Properties

Label 675.2.u.e.49.2
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.2
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55198 - 1.84958i) q^{2} +(0.794060 - 1.53931i) q^{3} +(-0.665000 + 3.77140i) q^{4} +(-4.07944 + 0.920299i) q^{6} +(-0.330906 + 0.0583477i) q^{7} +(3.82562 - 2.20872i) q^{8} +(-1.73894 - 2.44461i) q^{9} +(-4.97408 - 1.81042i) q^{11} +(5.27730 + 4.01836i) q^{12} +(3.93046 - 4.68414i) q^{13} +(0.621479 + 0.521483i) q^{14} +(-2.82523 - 1.02830i) q^{16} +(-2.63465 - 1.52112i) q^{17} +(-1.82269 + 7.01028i) q^{18} +(0.260295 + 0.450843i) q^{19} +(-0.172944 + 0.555698i) q^{21} +(4.37117 + 12.0097i) q^{22} +(0.198788 + 0.0350517i) q^{23} +(-0.362131 - 7.64266i) q^{24} -14.7637 q^{26} +(-5.14382 + 0.735594i) q^{27} -1.28678i q^{28} +(-1.41738 + 1.18933i) q^{29} +(-1.58422 + 8.98458i) q^{31} +(-0.538930 - 1.48070i) q^{32} +(-6.73651 + 6.21906i) q^{33} +(1.27550 + 7.23373i) q^{34} +(10.3760 - 4.93257i) q^{36} +(-5.39074 - 3.11234i) q^{37} +(0.429898 - 1.18114i) q^{38} +(-4.08931 - 9.76968i) q^{39} +(6.96293 + 5.84259i) q^{41} +(1.29621 - 0.542558i) q^{42} +(-2.32373 + 6.38441i) q^{43} +(10.1356 - 17.5553i) q^{44} +(-0.243684 - 0.422073i) q^{46} +(-12.0175 + 2.11902i) q^{47} +(-3.82627 + 3.53236i) q^{48} +(-6.47175 + 2.35553i) q^{49} +(-4.43354 + 2.84768i) q^{51} +(15.0520 + 17.9383i) q^{52} -2.74867i q^{53} +(9.34365 + 8.37227i) q^{54} +(-1.13705 + 0.954096i) q^{56} +(0.900676 - 0.0426766i) q^{57} +(4.39950 + 0.775751i) q^{58} +(6.56519 - 2.38954i) q^{59} +(-2.16727 - 12.2912i) q^{61} +(19.0764 - 11.0137i) q^{62} +(0.718062 + 0.707472i) q^{63} +(-4.90880 + 8.50230i) q^{64} +(21.9576 + 2.80784i) q^{66} +(3.60403 - 4.29512i) q^{67} +(7.48879 - 8.92479i) q^{68} +(0.211805 - 0.278163i) q^{69} +(1.58699 - 2.74874i) q^{71} +(-12.0520 - 5.51130i) q^{72} +(1.26652 - 0.731226i) q^{73} +(2.60980 + 14.8009i) q^{74} +(-1.87341 + 0.681865i) q^{76} +(1.75159 + 0.308852i) q^{77} +(-11.7233 + 22.7259i) q^{78} +(2.18198 - 1.83090i) q^{79} +(-2.95220 + 8.50203i) q^{81} -21.9461i q^{82} +(0.485499 + 0.578595i) q^{83} +(-1.98075 - 1.02178i) q^{84} +(15.4149 - 5.61055i) q^{86} +(0.705250 + 3.12618i) q^{87} +(-23.0276 + 4.06039i) q^{88} +(3.18070 + 5.50914i) q^{89} +(-1.02731 + 1.77934i) q^{91} +(-0.264388 + 0.726400i) q^{92} +(12.5721 + 9.57291i) q^{93} +(22.5703 + 18.9387i) q^{94} +(-2.70719 - 0.346184i) q^{96} +(3.64534 - 10.0155i) q^{97} +(14.4008 + 8.31429i) q^{98} +(4.22385 + 15.3079i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55198 1.84958i −1.09742 1.30785i −0.947715 0.319118i \(-0.896613\pi\)
−0.149701 0.988731i \(-0.547831\pi\)
\(3\) 0.794060 1.53931i 0.458451 0.888720i
\(4\) −0.665000 + 3.77140i −0.332500 + 1.88570i
\(5\) 0 0
\(6\) −4.07944 + 0.920299i −1.66542 + 0.375710i
\(7\) −0.330906 + 0.0583477i −0.125071 + 0.0220534i −0.235833 0.971794i \(-0.575782\pi\)
0.110762 + 0.993847i \(0.464671\pi\)
\(8\) 3.82562 2.20872i 1.35256 0.780901i
\(9\) −1.73894 2.44461i −0.579646 0.814869i
\(10\) 0 0
\(11\) −4.97408 1.81042i −1.49974 0.545861i −0.543748 0.839249i \(-0.682995\pi\)
−0.955994 + 0.293387i \(0.905217\pi\)
\(12\) 5.27730 + 4.01836i 1.52343 + 1.16000i
\(13\) 3.93046 4.68414i 1.09011 1.29915i 0.139005 0.990292i \(-0.455610\pi\)
0.951109 0.308855i \(-0.0999459\pi\)
\(14\) 0.621479 + 0.521483i 0.166097 + 0.139372i
\(15\) 0 0
\(16\) −2.82523 1.02830i −0.706307 0.257075i
\(17\) −2.63465 1.52112i −0.638996 0.368925i 0.145231 0.989398i \(-0.453607\pi\)
−0.784228 + 0.620473i \(0.786941\pi\)
\(18\) −1.82269 + 7.01028i −0.429613 + 1.65234i
\(19\) 0.260295 + 0.450843i 0.0597157 + 0.103431i 0.894338 0.447392i \(-0.147647\pi\)
−0.834622 + 0.550823i \(0.814314\pi\)
\(20\) 0 0
\(21\) −0.172944 + 0.555698i −0.0377396 + 0.121263i
\(22\) 4.37117 + 12.0097i 0.931936 + 2.56047i
\(23\) 0.198788 + 0.0350517i 0.0414501 + 0.00730878i 0.194335 0.980935i \(-0.437745\pi\)
−0.152885 + 0.988244i \(0.548856\pi\)
\(24\) −0.362131 7.64266i −0.0739197 1.56005i
\(25\) 0 0
\(26\) −14.7637 −2.89540
\(27\) −5.14382 + 0.735594i −0.989929 + 0.141565i
\(28\) 1.28678i 0.243179i
\(29\) −1.41738 + 1.18933i −0.263201 + 0.220852i −0.764832 0.644230i \(-0.777178\pi\)
0.501631 + 0.865082i \(0.332734\pi\)
\(30\) 0 0
\(31\) −1.58422 + 8.98458i −0.284535 + 1.61368i 0.422407 + 0.906406i \(0.361185\pi\)
−0.706942 + 0.707272i \(0.749926\pi\)
\(32\) −0.538930 1.48070i −0.0952703 0.261753i
\(33\) −6.73651 + 6.21906i −1.17268 + 1.08260i
\(34\) 1.27550 + 7.23373i 0.218747 + 1.24058i
\(35\) 0 0
\(36\) 10.3760 4.93257i 1.72933 0.822095i
\(37\) −5.39074 3.11234i −0.886232 0.511666i −0.0135239 0.999909i \(-0.504305\pi\)
−0.872708 + 0.488242i \(0.837638\pi\)
\(38\) 0.429898 1.18114i 0.0697387 0.191605i
\(39\) −4.08931 9.76968i −0.654814 1.56440i
\(40\) 0 0
\(41\) 6.96293 + 5.84259i 1.08743 + 0.912459i 0.996516 0.0833996i \(-0.0265778\pi\)
0.0909107 + 0.995859i \(0.471022\pi\)
\(42\) 1.29621 0.542558i 0.200010 0.0837186i
\(43\) −2.32373 + 6.38441i −0.354366 + 0.973613i 0.626584 + 0.779354i \(0.284452\pi\)
−0.980950 + 0.194259i \(0.937770\pi\)
\(44\) 10.1356 17.5553i 1.52800 2.64657i
\(45\) 0 0
\(46\) −0.243684 0.422073i −0.0359293 0.0622313i
\(47\) −12.0175 + 2.11902i −1.75294 + 0.309090i −0.955649 0.294508i \(-0.904844\pi\)
−0.797288 + 0.603598i \(0.793733\pi\)
\(48\) −3.82627 + 3.53236i −0.552275 + 0.509853i
\(49\) −6.47175 + 2.35553i −0.924536 + 0.336504i
\(50\) 0 0
\(51\) −4.43354 + 2.84768i −0.620819 + 0.398755i
\(52\) 15.0520 + 17.9383i 2.08734 + 2.48760i
\(53\) 2.74867i 0.377558i −0.982020 0.188779i \(-0.939547\pi\)
0.982020 0.188779i \(-0.0604530\pi\)
\(54\) 9.34365 + 8.37227i 1.27151 + 1.13932i
\(55\) 0 0
\(56\) −1.13705 + 0.954096i −0.151944 + 0.127496i
\(57\) 0.900676 0.0426766i 0.119297 0.00565265i
\(58\) 4.39950 + 0.775751i 0.577683 + 0.101861i
\(59\) 6.56519 2.38954i 0.854716 0.311091i 0.122754 0.992437i \(-0.460827\pi\)
0.731961 + 0.681346i \(0.238605\pi\)
\(60\) 0 0
\(61\) −2.16727 12.2912i −0.277491 1.57373i −0.730938 0.682444i \(-0.760917\pi\)
0.453447 0.891283i \(-0.350194\pi\)
\(62\) 19.0764 11.0137i 2.42270 1.39875i
\(63\) 0.718062 + 0.707472i 0.0904673 + 0.0891332i
\(64\) −4.90880 + 8.50230i −0.613601 + 1.06279i
\(65\) 0 0
\(66\) 21.9576 + 2.80784i 2.70279 + 0.345621i
\(67\) 3.60403 4.29512i 0.440303 0.524732i −0.499562 0.866278i \(-0.666506\pi\)
0.939865 + 0.341545i \(0.110950\pi\)
\(68\) 7.48879 8.92479i 0.908149 1.08229i
\(69\) 0.211805 0.278163i 0.0254983 0.0334868i
\(70\) 0 0
\(71\) 1.58699 2.74874i 0.188341 0.326216i −0.756356 0.654160i \(-0.773022\pi\)
0.944697 + 0.327944i \(0.106356\pi\)
\(72\) −12.0520 5.51130i −1.42034 0.649513i
\(73\) 1.26652 0.731226i 0.148235 0.0855835i −0.424048 0.905640i \(-0.639391\pi\)
0.572283 + 0.820056i \(0.306058\pi\)
\(74\) 2.60980 + 14.8009i 0.303383 + 1.72057i
\(75\) 0 0
\(76\) −1.87341 + 0.681865i −0.214895 + 0.0782153i
