810i −0.0245063 + 0.0233492i
\(694\) −1338.67 −1.92892
\(695\) 42.1101 + 72.9368i 0.0605900 + 0.104945i
\(696\) −276.268 758.105i −0.396936 1.08923i
\(697\) −130.483 + 226.003i −0.187206 + 0.324251i
\(698\) 188.410i 0.269928i
\(699\) −359.302 985.960i −0.514023 1.41053i
\(700\) −151.460 + 9.44818i −0.216372 + 0.0134974i
\(701\) −1171.72 −1.67149 −0.835747 0.549114i \(-0.814965\pi\)
−0.835747 + 0.549114i \(0.814965\pi\)
\(702\) −175.628 303.364i −0.250182 0.432142i
\(703\) 538.550 310.932i 0.766074 0.442293i
\(704\) −15.0511 −0.0213794
\(705\) 304.660 + 53.5954i 0.432142 + 0.0760218i
\(706\) −889.515 + 513.562i −1.25994 + 0.727425i
\(707\) 273.665 181.613i 0.387079 0.256878i
\(708\) 4.89319 27.8150i 0.00691129 0.0392868i
\(709\) 55.8366 + 96.7119i 0.0787540 + 0.136406i 0.902713 0.430244i \(-0.141572\pi\)
−0.823959 + 0.566650i \(0.808239\pi\)
\(710\) 365.860 211.229i 0.515295 0.297506i
\(711\) 325.195 273.310i 0.457377 0.384403i
\(712\) 171.470 + 98.9981i 0.240828 + 0.139042i
\(713\) −1153.40 665.915i −1.61767 0.933962i
\(714\) −435.751 321.355i −0.610295 0.450077i
\(715\) −2.08682 3.61448i −0.00291863 0.00505522i
\(716\) 262.619 0.366786
\(717\) 293.190 + 51.5777i 0.408913 + 0.0719355i
\(718\) −28.8019 −0.0401141
\(719\) 1204.35 + 695.331i 1.67503 + 0.967081i 0.964751 + 0.263164i \(0.0847662\pi\)
0.710283 + 0.703917i \(0.248567\pi\)
\(720\) −213.268 253.754i −0.296205 0.352437i
\(721\) 767.247 509.170i 1.06414 0.706199i
\(722\) 92.1074 159.535i 0.127573 0.220962i
\(723\) −645.964 541.592i −0.893449 0.749090i
\(724\) 25.8370 + 14.9170i 0.0356864 + 0.0206036i
\(725\) −428.143 + 741.566i −0.590543 + 1.02285i
\(726\) 800.082 + 140.750i 1.10204 + 0.193870i
\(727\) −570.198 329.204i −0.784317 0.452826i 0.0536411 0.998560i \(-0.482917\pi\)
−0.837958 + 0.545735i \(0.816251\pi\)
\(728\) 242.528 + 120.553i 0.333143 + 0.165595i
\(729\) 365.998 + 630.465i 0.502055 + 0.864835i
\(730\) 188.491 326.475i 0.258206 0.447226i
\(731\) 247.197i 0.338163i
\(732\) −165.365 138.647i −0.225909 0.189408i
\(733\) 372.006i 0.507512i 0.967268 + 0.253756i \(0.0816659\pi\)
−0.967268 + 0.253756i \(0.918334\pi\)
\(734\) −1199.80 + 692.703i −1.63460 + 0.943737i
\(735\) 253.004 129.813i 0.344223 0.176616i
\(736\) 217.572 376.846i 0.295614 0.512019i
\(737\) −14.0639 + 24.3594i −0.0190826 + 0.0330521i
\(738\) 156.061 429.834i 0.211465 0.582431i
\(739\) 470.172 + 814.362i 0.636227 + 1.10198i 0.986254 + 0.165238i \(0.0528393\pi\)
−0.350026 + 0.936740i \(0.613827\pi\)
\(740\) 50.4655 29.1363i 0.0681967 0.0393734i
