Properties

Label 675.2.u.e.49.21
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.21
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.55198 + 1.84958i) q^{2} +(-0.794060 + 1.53931i) q^{3} +(-0.665000 + 3.77140i) q^{4} +(-4.07944 + 0.920299i) q^{6} +(0.330906 - 0.0583477i) q^{7} +(-3.82562 + 2.20872i) q^{8} +(-1.73894 - 2.44461i) q^{9} +(-4.97408 - 1.81042i) q^{11} +(-5.27730 - 4.01836i) q^{12} +(-3.93046 + 4.68414i) q^{13} +(0.621479 + 0.521483i) q^{14} +(-2.82523 - 1.02830i) q^{16} +(2.63465 + 1.52112i) q^{17} +(1.82269 - 7.01028i) q^{18} +(0.260295 + 0.450843i) q^{19} +(-0.172944 + 0.555698i) q^{21} +(-4.37117 - 12.0097i) q^{22} +(-0.198788 - 0.0350517i) q^{23} +(-0.362131 - 7.64266i) q^{24} -14.7637 q^{26} +(5.14382 - 0.735594i) q^{27} +1.28678i q^{28} +(-1.41738 + 1.18933i) q^{29} +(-1.58422 + 8.98458i) q^{31} +(0.538930 + 1.48070i) q^{32} +(6.73651 - 6.21906i) q^{33} +(1.27550 + 7.23373i) q^{34} +(10.3760 - 4.93257i) q^{36} +(5.39074 + 3.11234i) q^{37} +(-0.429898 + 1.18114i) q^{38} +(-4.08931 - 9.76968i) q^{39} +(6.96293 + 5.84259i) q^{41} +(-1.29621 + 0.542558i) q^{42} +(2.32373 - 6.38441i) q^{43} +(10.1356 - 17.5553i) q^{44} +(-0.243684 - 0.422073i) q^{46} +(12.0175 - 2.11902i) q^{47} +(3.82627 - 3.53236i) q^{48} +(-6.47175 + 2.35553i) q^{49} +(-4.43354 + 2.84768i) q^{51} +(-15.0520 - 17.9383i) q^{52} +2.74867i q^{53} +(9.34365 + 8.37227i) q^{54} +(-1.13705 + 0.954096i) q^{56} +(-0.900676 + 0.0426766i) q^{57} +(-4.39950 - 0.775751i) q^{58} +(6.56519 - 2.38954i) q^{59} +(-2.16727 - 12.2912i) q^{61} +(-19.0764 + 11.0137i) q^{62} +(-0.718062 - 0.707472i) q^{63} +(-4.90880 + 8.50230i) q^{64} +(21.9576 + 2.80784i) q^{66} +(-3.60403 + 4.29512i) q^{67} +(-7.48879 + 8.92479i) q^{68} +(0.211805 - 0.278163i) q^{69} +(1.58699 - 2.74874i) q^{71} +(12.0520 + 5.51130i) q^{72} +(-1.26652 + 0.731226i) q^{73} +(2.60980 + 14.8009i) q^{74} +(-1.87341 + 0.681865i) q^{76} +(-1.75159 - 0.308852i) q^{77} +(11.7233 - 22.7259i) q^{78} +(2.18198 - 1.83090i) q^{79} +(-2.95220 + 8.50203i) q^{81} +21.9461i q^{82} +(-0.485499 - 0.578595i) q^{83} +(-1.98075 - 1.02178i) q^{84} +(15.4149 - 5.61055i) q^{86} +(-0.705250 - 3.12618i) q^{87} +(23.0276 - 4.06039i) q^{88} +(3.18070 + 5.50914i) q^{89} +(-1.02731 + 1.77934i) q^{91} +(0.264388 - 0.726400i) q^{92} +(-12.5721 - 9.57291i) q^{93} +(22.5703 + 18.9387i) q^{94} +(-2.70719 - 0.346184i) q^{96} +(-3.64534 + 10.0155i) q^{97} +(-14.4008 - 8.31429i) q^{98} +(4.22385 + 15.3079i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55198 + 1.84958i 1.09742 + 1.30785i 0.947715 + 0.319118i \(0.103387\pi\)
0.149701 + 0.988731i \(0.452169\pi\)
\(3\) −0.794060 + 1.53931i −0.458451 + 0.888720i
\(4\) −0.665000 + 3.77140i −0.332500 + 1.88570i
\(5\) 0 0
\(6\) −4.07944 + 0.920299i −1.66542 + 0.375710i
\(7\) 0.330906 0.0583477i 0.125071 0.0220534i −0.110762 0.993847i \(-0.535329\pi\)
0.235833 + 0.971794i \(0.424218\pi\)
\(8\) −3.82562 + 2.20872i −1.35256 + 0.780901i
\(9\) −1.73894 2.44461i −0.579646 0.814869i
\(10\) 0 0
\(11\) −4.97408 1.81042i −1.49974 0.545861i −0.543748 0.839249i \(-0.682995\pi\)
−0.955994 + 0.293387i \(0.905217\pi\)
\(12\) −5.27730 4.01836i −1.52343 1.16000i
\(13\) −3.93046 + 4.68414i −1.09011 + 1.29915i −0.139005 + 0.990292i \(0.544390\pi\)
−0.951109 + 0.308855i \(0.900054\pi\)
\(14\) 0.621479 + 0.521483i 0.166097 + 0.139372i
\(15\) 0 0
\(16\) −2.82523 1.02830i −0.706307 0.257075i
\(17\) 2.63465 + 1.52112i 0.638996 + 0.368925i 0.784228 0.620473i \(-0.213059\pi\)
−0.145231 + 0.989398i \(0.546393\pi\)
\(18\) 1.82269 7.01028i 0.429613 1.65234i
\(19\) 0.260295 + 0.450843i 0.0597157 + 0.103431i 0.894338 0.447392i \(-0.147647\pi\)
−0.834622 + 0.550823i \(0.814314\pi\)
\(20\) 0 0
\(21\) −0.172944 + 0.555698i −0.0377396 + 0.121263i
\(22\) −4.37117 12.0097i −0.931936 2.56047i
\(23\) −0.198788 0.0350517i −0.0414501 0.00730878i 0.152885 0.988244i \(-0.451144\pi\)
−0.194335 + 0.980935i \(0.562255\pi\)
\(24\) −0.362131 7.64266i −0.0739197 1.56005i
\(25\) 0 0
\(26\) −14.7637 −2.89540
\(27\) 5.14382 0.735594i 0.989929 0.141565i
\(28\) 1.28678i 0.243179i
\(29\) −1.41738 + 1.18933i −0.263201 + 0.220852i −0.764832 0.644230i \(-0.777178\pi\)
0.501631 + 0.865082i \(0.332734\pi\)
\(30\) 0 0
\(31\) −1.58422 + 8.98458i −0.284535 + 1.61368i 0.422407 + 0.906406i \(0.361185\pi\)
−0.706942 + 0.707272i \(0.749926\pi\)
\(32\) 0.538930 + 1.48070i 0.0952703 + 0.261753i
\(33\) 6.73651 6.21906i 1.17268 1.08260i
\(34\) 1.27550 + 7.23373i 0.218747 + 1.24058i
\(35\) 0 0
\(36\) 10.3760 4.93257i 1.72933 0.822095i
\(37\) 5.39074 + 3.11234i 0.886232 + 0.511666i 0.872708 0.488242i \(-0.162362\pi\)
0.0135239 + 0.999909i \(0.495695\pi\)
\(38\) −0.429898 + 1.18114i −0.0697387 + 0.191605i
\(39\) −4.08931 9.76968i −0.654814 1.56440i
\(40\) 0 0
\(41\) 6.96293 + 5.84259i 1.08743 + 0.912459i 0.996516 0.0833996i \(-0.0265778\pi\)
0.0909107 + 0.995859i \(0.471022\pi\)
\(42\) −1.29621 + 0.542558i −0.200010 + 0.0837186i
\(43\) 2.32373 6.38441i 0.354366 0.973613i −0.626584 0.779354i \(-0.715548\pi\)
0.980950 0.194259i \(-0.0622303\pi\)
\(44\) 10.1356 17.5553i 1.52800 2.64657i
\(45\) 0 0
\(46\) −0.243684 0.422073i −0.0359293 0.0622313i
\(47\) 12.0175 2.11902i 1.75294 0.309090i 0.797288 0.603598i \(-0.206267\pi\)
0.955649 + 0.294508i \(0.0951559\pi\)
\(48\) 3.82627 3.53236i 0.552275 0.509853i
\(49\) −6.47175 + 2.35553i −0.924536 + 0.336504i
\(50\) 0 0
\(51\) −4.43354 + 2.84768i −0.620819 + 0.398755i
\(52\) −15.0520 17.9383i −2.08734 2.48760i
\(53\) 2.74867i 0.377558i 0.982020 + 0.188779i \(0.0604530\pi\)
−0.982020 + 0.188779i \(0.939547\pi\)
\(54\) 9.34365 + 8.37227i 1.27151 + 1.13932i
\(55\) 0 0
\(56\) −1.13705 + 0.954096i −0.151944 + 0.127496i
\(57\) −0.900676 + 0.0426766i −0.119297 + 0.00565265i
\(58\) −4.39950 0.775751i −0.577683 0.101861i
\(59\) 6.56519 2.38954i 0.854716 0.311091i 0.122754 0.992437i \(-0.460827\pi\)
0.731961 + 0.681346i \(0.238605\pi\)
\(60\) 0 0
\(61\) −2.16727 12.2912i −0.277491 1.57373i −0.730938 0.682444i \(-0.760917\pi\)
0.453447 0.891283i \(-0.350194\pi\)
\(62\) −19.0764 + 11.0137i −2.42270 + 1.39875i
\(63\) −0.718062 0.707472i −0.0904673 0.0891332i
\(64\) −4.90880 + 8.50230i −0.613601 + 1.06279i
\(65\) 0 0
\(66\) 21.9576 + 2.80784i 2.70279 + 0.345621i
\(67\) −3.60403 + 4.29512i −0.440303 + 0.524732i −0.939865 0.341545i \(-0.889050\pi\)
0.499562 + 0.866278i \(0.333494\pi\)
\(68\) −7.48879 + 8.92479i −0.908149 + 1.08229i
\(69\) 0.211805 0.278163i 0.0254983 0.0334868i
\(70\) 0 0
\(71\) 1.58699 2.74874i 0.188341 0.326216i −0.756356 0.654160i \(-0.773022\pi\)
0.944697 + 0.327944i \(0.106356\pi\)
\(72\) 12.0520 + 5.51130i 1.42034 + 0.649513i
\(73\) −1.26652 + 0.731226i −0.148235 + 0.0855835i −0.572283 0.820056i \(-0.693942\pi\)
0.424048 + 0.905640i \(0.360609\pi\)
\(74\) 2.60980 + 14.8009i 0.303383 + 1.72057i
\(75\) 0 0
\(76\) −1.87341 + 0.681865i −0.214895 + 0.0782153i