\(77\) 1.75159 + 0.308852i 0.199612 + 0.0351970i
\(78\) −11.7233 + 22.7259i −1.32740 + 2.57320i
\(79\) 2.18198 1.83090i 0.245491 0.205992i −0.511737 0.859142i \(-0.670998\pi\)
0.757228 + 0.653151i \(0.226553\pi\)
\(80\) 0 0
\(81\) −2.95220 + 8.50203i −0.328022 + 0.944670i
\(82\) 21.9461i 2.42354i
\(83\) 0.485499 + 0.578595i 0.0532905 + 0.0635091i 0.792031 0.610481i \(-0.209024\pi\)
−0.738741 + 0.673990i \(0.764579\pi\)
\(84\) −1.98075 1.02178i −0.216118 0.111486i
\(85\) 0 0
\(86\) 15.4149 5.61055i 1.66223 0.605001i
\(87\) 0.705250 + 3.12618i 0.0756108 + 0.335162i
\(88\) −23.0276 + 4.06039i −2.45476 + 0.432840i
\(89\) 3.18070 + 5.50914i 0.337154 + 0.583968i 0.983896 0.178741i \(-0.0572024\pi\)
−0.646742 + 0.762709i \(0.723869\pi\)
\(90\) 0 0
\(91\) −1.02731 + 1.77934i −0.107691 + 0.186526i
\(92\) −0.264388 + 0.726400i −0.0275644 + 0.0757325i
\(93\) 12.5721 + 9.57291i 1.30366 + 0.992664i
\(94\) 22.5703 + 18.9387i 2.32794 + 1.95338i
\(95\) 0 0
\(96\) −2.70719 0.346184i −0.276302 0.0353323i
\(97\) 3.64534 10.0155i 0.370128 1.01692i −0.605184 0.796086i \(-0.706901\pi\)
0.975312 0.220832i \(-0.0708773\pi\)
\(98\) 14.4008 + 8.31429i 1.45470 + 0.839870i
\(99\) 4.22385 + 15.3079i 0.424513 + 1.53850i
\(100\) 0 0
\(101\) −2.11146 11.9747i −0.210098 1.19152i −0.889213 0.457493i \(-0.848748\pi\)
0.679116 0.734031i \(-0.262363\pi\)
\(102\) 12.1478 + 3.78063i 1.20281 + 0.374338i
\(103\) 0.882932 + 2.42584i 0.0869979 + 0.239025i 0.975561 0.219730i \(-0.0705178\pi\)
−0.888563 + 0.458755i \(0.848296\pi\)
\(104\) 4.69048 26.6010i 0.459939 2.60845i
\(105\) 0 0
\(106\) −5.08387 + 4.26588i −0.493790 + 0.414339i
\(107\) 5.35813i 0.517990i 0.965879 + 0.258995i \(0.0833913\pi\)
−0.965879 + 0.258995i \(0.916609\pi\)
\(108\) 0.646421 19.8886i 0.0622019 1.91378i
\(109\) −17.4957 −1.67579 −0.837893 0.545834i \(-0.816213\pi\)
−0.837893 + 0.545834i \(0.816213\pi\)
\(110\) 0 0
\(111\) −9.07143 + 5.82662i −0.861022 + 0.553038i
\(112\) 0.994885 + 0.175425i 0.0940078 + 0.0165761i
\(113\) −5.73211 15.7488i −0.539232 1.48153i −0.847796 0.530323i \(-0.822071\pi\)
0.308564 0.951204i \(-0.400152\pi\)
\(114\) −1.47677 1.59964i −0.138312 0.149820i
\(115\) 0 0
\(116\) −3.54287 6.13642i −0.328947 0.569753i
\(117\) −18.2857 1.46300i −1.69051 0.135255i
\(118\) −14.6087 8.43433i −1.34484 0.776443i
\(119\) 0.960576 + 0.349621i 0.0880558 + 0.0320497i
\(120\) 0 0
\(121\) 13.0374 + 10.9397i 1.18522 + 0.994514i
\(122\) −19.3700 + 23.0842i −1.75368 + 2.08995i
\(123\) 14.5225 6.07872i 1.30945 0.548100i
\(124\) −32.8310 11.9495i −2.94831 1.07310i
\(125\) 0 0
\(126\) 0.194107 2.42610i 0.0172925 0.216134i
\(127\) 6.93350 4.00306i 0.615249 0.355214i −0.159768 0.987155i \(-0.551075\pi\)
0.775017 + 0.631940i \(0.217741\pi\)
\(128\) 20.2405 3.56894i 1.78902 0.315453i
\(129\) 7.98238 + 8.64655i 0.702810 + 0.761286i
\(130\) 0 0
\(131\) 1.87834 10.6526i 0.164111 0.930721i −0.785865 0.618398i \(-0.787782\pi\)
0.949976 0.312323i \(-0.101107\pi\)
\(132\) −18.9748 29.5418i −1.65154 2.57128i
\(133\) −0.112439 0.133999i −0.00974968 0.0116192i
\(134\) −13.5376 −1.16947
\(135\) 0 0
\(136\) −13.4389 −1.15238
\(137\) −8.45733 10.0791i −0.722559 0.861112i 0.272318 0.962207i \(-0.412210\pi\)
−0.994877 + 0.101095i \(0.967765\pi\)
\(138\) −0.843201 + 0.0399532i −0.0717780 + 0.00340105i
\(139\) 1.27373 7.22368i 0.108036 0.612705i −0.881928 0.471385i \(-0.843754\pi\)
0.989964 0.141320i \(-0.0451346\pi\)
\(140\) 0 0
\(141\) −6.28083 + 20.1813i −0.528941 + 1.69957i
\(142\) −7.54699 + 1.33074i −0.633329 + 0.111673i
\(143\) −28.0307 + 16.1835i −2.34404 + 1.35333i
\(144\) 2.39911 + 8.69472i 0.199926 + 0.724560i
\(145\) 0 0
\(146\) −3.31807 1.20768i −0.274606 0.0999483i
\(147\) −1.51308 + 11.8325i −0.124797 + 0.975924i
\(148\) 15.3228 18.2609i 1.25952 1.50104i
\(149\) −10.1927 8.55268i −0.835017 0.700663i 0.121420 0.992601i \(-0.461255\pi\)
−0.956437 + 0.291939i \(0.905700\pi\)
\(150\) 0 0
\(151\) 8.57654 + 3.12160i 0.697949 + 0.254033i 0.666535 0.745474i \(-0.267777\pi\)
0.0314139 + 0.999506i \(0.489999\pi\)
\(152\) 1.99158 + 1.14984i 0.161538 + 0.0932641i
\(153\) 0.862960 + 9.08581i 0.0697662 + 0.734544i
\(154\) −2.14718 3.71903i −0.173025 0.299688i
\(155\) 0 0
\(156\) 39.5648 8.92561i 3.16772 0.714620i
\(157\) −1.51954 4.17491i −0.121273 0.333194i 0.864171 0.503199i \(-0.167844\pi\)
−0.985443 + 0.170005i \(0.945622\pi\)
\(158\) −6.77277 1.19422i −0.538813 0.0950072i
\(159\) −4.23104 2.18261i −0.335544 0.173092i
\(160\) 0 0
\(161\) −0.0678253 −0.00534539
\(162\) 20.3069 7.73466i 1.59546 0.607693i
\(163\) 16.5806i 1.29869i −0.760492 0.649347i \(-0.775042\pi\)
0.760492 0.649347i \(-0.224958\pi\)
\(164\) −26.6651 + 22.3747i −2.08220 + 1.74717i
\(165\) 0 0
\(166\) 0.316672 1.79594i 0.0245785 0.139392i
\(167\) 6.86091 + 18.8502i 0.530913 + 1.45867i 0.857986 + 0.513673i \(0.171716\pi\)
−0.327073 + 0.944999i \(0.606062\pi\)
\(168\) 0.565763 + 2.50788i 0.0436496 + 0.193487i
\(169\) −4.23523 24.0192i −0.325787 1.84763i
\(170\) 0 0
\(171\) 0.649499 1.42031i 0.0496684 0.108613i
\(172\) −22.5329 13.0094i −1.71812 0.991955i
\(173\) −1.14526 + 3.14658i −0.0870725 + 0.239230i −0.975585 0.219623i \(-0.929517\pi\)
0.888512 + 0.458853i \(0.151739\pi\)
\(174\) 4.68759 6.15619i 0.355365 0.466700i
\(175\) 0 0
\(176\) 12.1913 + 10.2297i 0.918951 + 0.771091i
\(177\) 1.53493 12.0033i 0.115372 0.902223i
\(178\) 5.25320 14.4330i 0.393744 1.08180i
\(179\) 6.19883 10.7367i 0.463323 0.802498i −0.535802 0.844344i \(-0.679990\pi\)
0.999124 + 0.0418458i \(0.0133238\pi\)
\(180\) 0 0
\(181\) 2.32049 + 4.01921i 0.172481 + 0.298746i 0.939287 0.343134i \(-0.111488\pi\)
−0.766806 + 0.641879i \(0.778155\pi\)
\(182\) 4.88540 0.861427i 0.362130 0.0638532i
\(183\) −20.6409 6.42386i −1.52582 0.474865i
\(184\) 0.837906 0.304973i 0.0617713 0.0224829i
\(185\) 0 0
\(186\) −1.80576 38.1100i −0.132405 2.79436i
\(187\) 10.3511 + 12.3360i 0.756948 + 0.902095i
\(188\) 46.7321i 3.40829i
\(189\) 1.65920 0.543543i 0.120689 0.0395369i
\(190\) 0 0
\(191\) 10.8645 9.11641i 0.786129 0.659641i −0.158655 0.987334i \(-0.550716\pi\)
0.944784 + 0.327694i \(0.106271\pi\)
\(192\) 9.18977 + 14.3075i 0.663214 + 1.03255i
\(193\) −16.6997 2.94460i −1.20207 0.211957i −0.463477 0.886109i \(-0.653398\pi\)
−0.738593 + 0.674152i \(0.764509\pi\)
\(194\) −24.1819 + 8.80149i −1.73616 + 0.631910i
\(195\) 0 0
\(196\) −4.57992 25.9740i −0.327137 1.85529i
\(197\) 5.91232 3.41348i 0.421236 0.243200i −0.274370 0.961624i \(-0.588469\pi\)
0.695606 + 0.718424i \(0.255136\pi\)
\(198\) 21.7578 31.5699i 1.54626 2.24357i
\(199\) 7.72021 13.3718i 0.547271 0.947901i −0.451189 0.892428i \(-0.649000\pi\)
0.998460 0.0554726i \(-0.0176666\pi\)
\(200\) 0 0
\(201\) −3.74969 8.95830i −0.264483 0.631870i
\(202\) −18.8711 + 22.4898i −1.32777 + 1.58237i
\(203\) 0.399626 0.476256i 0.0280483 0.0334266i
\(204\) −7.79145 18.6144i −0.545510 1.30327i