\(741\) −235.135 + 280.448i −0.317321 + 0.378473i
\(742\) 1369.01 85.4000i 1.84503 0.115094i
\(743\) −103.438 179.161i −0.139217 0.241131i 0.787983 0.615697i \(-0.211125\pi\)
−0.927201 + 0.374565i \(0.877792\pi\)
\(744\) 918.714 334.797i 1.23483 0.449995i
\(745\) 50.7999i 0.0681878i
\(746\) −0.648921 1.12396i −0.000869867 0.00150665i
\(747\) 287.906 792.968i 0.385416 1.06154i
\(748\) 4.36957i 0.00584167i
\(749\) 977.521 60.9784i 1.30510 0.0814130i
\(750\) −104.208 + 592.365i −0.138944 + 0.789820i
\(751\) 1448.31 1.92850 0.964252 0.264986i \(-0.0853675\pi\)
0.964252 + 0.264986i \(0.0853675\pi\)
\(752\) −878.894 507.430i −1.16874 0.674773i
\(753\) 38.1578 + 31.9924i 0.0506743 + 0.0424866i
\(754\) −452.894 + 261.478i −0.600655 + 0.346788i
\(755\) 231.888i 0.307136i
\(756\) 172.701 + 85.5883i 0.228440 + 0.113212i
\(757\) −296.987 −0.392321 −0.196161 0.980572i \(-0.562847\pi\)
−0.196161 + 0.980572i \(0.562847\pi\)
\(758\) −20.7262 35.8989i −0.0273433 0.0473600i
\(759\) −19.5803 + 23.3537i −0.0257975 + 0.0307690i
\(760\) −135.964 + 235.496i −0.178900 + 0.309863i
\(761\) 294.080i 0.386439i 0.981156 + 0.193220i \(0.0618930\pi\)
−0.981156 + 0.193220i \(0.938107\pi\)
\(762\) 325.043 + 57.1812i 0.426565 + 0.0750409i
\(763\) −346.113 + 696.311i −0.453622 + 0.912596i
\(764\) −61.9748 −0.0811188
\(765\) −153.371 + 128.901i −0.200485 + 0.168498i
\(766\) 109.859 63.4270i 0.143419 0.0828028i
\(767\) 53.4906 0.0697401
\(768\) 189.164 + 519.084i 0.246307 + 0.675891i
\(769\) −91.6783 + 52.9305i −0.119218 + 0.0688303i −0.558423 0.829556i \(-0.688593\pi\)
0.439205 + 0.898387i \(0.355260\pi\)
\(770\) 10.1155 + 5.02809i 0.0131370 + 0.00652999i
\(771\) 195.869 + 164.221i 0.254045 + 0.212998i
\(772\) −12.6849 21.9708i −0.0164312 0.0284596i
\(773\) −1070.93 + 618.299i −1.38541 + 0.799869i −0.992794 0.119832i \(-0.961765\pi\)
−0.392620 + 0.919701i \(0.628431\pi\)
\(774\) 75.5555 + 426.522i 0.0976169 + 0.551062i
\(775\) −898.671 518.848i −1.15958 0.669481i
\(776\) 818.193 + 472.384i 1.05437 + 0.608742i
\(777\) 368.168 499.229i 0.473833 0.642508i
\(778\) −463.296 802.452i −0.595496 1.03143i
\(779\) −477.434 −0.612880
\(780\) −22.0336 + 26.2798i −0.0282483 + 0.0336920i
\(781\) 36.2927 0.0464696
\(782\) −609.192 351.717i −0.779018 0.449766i
\(783\) 941.227 544.909i 1.20208 0.695925i
\(784\) −925.690 + 115.941i −1.18073 + 0.147884i
\(785\) 189.532 328.278i 0.241442 0.418189i
\(786\) −144.685 + 822.453i −0.184078 + 1.04638i
\(787\) 728.889 + 420.825i 0.926162 + 0.534720i 0.885596 0.464457i \(-0.153750\pi\)