\(77\) −1.75159 0.308852i −0.199612 0.0351970i
\(78\) 11.7233 22.7259i 1.32740 2.57320i
\(79\) 2.18198 1.83090i 0.245491 0.205992i −0.511737 0.859142i \(-0.670998\pi\)
0.757228 + 0.653151i \(0.226553\pi\)
\(80\) 0 0
\(81\) −2.95220 + 8.50203i −0.328022 + 0.944670i
\(82\) 21.9461i 2.42354i
\(83\) −0.485499 0.578595i −0.0532905 0.0635091i 0.738741 0.673990i \(-0.235421\pi\)
−0.792031 + 0.610481i \(0.790976\pi\)
\(84\) −1.98075 1.02178i −0.216118 0.111486i
\(85\) 0 0
\(86\) 15.4149 5.61055i 1.66223 0.605001i
\(87\) −0.705250 3.12618i −0.0756108 0.335162i
\(88\) 23.0276 4.06039i 2.45476 0.432840i
\(89\) 3.18070 + 5.50914i 0.337154 + 0.583968i 0.983896 0.178741i \(-0.0572024\pi\)
−0.646742 + 0.762709i \(0.723869\pi\)
\(90\) 0 0
\(91\) −1.02731 + 1.77934i −0.107691 + 0.186526i
\(92\) 0.264388 0.726400i 0.0275644 0.0757325i
\(93\) −12.5721 9.57291i −1.30366 0.992664i
\(94\) 22.5703 + 18.9387i 2.32794 + 1.95338i
\(95\) 0 0
\(96\) −2.70719 0.346184i −0.276302 0.0353323i
\(97\) −3.64534 + 10.0155i −0.370128 + 1.01692i 0.605184 + 0.796086i \(0.293099\pi\)
−0.975312 + 0.220832i \(0.929123\pi\)
\(98\) −14.4008 8.31429i −1.45470 0.839870i
\(99\) 4.22385 + 15.3079i 0.424513 + 1.53850i
\(100\) 0 0
\(101\) −2.11146 11.9747i −0.210098 1.19152i −0.889213 0.457493i \(-0.848748\pi\)
0.679116 0.734031i \(-0.262363\pi\)
\(102\) −12.1478 3.78063i −1.20281 0.374338i
\(103\) −0.882932 2.42584i −0.0869979 0.239025i 0.888563 0.458755i \(-0.151704\pi\)
−0.975561 + 0.219730i \(0.929482\pi\)
\(104\) 4.69048 26.6010i 0.459939 2.60845i
\(105\) 0 0
\(106\) −5.08387 + 4.26588i −0.493790 + 0.414339i
\(107\) 5.35813i 0.517990i −0.965879 0.258995i \(-0.916609\pi\)
0.965879 0.258995i \(-0.0833913\pi\)
\(108\) −0.646421 + 19.8886i −0.0622019 + 1.91378i
\(109\) −17.4957 −1.67579 −0.837893 0.545834i \(-0.816213\pi\)
−0.837893 + 0.545834i \(0.816213\pi\)
\(110\) 0 0
\(111\) −9.07143 + 5.82662i −0.861022 + 0.553038i
\(112\) −0.994885 0.175425i −0.0940078 0.0165761i
\(113\) 5.73211 + 15.7488i 0.539232 + 1.48153i 0.847796 + 0.530323i \(0.177929\pi\)
−0.308564 + 0.951204i \(0.599848\pi\)
\(114\) −1.47677 1.59964i −0.138312 0.149820i
\(115\) 0 0
\(116\) −3.54287 6.13642i −0.328947 0.569753i
\(117\) 18.2857 + 1.46300i 1.69051 + 0.135255i
\(118\) 14.6087 + 8.43433i 1.34484 + 0.776443i
\(119\) 0.960576 + 0.349621i 0.0880558 + 0.0320497i
\(120\) 0 0
\(121\) 13.0374 + 10.9397i 1.18522 + 0.994514i
\(122\) 19.3700 23.0842i 1.75368 2.08995i
\(123\) −14.5225 + 6.07872i −1.30945 + 0.548100i
\(124\) −32.8310 11.9495i −2.94831 1.07310i
\(125\) 0 0
\(126\) 0.194107 2.42610i 0.0172925 0.216134i
\(127\) −6.93350 + 4.00306i −0.615249 + 0.355214i −0.775017 0.631940i \(-0.782259\pi\)
0.159768 + 0.987155i \(0.448925\pi\)
\(128\) −20.2405 + 3.56894i −1.78902 + 0.315453i
\(129\) 7.98238 + 8.64655i 0.702810 + 0.761286i
\(130\) 0 0
\(131\) 1.87834 10.6526i 0.164111 0.930721i −0.785865 0.618398i \(-0.787782\pi\)
0.949976 0.312323i \(-0.101107\pi\)
\(132\) 18.9748 + 29.5418i 1.65154 + 2.57128i
\(133\) 0.112439 + 0.133999i 0.00974968 + 0.0116192i
\(134\) −13.5376 −1.16947
\(135\) 0 0
\(136\) −13.4389 −1.15238
\(137\) 8.45733 + 10.0791i 0.722559 + 0.861112i 0.994877 0.101095i \(-0.0322347\pi\)
−0.272318 + 0.962207i \(0.587790\pi\)
\(138\) 0.843201 0.0399532i 0.0717780 0.00340105i
\(139\) 1.27373 7.22368i 0.108036 0.612705i −0.881928 0.471385i \(-0.843754\pi\)
0.989964 0.141320i \(-0.0451346\pi\)
\(140\) 0 0
\(141\) −6.28083 + 20.1813i −0.528941 + 1.69957i
\(142\) 7.54699 1.33074i 0.633329 0.111673i
\(143\) 28.0307 16.1835i 2.34404 1.35333i
\(144\) 2.39911 + 8.69472i 0.199926 + 0.724560i
\(145\) 0 0
\(146\) −3.31807 1.20768i −0.274606 0.0999483i
\(147\) 1.51308 11.8325i 0.124797 0.975924i
\(148\) −15.3228 + 18.2609i −1.25952 + 1.50104i
\(149\) −10.1927 8.55268i −0.835017 0.700663i 0.121420 0.992601i \(-0.461255\pi\)
−0.956437 + 0.291939i \(0.905700\pi\)
\(150\) 0 0
\(151\) 8.57654 + 3.12160i 0.697949 + 0.254033i 0.666535 0.745474i \(-0.267777\pi\)
0.0314139 + 0.999506i \(0.489999\pi\)
\(152\) −1.99158 1.14984i −0.161538 0.0932641i
\(153\) −0.862960 9.08581i −0.0697662 0.734544i
\(154\) −2.14718 3.71903i −0.173025 0.299688i
\(155\) 0 0
\(156\) 39.5648 8.92561i 3.16772 0.714620i
\(157\) 1.51954 + 4.17491i 0.121273 + 0.333194i 0.985443 0.170005i \(-0.0543785\pi\)
−0.864171 + 0.503199i \(0.832156\pi\)
\(158\) 6.77277 + 1.19422i 0.538813 + 0.0950072i
\(159\) −4.23104 2.18261i −0.335544 0.173092i
\(160\) 0 0
\(161\) −0.0678253 −0.00534539
\(162\) −20.3069 + 7.73466i −1.59546 + 0.607693i
\(163\) 16.5806i 1.29869i 0.760492 + 0.649347i \(0.224958\pi\)
−0.760492 + 0.649347i \(0.775042\pi\)
\(164\) −26.6651 + 22.3747i −2.08220 + 1.74717i
\(165\) 0 0
\(166\) 0.316672 1.79594i 0.0245785 0.139392i
\(167\) −6.86091 18.8502i −0.530913 1.45867i −0.857986 0.513673i \(-0.828284\pi\)
0.327073 0.944999i \(-0.393938\pi\)
\(168\) −0.565763 2.50788i −0.0436496 0.193487i
\(169\) −4.23523 24.0192i −0.325787 1.84763i
\(170\) 0 0
\(171\) 0.649499 1.42031i 0.0496684 0.108613i
\(172\) 22.5329 + 13.0094i 1.71812 + 0.991955i
\(173\) 1.14526 3.14658i 0.0870725 0.239230i −0.888512 0.458853i \(-0.848261\pi\)
0.975585 + 0.219623i \(0.0704827\pi\)
\(174\) 4.68759 6.15619i 0.355365 0.466700i
\(175\) 0 0
\(176\) 12.1913 + 10.2297i 0.918951 + 0.771091i
\(177\) −1.53493 + 12.0033i −0.115372 + 0.902223i
\(178\) −5.25320 + 14.4330i −0.393744 + 1.08180i
\(179\) 6.19883 10.7367i 0.463323 0.802498i −0.535802 0.844344i \(-0.679990\pi\)
0.999124 + 0.0418458i \(0.0133238\pi\)
\(180\) 0 0
\(181\) 2.32049 + 4.01921i 0.172481 + 0.298746i 0.939287 0.343134i \(-0.111488\pi\)
−0.766806 + 0.641879i \(0.778155\pi\)
\(182\) −4.88540 + 0.861427i −0.362130 + 0.0638532i
\(183\) 20.6409 + 6.42386i 1.52582 + 0.474865i
\(184\) 0.837906 0.304973i 0.0617713 0.0224829i
\(185\) 0 0
\(186\) −1.80576 38.1100i −0.132405 2.79436i
\(187\) −10.3511 12.3360i −0.756948 0.902095i
\(188\) 46.7321i 3.40829i
\(189\) 1.65920 0.543543i 0.120689 0.0395369i
\(190\) 0 0
\(191\) 10.8645 9.11641i 0.786129 0.659641i −0.158655 0.987334i \(-0.550716\pi\)
0.944784 + 0.327694i \(0.106271\pi\)
\(192\) −9.18977 14.3075i −0.663214 1.03255i
\(193\) 16.6997 + 2.94460i 1.20207 + 0.211957i 0.738593 0.674152i \(-0.235491\pi\)
0.463477 + 0.886109i \(0.346602\pi\)
\(194\) −24.1819 + 8.80149i −1.73616 + 0.631910i
\(195\) 0 0
\(196\) −4.57992 25.9740i −0.327137 1.85529i
\(197\) −5.91232 + 3.41348i −0.421236 + 0.243200i −0.695606 0.718424i \(-0.744864\pi\)
0.274370 + 0.961624i \(0.411531\pi\)
\(198\) −21.7578 + 31.5699i −1.54626 + 2.24357i
\(199\) 7.72021 13.3718i 0.547271 0.947901i −0.451189 0.892428i \(-0.649000\pi\)
0.998460 0.0554726i \(-0.0176666\pi\)
\(200\) 0 0
\(201\) −3.74969 8.95830i −0.264483 0.631870i
\(202\) 18.8711 22.4898i 1.32777 1.58237i
\(203\) −0.399626 + 0.476256i −0.0280483 + 0.0334266i