\(205\) 0 0
\(206\) 3.11648 5.39790i 0.217135 0.376090i
\(207\) −0.259992 0.546911i −0.0180707 0.0380129i
\(208\) −15.9211 + 9.19208i −1.10393 + 0.637356i
\(209\) −0.478511 2.71377i −0.0330993 0.187716i
\(210\) 0 0
\(211\) 17.3343 6.30917i 1.19334 0.434341i 0.332447 0.943122i \(-0.392126\pi\)
0.860896 + 0.508781i \(0.169904\pi\)
\(212\) 10.3663 + 1.82786i 0.711963 + 0.125538i
\(213\) −2.97100 4.62553i −0.203569 0.316936i
\(214\) 9.91028 8.31571i 0.677453 0.568450i
\(215\) 0 0
\(216\) −18.0536 + 14.1754i −1.22839 + 0.964512i
\(217\) 3.06549i 0.208099i
\(218\) 27.1530 + 32.3597i 1.83904 + 2.19168i
\(219\) −0.119888 2.53020i −0.00810129 0.170975i
\(220\) 0 0
\(221\) −17.4805 + 6.36239i −1.17587 + 0.427980i
\(222\) 24.8555 + 7.73552i 1.66819 + 0.519174i
\(223\) −3.06856 + 0.541070i −0.205486 + 0.0362328i −0.275444 0.961317i \(-0.588825\pi\)
0.0699575 + 0.997550i \(0.477714\pi\)
\(224\) 0.264731 + 0.458527i 0.0176881 + 0.0306366i
\(225\) 0 0
\(226\) −20.2326 + 35.0439i −1.34585 + 2.33108i
\(227\) −2.38634 + 6.55642i −0.158387 + 0.435165i −0.993349 0.115143i \(-0.963267\pi\)
0.834962 + 0.550308i \(0.185490\pi\)
\(228\) −0.437999 + 3.42519i −0.0290072 + 0.226839i
\(229\) 7.76380 + 6.51460i 0.513046 + 0.430497i 0.862200 0.506569i \(-0.169086\pi\)
−0.349153 + 0.937066i \(0.613531\pi\)
\(230\) 0 0
\(231\) 1.86628 2.45099i 0.122793 0.161263i
\(232\) −2.79548 + 7.68051i −0.183532 + 0.504250i
\(233\) 9.72275 + 5.61343i 0.636959 + 0.367748i 0.783442 0.621465i \(-0.213462\pi\)
−0.146483 + 0.989213i \(0.546795\pi\)
\(234\) 25.6731 + 36.0914i 1.67830 + 2.35937i
\(235\) 0 0
\(236\) 4.64605 + 26.3490i 0.302432 + 1.71518i
\(237\) −1.08569 4.81257i −0.0705232 0.312610i
\(238\) −0.844143 2.31926i −0.0547177 0.150336i
\(239\) −2.49115 + 14.1280i −0.161139 + 0.913864i 0.791818 + 0.610757i \(0.209135\pi\)
−0.952957 + 0.303106i \(0.901976\pi\)
\(240\) 0 0
\(241\) −7.78696 + 6.53404i −0.501602 + 0.420894i −0.858163 0.513378i \(-0.828394\pi\)
0.356560 + 0.934272i \(0.383949\pi\)
\(242\) 41.0918i 2.64148i
\(243\) 10.7430 + 11.2955i 0.689165 + 0.724605i
\(244\) 47.7963 3.05985
\(245\) 0 0
\(246\) −33.7818 17.4265i −2.15385 1.11107i
\(247\) 3.13489 + 0.552766i 0.199468 + 0.0351717i
\(248\) 13.7838 + 37.8707i 0.875273 + 2.40479i
\(249\) 1.27615 0.287893i 0.0808728 0.0182445i
\(250\) 0 0
\(251\) 0.766397 + 1.32744i 0.0483745 + 0.0837872i 0.889199 0.457521i \(-0.151263\pi\)
−0.840824 + 0.541308i \(0.817929\pi\)
\(252\) −3.14568 + 2.23763i −0.198159 + 0.140958i
\(253\) −0.925329 0.534239i −0.0581749 0.0335873i
\(254\) −18.1646 6.61139i −1.13975 0.414835i
\(255\) 0 0
\(256\) −22.9724 19.2761i −1.43577 1.20476i
\(257\) −15.4081 + 18.3627i −0.961131 + 1.14543i 0.0281791 + 0.999603i \(0.491029\pi\)
−0.989310 + 0.145828i \(0.953415\pi\)
\(258\) 3.60396 28.1833i 0.224373 1.75462i
\(259\) 1.96543 + 0.715357i 0.122126 + 0.0444501i
\(260\) 0 0
\(261\) 5.37217 + 1.39678i 0.332529 + 0.0864586i
\(262\) −22.6179 + 13.0585i −1.39734 + 0.806755i
\(263\) 8.09931 1.42813i 0.499425 0.0880621i 0.0817395 0.996654i \(-0.473952\pi\)
0.417686 + 0.908592i \(0.362841\pi\)
\(264\) −12.0351 + 38.6708i −0.740712 + 2.38002i
\(265\) 0 0
\(266\) −0.0733394 + 0.415929i −0.00449673 + 0.0255022i
\(267\) 11.0059 0.521493i 0.673552 0.0319148i
\(268\) 13.8019 + 16.4485i 0.843088 + 1.00475i
\(269\) −2.05741 −0.125442 −0.0627211 0.998031i \(-0.519978\pi\)
−0.0627211 + 0.998031i \(0.519978\pi\)
\(270\) 0 0
\(271\) −15.4436 −0.938131 −0.469066 0.883163i \(-0.655409\pi\)
−0.469066 + 0.883163i \(0.655409\pi\)
\(272\) 5.87933 + 7.00671i 0.356486 + 0.424844i
\(273\) 1.92322 + 2.99425i 0.116398 + 0.181220i
\(274\) −5.51639 + 31.2850i −0.333257 + 1.89000i
\(275\) 0 0
\(276\) 0.908213 + 0.983780i 0.0546680 + 0.0592166i
\(277\) −1.18559 + 0.209051i −0.0712350 + 0.0125607i −0.209152 0.977883i \(-0.567070\pi\)
0.137917 + 0.990444i \(0.455959\pi\)
\(278\) −15.3376 + 8.85515i −0.919887 + 0.531097i
\(279\) 24.7186 11.7508i 1.47987 0.703503i
\(280\) 0 0
\(281\) 26.1069 + 9.50212i 1.55740 + 0.566849i 0.970140 0.242546i \(-0.0779825\pi\)
0.587265 + 0.809395i \(0.300205\pi\)
\(282\) 47.0746 19.7041i 2.80325 1.17336i
\(283\) −14.5809 + 17.3768i −0.866745 + 1.03295i 0.132383 + 0.991199i \(0.457737\pi\)
−0.999128 + 0.0417476i \(0.986707\pi\)
\(284\) 9.31127 + 7.81309i 0.552522 + 0.463621i
\(285\) 0 0
\(286\) 73.4357 + 26.7284i 4.34235 + 1.58048i
\(287\) −2.64498 1.52708i −0.156128 0.0901406i
\(288\) −2.68256 + 3.89231i −0.158071 + 0.229357i
\(289\) −3.87241 6.70722i −0.227789 0.394542i
\(290\) 0 0
\(291\) −12.5223 13.5642i −0.734069 0.795147i
\(292\) 1.91551 + 5.26282i 0.112097 + 0.307983i
\(293\) −16.4398 2.89878i −0.960422 0.169348i −0.328606 0.944467i \(-0.606579\pi\)
−0.631816 + 0.775119i \(0.717690\pi\)
\(294\) 24.2333 15.5652i 1.41332 0.907779i
\(295\) 0 0
\(296\) −27.4972 −1.59824
\(297\) 26.9175 + 5.65356i 1.56191 + 0.328053i
\(298\) 32.1258i 1.86100i
\(299\) 0.945515 0.793381i 0.0546806 0.0458824i
\(300\) 0 0
\(301\) 0.396423 2.24822i 0.0228494 0.129586i
\(302\) −7.53697 20.7076i −0.433704 1.19159i
\(303\) −20.1093 6.25842i −1.15525 0.359537i
\(304\) −0.271790 1.54140i −0.0155882 0.0884051i
\(305\) 0 0
\(306\) 15.4656 15.6971i 0.884110 0.897344i
\(307\) −5.50011 3.17549i −0.313908 0.181235i 0.334766 0.942301i \(-0.391343\pi\)
−0.648674 + 0.761066i \(0.724676\pi\)
\(308\) −2.32961 + 6.40056i −0.132742 + 0.364706i
\(309\) 4.43521 + 0.567156i 0.252310 + 0.0322644i
\(310\) 0 0
\(311\) −0.398806 0.334638i −0.0226142 0.0189756i 0.631410 0.775449i \(-0.282476\pi\)
−0.654025 + 0.756473i \(0.726921\pi\)
\(312\) −37.2227 28.3429i −2.10732 1.60460i
\(313\) 5.53741 15.2139i 0.312993 0.859942i −0.679056 0.734087i \(-0.737610\pi\)
0.992049 0.125855i \(-0.0401673\pi\)
\(314\) −5.36352 + 9.28988i −0.302681 + 0.524258i
\(315\) 0 0
\(316\) 5.45403 + 9.44666i 0.306813 + 0.531416i
\(317\) 8.30814 1.46495i 0.466631 0.0822797i 0.0646113 0.997911i \(-0.479419\pi\)
0.402020 + 0.915631i \(0.368308\pi\)
\(318\) 2.52960 + 11.2130i 0.141853 + 0.628794i
\(319\) 9.20335 3.34975i 0.515289 0.187550i
\(320\) 0 0
\(321\) 8.24781 + 4.25468i 0.460348 + 0.237473i
\(322\) 0.105264 + 0.125448i 0.00586611 + 0.00699096i
\(323\) 1.58375i 0.0881223i
\(324\) −30.1014 16.7878i −1.67230 0.932655i
\(325\) 0 0
\(326\) −30.6672 + 25.7328i −1.69850 + 1.42521i
\(327\) −13.8927 + 26.9313i −0.768266 + 1.48930i
\(328\) 39.5422 + 6.97235i 2.18335 + 0.384984i
\(329\) 3.85304 1.40239i 0.212425 0.0773163i
\(330\) 0 0
\(331\) −1.19110 6.75507i −0.0654688 0.371292i −0.999886 0.0151112i \(-0.995190\pi\)
0.934417 0.356181i \(-0.115921\pi\)
\(332\) −2.50497 + 1.44625i −0.137478 + 0.0793731i
\(333\) 1.76570 + 18.5904i 0.0967596 + 1.01875i
\(334\) 24.2169 41.9449i 1.32509 2.29513i
\(335\) 0 0
\(336\) 1.06003 1.39214i 0.0578295 0.0759472i
\(337\) 13.5234 16.1166i 0.736667 0.877926i −0.259468 0.965752i \(-0.583547\pi\)