0.0405663 + 0.999177i \(0.487084\pi\)
\(788\) −88.8874 + 153.957i −0.112801 + 0.195377i
\(789\) −687.435 + 819.912i −0.871273 + 1.03918i
\(790\) −177.161 102.284i −0.224254 0.129473i
\(791\) −316.337 + 636.406i −0.399920 + 0.804559i
\(792\) −3.90284 22.0321i −0.00492783 0.0278183i
\(793\) 204.360 353.962i 0.257705 0.446358i
\(794\) 1398.33i 1.76113i
\(795\) 87.9389 499.883i 0.110615 0.628784i
\(796\) 294.663i 0.370180i
\(797\) −138.377 + 79.8921i −0.173622 + 0.100241i −0.584293 0.811543i \(-0.698628\pi\)
0.410670 + 0.911784i \(0.365295\pi\)
\(798\) 110.549 984.355i 0.138532 1.23353i
\(799\) −306.695 + 531.211i −0.383848 + 0.664844i
\(800\) 169.521 293.620i 0.211902 0.367025i
\(801\) −91.0791 + 250.855i −0.113707 + 0.313178i
\(802\) −142.131 246.178i −0.177220 0.306955i
\(803\) 28.0470 16.1929i 0.0349277 0.0201655i
\(804\) 227.628 + 40.0441i 0.283119 + 0.0498061i
\(805\) 307.830 204.286i 0.382398 0.253771i
\(806\) −316.874 548.842i −0.393144 0.680946i
\(807\) −200.161 + 1137.80i −0.248031 + 1.40992i
\(808\) 313.293i 0.387739i
\(809\) −17.7511 30.7458i −0.0219420 0.0380046i 0.854846 0.518882i \(-0.173652\pi\)
−0.876788 + 0.480877i \(0.840318\pi\)
\(810\) 225.233 269.287i 0.278065 0.332453i
\(811\) 264.939i 0.326682i 0.986570 + 0.163341i \(0.0522271\pi\)
−0.986570 + 0.163341i \(0.947773\pi\)
\(812\) 127.994 257.497i 0.157628 0.317115i
\(813\) 175.604 63.9934i 0.215995 0.0787127i
\(814\) 24.6414 0.0302720
\(815\) −140.193 80.9406i −0.172016 0.0993136i
\(816\) 617.553 225.048i 0.756805 0.275794i
\(817\) 391.656 226.123i 0.479383 0.276772i
\(818\) 969.081i 1.18470i
\(819\) −102.981 + 350.234i −0.125739 + 0.427636i
\(820\) −44.7386 −0.0545592
\(821\) −753.781 1305.59i −0.918126 1.59024i −0.802260 0.596975i \(-0.796369\pi\)
−0.115866 0.993265i \(-0.536964\pi\)
\(822\) −30.6546 5.39271i −0.0372926 0.00656048i
\(823\) −617.420 + 1069.40i −0.750207 + 1.29940i 0.197515 + 0.980300i \(0.436713\pi\)
−0.947722 + 0.319097i \(0.896621\pi\)
\(824\) 878.348i 1.06596i
\(825\) −15.2560 + 18.1960i −0.0184921 + 0.0220558i
\(826\) −120.629 + 80.0535i −0.146040 + 0.0969171i
\(827\) 642.770 0.777231 0.388616 0.921400i \(-0.372953\pi\)
0.388616 + 0.921400i \(0.372953\pi\)
\(828\) 235.383 + 85.4616i 0.284279 + 0.103214i
\(829\) 831.340 479.974i 1.00282 0.578980i 0.0937403 0.995597i \(-0.470118\pi\)
0.909082 + 0.416617i \(0.136784\pi\)
\(830\) −406.258 −0.489468
\(831\) 163.856 195.433i 0.197179 0.235178i
\(832\) −202.855 + 117.119i −0.243816 + 0.140767i
\(833\) 70.0759 + 559.495i 0.0841248 + 0.671662i