\(204\) −7.79145 18.6144i −0.545510 1.30327i
\(205\) 0 0
\(206\) 3.11648 5.39790i 0.217135 0.376090i
\(207\) 0.259992 + 0.546911i 0.0180707 + 0.0380129i
\(208\) 15.9211 9.19208i 1.10393 0.637356i
\(209\) −0.478511 2.71377i −0.0330993 0.187716i
\(210\) 0 0
\(211\) 17.3343 6.30917i 1.19334 0.434341i 0.332447 0.943122i \(-0.392126\pi\)
0.860896 + 0.508781i \(0.169904\pi\)
\(212\) −10.3663 1.82786i −0.711963 0.125538i
\(213\) 2.97100 + 4.62553i 0.203569 + 0.316936i
\(214\) 9.91028 8.31571i 0.677453 0.568450i
\(215\) 0 0
\(216\) −18.0536 + 14.1754i −1.22839 + 0.964512i
\(217\) 3.06549i 0.208099i
\(218\) −27.1530 32.3597i −1.83904 2.19168i
\(219\) −0.119888 2.53020i −0.00810129 0.170975i
\(220\) 0 0
\(221\) −17.4805 + 6.36239i −1.17587 + 0.427980i
\(222\) −24.8555 7.73552i −1.66819 0.519174i
\(223\) 3.06856 0.541070i 0.205486 0.0362328i −0.0699575 0.997550i \(-0.522286\pi\)
0.275444 + 0.961317i \(0.411175\pi\)
\(224\) 0.264731 + 0.458527i 0.0176881 + 0.0306366i
\(225\) 0 0
\(226\) −20.2326 + 35.0439i −1.34585 + 2.33108i
\(227\) 2.38634 6.55642i 0.158387 0.435165i −0.834962 0.550308i \(-0.814510\pi\)
0.993349 + 0.115143i \(0.0367325\pi\)
\(228\) 0.437999 3.42519i 0.0290072 0.226839i
\(229\) 7.76380 + 6.51460i 0.513046 + 0.430497i 0.862200 0.506569i \(-0.169086\pi\)
−0.349153 + 0.937066i \(0.613531\pi\)
\(230\) 0 0
\(231\) 1.86628 2.45099i 0.122793 0.161263i
\(232\) 2.79548 7.68051i 0.183532 0.504250i
\(233\) −9.72275 5.61343i −0.636959 0.367748i 0.146483 0.989213i \(-0.453205\pi\)
−0.783442 + 0.621465i \(0.786538\pi\)
\(234\) 25.6731 + 36.0914i 1.67830 + 2.35937i
\(235\) 0 0
\(236\) 4.64605 + 26.3490i 0.302432 + 1.71518i
\(237\) 1.08569 + 4.81257i 0.0705232 + 0.312610i
\(238\) 0.844143 + 2.31926i 0.0547177 + 0.150336i
\(239\) −2.49115 + 14.1280i −0.161139 + 0.913864i 0.791818 + 0.610757i \(0.209135\pi\)
−0.952957 + 0.303106i \(0.901976\pi\)
\(240\) 0 0
\(241\) −7.78696 + 6.53404i −0.501602 + 0.420894i −0.858163 0.513378i \(-0.828394\pi\)
0.356560 + 0.934272i \(0.383949\pi\)
\(242\) 41.0918i 2.64148i
\(243\) −10.7430 11.2955i −0.689165 0.724605i
\(244\) 47.7963 3.05985
\(245\) 0 0
\(246\) −33.7818 17.4265i −2.15385 1.11107i
\(247\) −3.13489 0.552766i −0.199468 0.0351717i
\(248\) −13.7838 37.8707i −0.875273 2.40479i
\(249\) 1.27615 0.287893i 0.0808728 0.0182445i
\(250\) 0 0
\(251\) 0.766397 + 1.32744i 0.0483745 + 0.0837872i 0.889199 0.457521i \(-0.151263\pi\)
−0.840824 + 0.541308i \(0.817929\pi\)
\(252\) 3.14568 2.23763i 0.198159 0.140958i
\(253\) 0.925329 + 0.534239i 0.0581749 + 0.0335873i
\(254\) −18.1646 6.61139i −1.13975 0.414835i
\(255\) 0 0
\(256\) −22.9724 19.2761i −1.43577 1.20476i
\(257\) 15.4081 18.3627i 0.961131 1.14543i −0.0281791 0.999603i \(-0.508971\pi\)
0.989310 0.145828i \(-0.0465847\pi\)
\(258\) −3.60396 + 28.1833i −0.224373 + 1.75462i
\(259\) 1.96543 + 0.715357i 0.122126 + 0.0444501i
\(260\) 0 0
\(261\) 5.37217 + 1.39678i 0.332529 + 0.0864586i
\(262\) 22.6179 13.0585i 1.39734 0.806755i
\(263\) −8.09931 + 1.42813i −0.499425 + 0.0880621i −0.417686 0.908592i \(-0.637159\pi\)
−0.0817395 + 0.996654i \(0.526048\pi\)
\(264\) −12.0351 + 38.6708i −0.740712 + 2.38002i
\(265\) 0 0
\(266\) −0.0733394 + 0.415929i −0.00449673 + 0.0255022i
\(267\) −11.0059 + 0.521493i −0.673552 + 0.0319148i
\(268\) −13.8019 16.4485i −0.843088 1.00475i
\(269\) −2.05741 −0.125442 −0.0627211 0.998031i \(-0.519978\pi\)
−0.0627211 + 0.998031i \(0.519978\pi\)
\(270\) 0 0
\(271\) −15.4436 −0.938131 −0.469066 0.883163i \(-0.655409\pi\)
−0.469066 + 0.883163i \(0.655409\pi\)
\(272\) −5.87933 7.00671i −0.356486 0.424844i
\(273\) −1.92322 2.99425i −0.116398 0.181220i
\(274\) −5.51639 + 31.2850i −0.333257 + 1.89000i
\(275\) 0 0
\(276\) 0.908213 + 0.983780i 0.0546680 + 0.0592166i
\(277\) 1.18559 0.209051i 0.0712350 0.0125607i −0.137917 0.990444i \(-0.544041\pi\)
0.209152 + 0.977883i \(0.432930\pi\)
\(278\) 15.3376 8.85515i 0.919887 0.531097i
\(279\) 24.7186 11.7508i 1.47987 0.703503i
\(280\) 0 0
\(281\) 26.1069 + 9.50212i 1.55740 + 0.566849i 0.970140 0.242546i \(-0.0779825\pi\)
0.587265 + 0.809395i \(0.300205\pi\)
\(282\) −47.0746 + 19.7041i −2.80325 + 1.17336i
\(283\) 14.5809 17.3768i 0.866745 1.03295i −0.132383 0.991199i \(-0.542263\pi\)
0.999128 0.0417476i \(-0.0132925\pi\)
\(284\) 9.31127 + 7.81309i 0.552522 + 0.463621i
\(285\) 0 0
\(286\) 73.4357 + 26.7284i 4.34235 + 1.58048i
\(287\) 2.64498 + 1.52708i 0.156128 + 0.0901406i
\(288\) 2.68256 3.89231i 0.158071 0.229357i
\(289\) −3.87241 6.70722i −0.227789 0.394542i
\(290\) 0 0
\(291\) −12.5223 13.5642i −0.734069 0.795147i
\(292\) −1.91551 5.26282i −0.112097 0.307983i
\(293\) 16.4398 + 2.89878i 0.960422 + 0.169348i 0.631816 0.775119i \(-0.282310\pi\)
0.328606 + 0.944467i \(0.393421\pi\)
\(294\) 24.2333 15.5652i 1.41332 0.907779i
\(295\) 0 0
\(296\) −27.4972 −1.59824
\(297\) −26.9175 5.65356i −1.56191 0.328053i
\(298\) 32.1258i 1.86100i
\(299\) 0.945515 0.793381i 0.0546806 0.0458824i
\(300\) 0 0
\(301\) 0.396423 2.24822i 0.0228494 0.129586i
\(302\) 7.53697 + 20.7076i 0.433704 + 1.19159i
\(303\) 20.1093 + 6.25842i 1.15525 + 0.359537i
\(304\) −0.271790 1.54140i −0.0155882 0.0884051i
\(305\) 0 0
\(306\) 15.4656 15.6971i 0.884110 0.897344i
\(307\) 5.50011 + 3.17549i 0.313908 + 0.181235i 0.648674 0.761066i \(-0.275324\pi\)
−0.334766 + 0.942301i \(0.608657\pi\)
\(308\) 2.32961 6.40056i 0.132742 0.364706i
\(309\) 4.43521 + 0.567156i 0.252310 + 0.0322644i
\(310\) 0 0
\(311\) −0.398806 0.334638i −0.0226142 0.0189756i 0.631410 0.775449i \(-0.282476\pi\)
−0.654025 + 0.756473i \(0.726921\pi\)
\(312\) 37.2227 + 28.3429i 2.10732 + 1.60460i
\(313\) −5.53741 + 15.2139i −0.312993 + 0.859942i 0.679056 + 0.734087i \(0.262390\pi\)
−0.992049 + 0.125855i \(0.959833\pi\)
\(314\) −5.36352 + 9.28988i −0.302681 + 0.524258i
\(315\) 0 0
\(316\) 5.45403 + 9.44666i 0.306813 + 0.531416i
\(317\) −8.30814 + 1.46495i −0.466631 + 0.0822797i −0.402020 0.915631i \(-0.631692\pi\)
−0.0646113 + 0.997911i \(0.520581\pi\)
\(318\) −2.52960 11.2130i −0.141853 0.628794i
\(319\) 9.20335 3.34975i 0.515289 0.187550i
\(320\) 0 0
\(321\) 8.24781 + 4.25468i 0.460348 + 0.237473i
\(322\) −0.105264 0.125448i −0.00586611 0.00699096i
\(323\) 1.58375i 0.0881223i
\(324\) −30.1014 16.7878i −1.67230 0.932655i
\(325\) 0 0
\(326\) −30.6672 + 25.7328i −1.69850 + 1.42521i
\(327\) 13.8927 26.9313i 0.768266 1.48930i
\(328\) −39.5422 6.97235i −2.18335 0.384984i
\(329\) 3.85304 1.40239i 0.212425 0.0773163i
\(330\) 0 0
\(331\) −1.19110 6.75507i −0.0654688 0.371292i −0.999886 0.0151112i \(-0.995190\pi\)
0.934417 0.356181i \(-0.115921\pi\)
\(332\) 2.50497 1.44625i 0.137478 0.0793731i
\(333\) −1.76570 18.5904i −0.0967596 1.01875i
\(334\) 24.2169 41.9449i 1.32509 2.29513i
\(335\) 0 0
\(336\) 1.06003 1.39214i 0.0578295 0.0759472i
\(337\) −13.5234 + 16.1166i −0.736667 + 0.877926i −0.996136 0.0878255i \(-0.972008\pi\)