0.996136 + 0.0878255i \(0.0279918\pi\)
\(338\) −37.8523 + 45.1107i −2.05890 + 2.45370i
\(339\) −28.7940 3.68205i −1.56387 0.199981i
\(340\) 0 0
\(341\) 24.1459 41.8219i 1.30757 2.26478i
\(342\) −3.63498 + 1.00299i −0.196557 + 0.0542354i
\(343\) 4.04106 2.33311i 0.218197 0.125976i
\(344\) 5.21166 + 29.5568i 0.280994 + 1.59360i
\(345\) 0 0
\(346\) 7.59726 2.76518i 0.408431 0.148657i
\(347\) 10.9857 + 1.93708i 0.589744 + 0.103988i 0.460553 0.887632i \(-0.347651\pi\)
0.129190 + 0.991620i \(0.458762\pi\)
\(348\) −12.2591 + 0.580871i −0.657156 + 0.0311379i
\(349\) 6.90169 5.79120i 0.369439 0.309996i −0.439101 0.898438i \(-0.644703\pi\)
0.808540 + 0.588442i \(0.200258\pi\)
\(350\) 0 0
\(351\) −16.7720 + 26.9856i −0.895221 + 1.44039i
\(352\) 8.34080i 0.444566i
\(353\) −6.14780 7.32667i −0.327214 0.389959i 0.577208 0.816597i \(-0.304142\pi\)
−0.904422 + 0.426638i \(0.859698\pi\)
\(354\) −24.5832 + 15.7899i −1.30658 + 0.839224i
\(355\) 0 0
\(356\) −22.8924 + 8.33214i −1.21329 + 0.441603i
\(357\) 1.30093 1.20100i 0.0688525 0.0635637i
\(358\) −29.4788 + 5.19791i −1.55800 + 0.274718i
\(359\) 12.6845 + 21.9702i 0.669463 + 1.15954i 0.978054 + 0.208350i \(0.0668092\pi\)
−0.308591 + 0.951195i \(0.599857\pi\)
\(360\) 0 0
\(361\) 9.36449 16.2198i 0.492868 0.853673i
\(362\) 3.83249 10.5297i 0.201431 0.553427i
\(363\) 27.1919 11.3818i 1.42721 0.597389i
\(364\) −6.02747 5.05765i −0.315925 0.265093i
\(365\) 0 0
\(366\) 20.1528 + 48.1466i 1.05341 + 2.51667i
\(367\) 9.18829 25.2446i 0.479625 1.31776i −0.430188 0.902740i \(-0.641553\pi\)
0.909813 0.415019i \(-0.136225\pi\)
\(368\) −0.525578 0.303442i −0.0273976 0.0158180i
\(369\) 2.17474 27.1815i 0.113213 1.41501i
\(370\) 0 0
\(371\) 0.160378 + 0.909551i 0.00832643 + 0.0472215i
\(372\) −44.4637 + 41.0484i −2.30534 + 2.12826i
\(373\) −8.61440 23.6679i −0.446037 1.22548i −0.935461 0.353430i \(-0.885015\pi\)
0.489424 0.872046i \(-0.337207\pi\)
\(374\) 6.75162 38.2904i 0.349118 1.97995i
\(375\) 0 0
\(376\) −41.2942 + 34.6499i −2.12959 + 1.78693i
\(377\) 11.3138i 0.582691i
\(378\) −3.58037 2.22526i −0.184155 0.114455i
\(379\) −25.4242 −1.30595 −0.652976 0.757379i \(-0.726480\pi\)
−0.652976 + 0.757379i \(0.726480\pi\)
\(380\) 0 0
\(381\) −0.656322 13.8515i −0.0336244 0.709632i
\(382\) −33.7230 5.94628i −1.72542 0.304238i
\(383\) 3.38390 + 9.29719i 0.172909 + 0.475064i 0.995630 0.0933808i \(-0.0297674\pi\)
−0.822721 + 0.568445i \(0.807545\pi\)
\(384\) 10.5784 33.9903i 0.539829 1.73456i
\(385\) 0 0
\(386\) 20.4713 + 35.4573i 1.04196 + 1.80473i
\(387\) 19.6482 5.42146i 0.998773 0.275589i
\(388\) 35.3483 + 20.4083i 1.79454 + 1.03608i
\(389\) 4.09700 + 1.49119i 0.207726 + 0.0756061i 0.443788 0.896132i \(-0.353634\pi\)
−0.236061 + 0.971738i \(0.575857\pi\)
\(390\) 0 0
\(391\) −0.470419 0.394728i −0.0237901 0.0199623i
\(392\) −19.5558 + 23.3057i −0.987715 + 1.17711i
\(393\) −14.9061 11.3501i −0.751913 0.572539i
\(394\) −15.4893 5.63765i −0.780340 0.284021i
\(395\) 0 0
\(396\) −60.5410 + 5.75012i −3.04230 + 0.288954i
\(397\) 14.0365 8.10396i 0.704470 0.406726i −0.104540 0.994521i \(-0.533337\pi\)
0.809010 + 0.587795i \(0.200004\pi\)
\(398\) −36.7138 + 6.47363i −1.84030 + 0.324494i
\(399\) −0.295549 + 0.0666743i −0.0147960 + 0.00333789i
\(400\) 0 0
\(401\) −0.111264 + 0.631007i −0.00555624 + 0.0315110i −0.987460 0.157870i \(-0.949537\pi\)
0.981904 + 0.189381i \(0.0606483\pi\)
\(402\) −10.7496 + 20.8385i −0.536143 + 1.03933i
\(403\) 35.8583 + 42.7343i 1.78623 + 2.12875i
\(404\) 46.5654 2.31672
\(405\) 0 0
\(406\) −1.50109 −0.0744976
\(407\) 21.1793 + 25.2405i 1.04982 + 1.25113i
\(408\) −10.6713 + 20.6866i −0.528308 + 1.02414i
\(409\) −4.23533 + 24.0197i −0.209423 + 1.18770i 0.680902 + 0.732374i \(0.261588\pi\)
−0.890326 + 0.455325i \(0.849523\pi\)
\(410\) 0 0
\(411\) −22.2304 + 5.01506i −1.09654 + 0.247375i
\(412\) −9.73596 + 1.71671i −0.479656 + 0.0845763i
\(413\) −2.03304 + 1.17378i −0.100039 + 0.0577577i
\(414\) −0.608052 + 1.32967i −0.0298841 + 0.0653497i
\(415\) 0 0
\(416\) −9.05405 3.29540i −0.443911 0.161570i
\(417\) −10.1081 7.69670i −0.494994 0.376909i
\(418\) −4.27669 + 5.09677i −0.209180 + 0.249291i
\(419\) 13.1999 + 11.0760i 0.644855 + 0.541098i 0.905505 0.424336i \(-0.139492\pi\)
−0.260650 + 0.965433i \(0.583937\pi\)
\(420\) 0 0
\(421\) 21.2230 + 7.72454i 1.03435 + 0.376471i 0.802734 0.596337i \(-0.203378\pi\)
0.231612 + 0.972808i \(0.425600\pi\)
\(422\) −38.5718 22.2694i −1.87765 1.08406i
\(423\) 26.0779 + 25.6933i 1.26795 + 1.24925i
\(424\) −6.07104 10.5154i −0.294836 0.510671i
\(425\) 0 0
\(426\) −3.94435 + 12.6738i −0.191104 + 0.614049i
\(427\) 1.43433 + 3.94078i 0.0694119 + 0.190708i
\(428\) −20.2077 3.56316i −0.976775 0.172232i
\(429\) 2.65337 + 55.9985i 0.128106 + 2.70363i
\(430\) 0 0
\(431\) −10.3129 −0.496754 −0.248377 0.968663i \(-0.579897\pi\)
−0.248377 + 0.968663i \(0.579897\pi\)
\(432\) 15.2889 + 3.21117i 0.735587 + 0.154497i
\(433\) 11.0194i 0.529557i −0.964309 0.264778i \(-0.914701\pi\)
0.964309 0.264778i \(-0.0852988\pi\)
\(434\) −5.66986 + 4.75758i −0.272162 + 0.228371i
\(435\) 0 0
\(436\) 11.6347 65.9835i 0.557199 3.16003i
\(437\) 0.0359406 + 0.0987460i 0.00171927 + 0.00472366i
\(438\) −4.49374 + 4.14856i −0.214719 + 0.198226i
\(439\) 4.27981 + 24.2720i 0.204264 + 1.15844i 0.898593 + 0.438783i \(0.144590\pi\)
−0.694329 + 0.719658i \(0.744299\pi\)
\(440\) 0 0
\(441\) 17.0123 + 11.7248i 0.810110 + 0.558323i
\(442\) 38.8971 + 22.4573i 1.85015 + 1.06818i
\(443\) 7.48678 20.5698i 0.355708 0.977299i −0.624794 0.780789i \(-0.714817\pi\)
0.980502 0.196509i \(-0.0629606\pi\)
\(444\) −15.9420 38.0867i −0.756575 1.80752i
\(445\) 0 0
\(446\) 5.76310 + 4.83582i 0.272891 + 0.228983i
\(447\) −21.2588 + 8.89834i −1.00551 + 0.420877i
\(448\) 1.12826 3.09988i 0.0533055 0.146456i
\(449\) 0.0863524 0.149567i 0.00407522 0.00705849i −0.863981 0.503525i \(-0.832036\pi\)
0.868056 + 0.496467i \(0.165369\pi\)
\(450\) 0 0
\(451\) −24.0566 41.6673i −1.13278 1.96204i
\(452\) 63.2071 11.1451i 2.97301 0.524222i
\(453\) 11.6154 10.7232i 0.545739 0.503819i
\(454\) 15.8302 5.76171i 0.742947 0.270411i
\(455\) 0 0
\(456\) 3.35138 2.15261i 0.156943 0.100805i
\(457\) −5.76201 6.86690i −0.269536 0.321220i 0.614251 0.789111i \(-0.289458\pi\)
−0.883786 + 0.467891i \(0.845014\pi\)
\(458\) 24.4703i 1.14342i
\(459\) 14.6711 + 5.88632i 0.684788 + 0.274750i
\(460\) 0 0
\(461\) 12.4655 10.4598i 0.580576 0.487161i −0.304560 0.952493i \(-0.598510\pi\)
0.885136 + 0.465332i \(0.154065\pi\)
\(462\) −7.42973 + 0.352042i −0.345662 + 0.0163785i
\(463\) 13.5465 + 2.38861i 0.629558 + 0.111008i 0.479318 0.877642i \(-0.340884\pi\)
0.150240 + 0.988650i \(0.451995\pi\)
\(464\) 5.22741 1.90262i 0.242677 0.0883270i
\(465\) 0 0
\(466\) −4.70704 26.6949i −0.218049 1.23662i
\(467\) −3.62851 + 2.09492i −0.167907 + 0.0969414i −0.581599 0.813476i \(-0.697573\pi\)