\(834\) 274.947 100.196i 0.329672 0.120139i
\(835\) 241.055 + 417.520i 0.288689 + 0.500024i
\(836\) 6.92308 3.99704i 0.00828120 0.00478115i
\(837\) 660.351 + 1140.63i 0.788950 + 1.36276i
\(838\) −337.868 195.068i −0.403184 0.232778i
\(839\) 409.757 + 236.574i 0.488388 + 0.281971i 0.723905 0.689899i \(-0.242345\pi\)
−0.235518 + 0.971870i \(0.575679\pi\)
\(840\) −30.2721 + 269.551i −0.0360382 + 0.320894i
\(841\) −390.772 676.837i −0.464652 0.804800i
\(842\) 786.279 0.933823
\(843\) −151.782 416.504i −0.180050 0.494074i
\(844\) 305.131 0.361530
\(845\) 226.870 + 130.984i 0.268486 + 0.155010i
\(846\) 366.816 1010.31i 0.433589 1.19422i
\(847\) −467.811 704.925i −0.552315 0.832261i
\(848\) −832.586 + 1442.08i −0.981823 + 1.70057i
\(849\) 988.833 360.349i 1.16470 0.424440i
\(850\) −474.652 274.041i −0.558414 0.322401i
\(851\) 402.954 697.936i 0.473506 0.820136i
\(852\) −102.106 280.189i −0.119843 0.328860i
\(853\) −1068.57 616.937i −1.25271 0.723255i −0.281067 0.959688i \(-0.590688\pi\)
−0.971648 + 0.236433i \(0.924022\pi\)
\(854\) 68.8733 + 1104.08i 0.0806479 + 1.29284i
\(855\) −344.524 125.088i −0.402952 0.146301i
\(856\) −467.120 + 809.075i −0.545701 + 0.945181i
\(857\) 397.309i 0.463605i −0.972763 0.231802i \(-0.925538\pi\)
0.972763 0.231802i \(-0.0744622\pi\)
\(858\) −13.6254 + 4.96534i −0.0158804 + 0.00578711i
\(859\) 546.401i 0.636090i −0.948076 0.318045i \(-0.896974\pi\)
0.948076 0.318045i \(-0.103026\pi\)
\(860\) 36.7006 21.1891i 0.0426752 0.0246385i
\(861\) −436.431 + 190.601i −0.506889 + 0.221372i
\(862\) 824.138 1427.45i 0.956076 1.65597i
\(863\) −7.86960 + 13.6305i −0.00911888 + 0.0157944i −0.870549 0.492082i \(-0.836236\pi\)
0.861430 + 0.507876i \(0.169569\pi\)
\(864\) −372.675 + 215.754i −0.431336 + 0.249716i
\(865\) −269.326 466.487i −0.311360 0.539291i
\(866\) −261.513 + 150.985i −0.301978 + 0.174347i
\(867\) 160.833 + 441.342i 0.185505 + 0.509045i
\(868\) 312.050 + 155.110i 0.359504 + 0.178698i
\(869\) −8.78704 15.2196i −0.0101117 0.0175139i
\(870\) −401.345 336.498i −0.461316 0.386779i
\(871\) 437.747i 0.502580i
\(872\) −370.858 642.346i −0.425296 0.736635i
\(873\) −434.597 + 1196.99i −0.497820 + 1.37113i
\(874\) 1286.93i 1.47246i
\(875\) 521.912 346.358i 0.596471 0.395837i
\(876\) −203.921 170.972i −0.232786 0.195174i
\(877\) −173.468 −0.197797 −0.0988984 0.995098i \(-0.531532\pi\)
−0.0988984 + 0.995098i \(0.531532\pi\)
\(878\) −11.3450 6.55002i −0.0129214 0.00746017i
\(879\) 25.6692 145.915i 0.0292028 0.166001i