0.259468 + 0.965752i \(0.416453\pi\)
\(338\) 37.8523 45.1107i 2.05890 2.45370i
\(339\) −28.7940 3.68205i −1.56387 0.199981i
\(340\) 0 0
\(341\) 24.1459 41.8219i 1.30757 2.26478i
\(342\) 3.63498 1.00299i 0.196557 0.0542354i
\(343\) −4.04106 + 2.33311i −0.218197 + 0.125976i
\(344\) 5.21166 + 29.5568i 0.280994 + 1.59360i
\(345\) 0 0
\(346\) 7.59726 2.76518i 0.408431 0.148657i
\(347\) −10.9857 1.93708i −0.589744 0.103988i −0.129190 0.991620i \(-0.541238\pi\)
−0.460553 + 0.887632i \(0.652349\pi\)
\(348\) 12.2591 0.580871i 0.657156 0.0311379i
\(349\) 6.90169 5.79120i 0.369439 0.309996i −0.439101 0.898438i \(-0.644703\pi\)
0.808540 + 0.588442i \(0.200258\pi\)
\(350\) 0 0
\(351\) −16.7720 + 26.9856i −0.895221 + 1.44039i
\(352\) 8.34080i 0.444566i
\(353\) 6.14780 + 7.32667i 0.327214 + 0.389959i 0.904422 0.426638i \(-0.140302\pi\)
−0.577208 + 0.816597i \(0.695858\pi\)
\(354\) −24.5832 + 15.7899i −1.30658 + 0.839224i
\(355\) 0 0
\(356\) −22.8924 + 8.33214i −1.21329 + 0.441603i
\(357\) −1.30093 + 1.20100i −0.0688525 + 0.0635637i
\(358\) 29.4788 5.19791i 1.55800 0.274718i
\(359\) 12.6845 + 21.9702i 0.669463 + 1.15954i 0.978054 + 0.208350i \(0.0668092\pi\)
−0.308591 + 0.951195i \(0.599857\pi\)
\(360\) 0 0
\(361\) 9.36449 16.2198i 0.492868 0.853673i
\(362\) −3.83249 + 10.5297i −0.201431 + 0.553427i
\(363\) −27.1919 + 11.3818i −1.42721 + 0.597389i
\(364\) −6.02747 5.05765i −0.315925 0.265093i
\(365\) 0 0
\(366\) 20.1528 + 48.1466i 1.05341 + 2.51667i
\(367\) −9.18829 + 25.2446i −0.479625 + 1.31776i 0.430188 + 0.902740i \(0.358447\pi\)
−0.909813 + 0.415019i \(0.863775\pi\)
\(368\) 0.525578 + 0.303442i 0.0273976 + 0.0158180i
\(369\) 2.17474 27.1815i 0.113213 1.41501i
\(370\) 0 0
\(371\) 0.160378 + 0.909551i 0.00832643 + 0.0472215i
\(372\) 44.4637 41.0484i 2.30534 2.12826i
\(373\) 8.61440 + 23.6679i 0.446037 + 1.22548i 0.935461 + 0.353430i \(0.114985\pi\)
−0.489424 + 0.872046i \(0.662793\pi\)
\(374\) 6.75162 38.2904i 0.349118 1.97995i
\(375\) 0 0
\(376\) −41.2942 + 34.6499i −2.12959 + 1.78693i
\(377\) 11.3138i 0.582691i
\(378\) 3.58037 + 2.22526i 0.184155 + 0.114455i
\(379\) −25.4242 −1.30595 −0.652976 0.757379i \(-0.726480\pi\)
−0.652976 + 0.757379i \(0.726480\pi\)
\(380\) 0 0
\(381\) −0.656322 13.8515i −0.0336244 0.709632i
\(382\) 33.7230 + 5.94628i 1.72542 + 0.304238i
\(383\) −3.38390 9.29719i −0.172909 0.475064i 0.822721 0.568445i \(-0.192455\pi\)
−0.995630 + 0.0933808i \(0.970233\pi\)
\(384\) 10.5784 33.9903i 0.539829 1.73456i
\(385\) 0 0
\(386\) 20.4713 + 35.4573i 1.04196 + 1.80473i
\(387\) −19.6482 + 5.42146i −0.998773 + 0.275589i
\(388\) −35.3483 20.4083i −1.79454 1.03608i
\(389\) 4.09700 + 1.49119i 0.207726 + 0.0756061i 0.443788 0.896132i \(-0.353634\pi\)
−0.236061 + 0.971738i \(0.575857\pi\)
\(390\) 0 0
\(391\) −0.470419 0.394728i −0.0237901 0.0199623i
\(392\) 19.5558 23.3057i 0.987715 1.17711i
\(393\) 14.9061 + 11.3501i 0.751913 + 0.572539i
\(394\) −15.4893 5.63765i −0.780340 0.284021i
\(395\) 0 0
\(396\) −60.5410 + 5.75012i −3.04230 + 0.288954i
\(397\) −14.0365 + 8.10396i −0.704470 + 0.406726i −0.809010 0.587795i \(-0.799996\pi\)
0.104540 + 0.994521i \(0.466663\pi\)
\(398\) 36.7138 6.47363i 1.84030 0.324494i
\(399\) −0.295549 + 0.0666743i −0.0147960 + 0.00333789i
\(400\) 0 0
\(401\) −0.111264 + 0.631007i −0.00555624 + 0.0315110i −0.987460 0.157870i \(-0.949537\pi\)
0.981904 + 0.189381i \(0.0606483\pi\)
\(402\) 10.7496 20.8385i 0.536143 1.03933i
\(403\) −35.8583 42.7343i −1.78623 2.12875i
\(404\) 46.5654 2.31672
\(405\) 0 0
\(406\) −1.50109 −0.0744976
\(407\) −21.1793 25.2405i −1.04982 1.25113i
\(408\) 10.6713 20.6866i 0.528308 1.02414i
\(409\) −4.23533 + 24.0197i −0.209423 + 1.18770i 0.680902 + 0.732374i \(0.261588\pi\)
−0.890326 + 0.455325i \(0.849523\pi\)
\(410\) 0 0
\(411\) −22.2304 + 5.01506i −1.09654 + 0.247375i
\(412\) 9.73596 1.71671i 0.479656 0.0845763i
\(413\) 2.03304 1.17378i 0.100039 0.0577577i
\(414\) −0.608052 + 1.32967i −0.0298841 + 0.0653497i
\(415\) 0 0
\(416\) −9.05405 3.29540i −0.443911 0.161570i
\(417\) 10.1081 + 7.69670i 0.494994 + 0.376909i
\(418\) 4.27669 5.09677i 0.209180 0.249291i
\(419\) 13.1999 + 11.0760i 0.644855 + 0.541098i 0.905505 0.424336i \(-0.139492\pi\)
−0.260650 + 0.965433i \(0.583937\pi\)
\(420\) 0 0
\(421\) 21.2230 + 7.72454i 1.03435 + 0.376471i 0.802734 0.596337i \(-0.203378\pi\)
0.231612 + 0.972808i \(0.425600\pi\)
\(422\) 38.5718 + 22.2694i 1.87765 + 1.08406i
\(423\) −26.0779 25.6933i −1.26795 1.24925i
\(424\) −6.07104 10.5154i −0.294836 0.510671i
\(425\) 0 0
\(426\) −3.94435 + 12.6738i −0.191104 + 0.614049i
\(427\) −1.43433 3.94078i −0.0694119 0.190708i
\(428\) 20.2077 + 3.56316i 0.976775 + 0.172232i
\(429\) 2.65337 + 55.9985i 0.128106 + 2.70363i
\(430\) 0 0
\(431\) −10.3129 −0.496754 −0.248377 0.968663i \(-0.579897\pi\)
−0.248377 + 0.968663i \(0.579897\pi\)
\(432\) −15.2889 3.21117i −0.735587 0.154497i
\(433\) 11.0194i 0.529557i 0.964309 + 0.264778i \(0.0852988\pi\)
−0.964309 + 0.264778i \(0.914701\pi\)
\(434\) −5.66986 + 4.75758i −0.272162 + 0.228371i
\(435\) 0 0
\(436\) 11.6347 65.9835i 0.557199 3.16003i
\(437\) −0.0359406 0.0987460i −0.00171927 0.00472366i
\(438\) 4.49374 4.14856i 0.214719 0.198226i
\(439\) 4.27981 + 24.2720i 0.204264 + 1.15844i 0.898593 + 0.438783i \(0.144590\pi\)
−0.694329 + 0.719658i \(0.744299\pi\)
\(440\) 0 0
\(441\) 17.0123 + 11.7248i 0.810110 + 0.558323i
\(442\) −38.8971 22.4573i −1.85015 1.06818i
\(443\) −7.48678 + 20.5698i −0.355708 + 0.977299i 0.624794 + 0.780789i \(0.285183\pi\)
−0.980502 + 0.196509i \(0.937039\pi\)
\(444\) −15.9420 38.0867i −0.756575 1.80752i
\(445\) 0 0
\(446\) 5.76310 + 4.83582i 0.272891 + 0.228983i
\(447\) 21.2588 8.89834i 1.00551 0.420877i
\(448\) −1.12826 + 3.09988i −0.0533055 + 0.146456i
\(449\) 0.0863524 0.149567i 0.00407522 0.00705849i −0.863981 0.503525i \(-0.832036\pi\)
0.868056 + 0.496467i \(0.165369\pi\)
\(450\) 0 0
\(451\) −24.0566 41.6673i −1.13278 1.96204i
\(452\) −63.2071 + 11.1451i −2.97301 + 0.524222i
\(453\) −11.6154 + 10.7232i −0.545739 + 0.503819i
\(454\) 15.8302 5.76171i 0.742947 0.270411i
\(455\) 0 0
\(456\) 3.35138 2.15261i 0.156943 0.100805i
\(457\) 5.76201 + 6.86690i 0.269536 + 0.321220i 0.883786 0.467891i \(-0.154986\pi\)
−0.614251 + 0.789111i \(0.710542\pi\)
\(458\) 24.4703i 1.14342i
\(459\) 14.6711 + 5.88632i 0.684788 + 0.274750i
\(460\) 0 0
\(461\) 12.4655 10.4598i 0.580576 0.487161i −0.304560 0.952493i \(-0.598510\pi\)
0.885136 + 0.465332i \(0.154065\pi\)
\(462\) 7.42973 0.352042i 0.345662 0.0163785i
\(463\) −13.5465 2.38861i −0.629558 0.111008i −0.150240 0.988650i \(-0.548005\pi\)
−0.479318 + 0.877642i \(0.659116\pi\)
\(464\) 5.22741 1.90262i 0.242677 0.0883270i
\(465\) 0 0
\(466\) −4.70704 26.6949i −0.218049 1.23662i
\(467\) 3.62851 2.09492i 0.167907 0.0969414i −0.413691 0.910417i \(-0.635761\pi\)
0.581599 + 0.813476i \(0.302427\pi\)