0.413691 + 0.910417i \(0.364239\pi\)
\(468\) 17.6776 67.9899i 0.817146 3.14283i
\(469\) −0.941987 + 1.63157i −0.0434969 + 0.0753389i
\(470\) 0 0
\(471\) −7.63307 0.976085i −0.351713 0.0449756i
\(472\) 19.8381 23.6421i 0.913123 1.08822i
\(473\) 23.1169 27.5496i 1.06292 1.26673i
\(474\) −7.21626 + 9.47709i −0.331454 + 0.435297i
\(475\) 0 0
\(476\) −1.95734 + 3.39022i −0.0897148 + 0.155391i
\(477\) −6.71941 + 4.77976i −0.307661 + 0.218850i
\(478\) 29.9970 17.3188i 1.37203 0.792143i
\(479\) −4.29952 24.3838i −0.196450 1.11412i −0.910339 0.413864i \(-0.864179\pi\)
0.713888 0.700259i \(-0.246932\pi\)
\(480\) 0 0
\(481\) −35.7668 + 13.0180i −1.63082 + 0.593571i
\(482\) 24.1704 + 4.26190i 1.10093 + 0.194124i
\(483\) −0.0538574 + 0.104404i −0.00245060 + 0.00475055i
\(484\) −49.9277 + 41.8943i −2.26944 + 1.90429i
\(485\) 0 0
\(486\) 4.21890 37.4004i 0.191373 1.69652i
\(487\) 14.2164i 0.644205i 0.946705 + 0.322102i \(0.104390\pi\)
−0.946705 + 0.322102i \(0.895610\pi\)
\(488\) −35.4390 42.2346i −1.60425 1.91187i
\(489\) −25.5227 13.1660i −1.15418 0.595388i
\(490\) 0 0
\(491\) −10.7333 + 3.90659i −0.484385 + 0.176302i −0.572658 0.819795i \(-0.694088\pi\)
0.0882726 + 0.996096i \(0.471865\pi\)
\(492\) 13.2678 + 58.8127i 0.598160 + 2.65148i
\(493\) 5.54341 0.977453i 0.249663 0.0440222i
\(494\) −3.84291 6.65611i −0.172901 0.299473i
\(495\) 0 0
\(496\) 13.7146 23.7544i 0.615805 1.06661i
\(497\) −0.364761 + 1.00217i −0.0163618 + 0.0449536i
\(498\) −2.51304 1.91354i −0.112612 0.0857477i
\(499\) −29.0144 24.3459i −1.29886 1.08987i −0.990341 0.138656i \(-0.955722\pi\)
−0.308520 0.951218i \(-0.599834\pi\)
\(500\) 0 0
\(501\) 34.4642 + 4.40714i 1.53975 + 0.196897i
\(502\) 1.26577 3.47767i 0.0564940 0.155216i
\(503\) −31.4533 18.1596i −1.40243 0.809694i −0.407790 0.913076i \(-0.633700\pi\)
−0.994642 + 0.103381i \(0.967034\pi\)
\(504\) 4.30964 + 1.12052i 0.191967 + 0.0499120i
\(505\) 0 0
\(506\) 0.447976 + 2.54060i 0.0199149 + 0.112943i
\(507\) −40.3359 12.5533i −1.79138 0.557514i
\(508\) 10.4864 + 28.8111i 0.465258 + 1.27828i
\(509\) 1.95163 11.0682i 0.0865043 0.490590i −0.910518 0.413470i \(-0.864317\pi\)
0.997022 0.0771197i \(-0.0245724\pi\)
\(510\) 0 0
\(511\) −0.376434 + 0.315866i −0.0166525 + 0.0139731i
\(512\) 31.3000i 1.38328i
\(513\) −1.67055 2.12759i −0.0737564 0.0939352i
\(514\) 57.8762 2.55281
\(515\) 0 0
\(516\) −37.9179 + 24.3548i −1.66924 + 1.07216i
\(517\) 63.6125 + 11.2166i 2.79767 + 0.493305i
\(518\) −1.72720 4.74543i −0.0758886 0.208502i
\(519\) 3.93414 + 4.26148i 0.172690 + 0.187058i
\(520\) 0 0
\(521\) 2.20153 + 3.81316i 0.0964507 + 0.167057i 0.910213 0.414140i \(-0.135918\pi\)
−0.813762 + 0.581198i \(0.802584\pi\)
\(522\) −5.75405 12.1040i −0.251848 0.529779i
\(523\) −13.5084 7.79908i −0.590681 0.341030i 0.174686 0.984624i \(-0.444109\pi\)
−0.765367 + 0.643594i \(0.777442\pi\)
\(524\) 38.9261 + 14.1679i 1.70050 + 0.618930i
\(525\) 0 0
\(526\) −15.2114 12.7639i −0.663249 0.556532i
\(527\) 17.8405 21.2614i 0.777143 0.926163i
\(528\) 25.4272 10.6431i 1.10658 0.463182i
\(529\) −21.5746 7.85253i −0.938028 0.341414i
\(530\) 0 0
\(531\) −17.2579 11.8941i −0.748930 0.516158i
\(532\) 0.580137 0.334942i 0.0251521 0.0145216i
\(533\) 54.7350 9.65127i 2.37084 0.418043i
\(534\) −18.0455 19.5470i −0.780907 0.845881i
\(535\) 0 0
\(536\) 4.30093 24.3918i 0.185772 1.05357i
\(537\) −11.6048 18.0675i −0.500785 0.779670i
\(538\) 3.19305 + 3.80533i 0.137662 + 0.164060i
\(539\) 36.4555 1.57025
\(540\) 0 0
\(541\) −1.52861 −0.0657202 −0.0328601 0.999460i \(-0.510462\pi\)
−0.0328601 + 0.999460i \(0.510462\pi\)
\(542\) 23.9681 + 28.5641i 1.02952 + 1.22693i
\(543\) 8.02941 0.380456i 0.344575 0.0163269i
\(544\) −0.832422 + 4.72090i −0.0356898 + 0.202407i
\(545\) 0 0
\(546\) 2.55330 8.20415i 0.109271 0.351105i
\(547\) −12.0871 + 2.13129i −0.516808 + 0.0911273i −0.425968 0.904738i \(-0.640066\pi\)
−0.0908404 + 0.995865i \(0.528955\pi\)
\(548\) 43.6363 25.1934i 1.86405 1.07621i
\(549\) −26.2784 + 26.6717i −1.12154 + 1.13832i
\(550\) 0 0
\(551\) −0.905136 0.329443i −0.0385601 0.0140347i
\(552\) 0.195901 1.53196i 0.00833809 0.0652047i
\(553\) −0.615201 + 0.733168i −0.0261610 + 0.0311775i
\(554\) 2.22666 + 1.86839i 0.0946019 + 0.0793804i
\(555\) 0 0
\(556\) 26.3964 + 9.60751i 1.11946 + 0.407449i
\(557\) 15.5748 + 8.99212i 0.659926 + 0.381008i 0.792249 0.610198i \(-0.208910\pi\)
−0.132323 + 0.991207i \(0.542244\pi\)
\(558\) −60.0969 27.4820i −2.54410 1.16341i
\(559\) 20.7721 + 35.9784i 0.878567 + 1.52172i
\(560\) 0 0
\(561\) 27.2082 6.13804i 1.14873 0.259148i
\(562\) −22.9424 63.0338i −0.967768 2.65892i
\(563\) −9.26763 1.63413i −0.390584 0.0688705i −0.0250923 0.999685i \(-0.507988\pi\)
−0.365492 + 0.930815i \(0.619099\pi\)
\(564\) −71.9351 37.1081i −3.02901 1.56253i
\(565\) 0 0
\(566\) 54.7691 2.30212
\(567\) 0.480827 2.98563i 0.0201928 0.125385i
\(568\) 14.0209i 0.588302i
\(569\) 25.8778 21.7141i 1.08485 0.910301i 0.0885394 0.996073i \(-0.471780\pi\)
0.996315 + 0.0857719i \(0.0273356\pi\)
\(570\) 0 0
\(571\) −0.978955 + 5.55193i −0.0409680 + 0.232341i −0.998416 0.0562653i \(-0.982081\pi\)
0.957448 + 0.288606i \(0.0931919\pi\)
\(572\) −42.3942 116.477i −1.77259 4.87015i
\(573\) −5.40588 23.9628i −0.225834 1.00106i
\(574\) 1.28050 + 7.26209i 0.0534472 + 0.303114i
\(575\) 0 0
\(576\) 29.3209 2.78486i 1.22170 0.116036i
\(577\) −13.7529 7.94027i −0.572543 0.330558i 0.185622 0.982621i \(-0.440570\pi\)
−0.758164 + 0.652064i \(0.773904\pi\)
\(578\) −6.39561 + 17.5718i −0.266022 + 0.730891i
\(579\) −17.7932 + 23.3678i −0.739460 + 0.971131i
\(580\) 0 0
\(581\) −0.194414 0.163133i −0.00806567 0.00676790i
\(582\) −5.65368 + 44.2123i −0.234353 + 1.83266i
\(583\) −4.97623 + 13.6721i −0.206094 + 0.566240i
\(584\) 3.23015 5.59478i 0.133664 0.231514i
\(585\) 0 0
\(586\) 20.1527 + 34.9055i 0.832500 + 1.44193i
\(587\) −19.5714 + 3.45096i −0.807797 + 0.142436i −0.562270 0.826953i \(-0.690072\pi\)
−0.245527 + 0.969390i \(0.578961\pi\)
\(588\) −43.6187 13.5750i −1.79881 0.559825i
\(589\) −4.46300 + 1.62440i −0.183895 + 0.0669323i
\(590\) 0 0
\(591\) −0.559657 11.8114i −0.0230212 0.485856i
\(592\) 12.0296 + 14.3364i 0.494416 + 0.589221i
\(593\) 43.0280i 1.76695i 0.468480 + 0.883474i \(0.344802\pi\)
−0.468480 + 0.883474i \(0.655198\pi\)
\(594\) −31.3188 58.5603i −1.28502 2.40276i
\(595\) 0 0
\(596\) 39.0337 32.7532i 1.59888 1.34162i
\(597\) −14.4530 22.5018i −0.591521 0.920936i
\(598\) −2.93484 0.517492i −0.120015 0.0211618i
\(599\) −36.3045 + 13.2138i −1.48336 + 0.539900i −0.951693 0.307051i \(-0.900658\pi\)
−0.531671 + 0.846951i \(0.678436\pi\)
\(600\) 0 0
\(601\) −1.31942 7.48281i −0.0538203 0.305230i 0.946000 0.324166i \(-0.105083\pi\)
−0.999821 + 0.0189352i \(0.993972\pi\)
\(602\) −4.77351 + 2.75599i −0.194554 + 0.112326i
\(603\) −16.7671 1.34150i −0.682808 0.0546302i
\(604\) −17.4762 + 30.2697i −0.711098 + 1.23166i