\(880\) −11.8761 + 6.85665i −0.0134955 + 0.00779164i
\(881\) 1381.76i 1.56840i 0.620507 + 0.784201i \(0.286927\pi\)
−0.620507 + 0.784201i \(0.713073\pi\)
\(882\) −291.920 943.950i −0.330975 1.07024i
\(883\) 1346.90 1.52537 0.762685 0.646771i \(-0.223881\pi\)
0.762685 + 0.646771i \(0.223881\pi\)
\(884\) −34.0014 58.8921i −0.0384631 0.0666200i
\(885\) 18.3424 + 50.3332i 0.0207258 + 0.0568737i
\(886\) 179.596 311.069i 0.202704 0.351094i
\(887\) 615.089i 0.693449i 0.937967 + 0.346724i \(0.112706\pi\)
−0.937967 + 0.346724i \(0.887294\pi\)
\(888\) 202.590 + 555.926i 0.228141 + 0.626042i
\(889\) −190.054 286.384i −0.213784 0.322142i
\(890\) 128.520 0.144404
\(891\) 28.3241 10.3599i 0.0317891 0.0116273i
\(892\) 14.3561 8.28852i 0.0160943 0.00929206i
\(893\) −1122.19 −1.25665
\(894\) 173.842 + 30.5820i 0.194454 + 0.0342081i
\(895\) −431.410 + 249.074i −0.482022 + 0.278295i
\(896\) 480.965 967.605i 0.536792 1.07992i
\(897\) −82.1748 + 467.118i −0.0916107 + 0.520756i
\(898\) −52.4164 90.7880i −0.0583702 0.101100i
\(899\) 1702.86 983.145i 1.89417 1.09360i
\(900\) 183.399 + 66.5874i 0.203777 + 0.0739860i
\(901\) 871.606 + 503.222i 0.967376 + 0.558515i
\(902\) −16.3838 9.45917i −0.0181638 0.0104869i
\(903\) 267.747 363.060i 0.296508 0.402060i
\(904\) −338.953 587.084i −0.374948 0.649429i
\(905\) −56.5906 −0.0625310
\(906\) −793.540 139.599i −0.875872 0.154082i
\(907\) −498.782 −0.549925 −0.274962 0.961455i \(-0.588665\pi\)
−0.274962 + 0.961455i \(0.588665\pi\)
\(908\) −26.9768 15.5751i −0.0297102 0.0171532i
\(909\) −415.812 + 73.6583i −0.457439 + 0.0810323i
\(910\) 175.460 10.9453i 0.192813 0.0120278i
\(911\) 462.758 801.521i 0.507967 0.879825i −0.491990 0.870601i \(-0.663730\pi\)
0.999957 0.00922428i \(-0.00293622\pi\)
\(912\) 921.465 + 772.580i 1.01038 + 0.847127i
\(913\) −30.2252 17.4505i −0.0331053 0.0191134i
\(914\) −620.998 + 1075.60i −0.679429 + 1.17681i
\(915\) 403.145 + 70.9208i 0.440596 + 0.0775091i
\(916\) −161.268 93.1080i −0.176057 0.101646i
\(917\) 724.636 480.891i 0.790224 0.524418i
\(918\) 348.779 + 602.449i 0.379933 + 0.656262i
\(919\) 544.947 943.877i 0.592979 1.02707i −0.400850 0.916144i \(-0.631285\pi\)
0.993829 0.110925i \(-0.0353815\pi\)
\(920\) 352.405i 0.383049i
\(921\) 994.687 + 833.971i 1.08001 + 0.905505i
\(922\) 304.382i 0.330132i
\(923\) 489.146 282.408i 0.529952 0.305968i
\(924\) 4.73282 6.41761i 0.00512210 0.00694546i
\(925\) 313.961 543.797i 0.339418 0.587889i
\(926\) 2.13331 3.69500i 0.00230379 0.00399028i
\(927\) −1165.77 + 206.509i −1.25757 + 0.222771i