\(468\) −17.6776 + 67.9899i −0.817146 + 3.14283i
\(469\) −0.941987 + 1.63157i −0.0434969 + 0.0753389i
\(470\) 0 0
\(471\) −7.63307 0.976085i −0.351713 0.0449756i
\(472\) −19.8381 + 23.6421i −0.913123 + 1.08822i
\(473\) −23.1169 + 27.5496i −1.06292 + 1.26673i
\(474\) −7.21626 + 9.47709i −0.331454 + 0.435297i
\(475\) 0 0
\(476\) −1.95734 + 3.39022i −0.0897148 + 0.155391i
\(477\) 6.71941 4.77976i 0.307661 0.218850i
\(478\) −29.9970 + 17.3188i −1.37203 + 0.792143i
\(479\) −4.29952 24.3838i −0.196450 1.11412i −0.910339 0.413864i \(-0.864179\pi\)
0.713888 0.700259i \(-0.246932\pi\)
\(480\) 0 0
\(481\) −35.7668 + 13.0180i −1.63082 + 0.593571i
\(482\) −24.1704 4.26190i −1.10093 0.194124i
\(483\) 0.0538574 0.104404i 0.00245060 0.00475055i
\(484\) −49.9277 + 41.8943i −2.26944 + 1.90429i
\(485\) 0 0
\(486\) 4.21890 37.4004i 0.191373 1.69652i
\(487\) 14.2164i 0.644205i −0.946705 0.322102i \(-0.895610\pi\)
0.946705 0.322102i \(-0.104390\pi\)
\(488\) 35.4390 + 42.2346i 1.60425 + 1.91187i
\(489\) −25.5227 13.1660i −1.15418 0.595388i
\(490\) 0 0
\(491\) −10.7333 + 3.90659i −0.484385 + 0.176302i −0.572658 0.819795i \(-0.694088\pi\)
0.0882726 + 0.996096i \(0.471865\pi\)
\(492\) −13.2678 58.8127i −0.598160 2.65148i
\(493\) −5.54341 + 0.977453i −0.249663 + 0.0440222i
\(494\) −3.84291 6.65611i −0.172901 0.299473i
\(495\) 0 0
\(496\) 13.7146 23.7544i 0.615805 1.06661i
\(497\) 0.364761 1.00217i 0.0163618 0.0449536i
\(498\) 2.51304 + 1.91354i 0.112612 + 0.0857477i
\(499\) −29.0144 24.3459i −1.29886 1.08987i −0.990341 0.138656i \(-0.955722\pi\)
−0.308520 0.951218i \(-0.599834\pi\)
\(500\) 0 0
\(501\) 34.4642 + 4.40714i 1.53975 + 0.196897i
\(502\) −1.26577 + 3.47767i −0.0564940 + 0.155216i
\(503\) 31.4533 + 18.1596i 1.40243 + 0.809694i 0.994642 0.103381i \(-0.0329662\pi\)
0.407790 + 0.913076i \(0.366300\pi\)
\(504\) 4.30964 + 1.12052i 0.191967 + 0.0499120i
\(505\) 0 0
\(506\) 0.447976 + 2.54060i 0.0199149 + 0.112943i
\(507\) 40.3359 + 12.5533i 1.79138 + 0.557514i
\(508\) −10.4864 28.8111i −0.465258 1.27828i
\(509\) 1.95163 11.0682i 0.0865043 0.490590i −0.910518 0.413470i \(-0.864317\pi\)
0.997022 0.0771197i \(-0.0245724\pi\)
\(510\) 0 0
\(511\) −0.376434 + 0.315866i −0.0166525 + 0.0139731i
\(512\) 31.3000i 1.38328i
\(513\) 1.67055 + 2.12759i 0.0737564 + 0.0939352i
\(514\) 57.8762 2.55281
\(515\) 0 0
\(516\) −37.9179 + 24.3548i −1.66924 + 1.07216i
\(517\) −63.6125 11.2166i −2.79767 0.493305i
\(518\) 1.72720 + 4.74543i 0.0758886 + 0.208502i
\(519\) 3.93414 + 4.26148i 0.172690 + 0.187058i
\(520\) 0 0
\(521\) 2.20153 + 3.81316i 0.0964507 + 0.167057i 0.910213 0.414140i \(-0.135918\pi\)
−0.813762 + 0.581198i \(0.802584\pi\)
\(522\) 5.75405 + 12.1040i 0.251848 + 0.529779i
\(523\) 13.5084 + 7.79908i 0.590681 + 0.341030i 0.765367 0.643594i \(-0.222558\pi\)
−0.174686 + 0.984624i \(0.555891\pi\)
\(524\) 38.9261 + 14.1679i 1.70050 + 0.618930i
\(525\) 0 0
\(526\) −15.2114 12.7639i −0.663249 0.556532i
\(527\) −17.8405 + 21.2614i −0.777143 + 0.926163i
\(528\) −25.4272 + 10.6431i −1.10658 + 0.463182i
\(529\) −21.5746 7.85253i −0.938028 0.341414i
\(530\) 0 0
\(531\) −17.2579 11.8941i −0.748930 0.516158i
\(532\) −0.580137 + 0.334942i −0.0251521 + 0.0145216i
\(533\) −54.7350 + 9.65127i −2.37084 + 0.418043i
\(534\) −18.0455 19.5470i −0.780907 0.845881i
\(535\) 0 0
\(536\) 4.30093 24.3918i 0.185772 1.05357i
\(537\) 11.6048 + 18.0675i 0.500785 + 0.779670i
\(538\) −3.19305 3.80533i −0.137662 0.164060i
\(539\) 36.4555 1.57025
\(540\) 0 0
\(541\) −1.52861 −0.0657202 −0.0328601 0.999460i \(-0.510462\pi\)
−0.0328601 + 0.999460i \(0.510462\pi\)
\(542\) −23.9681 28.5641i −1.02952 1.22693i
\(543\) −8.02941 + 0.380456i −0.344575 + 0.0163269i
\(544\) −0.832422 + 4.72090i −0.0356898 + 0.202407i
\(545\) 0 0
\(546\) 2.55330 8.20415i 0.109271 0.351105i
\(547\) 12.0871 2.13129i 0.516808 0.0911273i 0.0908404 0.995865i \(-0.471045\pi\)
0.425968 + 0.904738i \(0.359934\pi\)
\(548\) −43.6363 + 25.1934i −1.86405 + 1.07621i
\(549\) −26.2784 + 26.6717i −1.12154 + 1.13832i
\(550\) 0 0
\(551\) −0.905136 0.329443i −0.0385601 0.0140347i
\(552\) −0.195901 + 1.53196i −0.00833809 + 0.0652047i
\(553\) 0.615201 0.733168i 0.0261610 0.0311775i
\(554\) 2.22666 + 1.86839i 0.0946019 + 0.0793804i
\(555\) 0 0
\(556\) 26.3964 + 9.60751i 1.11946 + 0.407449i
\(557\) −15.5748 8.99212i −0.659926 0.381008i 0.132323 0.991207i \(-0.457756\pi\)
−0.792249 + 0.610198i \(0.791090\pi\)
\(558\) 60.0969 + 27.4820i 2.54410 + 1.16341i
\(559\) 20.7721 + 35.9784i 0.878567 + 1.52172i
\(560\) 0 0
\(561\) 27.2082 6.13804i 1.14873 0.259148i
\(562\) 22.9424 + 63.0338i 0.967768 + 2.65892i
\(563\) 9.26763 + 1.63413i 0.390584 + 0.0688705i 0.365492 0.930815i \(-0.380901\pi\)
0.0250923 + 0.999685i \(0.492012\pi\)
\(564\) −71.9351 37.1081i −3.02901 1.56253i
\(565\) 0 0
\(566\) 54.7691 2.30212
\(567\) −0.480827 + 2.98563i −0.0201928 + 0.125385i
\(568\) 14.0209i 0.588302i
\(569\) 25.8778 21.7141i 1.08485 0.910301i 0.0885394 0.996073i \(-0.471780\pi\)
0.996315 + 0.0857719i \(0.0273356\pi\)
\(570\) 0 0
\(571\) −0.978955 + 5.55193i −0.0409680 + 0.232341i −0.998416 0.0562653i \(-0.982081\pi\)
0.957448 + 0.288606i \(0.0931919\pi\)
\(572\) 42.3942 + 116.477i 1.77259 + 4.87015i
\(573\) 5.40588 + 23.9628i 0.225834 + 1.00106i
\(574\) 1.28050 + 7.26209i 0.0534472 + 0.303114i
\(575\) 0 0
\(576\) 29.3209 2.78486i 1.22170 0.116036i
\(577\) 13.7529 + 7.94027i 0.572543 + 0.330558i 0.758164 0.652064i \(-0.226096\pi\)
−0.185622 + 0.982621i \(0.559430\pi\)
\(578\) 6.39561 17.5718i 0.266022 0.730891i
\(579\) −17.7932 + 23.3678i −0.739460 + 0.971131i
\(580\) 0 0
\(581\) −0.194414 0.163133i −0.00806567 0.00676790i
\(582\) 5.65368 44.2123i 0.234353 1.83266i
\(583\) 4.97623 13.6721i 0.206094 0.566240i
\(584\) 3.23015 5.59478i 0.133664 0.231514i
\(585\) 0 0
\(586\) 20.1527 + 34.9055i 0.832500 + 1.44193i
\(587\) 19.5714 3.45096i 0.807797 0.142436i 0.245527 0.969390i \(-0.421039\pi\)
0.562270 + 0.826953i \(0.309928\pi\)
\(588\) 43.6187 + 13.5750i 1.79881 + 0.559825i
\(589\) −4.46300 + 1.62440i −0.183895 + 0.0669323i
\(590\) 0 0
\(591\) −0.559657 11.8114i −0.0230212 0.485856i
\(592\) −12.0296 14.3364i −0.494416 0.589221i
\(593\) 43.0280i 1.76695i −0.468480 0.883474i \(-0.655198\pi\)
0.468480 0.883474i \(-0.344802\pi\)
\(594\) −31.3188 58.5603i −1.28502 2.40276i
\(595\) 0 0
\(596\) 39.0337 32.7532i 1.59888 1.34162i
\(597\) 14.4530 + 22.5018i 0.591521 + 0.920936i
\(598\) 2.93484 + 0.517492i 0.120015 + 0.0211618i
\(599\) −36.3045 + 13.2138i −1.48336 + 0.539900i −0.951693 0.307051i \(-0.900658\pi\)
−0.531671 + 0.846951i \(0.678436\pi\)
\(600\) 0 0
\(601\) −1.31942 7.48281i −0.0538203 0.305230i 0.946000 0.324166i \(-0.105083\pi\)
−0.999821 + 0.0189352i \(0.993972\pi\)
\(602\) 4.77351 2.75599i 0.194554 0.112326i
\(603\) 16.7671 + 1.34150i 0.682808 + 0.0546302i
\(604\) −17.4762 + 30.2697i −0.711098 + 1.23166i
\(605\) 0 0