\(605\) 0 0
\(606\) 19.6338 + 46.9067i 0.797570 + 1.90546i
\(607\) −0.547047 + 0.651945i −0.0222040 + 0.0264616i −0.777032 0.629461i \(-0.783276\pi\)
0.754828 + 0.655923i \(0.227720\pi\)
\(608\) 0.527283 0.628391i 0.0213841 0.0254846i
\(609\) −0.415777 0.993324i −0.0168482 0.0402515i
\(610\) 0 0
\(611\) −37.3087 + 64.6205i −1.50935 + 2.61427i
\(612\) −34.8401 2.78749i −1.40833 0.112678i
\(613\) 0.145420 0.0839581i 0.00587345 0.00339104i −0.497060 0.867716i \(-0.665587\pi\)
0.502934 + 0.864325i \(0.332254\pi\)
\(614\) 2.66275 + 15.1012i 0.107460 + 0.609434i
\(615\) 0 0
\(616\) 7.38308 2.68722i 0.297473 0.108271i
\(617\) −16.3908 2.89015i −0.659871 0.116353i −0.166322 0.986071i \(-0.553189\pi\)
−0.493548 + 0.869718i \(0.664300\pi\)
\(618\) −5.83436 9.08348i −0.234692 0.365391i
\(619\) 33.6283 28.2175i 1.35163 1.13416i 0.373165 0.927765i \(-0.378272\pi\)
0.978470 0.206391i \(-0.0661720\pi\)
\(620\) 0 0
\(621\) −1.04831 0.0340724i −0.0420674 0.00136728i
\(622\) 1.25698i 0.0504001i
\(623\) −1.37396 1.63742i −0.0550466 0.0656020i
\(624\) 1.50709 + 31.8066i 0.0603318 + 1.27328i
\(625\) 0 0
\(626\) −36.7333 + 13.3698i −1.46816 + 0.534366i
\(627\) −4.55730 1.41832i −0.182001 0.0566423i
\(628\) 16.7558 2.95449i 0.668627 0.117897i
\(629\) 9.46847 + 16.3999i 0.377533 + 0.653906i
\(630\) 0 0
\(631\) 6.62243 11.4704i 0.263635 0.456629i −0.703570 0.710626i \(-0.748412\pi\)
0.967205 + 0.253997i \(0.0817453\pi\)
\(632\) 4.30347 11.8237i 0.171183 0.470321i
\(633\) 4.05273 31.6927i 0.161081 1.25967i
\(634\) −15.6036 13.0930i −0.619698 0.519989i
\(635\) 0 0
\(636\) 11.0451 14.5055i 0.437968 0.575182i
\(637\) −14.4034 + 39.5729i −0.570682 + 1.56794i
\(638\) −20.4790 11.8236i −0.810773 0.468100i
\(639\) −9.47927 + 0.900331i −0.374994 + 0.0356165i
\(640\) 0 0
\(641\) −7.29257 41.3582i −0.288039 1.63355i −0.694223 0.719760i \(-0.744252\pi\)
0.406183 0.913792i \(-0.366859\pi\)
\(642\) −4.93108 21.8581i −0.194614 0.862672i
\(643\) 9.62646 + 26.4485i 0.379631 + 1.04303i 0.971510 + 0.237000i \(0.0761640\pi\)
−0.591879 + 0.806027i \(0.701614\pi\)
\(644\) 0.0451039 0.255797i 0.00177734 0.0100798i
\(645\) 0 0
\(646\) −2.92927 + 2.45795i −0.115251 + 0.0967069i
\(647\) 4.87520i 0.191664i −0.995398 0.0958319i \(-0.969449\pi\)
0.995398 0.0958319i \(-0.0305511\pi\)
\(648\) 7.48464 + 39.0461i 0.294024 + 1.53388i
\(649\) −36.9819 −1.45166
\(650\) 0 0
\(651\) −4.71873 2.43418i −0.184942 0.0954032i
\(652\) 62.5322 + 11.0261i 2.44895 + 0.431816i
\(653\) −1.20328 3.30599i −0.0470880 0.129373i 0.913920 0.405895i \(-0.133040\pi\)
−0.961008 + 0.276522i \(0.910818\pi\)
\(654\) 71.3727 16.1013i 2.79089 0.629611i
\(655\) 0 0
\(656\) −13.6639 23.6666i −0.533487 0.924027i
\(657\) −3.98996 1.82459i −0.155663 0.0711839i
\(658\) −8.57367 4.95001i −0.334236 0.192972i
\(659\) 3.85106 + 1.40167i 0.150016 + 0.0546013i 0.415937 0.909394i \(-0.363454\pi\)
−0.265921 + 0.963995i \(0.585676\pi\)
\(660\) 0 0
\(661\) 10.8180 + 9.07740i 0.420773 + 0.353070i 0.828457 0.560053i \(-0.189219\pi\)
−0.407684 + 0.913123i \(0.633664\pi\)
\(662\) −10.6455 + 12.6868i −0.413748 + 0.493085i
\(663\) −4.08691 + 31.9600i −0.158722 + 1.24122i
\(664\) 3.13529 + 1.14115i 0.121673 + 0.0442853i
\(665\) 0 0
\(666\) 31.6441 32.1177i 1.22618 1.24454i
\(667\) −0.323446 + 0.186742i −0.0125239 + 0.00723067i
\(668\) −75.6542 + 13.3399i −2.92715 + 0.516136i
\(669\) −1.60375 + 5.15311i −0.0620046 + 0.199231i
\(670\) 0 0
\(671\) −11.4720 + 65.0611i −0.442873 + 2.51166i
\(672\) 0.916026 0.0434039i 0.0353365 0.00167434i
\(673\) 26.6182 + 31.7224i 1.02606 + 1.22281i 0.974558 + 0.224134i \(0.0719553\pi\)
0.0514985 + 0.998673i \(0.483600\pi\)
\(674\) −50.7970 −1.95663
\(675\) 0 0
\(676\) 93.4024 3.59240
\(677\) −19.9896 23.8227i −0.768264 0.915581i 0.230077 0.973173i \(-0.426102\pi\)
−0.998340 + 0.0575915i \(0.981658\pi\)
\(678\) 37.8774 + 58.9711i 1.45467 + 2.26477i
\(679\) −0.621884 + 3.52688i −0.0238657 + 0.135349i
\(680\) 0 0
\(681\) 8.19745 + 8.87951i 0.314127 + 0.340264i
\(682\) −114.827 + 20.2471i −4.39695 + 0.775301i
\(683\) −11.2564 + 6.49887i −0.430713 + 0.248673i −0.699651 0.714485i \(-0.746661\pi\)
0.268937 + 0.963158i \(0.413328\pi\)
\(684\) 4.92463 + 3.39403i 0.188298 + 0.129774i
\(685\) 0 0
\(686\) −10.5869 3.85332i −0.404210 0.147121i
\(687\) 16.1929 6.77789i 0.617798 0.258593i
\(688\) 13.1302 15.6479i 0.500583 0.596571i
\(689\) −12.8751 10.8035i −0.490504 0.411582i
\(690\) 0 0
\(691\) −44.3322 16.1356i −1.68648 0.613827i −0.692301 0.721609i \(-0.743403\pi\)
−0.994175 + 0.107782i \(0.965625\pi\)
\(692\) −11.1054 6.41171i −0.422164 0.243737i
\(693\) −2.29088 4.81902i −0.0870233 0.183059i
\(694\) −13.4668 23.3252i −0.511194 0.885413i
\(695\) 0 0
\(696\) 9.60289 + 10.4019i 0.363997 + 0.394283i
\(697\) −9.45762 25.9846i −0.358233 0.984237i
\(698\) −21.4226 3.77738i −0.810856 0.142976i
\(699\) 16.3613 10.5089i 0.618839 0.397483i
\(700\) 0 0
\(701\) 8.98862 0.339496 0.169748 0.985488i \(-0.445705\pi\)
0.169748 + 0.985488i \(0.445705\pi\)
\(702\) 75.9418 10.8601i 2.86624 0.409887i
\(703\) 3.24051i 0.122218i
\(704\) 39.8095 33.4041i 1.50038 1.25897i
\(705\) 0 0
\(706\) −4.00997 + 22.7417i −0.150917 + 0.855895i
\(707\) 1.39739 + 3.83929i 0.0525542 + 0.144391i
\(708\) 44.2485 + 13.7710i 1.66296 + 0.517547i
\(709\) 6.01200 + 34.0958i 0.225785 + 1.28049i 0.861178 + 0.508304i \(0.169727\pi\)
−0.635392 + 0.772189i \(0.719162\pi\)
\(710\) 0 0
\(711\) −8.27014 2.15026i −0.310154 0.0806411i
\(712\) 24.3363 + 14.0506i 0.912043 + 0.526568i
\(713\) −0.629849 + 1.73050i −0.0235880 + 0.0648076i
\(714\) −4.24036 0.542240i −0.158692 0.0202928i
\(715\) 0 0
\(716\) 36.3702 + 30.5182i 1.35922 + 1.14052i
\(717\) 19.7692 + 15.0531i 0.738294 + 0.562169i
\(718\) 20.9495 57.5584i 0.781830 2.14806i
\(719\) −11.7846 + 20.4116i −0.439493 + 0.761224i −0.997650 0.0685110i \(-0.978175\pi\)
0.558157 + 0.829735i \(0.311509\pi\)
\(720\) 0 0
\(721\) −0.433710 0.751207i −0.0161522 0.0279764i
\(722\) −44.5333 + 7.85242i −1.65736 + 0.292237i
\(723\) 3.87458 + 17.1750i 0.144097 + 0.638743i
\(724\) −16.7012 + 6.07874i −0.620695 + 0.225915i
\(725\) 0 0
\(726\) −63.2529 32.6293i −2.34753 1.21099i
\(727\) −17.4450 20.7902i −0.647000 0.771064i 0.338459 0.940981i \(-0.390094\pi\)
−0.985458 + 0.169917i \(0.945650\pi\)
\(728\) 9.07613i 0.336384i
\(729\) 25.9178 7.56753i 0.959919 0.280279i
\(730\) 0 0
\(731\) 15.8336 13.2860i 0.585629 0.491401i
\(732\) 37.9532 73.5733i 1.40279 2.71935i
\(733\) −14.6666 2.58612i −0.541724 0.0955205i −0.103911 0.994587i \(-0.533136\pi\)
−0.437813 + 0.899066i \(0.644247\pi\)
\(734\) −60.9520 + 22.1847i −2.24978 + 0.818852i
\(735\) 0 0
\(736\) −0.0552319 0.313235i −0.00203587 0.0115460i
\(737\) −25.7027 + 14.8395i −0.946771 + 0.546619i
\(738\) −53.6495 + 38.1628i −1.97487 + 1.40479i
\(739\) 5.36887 9.29916i 0.197497 0.342075i −0.750219 0.661189i \(-0.770052\pi\)