\(928\) 321.219 + 556.368i 0.346142 + 0.599535i
\(929\) −465.713 + 268.879i −0.501306 + 0.289429i −0.729253 0.684245i \(-0.760132\pi\)
0.227947 + 0.973674i \(0.426799\pi\)
\(930\) 407.787 486.372i 0.438480 0.522981i
\(931\) −822.353 + 622.822i −0.883301 + 0.668982i
\(932\) 178.364 + 308.936i 0.191378 + 0.331476i
\(933\) −471.252 + 171.733i −0.505093 + 0.184065i
\(934\) 231.098i 0.247428i
\(935\) 4.14421 + 7.17799i 0.00443231 + 0.00767699i
\(936\) −224.042 266.574i −0.239361 0.284802i
\(937\) 647.389i 0.690917i 0.938434 + 0.345459i \(0.112277\pi\)
−0.938434 + 0.345459i \(0.887723\pi\)
\(938\) −655.129 987.187i −0.698431 1.05244i
\(939\) −134.406 + 764.023i −0.143137 + 0.813656i
\(940\) −105.156 −0.111868
\(941\) −113.565 65.5667i −0.120685 0.0696777i 0.438442 0.898759i \(-0.355530\pi\)
−0.559127 + 0.829082i \(0.688864\pi\)
\(942\) −1009.30 846.220i −1.07144 0.898323i
\(943\) −535.838 + 309.366i −0.568227 + 0.328066i
\(944\) 175.753i 0.186179i
\(945\) −364.873 + 23.1960i −0.386109 + 0.0245461i
\(946\) 17.9202 0.0189432
\(947\) −209.492 362.851i −0.221217 0.383159i 0.733961 0.679192i \(-0.237669\pi\)
−0.955178 + 0.296033i \(0.904336\pi\)
\(948\) −92.7776 + 110.657i −0.0978666 + 0.116727i
\(949\) 252.007 436.489i 0.265550 0.459947i
\(950\) 1002.71i 1.05548i
\(951\) 598.352 + 105.261i 0.629182 + 0.110685i
\(952\) −481.635 239.405i −0.505919 0.251476i
\(953\) −1131.25 −1.18704 −0.593520 0.804819i \(-0.702262\pi\)
−0.593520 + 0.804819i \(0.702262\pi\)
\(954\) −1657.70 601.869i −1.73763 0.630890i
\(955\) 101.807 58.7785i 0.106604 0.0615481i
\(956\) −101.197 −0.105855
\(957\) −15.4056 42.2745i −0.0160978 0.0441740i
\(958\) −371.440 + 214.451i −0.387725 + 0.223853i
\(959\) 17.9238 + 27.0087i 0.0186901 + 0.0281634i
\(960\) −179.766 150.720i −0.187256 0.157000i
\(961\) 710.930 + 1231.37i 0.739781 + 1.28134i
\(962\) 332.111 191.745i 0.345230 0.199319i
\(963\) −1183.65 429.754i −1.22913 0.446266i
\(964\) 248.166 + 143.279i 0.257433 + 0.148629i
\(965\) 41.6754 + 24.0613i 0.0431869 + 0.0249340i
\(966\) −513.767 1176.40i −0.531850 1.21781i
\(967\) −115.840 200.640i −0.119793 0.207488i 0.799893 0.600143i \(-0.204890\pi\)
−0.919686 + 0.392656i \(0.871556\pi\)
\(968\) 807.001 0.833679
\(969\) 466.954 556.941i 0.481892 0.574759i
\(970\) 613.251 0.632218
\(971\) 402.557 + 232.416i 0.414579 + 0.239358i 0.692755 0.721173i \(-0.256397\pi\)
−0.278176 + 0.960530i \(0.589730\pi\)
\(972\) −159.668 189.522i −0.164268 0.194982i
\(973\) −272.905 135.652i −0.280478 0.139416i
\(974\) −502.782 + 870.843i −0.516203 + 0.894089i