\(606\) 19.6338 + 46.9067i 0.797570 + 1.90546i
\(607\) 0.547047 0.651945i 0.0222040 0.0264616i −0.754828 0.655923i \(-0.772280\pi\)
0.777032 + 0.629461i \(0.216724\pi\)
\(608\) −0.527283 + 0.628391i −0.0213841 + 0.0254846i
\(609\) −0.415777 0.993324i −0.0168482 0.0402515i
\(610\) 0 0
\(611\) −37.3087 + 64.6205i −1.50935 + 2.61427i
\(612\) 34.8401 + 2.78749i 1.40833 + 0.112678i
\(613\) −0.145420 + 0.0839581i −0.00587345 + 0.00339104i −0.502934 0.864325i \(-0.667746\pi\)
0.497060 + 0.867716i \(0.334413\pi\)
\(614\) 2.66275 + 15.1012i 0.107460 + 0.609434i
\(615\) 0 0
\(616\) 7.38308 2.68722i 0.297473 0.108271i
\(617\) 16.3908 + 2.89015i 0.659871 + 0.116353i 0.493548 0.869718i \(-0.335700\pi\)
0.166322 + 0.986071i \(0.446811\pi\)
\(618\) 5.83436 + 9.08348i 0.234692 + 0.365391i
\(619\) 33.6283 28.2175i 1.35163 1.13416i 0.373165 0.927765i \(-0.378272\pi\)
0.978470 0.206391i \(-0.0661720\pi\)
\(620\) 0 0
\(621\) −1.04831 0.0340724i −0.0420674 0.00136728i
\(622\) 1.25698i 0.0504001i
\(623\) 1.37396 + 1.63742i 0.0550466 + 0.0656020i
\(624\) 1.50709 + 31.8066i 0.0603318 + 1.27328i
\(625\) 0 0
\(626\) −36.7333 + 13.3698i −1.46816 + 0.534366i
\(627\) 4.55730 + 1.41832i 0.182001 + 0.0566423i
\(628\) −16.7558 + 2.95449i −0.668627 + 0.117897i
\(629\) 9.46847 + 16.3999i 0.377533 + 0.653906i
\(630\) 0 0
\(631\) 6.62243 11.4704i 0.263635 0.456629i −0.703570 0.710626i \(-0.748412\pi\)
0.967205 + 0.253997i \(0.0817453\pi\)
\(632\) −4.30347 + 11.8237i −0.171183 + 0.470321i
\(633\) −4.05273 + 31.6927i −0.161081 + 1.25967i
\(634\) −15.6036 13.0930i −0.619698 0.519989i
\(635\) 0 0
\(636\) 11.0451 14.5055i 0.437968 0.575182i
\(637\) 14.4034 39.5729i 0.570682 1.56794i
\(638\) 20.4790 + 11.8236i 0.810773 + 0.468100i
\(639\) −9.47927 + 0.900331i −0.374994 + 0.0356165i
\(640\) 0 0
\(641\) −7.29257 41.3582i −0.288039 1.63355i −0.694223 0.719760i \(-0.744252\pi\)
0.406183 0.913792i \(-0.366859\pi\)
\(642\) 4.93108 + 21.8581i 0.194614 + 0.862672i
\(643\) −9.62646 26.4485i −0.379631 1.04303i −0.971510 0.237000i \(-0.923836\pi\)
0.591879 0.806027i \(-0.298386\pi\)
\(644\) 0.0451039 0.255797i 0.00177734 0.0100798i
\(645\) 0 0
\(646\) −2.92927 + 2.45795i −0.115251 + 0.0967069i
\(647\) 4.87520i 0.191664i 0.995398 + 0.0958319i \(0.0305511\pi\)
−0.995398 + 0.0958319i \(0.969449\pi\)
\(648\) −7.48464 39.0461i −0.294024 1.53388i
\(649\) −36.9819 −1.45166
\(650\) 0 0
\(651\) −4.71873 2.43418i −0.184942 0.0954032i
\(652\) −62.5322 11.0261i −2.44895 0.431816i
\(653\) 1.20328 + 3.30599i 0.0470880 + 0.129373i 0.961008 0.276522i \(-0.0891819\pi\)
−0.913920 + 0.405895i \(0.866960\pi\)
\(654\) 71.3727 16.1013i 2.79089 0.629611i
\(655\) 0 0
\(656\) −13.6639 23.6666i −0.533487 0.924027i
\(657\) 3.98996 + 1.82459i 0.155663 + 0.0711839i
\(658\) 8.57367 + 4.95001i 0.334236 + 0.192972i
\(659\) 3.85106 + 1.40167i 0.150016 + 0.0546013i 0.415937 0.909394i \(-0.363454\pi\)
−0.265921 + 0.963995i \(0.585676\pi\)
\(660\) 0 0
\(661\) 10.8180 + 9.07740i 0.420773 + 0.353070i 0.828457 0.560053i \(-0.189219\pi\)
−0.407684 + 0.913123i \(0.633664\pi\)
\(662\) 10.6455 12.6868i 0.413748 0.493085i
\(663\) 4.08691 31.9600i 0.158722 1.24122i
\(664\) 3.13529 + 1.14115i 0.121673 + 0.0442853i
\(665\) 0 0
\(666\) 31.6441 32.1177i 1.22618 1.24454i
\(667\) 0.323446 0.186742i 0.0125239 0.00723067i
\(668\) 75.6542 13.3399i 2.92715 0.516136i
\(669\) −1.60375 + 5.15311i −0.0620046 + 0.199231i
\(670\) 0 0
\(671\) −11.4720 + 65.0611i −0.442873 + 2.51166i
\(672\) −0.916026 + 0.0434039i −0.0353365 + 0.00167434i
\(673\) −26.6182 31.7224i −1.02606 1.22281i −0.974558 0.224134i \(-0.928045\pi\)
−0.0514985 0.998673i \(-0.516400\pi\)
\(674\) −50.7970 −1.95663
\(675\) 0 0
\(676\) 93.4024 3.59240
\(677\) 19.9896 + 23.8227i 0.768264 + 0.915581i 0.998340 0.0575915i \(-0.0183421\pi\)
−0.230077 + 0.973173i \(0.573898\pi\)
\(678\) −37.8774 58.9711i −1.45467 2.26477i
\(679\) −0.621884 + 3.52688i −0.0238657 + 0.135349i
\(680\) 0 0
\(681\) 8.19745 + 8.87951i 0.314127 + 0.340264i
\(682\) 114.827 20.2471i 4.39695 0.775301i
\(683\) 11.2564 6.49887i 0.430713 0.248673i −0.268937 0.963158i \(-0.586672\pi\)
0.699651 + 0.714485i \(0.253339\pi\)
\(684\) 4.92463 + 3.39403i 0.188298 + 0.129774i
\(685\) 0 0
\(686\) −10.5869 3.85332i −0.404210 0.147121i
\(687\) −16.1929 + 6.77789i −0.617798 + 0.258593i
\(688\) −13.1302 + 15.6479i −0.500583 + 0.596571i
\(689\) −12.8751 10.8035i −0.490504 0.411582i
\(690\) 0 0
\(691\) −44.3322 16.1356i −1.68648 0.613827i −0.692301 0.721609i \(-0.743403\pi\)
−0.994175 + 0.107782i \(0.965625\pi\)
\(692\) 11.1054 + 6.41171i 0.422164 + 0.243737i
\(693\) 2.29088 + 4.81902i 0.0870233 + 0.183059i
\(694\) −13.4668 23.3252i −0.511194 0.885413i
\(695\) 0 0
\(696\) 9.60289 + 10.4019i 0.363997 + 0.394283i
\(697\) 9.45762 + 25.9846i 0.358233 + 0.984237i
\(698\) 21.4226 + 3.77738i 0.810856 + 0.142976i
\(699\) 16.3613 10.5089i 0.618839 0.397483i
\(700\) 0 0
\(701\) 8.98862 0.339496 0.169748 0.985488i \(-0.445705\pi\)
0.169748 + 0.985488i \(0.445705\pi\)
\(702\) −75.9418 + 10.8601i −2.86624 + 0.409887i
\(703\) 3.24051i 0.122218i
\(704\) 39.8095 33.4041i 1.50038 1.25897i
\(705\) 0 0
\(706\) −4.00997 + 22.7417i −0.150917 + 0.855895i
\(707\) −1.39739 3.83929i −0.0525542 0.144391i
\(708\) −44.2485 13.7710i −1.66296 0.517547i
\(709\) 6.01200 + 34.0958i 0.225785 + 1.28049i 0.861178 + 0.508304i \(0.169727\pi\)
−0.635392 + 0.772189i \(0.719162\pi\)
\(710\) 0 0
\(711\) −8.27014 2.15026i −0.310154 0.0806411i
\(712\) −24.3363 14.0506i −0.912043 0.526568i
\(713\) 0.629849 1.73050i 0.0235880 0.0648076i
\(714\) −4.24036 0.542240i −0.158692 0.0202928i
\(715\) 0 0
\(716\) 36.3702 + 30.5182i 1.35922 + 1.14052i
\(717\) −19.7692 15.0531i −0.738294 0.562169i
\(718\) −20.9495 + 57.5584i −0.781830 + 2.14806i
\(719\) −11.7846 + 20.4116i −0.439493 + 0.761224i −0.997650 0.0685110i \(-0.978175\pi\)
0.558157 + 0.829735i \(0.311509\pi\)
\(720\) 0 0
\(721\) −0.433710 0.751207i −0.0161522 0.0279764i
\(722\) 44.5333 7.85242i 1.65736 0.292237i
\(723\) −3.87458 17.1750i −0.144097 0.638743i
\(724\) −16.7012 + 6.07874i −0.620695 + 0.225915i
\(725\) 0 0
\(726\) −63.2529 32.6293i −2.34753 1.21099i
\(727\) 17.4450 + 20.7902i 0.647000 + 0.771064i 0.985458 0.169917i \(-0.0543500\pi\)
−0.338459 + 0.940981i \(0.609906\pi\)
\(728\) 9.07613i 0.336384i
\(729\) 25.9178 7.56753i 0.959919 0.280279i
\(730\) 0 0
\(731\) 15.8336 13.2860i 0.585629 0.491401i
\(732\) −37.9532 + 73.5733i −1.40279 + 2.71935i
\(733\) 14.6666 + 2.58612i 0.541724 + 0.0955205i 0.437813 0.899066i \(-0.355753\pi\)
0.103911 + 0.994587i \(0.466864\pi\)
\(734\) −60.9520 + 22.1847i −2.24978 + 0.818852i
\(735\) 0 0
\(736\) −0.0552319 0.313235i −0.00203587 0.0115460i
\(737\) 25.7027 14.8395i 0.946771 0.546619i
\(738\) 53.6495 38.1628i 1.97487 1.40479i
\(739\) 5.36887 9.29916i 0.197497 0.342075i −0.750219 0.661189i \(-0.770052\pi\)