0.947716 + 0.319114i \(0.103385\pi\)
\(740\) 0 0
\(741\) 3.34017 4.38663i 0.122704 0.161147i
\(742\) 1.43338 1.70824i 0.0526211 0.0627114i
\(743\) 10.6742 12.7210i 0.391597 0.466687i −0.533842 0.845584i \(-0.679252\pi\)
0.925439 + 0.378897i \(0.123697\pi\)
\(744\) 69.2398 + 8.85410i 2.53846 + 0.324607i
\(745\) 0 0
\(746\) −30.4062 + 52.6651i −1.11325 + 1.92821i
\(747\) 0.570186 2.19300i 0.0208620 0.0802375i
\(748\) −53.4074 + 30.8348i −1.95277 + 1.12743i
\(749\) −0.312635 1.77304i −0.0114234 0.0647854i
\(750\) 0 0
\(751\) −4.89963 + 1.78332i −0.178790 + 0.0650743i −0.429864 0.902894i \(-0.641439\pi\)
0.251074 + 0.967968i \(0.419216\pi\)
\(752\) 36.1313 + 6.37092i 1.31757 + 0.232323i
\(753\) 2.65190 0.125655i 0.0966407 0.00457911i
\(754\) 20.9258 17.5588i 0.762072 0.639455i
\(755\) 0 0
\(756\) 0.946549 + 6.61898i 0.0344257 + 0.240730i
\(757\) 43.6180i 1.58532i 0.609661 + 0.792662i \(0.291306\pi\)
−0.609661 + 0.792662i \(0.708694\pi\)
\(758\) 39.4578 + 47.0240i 1.43317 + 1.70799i
\(759\) −1.55712 + 1.00015i −0.0565200 + 0.0363031i
\(760\) 0 0
\(761\) 11.6568 4.24273i 0.422559 0.153799i −0.121984 0.992532i \(-0.538926\pi\)
0.544542 + 0.838733i \(0.316703\pi\)
\(762\) −24.6008 + 22.7111i −0.891192 + 0.822737i
\(763\) 5.78945 1.02084i 0.209592 0.0369567i
\(764\) 27.1568 + 47.0369i 0.982497 + 1.70174i
\(765\) 0 0
\(766\) 11.9441 20.6878i 0.431559 0.747482i
\(767\) 14.6113 40.1443i 0.527584 1.44953i
\(768\) −47.9133 + 20.0552i −1.72892 + 0.723679i
\(769\) 30.8699 + 25.9030i 1.11320 + 0.934085i 0.998241 0.0592857i \(-0.0188823\pi\)
0.114958 + 0.993370i \(0.463327\pi\)
\(770\) 0 0
\(771\) 16.0308 + 38.2989i 0.577336 + 1.37930i
\(772\) 22.2106 61.0231i 0.799376 2.19627i
\(773\) 29.8587 + 17.2390i 1.07394 + 0.620042i 0.929257 0.369435i \(-0.120449\pi\)
0.144688 + 0.989477i \(0.453782\pi\)
\(774\) −40.5210 27.9269i −1.45650 1.00381i
\(775\) 0 0
\(776\) −8.17574 46.3669i −0.293492 1.66448i
\(777\) 2.66182 2.45736i 0.0954923 0.0881573i
\(778\) −3.60040 9.89201i −0.129081 0.354646i
\(779\) −0.821681 + 4.65998i −0.0294398 + 0.166961i
\(780\) 0 0
\(781\) −12.8702 + 10.7994i −0.460531 + 0.386431i
\(782\) 1.48269i 0.0530208i
\(783\) 6.41590 7.16030i 0.229286 0.255888i
\(784\) 20.7064 0.739513
\(785\) 0 0
\(786\) 2.14100 + 45.1852i 0.0763670 + 1.61170i
\(787\) −36.0345 6.35385i −1.28449 0.226490i −0.510604 0.859816i \(-0.670578\pi\)
−0.773886 + 0.633325i \(0.781689\pi\)
\(788\) 8.94192 + 24.5677i 0.318543 + 0.875189i
\(789\) 4.23302 13.6014i 0.150699 0.484221i
\(790\) 0 0
\(791\) 2.81570 + 4.87693i 0.100115 + 0.173404i
\(792\) 49.9697 + 49.2328i 1.77560 + 1.74941i
\(793\) −66.0921 38.1583i −2.34700 1.35504i
\(794\) −36.7732 13.3844i −1.30503 0.474993i
\(795\) 0 0
\(796\) 45.2965 + 38.0083i 1.60549 + 1.34717i
\(797\) 33.1308 39.4838i 1.17355 1.39859i 0.274027 0.961722i \(-0.411644\pi\)
0.899527 0.436866i \(-0.143911\pi\)
\(798\) 0.582006 + 0.443164i 0.0206028 + 0.0156878i
\(799\) 34.8853 + 12.6972i 1.23415 + 0.449195i
\(800\) 0 0
\(801\) 7.93664 17.3556i 0.280427 0.613231i
\(802\) 1.33978 0.773520i 0.0473092 0.0273140i
\(803\) −7.62359 + 1.34425i −0.269031 + 0.0474374i
\(804\) 36.2789 8.18433i 1.27946 0.288639i
\(805\) 0 0
\(806\) 23.3890 132.646i 0.823842 4.67224i
\(807\) −1.63370 + 3.16698i −0.0575091 + 0.111483i
\(808\) −34.5263 41.1469i −1.21463 1.44754i
\(809\) 18.5065 0.650654 0.325327 0.945602i \(-0.394526\pi\)
0.325327 + 0.945602i \(0.394526\pi\)
\(810\) 0 0
\(811\) 36.6261 1.28611 0.643057 0.765818i \(-0.277666\pi\)
0.643057 + 0.765818i \(0.277666\pi\)
\(812\) 1.53040 + 1.82386i 0.0537066 + 0.0640050i
\(813\) −12.2631 + 23.7724i −0.430087 + 0.833736i
\(814\) 13.8145 78.3456i 0.484196 2.74601i
\(815\) 0 0
\(816\) 15.4540 3.48634i 0.540999 0.122046i
\(817\) −3.48322 + 0.614186i −0.121863 + 0.0214877i
\(818\) 50.9995 29.4446i 1.78316 1.02951i
\(819\) 6.13622 0.582811i 0.214417 0.0203651i
\(820\) 0 0
\(821\) 20.6784 + 7.52630i 0.721679 + 0.262670i 0.676639 0.736315i \(-0.263436\pi\)
0.0450409 + 0.998985i \(0.485658\pi\)
\(822\) 43.7769 + 33.3336i 1.52689 + 1.16264i
\(823\) −19.4739 + 23.2081i −0.678818 + 0.808984i −0.989955 0.141381i \(-0.954846\pi\)
0.311137 + 0.950365i \(0.399290\pi\)
\(824\) 8.73576 + 7.33017i 0.304325 + 0.255359i
\(825\) 0 0
\(826\) 5.32623 + 1.93859i 0.185323 + 0.0674521i
\(827\) 15.4977 + 8.94761i 0.538909 + 0.311139i 0.744637 0.667470i \(-0.232623\pi\)
−0.205728 + 0.978609i \(0.565956\pi\)
\(828\) 2.23552 0.616839i 0.0776896 0.0214366i
\(829\) 12.0856 + 20.9328i 0.419749 + 0.727026i 0.995914 0.0903070i \(-0.0287848\pi\)
−0.576165 + 0.817333i \(0.695451\pi\)
\(830\) 0 0
\(831\) −0.619634 + 1.99098i −0.0214949 + 0.0690664i
\(832\) 20.5321 + 56.4115i 0.711823 + 1.95572i
\(833\) 20.6338 + 3.63830i 0.714920 + 0.126060i
\(834\) 1.45185 + 30.6408i 0.0502734 + 1.06100i
\(835\) 0 0
\(836\) 10.5529 0.364981
\(837\) 1.53996 47.3804i 0.0532289 1.63771i
\(838\) 41.6039i 1.43718i
\(839\) −41.0703 + 34.4621i −1.41790 + 1.18976i −0.465452 + 0.885073i \(0.654108\pi\)
−0.952452 + 0.304690i \(0.901447\pi\)
\(840\) 0 0
\(841\) −4.44132 + 25.1880i −0.153149 + 0.868551i
\(842\) −18.6505 51.2420i −0.642740 1.76591i
\(843\) 35.3571 32.6412i 1.21776 1.12422i
\(844\) 12.2671 + 69.5703i 0.422252 + 2.39471i
\(845\) 0 0
\(846\) 7.04940 88.1086i 0.242364 3.02924i
\(847\) −4.95245 2.85930i −0.170168 0.0982467i
\(848\) −2.82645 + 7.76561i −0.0970607 + 0.266672i
\(849\) 15.1702 + 36.2428i 0.520640 + 1.24385i
\(850\) 0 0
\(851\) −0.962521 0.807651i −0.0329948 0.0276859i
\(852\) 19.4205 8.12885i 0.665334 0.278490i
\(853\) −9.16250 + 25.1738i −0.313718 + 0.861933i 0.678180 + 0.734896i \(0.262769\pi\)
−0.991898 + 0.127037i \(0.959453\pi\)
\(854\) 5.06274 8.76892i 0.173243 0.300066i
\(855\) 0 0
\(856\) 11.8346 + 20.4982i 0.404499 + 0.700613i
\(857\) 14.7384 2.59878i 0.503454 0.0887725i 0.0838474 0.996479i \(-0.473279\pi\)
0.419607 + 0.907706i \(0.362168\pi\)
\(858\) 99.4557 91.8162i 3.39536 3.13455i
\(859\) −0.649627 + 0.236445i −0.0221650 + 0.00806740i −0.353079 0.935594i \(-0.614865\pi\)
0.330914 + 0.943661i \(0.392643\pi\)
\(860\) 0 0
\(861\) −4.45092 + 2.85884i −0.151687 + 0.0974291i
\(862\) 16.0054 + 19.0745i 0.545146 + 0.649679i
\(863\) 48.5994i 1.65434i 0.561949 + 0.827172i \(0.310052\pi\)
−0.561949 + 0.827172i \(0.689948\pi\)
\(864\) 3.86135 + 7.22002i 0.131366 + 0.245630i
\(865\) 0 0
\(866\) −20.3812 + 17.1018i −0.692581 + 0.581144i
\(867\) −13.3994 + 0.634902i −0.455067 + 0.0215624i
\(868\) 11.5612 + 2.03855i 0.392413 + 0.0691929i
\(869\) −14.1680 + 5.15673i −0.480617 + 0.174930i
\(870\) 0 0
\(871\) −5.95343 33.7636i −0.201724 1.14404i
\(872\) −66.9320 + 38.6432i −2.26660 + 1.30862i
\(873\) −30.8229 + 8.50487i −1.04320 + 0.287846i
\(874\) 0.126859 0.219727i 0.00429108 0.00743237i
\(875\) 0 0
\(876\) 9.62214 + 1.23044i 0.325102 + 0.0415726i