\(975\) −64.0265 + 363.955i −0.0656682 + 0.373287i
\(976\) −1163.01 671.463i −1.19161 0.687974i
\(977\) 889.489 1540.64i 0.910429 1.57691i 0.0969695 0.995287i \(-0.469085\pi\)
0.813459 0.581622i \(-0.197582\pi\)
\(978\) −361.383 + 431.026i −0.369512 + 0.440722i
\(979\) 9.56174 + 5.52047i 0.00976684 + 0.00563889i
\(980\) −77.0597 + 58.3624i −0.0786324 + 0.0595535i
\(981\) 765.348 643.237i 0.780172 0.655695i
\(982\) −91.5977 + 158.652i −0.0932767 + 0.161560i
\(983\) 229.966i 0.233943i −0.993135 0.116972i \(-0.962681\pi\)
0.993135 0.116972i \(-0.0373186\pi\)
\(984\) 78.7055 447.397i 0.0799853 0.454672i
\(985\) 337.212i 0.342347i
\(986\) 899.400 519.269i 0.912170 0.526642i
\(987\) −1025.81 + 448.001i −1.03933 + 0.453902i
\(988\) 62.2052 107.743i 0.0629607 0.109051i
\(989\) 293.045 507.568i 0.296304 0.513213i
\(990\) −9.34449 11.1184i −0.00943888 0.0112307i
\(991\) −561.974 973.368i −0.567078 0.982208i −0.996853 0.0792720i \(-0.974740\pi\)
0.429775 0.902936i \(-0.358593\pi\)
\(992\) −674.238 + 389.272i −0.679676 + 0.392411i
\(993\) −100.919 17.7536i −0.101631 0.0178787i
\(994\) −680.448 + 1368.92i −0.684555 + 1.37719i
\(995\) −279.466 484.050i −0.280870 0.486482i
\(996\) −49.6867 + 282.441i −0.0498863 + 0.283576i
\(997\) 639.933i 0.641858i 0.947103 + 0.320929i \(0.103995\pi\)
−0.947103 + 0.320929i \(0.896005\pi\)
\(998\) 30.8550 + 53.4424i 0.0309168 + 0.0535495i
\(999\) −690.211 + 399.587i −0.690902 + 0.399987i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.3.k.a.61.4 yes 28
3.2 odd 2 189.3.k.a.19.11 28
7.2 even 3 441.3.l.a.97.4 28
7.3 odd 6 63.3.t.a.52.11 yes 28
7.4 even 3 441.3.t.a.178.11 28
7.5 odd 6 441.3.l.b.97.4 28
7.6 odd 2 441.3.k.b.313.4 28
9.4 even 3 63.3.t.a.40.11 yes 28
9.5 odd 6 189.3.t.a.145.4 28
21.17 even 6 189.3.t.a.73.4 28
63.4 even 3 441.3.k.b.31.4 28
63.13 odd 6 441.3.t.a.166.11 28
63.31 odd 6 inner 63.3.k.a.31.4 28
63.40 odd 6 441.3.l.a.391.4 28
63.58 even 3 441.3.l.b.391.4 28
63.59 even 6 189.3.k.a.10.11 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.4 28 63.31 odd 6 inner
63.3.k.a.61.4 yes 28 1.1 even 1 trivial
63.3.t.a.40.11 yes 28 9.4 even 3
63.3.t.a.52.11 yes 28 7.3 odd 6
189.3.k.a.10.11 28 63.59 even 6
189.3.k.a.19.11 28 3.2 odd 2
189.3.t.a.73.4 28 21.17 even 6
189.3.t.a.145.4 28 9.5 odd 6
441.3.k.b.31.4 28 63.4 even 3
441.3.k.b.313.4 28 7.6 odd 2
441.3.l.a.97.4 28 7.2 even 3
441.3.l.a.391.4 28 63.40 odd 6
441.3.l.b.97.4 28 7.5 odd 6
441.3.l.b.391.4 28 63.58 even 3
441.3.t.a.166.11 28 63.13 odd 6
441.3.t.a.178.11 28 7.4 even 3