0.947716 + 0.319114i \(0.103385\pi\)
\(740\) 0 0
\(741\) 3.34017 4.38663i 0.122704 0.161147i
\(742\) −1.43338 + 1.70824i −0.0526211 + 0.0627114i
\(743\) −10.6742 + 12.7210i −0.391597 + 0.466687i −0.925439 0.378897i \(-0.876303\pi\)
0.533842 + 0.845584i \(0.320748\pi\)
\(744\) 69.2398 + 8.85410i 2.53846 + 0.324607i
\(745\) 0 0
\(746\) −30.4062 + 52.6651i −1.11325 + 1.92821i
\(747\) −0.570186 + 2.19300i −0.0208620 + 0.0802375i
\(748\) 53.4074 30.8348i 1.95277 1.12743i
\(749\) −0.312635 1.77304i −0.0114234 0.0647854i
\(750\) 0 0
\(751\) −4.89963 + 1.78332i −0.178790 + 0.0650743i −0.429864 0.902894i \(-0.641439\pi\)
0.251074 + 0.967968i \(0.419216\pi\)
\(752\) −36.1313 6.37092i −1.31757 0.232323i
\(753\) −2.65190 + 0.125655i −0.0966407 + 0.00457911i
\(754\) 20.9258 17.5588i 0.762072 0.639455i
\(755\) 0 0
\(756\) 0.946549 + 6.61898i 0.0344257 + 0.240730i
\(757\) 43.6180i 1.58532i −0.609661 0.792662i \(-0.708694\pi\)
0.609661 0.792662i \(-0.291306\pi\)
\(758\) −39.4578 47.0240i −1.43317 1.70799i
\(759\) −1.55712 + 1.00015i −0.0565200 + 0.0363031i
\(760\) 0 0
\(761\) 11.6568 4.24273i 0.422559 0.153799i −0.121984 0.992532i \(-0.538926\pi\)
0.544542 + 0.838733i \(0.316703\pi\)
\(762\) 24.6008 22.7111i 0.891192 0.822737i
\(763\) −5.78945 + 1.02084i −0.209592 + 0.0369567i
\(764\) 27.1568 + 47.0369i 0.982497 + 1.70174i
\(765\) 0 0
\(766\) 11.9441 20.6878i 0.431559 0.747482i
\(767\) −14.6113 + 40.1443i −0.527584 + 1.44953i
\(768\) 47.9133 20.0552i 1.72892 0.723679i
\(769\) 30.8699 + 25.9030i 1.11320 + 0.934085i 0.998241 0.0592857i \(-0.0188823\pi\)
0.114958 + 0.993370i \(0.463327\pi\)
\(770\) 0 0
\(771\) 16.0308 + 38.2989i 0.577336 + 1.37930i
\(772\) −22.2106 + 61.0231i −0.799376 + 2.19627i
\(773\) −29.8587 17.2390i −1.07394 0.620042i −0.144688 0.989477i \(-0.546218\pi\)
−0.929257 + 0.369435i \(0.879551\pi\)
\(774\) −40.5210 27.9269i −1.45650 1.00381i
\(775\) 0 0
\(776\) −8.17574 46.3669i −0.293492 1.66448i
\(777\) −2.66182 + 2.45736i −0.0954923 + 0.0881573i
\(778\) 3.60040 + 9.89201i 0.129081 + 0.354646i
\(779\) −0.821681 + 4.65998i −0.0294398 + 0.166961i
\(780\) 0 0
\(781\) −12.8702 + 10.7994i −0.460531 + 0.386431i
\(782\) 1.48269i 0.0530208i
\(783\) −6.41590 + 7.16030i −0.229286 + 0.255888i
\(784\) 20.7064 0.739513
\(785\) 0 0
\(786\) 2.14100 + 45.1852i 0.0763670 + 1.61170i
\(787\) 36.0345 + 6.35385i 1.28449 + 0.226490i 0.773886 0.633325i \(-0.218311\pi\)
0.510604 + 0.859816i \(0.329422\pi\)
\(788\) −8.94192 24.5677i −0.318543 0.875189i
\(789\) 4.23302 13.6014i 0.150699 0.484221i
\(790\) 0 0
\(791\) 2.81570 + 4.87693i 0.100115 + 0.173404i
\(792\) −49.9697 49.2328i −1.77560 1.74941i
\(793\) 66.0921 + 38.1583i 2.34700 + 1.35504i
\(794\) −36.7732 13.3844i −1.30503 0.474993i
\(795\) 0 0
\(796\) 45.2965 + 38.0083i 1.60549 + 1.34717i
\(797\) −33.1308 + 39.4838i −1.17355 + 1.39859i −0.274027 + 0.961722i \(0.588356\pi\)
−0.899527 + 0.436866i \(0.856089\pi\)
\(798\) −0.582006 0.443164i −0.0206028 0.0156878i
\(799\) 34.8853 + 12.6972i 1.23415 + 0.449195i
\(800\) 0 0
\(801\) 7.93664 17.3556i 0.280427 0.613231i
\(802\) −1.33978 + 0.773520i −0.0473092 + 0.0273140i
\(803\) 7.62359 1.34425i 0.269031 0.0474374i
\(804\) 36.2789 8.18433i 1.27946 0.288639i
\(805\) 0 0
\(806\) 23.3890 132.646i 0.823842 4.67224i
\(807\) 1.63370 3.16698i 0.0575091 0.111483i
\(808\) 34.5263 + 41.1469i 1.21463 + 1.44754i
\(809\) 18.5065 0.650654 0.325327 0.945602i \(-0.394526\pi\)
0.325327 + 0.945602i \(0.394526\pi\)
\(810\) 0 0
\(811\) 36.6261 1.28611 0.643057 0.765818i \(-0.277666\pi\)
0.643057 + 0.765818i \(0.277666\pi\)
\(812\) −1.53040 1.82386i −0.0537066 0.0640050i
\(813\) 12.2631 23.7724i 0.430087 0.833736i
\(814\) 13.8145 78.3456i 0.484196 2.74601i
\(815\) 0 0
\(816\) 15.4540 3.48634i 0.540999 0.122046i
\(817\) 3.48322 0.614186i 0.121863 0.0214877i
\(818\) −50.9995 + 29.4446i −1.78316 + 1.02951i
\(819\) 6.13622 0.582811i 0.214417 0.0203651i
\(820\) 0 0
\(821\) 20.6784 + 7.52630i 0.721679 + 0.262670i 0.676639 0.736315i \(-0.263436\pi\)
0.0450409 + 0.998985i \(0.485658\pi\)
\(822\) −43.7769 33.3336i −1.52689 1.16264i
\(823\) 19.4739 23.2081i 0.678818 0.808984i −0.311137 0.950365i \(-0.600710\pi\)
0.989955 + 0.141381i \(0.0451542\pi\)
\(824\) 8.73576 + 7.33017i 0.304325 + 0.255359i
\(825\) 0 0
\(826\) 5.32623 + 1.93859i 0.185323 + 0.0674521i
\(827\) −15.4977 8.94761i −0.538909 0.311139i 0.205728 0.978609i \(-0.434044\pi\)
−0.744637 + 0.667470i \(0.767377\pi\)
\(828\) −2.23552 + 0.616839i −0.0776896 + 0.0214366i
\(829\) 12.0856 + 20.9328i 0.419749 + 0.727026i 0.995914 0.0903070i \(-0.0287848\pi\)
−0.576165 + 0.817333i \(0.695451\pi\)
\(830\) 0 0
\(831\) −0.619634 + 1.99098i −0.0214949 + 0.0690664i
\(832\) −20.5321 56.4115i −0.711823 1.95572i
\(833\) −20.6338 3.63830i −0.714920 0.126060i
\(834\) 1.45185 + 30.6408i 0.0502734 + 1.06100i
\(835\) 0 0
\(836\) 10.5529 0.364981
\(837\) −1.53996 + 47.3804i −0.0532289 + 1.63771i
\(838\) 41.6039i 1.43718i
\(839\) −41.0703 + 34.4621i −1.41790 + 1.18976i −0.465452 + 0.885073i \(0.654108\pi\)
−0.952452 + 0.304690i \(0.901447\pi\)
\(840\) 0 0
\(841\) −4.44132 + 25.1880i −0.153149 + 0.868551i
\(842\) 18.6505 + 51.2420i 0.642740 + 1.76591i
\(843\) −35.3571 + 32.6412i −1.21776 + 1.12422i
\(844\) 12.2671 + 69.5703i 0.422252 + 2.39471i
\(845\) 0 0
\(846\) 7.04940 88.1086i 0.242364 3.02924i
\(847\) 4.95245 + 2.85930i 0.170168 + 0.0982467i
\(848\) 2.82645 7.76561i 0.0970607 0.266672i
\(849\) 15.1702 + 36.2428i 0.520640 + 1.24385i
\(850\) 0 0
\(851\) −0.962521 0.807651i −0.0329948 0.0276859i
\(852\) −19.4205 + 8.12885i −0.665334 + 0.278490i
\(853\) 9.16250 25.1738i 0.313718 0.861933i −0.678180 0.734896i \(-0.737231\pi\)
0.991898 0.127037i \(-0.0405468\pi\)
\(854\) 5.06274 8.76892i 0.173243 0.300066i
\(855\) 0 0
\(856\) 11.8346 + 20.4982i 0.404499 + 0.700613i
\(857\) −14.7384 + 2.59878i −0.503454 + 0.0887725i −0.419607 0.907706i \(-0.637832\pi\)
−0.0838474 + 0.996479i \(0.526721\pi\)
\(858\) −99.4557 + 91.8162i −3.39536 + 3.13455i
\(859\) −0.649627 + 0.236445i −0.0221650 + 0.00806740i −0.353079 0.935594i \(-0.614865\pi\)
0.330914 + 0.943661i \(0.392643\pi\)
\(860\) 0 0
\(861\) −4.45092 + 2.85884i −0.151687 + 0.0974291i
\(862\) −16.0054 19.0745i −0.545146 0.649679i
\(863\) 48.5994i 1.65434i −0.561949 0.827172i \(-0.689948\pi\)
0.561949 0.827172i \(-0.310052\pi\)
\(864\) 3.86135 + 7.22002i 0.131366 + 0.245630i
\(865\) 0 0
\(866\) −20.3812 + 17.1018i −0.692581 + 0.581144i
\(867\) 13.3994 0.634902i 0.455067 0.0215624i
\(868\) −11.5612 2.03855i −0.392413 0.0691929i
\(869\) −14.1680 + 5.15673i −0.480617 + 0.174930i
\(870\) 0 0
\(871\) −5.95343 33.7636i −0.201724 1.14404i
\(872\) 66.9320 38.6432i 2.26660 1.30862i
\(873\) 30.8229 8.50487i 1.04320 0.287846i
\(874\) 0.126859 0.219727i 0.00429108 0.00743237i
\(875\) 0 0
\(876\) 9.62214 + 1.23044i 0.325102 + 0.0415726i