\(877\) 13.6887 16.3136i 0.462235 0.550870i −0.483697 0.875236i \(-0.660706\pi\)
0.945932 + 0.324365i \(0.105151\pi\)
\(878\) 38.2508 45.5856i 1.29090 1.53844i
\(879\) −17.5163 + 23.0041i −0.590810 + 0.775908i
\(880\) 0 0
\(881\) −21.0931 + 36.5344i −0.710646 + 1.23087i 0.253969 + 0.967212i \(0.418264\pi\)
−0.964615 + 0.263662i \(0.915070\pi\)
\(882\) −4.71686 49.6622i −0.158825 1.67221i
\(883\) 44.0558 25.4356i 1.48259 0.855976i 0.482790 0.875736i \(-0.339623\pi\)
0.999805 + 0.0197597i \(0.00629013\pi\)
\(884\) −12.3706 70.1571i −0.416068 2.35964i
\(885\) 0 0
\(886\) −49.6647 + 18.0765i −1.66852 + 0.607291i
\(887\) 47.5095 + 8.37721i 1.59521 + 0.281279i 0.899461 0.437002i \(-0.143960\pi\)
0.695753 + 0.718281i \(0.255071\pi\)
\(888\) −21.8345 + 42.3267i −0.732716 + 1.42039i
\(889\) −2.06077 + 1.72919i −0.0691160 + 0.0579952i
\(890\) 0 0
\(891\) 30.0767 36.9451i 1.00761 1.23771i
\(892\) 11.9326i 0.399533i
\(893\) −4.08344 4.86646i −0.136647 0.162850i
\(894\) 49.4514 + 25.5098i 1.65390 + 0.853175i
\(895\) 0 0
\(896\) −6.48946 + 2.36197i −0.216797 + 0.0789078i
\(897\) −0.470462 2.08543i −0.0157083 0.0696305i
\(898\) −0.410653 + 0.0724092i −0.0137037 + 0.00241633i
\(899\) −8.44014 14.6187i −0.281494 0.487563i
\(900\) 0 0
\(901\) −4.18104 + 7.24177i −0.139291 + 0.241258i
\(902\) −39.7315 + 109.162i −1.32292 + 3.63468i
\(903\) −3.14593 2.39544i −0.104690 0.0797153i
\(904\) −56.7137 47.5884i −1.88627 1.58277i
\(905\) 0 0
\(906\) −37.8602 4.84141i −1.25782 0.160845i
\(907\) −6.01218 + 16.5183i −0.199631 + 0.548482i −0.998600 0.0528898i \(-0.983157\pi\)
0.798969 + 0.601372i \(0.205379\pi\)
\(908\) −23.1400 13.3599i −0.767928 0.443364i
\(909\) −25.6017 + 25.9849i −0.849153 + 0.861864i
\(910\) 0 0
\(911\) −0.694543 3.93895i −0.0230112 0.130503i 0.971138 0.238518i \(-0.0766617\pi\)
−0.994149 + 0.108015i \(0.965551\pi\)
\(912\) −2.58850 0.805593i −0.0857138 0.0266759i
\(913\) −1.36741 3.75694i −0.0452548 0.124336i
\(914\) −3.75834 + 21.3146i −0.124315 + 0.705024i
\(915\) 0 0
\(916\) −29.7321 + 24.9482i −0.982377 + 0.824312i
\(917\) 3.63460i 0.120025i
\(918\) −11.8820 36.2708i −0.392166 1.19711i
\(919\) −5.86587 −0.193497 −0.0967486 0.995309i \(-0.530844\pi\)
−0.0967486 + 0.995309i \(0.530844\pi\)
\(920\) 0 0
\(921\) −9.25548 + 5.94483i −0.304978 + 0.195889i
\(922\) −38.6924 6.82251i −1.27427 0.224688i
\(923\) −6.63791 18.2375i −0.218489 0.600295i
\(924\) 8.00258 + 8.66842i 0.263265 + 0.285170i
\(925\) 0 0
\(926\) −16.6059 28.7623i −0.545705 0.945189i
\(927\) 4.39485 6.37679i 0.144346 0.209441i
\(928\) 2.52490 + 1.45775i 0.0828840 + 0.0478531i
\(929\) −30.1086 10.9586i −0.987832 0.359541i −0.202951 0.979189i \(-0.565053\pi\)
−0.784880 + 0.619647i \(0.787276\pi\)
\(930\) 0 0
\(931\) −2.74654 2.30462i −0.0900141 0.0755308i
\(932\) −27.6362 + 32.9355i −0.905253 + 1.07884i
\(933\) −0.831787 + 0.348163i −0.0272315 + 0.0113983i
\(934\) 9.50610 + 3.45994i 0.311049 + 0.113213i
\(935\) 0 0
\(936\) −73.1855 + 34.7911i −2.39214 + 1.13718i
\(937\) −14.7044 + 8.48960i −0.480373 + 0.277343i −0.720572 0.693380i \(-0.756121\pi\)
0.240199 + 0.970724i \(0.422787\pi\)
\(938\) 4.47966 0.789885i 0.146266 0.0257907i
\(939\) −19.0219 20.6046i −0.620755 0.672404i
\(940\) 0 0
\(941\) −5.92567 + 33.6061i −0.193171 + 1.09553i 0.721828 + 0.692073i \(0.243302\pi\)
−0.914999 + 0.403456i \(0.867809\pi\)
\(942\) 10.0410 + 15.6328i 0.327155 + 0.509345i
\(943\) 1.17935 + 1.40550i 0.0384050 + 0.0457693i
\(944\) −21.0053 −0.683665
\(945\) 0 0
\(946\) −86.8321 −2.82316
\(947\) 0.0596897 + 0.0711354i 0.00193966 + 0.00231159i 0.767013 0.641631i \(-0.221742\pi\)
−0.765074 + 0.643943i \(0.777298\pi\)
\(948\) 18.8721 0.894216i 0.612939 0.0290428i
\(949\) 1.55284 8.80661i 0.0504074 0.285875i
\(950\) 0 0
\(951\) 4.34215 13.9520i 0.140804 0.452426i
\(952\) 4.44701 0.784128i 0.144129 0.0254137i
\(953\) 42.8976 24.7669i 1.38959 0.802279i 0.396320 0.918113i \(-0.370287\pi\)
0.993269 + 0.115833i \(0.0369538\pi\)
\(954\) 19.2689 + 5.00998i 0.623854 + 0.162204i
\(955\) 0 0
\(956\) −51.6257 18.7902i −1.66970 0.607720i
\(957\) 2.15173 16.8267i 0.0695554 0.543930i
\(958\) −38.4270 + 45.7955i −1.24152 + 1.47958i
\(959\) 3.38667 + 2.84176i 0.109361 + 0.0917651i
\(960\) 0 0
\(961\) −49.0825 17.8646i −1.58331 0.576276i
\(962\) 79.5872 + 45.9497i 2.56599 + 1.48148i
\(963\) 13.0985 9.31745i 0.422094 0.300251i
\(964\) −19.4642 33.7129i −0.626898 1.08582i
\(965\) 0 0
\(966\) 0.276689 0.0624196i 0.00890233 0.00200832i
\(967\) 8.12772 + 22.3307i 0.261370 + 0.718107i 0.999076 + 0.0429853i \(0.0136869\pi\)
−0.737706 + 0.675122i \(0.764091\pi\)
\(968\) 74.0387 + 13.0550i 2.37969 + 0.419604i
\(969\) −2.43788 1.25759i −0.0783161 0.0403998i
\(970\) 0 0
\(971\) 34.5957 1.11023 0.555115 0.831774i \(-0.312674\pi\)
0.555115 + 0.831774i \(0.312674\pi\)
\(972\) −49.7439 + 33.0048i −1.59554 + 1.05863i
\(973\) 2.46468i 0.0790141i
\(974\) 26.2943 22.0635i 0.842523 0.706961i
\(975\) 0 0
\(976\) −6.51600 + 36.9541i −0.208572 + 1.18287i
\(977\) 9.97323 + 27.4012i 0.319072 + 0.876643i 0.990738 + 0.135789i \(0.0433568\pi\)
−0.671666 + 0.740854i \(0.734421\pi\)
\(978\) 15.2591 + 67.6396i 0.487933 + 2.16288i
\(979\) −5.84723 33.1613i −0.186878 1.05984i
\(980\) 0 0
\(981\) 30.4240 + 42.7702i 0.971362 + 1.36555i
\(982\) 23.8833 + 13.7891i 0.762148 + 0.440026i
\(983\) −12.2012 + 33.5226i −0.389158 + 1.06920i 0.578223 + 0.815879i \(0.303746\pi\)
−0.967381 + 0.253325i \(0.918476\pi\)
\(984\) 42.1315 55.3311i 1.34310 1.76389i
\(985\) 0 0
\(986\) −10.4111 8.73598i −0.331558 0.278210i
\(987\) 0.900833 7.04459i 0.0286738 0.224232i
\(988\) −4.16941 + 11.4554i −0.132647 + 0.364443i
\(989\) −0.685714 + 1.18769i −0.0218044 + 0.0377664i
\(990\) 0 0
\(991\) −14.8225 25.6734i −0.470853 0.815541i 0.528591 0.848877i \(-0.322720\pi\)
−0.999444 + 0.0333351i \(0.989387\pi\)
\(992\) 14.1572 2.49630i 0.449493 0.0792577i
\(993\) −11.3439 3.53046i −0.359989 0.112036i
\(994\) 2.41970 0.880699i 0.0767482 0.0279341i
\(995\) 0 0
\(996\) 0.237120 + 5.00433i 0.00751342 + 0.158568i
\(997\) 33.2686 + 39.6480i 1.05363 + 1.25566i 0.965734 + 0.259533i \(0.0835688\pi\)
0.0878926 + 0.996130i \(0.471987\pi\)
\(998\) 91.4487i 2.89476i
\(999\) 30.0184 + 12.0440i 0.949741 + 0.381054i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.2 132
5.2 odd 4 675.2.l.g.76.11 yes 66
5.3 odd 4 675.2.l.f.76.1 66
5.4 even 2 inner 675.2.u.e.49.21 132
27.16 even 9 inner 675.2.u.e.124.21 132
135.43 odd 36 675.2.l.f.151.1 yes 66
135.97 odd 36 675.2.l.g.151.11 yes 66
135.124 even 18 inner 675.2.u.e.124.2 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.1 66 5.3 odd 4
675.2.l.f.151.1 yes 66 135.43 odd 36
675.2.l.g.76.11 yes 66 5.2 odd 4
675.2.l.g.151.11 yes 66 135.97 odd 36
675.2.u.e.49.2 132 1.1 even 1 trivial
675.2.u.e.49.21 132 5.4 even 2 inner
675.2.u.e.124.2 132 135.124 even 18 inner
675.2.u.e.124.21 132 27.16 even 9 inner