\(877\) −13.6887 + 16.3136i −0.462235 + 0.550870i −0.945932 0.324365i \(-0.894849\pi\)
0.483697 + 0.875236i \(0.339294\pi\)
\(878\) −38.2508 + 45.5856i −1.29090 + 1.53844i
\(879\) −17.5163 + 23.0041i −0.590810 + 0.775908i
\(880\) 0 0
\(881\) −21.0931 + 36.5344i −0.710646 + 1.23087i 0.253969 + 0.967212i \(0.418264\pi\)
−0.964615 + 0.263662i \(0.915070\pi\)
\(882\) 4.71686 + 49.6622i 0.158825 + 1.67221i
\(883\) −44.0558 + 25.4356i −1.48259 + 0.855976i −0.999805 0.0197597i \(-0.993710\pi\)
−0.482790 + 0.875736i \(0.660377\pi\)
\(884\) −12.3706 70.1571i −0.416068 2.35964i
\(885\) 0 0
\(886\) −49.6647 + 18.0765i −1.66852 + 0.607291i
\(887\) −47.5095 8.37721i −1.59521 0.281279i −0.695753 0.718281i \(-0.744929\pi\)
−0.899461 + 0.437002i \(0.856040\pi\)
\(888\) 21.8345 42.3267i 0.732716 1.42039i
\(889\) −2.06077 + 1.72919i −0.0691160 + 0.0579952i
\(890\) 0 0
\(891\) 30.0767 36.9451i 1.00761 1.23771i
\(892\) 11.9326i 0.399533i
\(893\) 4.08344 + 4.86646i 0.136647 + 0.162850i
\(894\) 49.4514 + 25.5098i 1.65390 + 0.853175i
\(895\) 0 0
\(896\) −6.48946 + 2.36197i −0.216797 + 0.0789078i
\(897\) 0.470462 + 2.08543i 0.0157083 + 0.0696305i
\(898\) 0.410653 0.0724092i 0.0137037 0.00241633i
\(899\) −8.44014 14.6187i −0.281494 0.487563i
\(900\) 0 0
\(901\) −4.18104 + 7.24177i −0.139291 + 0.241258i
\(902\) 39.7315 109.162i 1.32292 3.63468i
\(903\) 3.14593 + 2.39544i 0.104690 + 0.0797153i
\(904\) −56.7137 47.5884i −1.88627 1.58277i
\(905\) 0 0
\(906\) −37.8602 4.84141i −1.25782 0.160845i
\(907\) 6.01218 16.5183i 0.199631 0.548482i −0.798969 0.601372i \(-0.794621\pi\)
0.998600 + 0.0528898i \(0.0168432\pi\)
\(908\) 23.1400 + 13.3599i 0.767928 + 0.443364i
\(909\) −25.6017 + 25.9849i −0.849153 + 0.861864i
\(910\) 0 0
\(911\) −0.694543 3.93895i −0.0230112 0.130503i 0.971138 0.238518i \(-0.0766617\pi\)
−0.994149 + 0.108015i \(0.965551\pi\)
\(912\) 2.58850 + 0.805593i 0.0857138 + 0.0266759i
\(913\) 1.36741 + 3.75694i 0.0452548 + 0.124336i
\(914\) −3.75834 + 21.3146i −0.124315 + 0.705024i
\(915\) 0 0
\(916\) −29.7321 + 24.9482i −0.982377 + 0.824312i
\(917\) 3.63460i 0.120025i
\(918\) 11.8820 + 36.2708i 0.392166 + 1.19711i
\(919\) −5.86587 −0.193497 −0.0967486 0.995309i \(-0.530844\pi\)
−0.0967486 + 0.995309i \(0.530844\pi\)
\(920\) 0 0
\(921\) −9.25548 + 5.94483i −0.304978 + 0.195889i
\(922\) 38.6924 + 6.82251i 1.27427 + 0.224688i
\(923\) 6.63791 + 18.2375i 0.218489 + 0.600295i
\(924\) 8.00258 + 8.66842i 0.263265 + 0.285170i
\(925\) 0 0
\(926\) −16.6059 28.7623i −0.545705 0.945189i
\(927\) −4.39485 + 6.37679i −0.144346 + 0.209441i
\(928\) −2.52490 1.45775i −0.0828840 0.0478531i
\(929\) −30.1086 10.9586i −0.987832 0.359541i −0.202951 0.979189i \(-0.565053\pi\)
−0.784880 + 0.619647i \(0.787276\pi\)
\(930\) 0 0
\(931\) −2.74654 2.30462i −0.0900141 0.0755308i
\(932\) 27.6362 32.9355i 0.905253 1.07884i
\(933\) 0.831787 0.348163i 0.0272315 0.0113983i
\(934\) 9.50610 + 3.45994i 0.311049 + 0.113213i
\(935\) 0 0
\(936\) −73.1855 + 34.7911i −2.39214 + 1.13718i
\(937\) 14.7044 8.48960i 0.480373 0.277343i −0.240199 0.970724i \(-0.577213\pi\)
0.720572 + 0.693380i \(0.243879\pi\)
\(938\) −4.47966 + 0.789885i −0.146266 + 0.0257907i
\(939\) −19.0219 20.6046i −0.620755 0.672404i
\(940\) 0 0
\(941\) −5.92567 + 33.6061i −0.193171 + 1.09553i 0.721828 + 0.692073i \(0.243302\pi\)
−0.914999 + 0.403456i \(0.867809\pi\)
\(942\) −10.0410 15.6328i −0.327155 0.509345i
\(943\) −1.17935 1.40550i −0.0384050 0.0457693i
\(944\) −21.0053 −0.683665
\(945\) 0 0
\(946\) −86.8321 −2.82316
\(947\) −0.0596897 0.0711354i −0.00193966 0.00231159i 0.765074 0.643943i \(-0.222702\pi\)
−0.767013 + 0.641631i \(0.778258\pi\)
\(948\) −18.8721 + 0.894216i −0.612939 + 0.0290428i
\(949\) 1.55284 8.80661i 0.0504074 0.285875i
\(950\) 0 0
\(951\) 4.34215 13.9520i 0.140804 0.452426i
\(952\) −4.44701 + 0.784128i −0.144129 + 0.0254137i
\(953\) −42.8976 + 24.7669i −1.38959 + 0.802279i −0.993269 0.115833i \(-0.963046\pi\)
−0.396320 + 0.918113i \(0.629713\pi\)
\(954\) 19.2689 + 5.00998i 0.623854 + 0.162204i
\(955\) 0 0
\(956\) −51.6257 18.7902i −1.66970 0.607720i
\(957\) −2.15173 + 16.8267i −0.0695554 + 0.543930i
\(958\) 38.4270 45.7955i 1.24152 1.47958i
\(959\) 3.38667 + 2.84176i 0.109361 + 0.0917651i
\(960\) 0 0
\(961\) −49.0825 17.8646i −1.58331 0.576276i
\(962\) −79.5872 45.9497i −2.56599 1.48148i
\(963\) −13.0985 + 9.31745i −0.422094 + 0.300251i
\(964\) −19.4642 33.7129i −0.626898 1.08582i
\(965\) 0 0
\(966\) 0.276689 0.0624196i 0.00890233 0.00200832i
\(967\) −8.12772 22.3307i −0.261370 0.718107i −0.999076 0.0429853i \(-0.986313\pi\)
0.737706 0.675122i \(-0.235909\pi\)
\(968\) −74.0387 13.0550i −2.37969 0.419604i
\(969\) −2.43788 1.25759i −0.0783161 0.0403998i
\(970\) 0 0
\(971\) 34.5957 1.11023 0.555115 0.831774i \(-0.312674\pi\)
0.555115 + 0.831774i \(0.312674\pi\)
\(972\) 49.7439 33.0048i 1.59554 1.05863i
\(973\) 2.46468i 0.0790141i
\(974\) 26.2943 22.0635i 0.842523 0.706961i
\(975\) 0 0
\(976\) −6.51600 + 36.9541i −0.208572 + 1.18287i
\(977\) −9.97323 27.4012i −0.319072 0.876643i −0.990738 0.135789i \(-0.956643\pi\)
0.671666 0.740854i \(-0.265579\pi\)
\(978\) −15.2591 67.6396i −0.487933 2.16288i
\(979\) −5.84723 33.1613i −0.186878 1.05984i
\(980\) 0 0
\(981\) 30.4240 + 42.7702i 0.971362 + 1.36555i
\(982\) −23.8833 13.7891i −0.762148 0.440026i
\(983\) 12.2012 33.5226i 0.389158 1.06920i −0.578223 0.815879i \(-0.696254\pi\)
0.967381 0.253325i \(-0.0815242\pi\)
\(984\) 42.1315 55.3311i 1.34310 1.76389i
\(985\) 0 0
\(986\) −10.4111 8.73598i −0.331558 0.278210i
\(987\) −0.900833 + 7.04459i −0.0286738 + 0.224232i
\(988\) 4.16941 11.4554i 0.132647 0.364443i
\(989\) −0.685714 + 1.18769i −0.0218044 + 0.0377664i
\(990\) 0 0
\(991\) −14.8225 25.6734i −0.470853 0.815541i 0.528591 0.848877i \(-0.322720\pi\)
−0.999444 + 0.0333351i \(0.989387\pi\)
\(992\) −14.1572 + 2.49630i −0.449493 + 0.0792577i
\(993\) 11.3439 + 3.53046i 0.359989 + 0.112036i
\(994\) 2.41970 0.880699i 0.0767482 0.0279341i
\(995\) 0 0
\(996\) 0.237120 + 5.00433i 0.00751342 + 0.158568i
\(997\) −33.2686 39.6480i −1.05363 1.25566i −0.965734 0.259533i \(-0.916431\pi\)
−0.0878926 0.996130i \(-0.528013\pi\)
\(998\) 91.4487i 2.89476i
\(999\) 30.0184 + 12.0440i 0.949741 + 0.381054i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.21 132
5.2 odd 4 675.2.l.f.76.1 66
5.3 odd 4 675.2.l.g.76.11 yes 66
5.4 even 2 inner 675.2.u.e.49.2 132
27.16 even 9 inner 675.2.u.e.124.2 132
135.43 odd 36 675.2.l.g.151.11 yes 66
135.97 odd 36 675.2.l.f.151.1 yes 66
135.124 even 18 inner 675.2.u.e.124.21 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.1 66 5.2 odd 4
675.2.l.f.151.1 yes 66 135.97 odd 36
675.2.l.g.76.11 yes 66 5.3 odd 4
675.2.l.g.151.11 yes 66 135.43 odd 36
675.2.u.e.49.2 132 5.4 even 2 inner
675.2.u.e.49.21 132 1.1 even 1 trivial
675.2.u.e.124.2 132 27.16 even 9 inner
675.2.u.e.124.21 132 135.124 even 18 inner